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Abstract: Minimizing the biological sewage sludge (BSS) produced by wastewater treatment plants
(WWTPs) represents an increasingly difficult challenge. With this goal, tests on a semi-full scale
Thermophilic Alternate Membrane Biological Reactor (ThAlMBR) were carried out for 12 months.
ThAlMBR was applied both on thickened (TBSS) and digested biological sewage sludge (DBSS) with
alternating aeration conditions, and emerged: (i) high COD removal yields (up to 90%), (ii) a low
specific sludge production (0.02–0.05 kgVS produced/kgCODremoved), (iii) the possibility of recovery the
aqueous carbon residue (permeate) in denitrification processes, replacing purchased external carbon
sources. Based on the respirometric tests, an excellent biological treatability of the permeate by the
mesophilic biomass was observed and the denitrification kinetics reached with the diluted permeate
((4.0 mgN-NO3

−/(gVSS h)) were found comparable to those of methanol (4.4 mgN-NO3
−/(gVSS h)).

Moreover, thanks to the similar results obtained on TBSS and DBSS, ThAlMBR proved to be compati-
ble with diverse sludge line points, ensuring in both cases an important sludge minimization.

Keywords: wastewater treatment plant; sludge minimization; carbon recovery; thermophilic mem-
brane reactor; nitrate uptake rate tests; respirometric tests; circular economy

1. Introduction

In the European Community, the gradual implementation of the urban wastewater (WW)
directive determined an increasing quantity of biological sewage sludge (BSS) production
due to a significant increase in discharges into public sewers and the request for greater
efficiency of the purification process [1,2]. For the EU-27, in 2005 about 11 million tons
of dry sludges were produced [3] and this amount is expected to have now exceeded
13 million tons of dry matter [4,5]. From the data published by ISPRA (Italian Superior
Institute for Environmental Protection and Research) in 2018, the urban WW treatment
activities produced approximately 3.1 million tons of sludge in Italy alone. Approximately
800 thousand tons generated by the treatment of industrial WW were also produced [6].

For Europe’s decisions oriented to circular economy processes, identification of long-
term technical-economic strategies that are able to provide answers to this problem is very
important [7]. First of all, it is necessary to follow the waste hierarchy detailed in Directive
2018/851/EC, which establishes the rules and priorities in the treatment and management
of waste in order to ensure the lowest environmental impact: (i) prevention; (ii) preparation
for use; (iii) recycling; (iv) energy recovery; and (v) final disposal [8]. As the legislation
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points out, the use of landfill disposal should be discouraged, as it is not an effective and
efficient approach [9]. The reuse of BSS in soils and the incineration appear to be the main
routes adopted [4].

In Europe, in 2015, despite the strong regulatory uncertainties, the main destination
was represented by spreading in agriculture (45%), followed by incineration (27%), com-
posting and other forms of reuse (13%), disposal in landfills (8%), and other forms of
disposal (3%) [3]. In 2016, in Italy, according to the data published by ARERA (Regulatory
Authority for Energy, Networks and the Environment), the BSS recovery has exceeded the
disposal (almost, 80% vs. 20%). The 70% of recovered BSS were reused in agriculture, by
direct spreading or by composting amending products, while a residual percentage was
destined for co-incineration in waste-to-energy plants or cement factories [10].

The prevailing operation of reuse BSS in agriculture is not exempt from critical points
such as the presence of harmful substances originally contained in WW [11–13] and the
low acceptance by the population, mainly related to the odor impact [14,15]. Furthermore,
for instance in Italy, several managers of wastewater treatment plants (WWTPs) reported
increasing difficulties in the reuse of BSS as soils conditioner due to the absence of adequate
outlets in their respective territories. This has led to a resumption of landfilling or an
increase in extra-regional and cross-border flows [10].

Considering that BSS disposal represents a deep problem in the environmental sector,
technologies that minimize BSS are of fundamental importance [16]. BSS minimization can
be achieved through two main approaches: (i) reducing the production in water line of
WWTPs, or (ii) applying technologies in sludge line acting on BSS already produced by
biological processes [17].

In this study, results of an innovative biological process applied in sludge line are
presented. The Thermophilic Alternate Membrane Biological Reactor (ThAlMBR) is an
advanced biological membrane system used to lysate and oxidize the excess BSS produced
by WWTP through thermophilic bacteria, under controlled conditions of temperature and
aeration. Previous experiments on ThAlMBR pilot plant mainly concerned the treatment
of industrial aqueous waste [18–20]. With regard to BSS, only two preliminary experiments
have been carried out on TBSS [21,22], never on DBSS. A recent experimentation was
conducted on TBSS to evaluate the minimization of BSS produced by a municipal WWTP
owing to the application of ThAlMBR. The reduction of BSS was quantified in 89% and
92%, in terms of total and volatile solids fed to the system, respectively [23]. These previous
studies have made it possible to approach the optimal operative conditions for the process
(hydraulic retention time, organic loading rate (OLR), temperature, etc.), which, however,
have never been thoroughly tested for long periods, as was the case in this experimentation
which lasted 12 months.

Furthermore, there are no full scale plants equipped with this technology for the
treatment of BSS while two aqueous waste treatment plants have been built. The first
plant was able to remove almost 90% of COD with a specific sludge production of
0.08–0.09 kgVSSproduced/kgCODremoved (VSS: volatile suspended solids) [24]. The second full
scale removed 78.2% of COD (operating with an organic loading rate (OLR) between 1.5
and 2 kg/(m3d), and almost 82% of COD in case of an OLR greater than 3 kg/(m3d). In this
case, a specific sludge production of 0.052 kgVSproduced/kgCODremoved was highlighted [25].

Regardless of the substrate being fed, ThAlMBR produces a carbonaceous aqueous
residue (permeate). In recent work, the feasibility of reuse permeate, from ThAlMBR
fed with aqueous waste, in denitrification processes as alternative carbon source was
proved [25]. If the amount of organic substance in the untreated WW is too low in relation
to the required COD:N ratio, the addition of an external carbon source becomes necessary
to increase the yields of the denitrification process [26,27]. This criticality can occur with
post-denitrification but also with pre-denitrification schemes where the incoming effluent
is particularly lacking in organic matter. Generally, the purchase of an external carbon
source (e.g., methanol, ethanol, acetic acid, glucose), necessary to increase denitrification
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kinetics [27,28] represents the most significant costs in WWTPs management together with
the disposal of the BSS produced [29,30].

As alternative sources of carbon, in order to guarantee economic savings and a lower
environmental impact, WW from food, confectionery, dairy, and beverage production
processes can be used, owing to the high content of organic carbon that is easily biodegrad-
able [31,32]. An important disadvantage could be the inconstancy of both qualitative and
quantitative characteristics of this industrial WW, related to the variety of production
cycles [28].

In this work, biological treatability, with oxygen uptake rate (OUR) tests, and denitri-
fication kinetics, with nitrate uptake rate (NUR) tests, were evaluated. The feasibility of
reusing the permeate within the WWTP itself as an alternative caron source in denitrifica-
tion, to move forward a water resource recovery facility (WRRF), from the limited vision of
a WWTP intended for WW treatment only [33,34] was explored.

Moreover, the minimization of BSS production by means of ThAlMBR was inves-
tigated first, focusing also on its possible placement in the WWTP sludge line. Subse-
quently, attention was paid to the possible total or partial replacement of external carbon
sources in the WWTP water line. Tests on a semi-full scale plant were carried out for
12 months. ThAlMBR was applied both on thickened (TBSS) and digested biological
sewage sludge (DBSS).

2. Materials and Methods
2.1. ThAlMBR Pilot Plant

ThAlMBR pilot plant consisted of a thermally insulated biological reactor (volume:
1 m3). An ultrafiltration (UF) system allowed the separation of the oxidized aqueous
residue (permeate) from the active thermophilic biomass. The UF retentate could be either
recirculated upstream of the UF membranes or introduced into the thermophilic biological
reactor. The membrane line included seven tubular ceramic membranes with a molecular
cut-off of 300 kDa. More detailed information was reported by Collivignarelli et al. [19].
The presence of materials with a particle size of the order of a few mm could obstruct
the membranes, therefore, before entering the UF unit and in correspondence with the
recirculation line, bag filters are positioned to ensure a coarse filtration.

The experimentation was conducted alternating aerobic/anoxic conditions to promote
cell lysis processes and biological oxidation of the fed BSS. Due to the formation of biological
foams, aerobic/anoxic cycles were balanced preliminary testing diverse solutions. 2 h of
anoxic conditions followed by 6 h of aerobic conditions represent the optimal and stable
solution in terms of reduction of biological foams and was chosen to perform the tests.
During the aerobic phases, ThAlMBR worked with pure oxygen injected in the recirculation
line. The dissolved oxygen and the temperature of the biological reactor were monitored
by a submerged probe (Oxymax W COS31, Endress + Hauser, Reinach, Switzerland), and
maintained between 2–6 mg/L and 47–53 ◦C for oxygen and temperature, respectively.

The system worked in autothermal mode owing to the development of heat produced
by the oxidation reactions of the BOD (exothermic reactions). The plant was also equipped
with a heat exchanger, necessary for cooling the reactor in case the exothermic oxidation
reactions raise the temperature over 50 ◦C.

This work considers results obtained only during stable operating conditions, neglect-
ing the fluctuations due to the start-up phase.

2.2. ThAlMBR Placement in WWTP Sludge Line

ThAlMBR pilot plant was tested in two urban WWTPs located in Northern Italy
(130,000 and 70,000 population equivalent, respectively). Two WWTPs with conventional
active sludge (CAS) system, with a complete sludge line, and without industrial drains
in WW entering the WWTPs, were chosen. As shown in Figure 1, two scenarios were
identified as the ThAlMBR was introduced at diverse points of sludge lines to evaluate the
feasibility of the process in minimizing the BSS. In scenario A (Figure 1a), the sludge line
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featured a static thickener, a dynamic thickener with polyelectrolyte dosage, an anaerobic
digester, and a dewatering treatment by centrifuge. In this scenario, the pilot plant was
placed downstream of the static thickener. In Scenario B (Figure 1b), ThAlMBR was placed
downstream of the anaerobic digester.

In both cases, the permeate was investigated as alternative carbon source for denitrifi-
cation processes.
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Figure 1. Applications of ThAlMBR in sludge line. (a) Scenario A: downstream of the thickener,
(b) Scenario B: downstream of the anaerobic digester. BSS: biological sewage sludge, TBSS: thickened
biological sewage sludge, DBSS: digested biological sewage sludge, VS: volatile solids.

2.3. TBSS and DBSS Treated by ThAlMBR

TBSS was sampled after the static thickener of plant A, before the addition of polyelec-
trolyte as a flocculant at the dynamic thickener (Scenario A, Figure 1a). DBSS was sampled
after the anaerobic digestion of BSS produced by plant B (Scenario B, Figure 1b).

Table 1 shows the chemical and chemical-physical parameters of the two BSS fed to
the process. The average values of the measurements taken during the experimentation,
and the confidence interval were reported.
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Table 1. Chemical and physico-chemical parameters of TBSS and DBSS.

Parameter
TBSS DBSS

Mean Value ± Confidence Mean Value ± Confidence

COD [mg/L] 32,348 ± 1488 35,223 ± 2706
TN [mg/L] 1173 ± 84 914 ± 260

N-NH4
+ [mg/L] 548 ± 51 251 ± 77

N-NOx [mg/L] 3.4 ± 1.2 n.d.
TS [g/L] 20 ± 2 24 ± 4
VS [g/L] 14 ± 1 14 ± 2

VS/TS [%] 71 ± 2 57 ± 4
pH [-] 5.5 ± 0.1 6.5 ± 0.3

Electrical conductivity [µS/cm] 2586 ± 182 3345 ± 439
COD: chemical oxygen demand; TN: total nitrogen; TS: total solids; VS: volatile solids; n.d.: not detected.

These substrates were almost equivalent from a chemical point of view. The only
difference concerned the value of the inert solid residue, greater in DBSS due to the accu-
mulation of inert material in the digester where samples were taken, and the ammoniacal
nitrogen concentration, more than double in TBSS. The pH of TBSS was slightly more
acidic, but this had no effect on the pH of the process which has settled around neutrality
(Table 2).

Table 2. Operative conditions in the thermophilic reactor with TBSS and DBSS.

Operative Parameter
TBSS DBSS

Mean Value ± Confidence Mean Value ± Confidence

TS [kg/m3] 62 ± 2 77 ± 6
VS [kg/m3] 28 ± 1 30 ± 2
VS/TS [%] 45 ± 1 41 ± 3
HRT [day] 10 ± 1 10 ± 1

OLR [kgCOD/(m3 d)] 3.2 ± 1.7 3.4 ± 0.2
T [◦C] 50 ± 2 48 ± 2
pH [-] 6.7 ± 0.1 7.1 ± 0.4

TS: total solids; VS: volatile solids; HRT: hydraulic retention time; OLR: organic loading rate; T: temperature.

2.4. Operative Conditions

Table 2 shows the operative conditions inside ThAlMBR during the experimentation
with TBSS and DBSS.

TBSS and DBSS were fed continuously for 10 months and 2 months, respectively.
Initially, only the minimization of TBSS and the reuse of the permeate produced were
taken into consideration. Following the obtained results, it was decided to deepen the
study on the treatment of DBSS to evaluate the possible double applicability of ThAlMBR,
representing the second phase a consolidation of an already tested process on TBSS. This
explains the diverse duration of the two experimentation phases.

The total solids (TS) in the reactor were kept no more than 80 kg/m3 and their
increase was managed through controlled extractions of thermophilic sludge. In fact, a
total solids value greater than 100 kg/m3 could have compromised the hydrodynamics,
the mechanicals, and the hydraulics of the pilot plant, as well as the change in rheological
characteristics of the thermophilic sludge with consequent management problems.

In both sludges the OLR was the same (almost 3 kgCOD/(m3d)). The hydraulic
retention time (HRT) of the system was maintained around 10 d. The pH was close to
neutrality, an optimum condition for thermophilic bacterial species.

2.5. Analytical Methods

The analytical parameters, in the fed TBSS and DBSS, in the thermophilic sludge and
in the permeate, were monitored using official methods recognized internationally. COD
was determined with the method proposed by ISO 6060: 1989 [35], total nitrogen (TN) was
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monitored with CNR-IRSA [36]. For ammoniacal nitrogen (N-NH4
+) the method of APAT

IRSA-CNR 4030 A1:2003 was used [37]. Organic nitrogen was calculated starting from the
measurements of TN and N-NH4

+, the nitric and nitrous nitrogen being negligible. Total
solids (TS) were determined using UNI EN 14346:2007 [38] and volatile solids using UNI
EN 15169:2007 [39].

Electrical conductivity was daily measured using the probe WTW-IDS, model TetraCon®

925 (Xylem Analytics Germany Sales GmbH & Co, Mainz, Germany). pH was daily
measured using the probe WTW-IDS, Model SenTix® 940 (Xylem Analytics Germany Sales
GmbH & Co, Mainz, Germany).

2.6. Respirometric Tests
2.6.1. OUR Tests

OUR tests were performed as an index of metabolic-enzymatic activity of a biological
system, as suggested by Hagman et al. [40] and Kristensen et al. [41]. The respirometric tests
of OUR were used to evaluate the biological treatability of the permeate in the mesophilic
field. A mesophilic biomass from a traditional CAS process was used and endogenous OUR
tests with biomass alone were first conducted to understand its health status. Subsequently,
exogenous OUR tests were carried out by contacting the mesophilic biomass and the
substrates (BSS fed or ThAlMBR permeate), in equal volume ratio. Total of 500 mL of
biomass was aerated for 30 min up to a dissolved oxygen concentration of about 7 mg/L
and then the aeration was stopped, mixed with 500 mL of substrate and the beaker was
hermetically closed to prevent the entry of oxygen from the external environment. The
substrate either undiluted or suitably diluted with distilled water was added with the
aim of evaluating a possible toxic-inhibiting effect of the substrate against the mesophilic
biomass. Continuous stirring was maintained (about 400 RPM). All tests took place at
room temperature. The OUR value was calculated considering the concentration of VSS in
the tested sample and the slope of the oxygen consumption curve [41].

To globally assess the performance of ThAlMBR process, an index has been proposed,
GPI (global process index), which is a dimensionless number between −1 and 2. In particu-
lar, the index aims to investigate the increase/decrease in the permeate biodegradability
compared to the BSS fed to ThAlMBR, in relation to the COD removal performance in
ThAlMBR process. The Equation (1) has been used to calculate the GPI:

GPI [−] =
OUROUT − OURIN

OUROUT + OURIN
+

CODIN − CODOUT

CODIN + CODOUT
(1)

where:

• OURIN [mgO2 /(gVSS h)] represents the OUR of the BSS fed to ThAlMBR;
• OUROUT [mgO2 /(gVSS h)] represents the OUR of ThAlMBR permeate;
• CODIN [mg/L] represents the COD of the BSS fed to ThAlMBR;
• CODOUT [mg/L] represents the COD of ThAlMBR permeate.

The more the GPI value was close to 2, the greater was the biodegradability of the
permeate compared to that of the starting BSS and the removal of COD carried out by
ThAlMBR in the BSS. The more the index value was close to −1 the more the carbon
in the permeate showed a poor biological degradation (certainly lower than that of BSS
fed to ThAlMBR). GPI remained almost 1 if there is: (i) an excellent degradation of COD
with a reduction in the biodegradability of the permeate, or on the contrary, (ii) a reduced
reduction of organic carbon and an important improvement of the biodegradation of the
permeate. The latter case can be linked to the presence of organic substance which is
difficult to biodegrade by the thermophilic biomass in the BSS fed to the process. However,
during the stay of the BSS in the reactor, the thermophilic biomass should be able to simplify
the structure of the COD making it easily biodegradable in the permeate.
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The reference substrate was represented by the BSS entering ThAlMBR. Therefore,
with the GPI index it is possible to evaluate how ThAlMBR modified the biodegradability
of the treated BSS.

2.6.2. NUR Tests

NUR tests were performed to evaluate the feasibility of using the permeate as an
external source of organic carbon for denitrifying bacteria. The biomass used was taken
from a denitrification process present in a real WWTP and both methanol (as an external
source of organic carbon of reference) and the permeate suitably diluted with distilled
water were used as substrates. Ammonia in permeate was stripped before tests to avoid
possible inhibition of microorganism. The method described also in our previous study
was used [25]. Total of 500 mL of biomass was aerated for 30 min and mixed with 500 mL
of substrate, enriched with nitrates using KNO3 to obtain an initial N-NOx concentration
in the starting sample of approximately 50 mg/L. The system was kept in constant stirring
(about 400 RPM) and was hermetically sealed to avoid the solubilization of atmospheric
oxygen. The pH was maintained around neutrality with the addition of H2SO4 if necessary.
The tests lasted a total of 6 h, and every hour 25 mL of sample was taken and filtered for
chemical analyses (COD, N-NOx

−). The NUR was evaluated considering the concentration
of VSS in the tested sample and the slope of the nitric and nitrous nitrogen consumption
curve was determined.

3. Results and Discussion
3.1. Performance and Sludge Minimization

The organic substrate fed was oxidized by the thermophilic bacteria present inside
the reactor. Figure 2 shows the COD removal yields calculated comparing the inlet (TBSS
and DBSS) and outlet (permeate) concentrations from the process. Specifically, Figure 2a
shows the COD removal in the first part of the experiment with TBSS, in which an average
removal efficiency of 92% was achieved. While Figure 2b shows the COD removal yields
in DBSS, with an average pilot plant performance of 91%. The results relating to the COD
removal yields are comparable between the two sludges. As there were no particularly
noticeable differences, it is possible to state the excellent applicability of the ThAlMBR to
both TBSS and DBSS.
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It is important to underline that the COD of the permeate did not have significant
variations in terms of concentration (2318 ± 155 mgCOD/L and 3400 ± 855 mgCOD/L, in
case of TBSS and DBSS, respectively). This result was indicative of a stable operation of
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the process which ensured an output permeate with uniform and unchanged qualitative
and quantitative characteristics. It constituted a not negligible aspect in view of a possible
reuse of the aqueous residue which continued to maintain an important residual COD
considering the treatment with a mesophilic biomass.

The results reported in Figure 2 were obtained under comparable conditions of average
OLR: 3.2 ± 1.7 kgCODIN /(m3 d) for TBSS and 3.4 ± 0.2 kgCODIN /(m3 d) for DBSS. The COD
removal yields obtained with ThAlMBR were completely similar or superior to those of the
MBR systems reported in the scientific literature. For example, a COD removal efficiency of
62–79% was found treating landfill leachate with an aerobic thermophilic MBR [42]. From
other types of aqueous waste, ThAlMBR removed almost 78% of COD with an OLR of
3–6 kgCODIN /(m3 d) [43] and proved to be able to remove up to 94% with HRT of 10 d [20].
Considering the treatment of thickened biological sludge by means of a thermophilic
process with alternating oxygen cycles, COD removal values of 57% were achieved with an
average HRT of 20 days and an OLR of approximately 1.4–1.8 kgCODIN /(m3 d) [21]; even
higher up to 85% with HRT of 13–14 days and OLR of almost 2 kgCODIN /(m3 d) [22].

ThAlMBR is usually a powerful ammonia producer, as has already been observed in
previous experiments [18,22], capable of converting organic nitrogen into ammonia through
transamination reactions [44]. Similar behavior was also observed in this experiment on
TBSS and DBSS. The conversion of organic nitrogen, introduced with BSS, into ammoniacal
nitrogen is clearly visible in Figure 3. The subdivision of total nitrogen into its various forms
has been represented, as average values on the experimental phases. The contribution
of N-NOX during the experimentation had a negligible weight given its concentrations
involved between 1 and 10 mg/L. Therefore, in the distribution of nitrogen forms, only the
forms of organic and ammoniacal nitrogen were considered.
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In TBSS, the total nitrogen entering ThAlMBR is made up equally of organic and
ammoniacal nitrogen, while in DBSS the prevalent form of nitrogen is organic (about 70%).
In both cases, the ammonification phenomena due to the thermophilic biomass is evident
in the permeate output. The ammonification process was investigated in more detail by
evaluating the production yields of ammoniacal nitrogen and calculating the amount of
organic nitrogen converted. The results are shown in Figure 4.
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A reduction of organic nitrogen between inlet and outlet in the 80–90% range was
evaluated, 87% and 80% for TBSS and DBSS, respectively. About ammoniacal nitrogen,
production yields of 35% for TBSS and 38% for DBSS were obtained. In ThAlMBR, the
amount of ammonia produced should not deviate much from the amount of organic nitro-
gen converted, although percentage differences of approximately 40–50% were observed in
this experimentation. A portion of the organic nitrogen was certainly used by thermophilic
bacteria for metabolic functions, but, in particular the production of ammoniacal nitrogen
seemed to be underestimated, as was also observed in our previous tests [45]. This can
be attributed to the stripping phenomena to which ammonia was subjected following the
high temperatures and pH of the process, sometimes higher than neutrality.

For the evaluation of the specific sludge production in ThAlMBR, no distinction be-
tween the periods of feeding TBSS and DBSS has been done, as the process did not present
significant differences. For the calculation of the specific production of sludge (i) the
thermophilic biomass extractions carried out to keep the value of TS of the process approx-
imately constant and (ii) the quantity of sludge lost during ordinary and extraordinary
maintenance operations of the plant were considered. Ordinary maintenance operations
mainly concerned the daily cleaning of the pre-filters present both in the recirculation line
and in the UF line. The specific sludge production was therefore calculated considering, in
addition to the TS and vs. extracted and lost, also the COD removed. ThAlMBR sludge pro-
duction was 0.05–0.08 kgTSproduced/kgCODremoved and 0.02–0.05 kgVSproduced/kgCODremoved.
Results were comparable to those of some previous experiments on industrial aqueous
waste: 0.04 kgVSproduced/kgCODremoved [19,45] and 0.09 kgVSproduced/kgCODremoved [18].
However, the results of this experimentation were better than those reported by Sim-
stich et al. [46] for thermophilic aerobic MBRs where the specific sludge production were
0.07–0.29 kgMLSS/kgCODremoved and 0.03–0.09 kgMLVSS/kgCODremoved (MLSS: mixed liquor
suspended solids, MLVSS: mixed liquor volatile suspended solids).

For this same type of process, Suvilampi and Rintala [47] indicated values equal to
0.12–0.16 kgTSS/kgCODremoved. On the other hand, for a mesophilic MBR the sludge production
can be generally higher than the thermophilic conditions, such as 0.10 kgVSSproduced/kgCODremoved [48]
up to 0.19 kgVSSproduced/kgCODremoved [49].

3.2. OUR Tests

Aerobic biomass uses oxygen to perform catabolic/anabolic functions and to activate
the biological oxidation processes of organic pollutants. For comparing the biodegrad-
ability of different substrates, OUR data are an important tool. Highly biodegradable
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substrates determined a high demand for oxygen in the short term, on the other hand,
poorly biodegradable substrates have much lower oxygen consumption rates. One of
the objectives of the experiment was to evaluate the possible reuse of the permeate as an
external carbon source in a denitrification process in a WWTP water line. Therefore, the
biodegradability of the aqueous residue produced has been compared with that of the
fed substrate. OUR tests were performed using a mesophilic biomass taken from a CAS
system. In the discussion of the results, no distinction is made between TBSS and DBSS as
the trend of the results was comparable. Figure 5 shows the results of the OUR and GPI
values obtained from the various tests.
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The results obtained showed that OUR of BSS fed was always lower than the output
permeate. OUR of the permeate reached an average value of 31.1 ± 6.6 mgO2 /(gVSS h)
against an average value of 4.0 ± 1.1 mgO2 /(gVSS h) of the fed BSS. Similar results were
obtained by Collivignarelli et al. [18], using a permeate deriving from the treatment of
industrial aqueous waste. This difference between inlet and outlet to the reactor seemed to
be due to an increase in biodegradability achieved by the thermophilic process. Despite
the important reduction of COD carried out by ThAlMBR, the permeate contained residual
organic substances highly biodegradable from the mesophilic biomass. ThAlMBR oxidize
the fraction of COD more difficultly biodegradable from a mesophilic biomass, leaving in
the permeate substances more easily biodegradable from a CAS.

The GPI values were also shown in Figure 5. GPI has always assumed positive values,
between 1.25 and 1.5. These results showed a constant trend of the excellent performance
of the process, both in terms of COD removal and increase in biodegradability. In this
way, the excellent availability of usable organic carbon from a mesophilic biomass in the
permeate was confirmed, already visible from the OUR values.

The most important result was the demonstration of an increase in the biodegradabil-
ity of the permeate compared to that of the fed BSS. The COD of the permeate (around
2000–3000 mg/L), despite being of an order of magnitude lower than the COD of the fed
BSS, was found to be more degradable by the mesophilic biomass. Therefore, ThAlMBR
guaranteed an important reduction of COD but at the same time remaining organic sub-
stance was highly biodegradable promoting possible reuse of the permeate.
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Any inhibiting substances present within the permeate, resulting from the catabolism
processes of COD, can affect the OUR value. In this regard, respirometric tests were
conducted on the fed BSS and the permeate diluted at diverse concentrations. The trends
are shown in Figure 6.
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Each curve represents a test carried out on the same BSS or permeate sample, re-
spectively. For each test, the sample was tested not diluted (associated with the major
COD), and at least with three dilutions (COD decreasing with the dilution increasing).
As the dilution factor increased, the OUR values increased and therefore the biodegrad-
ability of the tested substrates. Trends of this type are characteristic of substrates with
a toxic-inhibiting effect on biomass [50]. This effect is linked to the presence of harmful
substances in the tested substrate which could disturb and, in the worst cases, inhibit the
biomass put in contact with the substrate. The results showed that the toxic-inhibiting
effect can be reduced by suitably diluting the analyzed substrate and the increase in OUR
with the dilutions was not excessively marked, demonstrating a reduced acute toxicity for
mesophilic biomass.

The feedback obtained from OUR tests, in addition to supporting the thesis of a
good complementarity between CAS system and a thermophilic process, has shown that
ThAlMBR process does not worsen the toxic-inhibiting effect of the permeate against a
traditional mesophilic biomass, compared to those of BSS.
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3.3. NUR Tests

Through the NUR tests it was possible to verify the effect of the permeate on the
denitrifying biomass, which is an important aspect in case of reusing the permeate as
an external source of carbon in denitrification process. As for the OUR, NUR tests were
performed by diluting the permeate. For the dilutions, the water entering the denitrification
section of a full scale WWTP was used to recreate the real operating conditions. The results
of the NURs are reported in Figure 7.
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The substrates used in the NUR tests were permeate in diverse dilutions and methanol.
The latter was a highly biodegradable carbonaceous substrate used as a reference, usually
purchased in the WWTPs to increase the denitrification kinetics in the post-denitrification
processes. The test carried out with methanol could represent a typical situation found in a
real WWTP. Different permeate dilutions were tested: 1:1.5, 1:3, 1:5, 1:10, 1:20.

The highest NUR value was obtained with methanol. Of all tests carried out with the
permeate, the best result was obtained by diluting the permeate 1:10, as it is comparable
with the NUR value of methanol. Tests carried out at lower permeate dilutions (1:1.5; 1:3;
1:5) showed a lower denitrification rate, probably due to a slight toxic-inhibiting effect of
the substrate on mesophilic bacteria (resolved by increasing the dilution). The excessive
dilution of the permeate (1:20) determined a lower NUR probably due to a low amount of
bioavailable COD, necessary for heterotrophic bacteria to carry out denitrification.

The results obtained proved that the permeate can be potentially used as an alternative
carbon source in a denitrification process, with results not significantly different from those
obtained using methanol. Furthermore, the NUR of the permeate was found to be in
line with and in some cases higher than those found in the literature using other types of
industrial WW (Table S1).

4. Conclusions

The results of the semi-full scale ThAlMBR allowed to confirm its applicability in
the minimization of BSS. In addition, the versatility of the technology was demonstrated
for the first time by testing a double location in WWTP sludge lines, both downstream
of a thickener and downstream of an anaerobic digester. Specific production of sludge
between 0.02 and 0.05 kgVSproduced/kgCODremoved was obtained. The possible recovery of
the permeate aqueous residue deriving from ThAlMBR was then investigated by means of
OUR and NUR tests. The permeate, owing to (i) its constant qualitative and quantitative
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characteristics, (ii) its excellent biological treatability in the mesophilic field, and (iii) deni-
trification kinetics comparable to those obtained using methanol (4.0 mgN-NO3

−/(gVSS h)
with a dilution ratio of 1:10), can be advantageously reused as an alternative carbon source
in a post-denitrification process. After stripping in an acid tower for ammonia recovery,
the permeate could be recirculated in the WWTP water line hosting ThAlMBR. In this way
(i) economic savings, (ii) greater storage safety, and (iii) recovery operation in a circular
economy approach applied to water treatment can be guaranteed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes11120977/s1. Table S1: NUR values obtained from diverse carbon sources.
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Abbreviations

BSS Biological sewage sludge
CAS Conventional activated sludge
DBSS Digested biological sewage sludge
HRT Hydraulic retention time
NUR Nitrate uptake rate
OLR Organic loading rate
OUR Oxygen uptake rate
ThAlMBR Thermophilic alternate membrane biological reactor
TBSS Thickened biological sewage sludge
TN Total nitrogen
TS Total solids
UF Ultrafiltration
VS Volatile solids
WW Wastewater
WWTP Wastewater treatment plant
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