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Abstract

A three-dimensional thermodynamic setting for the modelling of elastic-plastic materials is established. The second law of thermodynamics is 
assumed in the Clausius-Duhem form with the entropy production being given by a constitutive function. An incremental stress strain relation is 
derived. In essence the free energy is found to describe the elastic behaviour while the hysteretic properties are a joint consequence of the entropy 
production and the free energy.
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Introduction

The purpose of this paper is to establish a thermodynamic 
three-dimensional setting for the modelling of thermo-elastic-plas-
tic properties of solids. To this end we follow the scheme of ra-
tional thermodynamics [1] which is based on the (local) balance 
equations and the Clausius-Duhem inequality as a way of selecting 
physically admissible constitutive equations. However, we allow 
the entropy production too to be given by a constitutive function. 
This view is quite unusual in the literature and is the key point of 
the present approach. Mathematically it emerges that new schemes 
can occur due to common dependences of the free energy, possibly 
of the stress, and of the entropy production. To describe the elas-
tic-plastic behaviour we consider the stress, the strain, and their 
rates within the set of independent variables. Here it follows that 
the dependence of the entropy production on the strain rate or on 
the stress rate combine with the time derivative of the free energy 
thus providing relations which are qualitatively new; the free en-
ergy is dependent on both stress and strain. These models show a 
joint occurrence of terms arising from the free energy and terms 
determined by the entropy production. The flexibility of the models  

 
and the thermodynamic consistency are the main advantages of the 
constitutive property of the entropy production.

Second-Law Inequality and Entropy Production

Consider a continuous body occupying a time-dependent re-

gion 
3εΩ⊂ . Any point of the body is labelled by the position X occu-

pied in a reference configuration R. The motion is described by the 
function χ that to each X ∈ R, at time t ∈ ℝ, associates the position 
x ∈ Ω. Denote by ∇ and ∇R the gradient with respect to x and X. The 
symbol ∂t denotes the time derivative at a point x in space while a 
superposed dot denotes the time derivative relative to the observer 
following the motion of the point under consideration. Hence for 

any differentiable function f (t, x) we have 
.

.tf f fν=∂ + ∇ . Instead, 
if we have g (t, X) then g˙= ∂tg. The body is regarded as a deformable 
and heat-conducting solid. The balances of mass and linear mo-
mentum are written in the form

( )
.

. 0ρ ρν+∇ = , 
.

.T bρν ρ= ∇ + 	 (1)

http://dx.doi.org/10.33552/CTCSE.2021.07.000672
https://irispublishers.com/index.php
https://irispublishers.com/ctcse/


Current Trends in Civil & Structural Engineering                                                                                                              Volume 7-Issue 5

Citation: Claudio Giorgi, Angelo Morro. Thermodynamically Consistent Models of Elastic-Plastic Materials. Cur Trends Civil & 
Struct Eng. 7(5): 2021. CTCSE.MS.ID.000672. DOI: 10.33552/CTCSE.2021.07.000672.

Page 2 of 3

where ρ is the mass density, v is the velocity, T is the symmetric 
Cauchy stress tensor, b is the body force. The balance of energy is 
written in the form

.
. .T D q rρ ε ρ= −∇ +  (2)

where ε is the internal energy density (per unit mass), D is the 
stretching tensor, q is the heat flux, and r is the heat supply.

Let η be the entropy density and θ the absolute temperature. 
The balance of entropy is expressed by saying that there is an 

entropy flux φ and an entropy supply ρs; here we let φ = q/θ and 
s = r/θ. The balance is stated by assuming that in any process the 

entropy rate is greater than what is given by φ and s, 
.

. : 0q rρρη σ
θ θ

+∇ − = >  (3)

The quantity σ so defined is said to be the entropy production. 
Substitution of ρr − ∇·q from the balance of energy (2) into (3) re-
sults in

. . 1. . 0T D qρ ε θη θ θσ
θ

 − − + − ∇ = > 
 

 (4)

By means of the Helmholtz free energy ψ = ε−θη we obtain from 
(4) that

. . 1. . 0T D qρ ψ ηθ θ θσ
θ

 − − + − ∇ = > 
   

(5)

For the present purposes it is convenient to consider (referen-
tial) Lagrangian quantities. Let F = ∇R χ be the deformation gradient 
and J = det F. Hence, we let E = ½ (FT F − 1) and

1 ,T T
RR RT JF TF q JqF− − −= =  

TRR is the second Piola (or Piola-Kirchhoff) stress tensor. It fol-
lows that

.
, . . , . .T

R RR R RF T E JT D Jq qθ θ θ θ−∇ = ∇ = ∇ = ∇

Observe RJρ ρ= is the mass density in R. Multiplying inequal-
ity (5) by J we obtain

. . . 1. .R RR R RT E q Jρ ψ ηθ θ θσ
θ

 − + + − ∇ = 
   

(6)

As is standard in continuum mechanics [1,2] we consider any 
set of constitutive equations as physically admissible if the Clau-
sius-Duhem inequality (5), or (6), holds identically for any process 
subject to the balance equations (1), (2). Equation (3) defines the 
value of the entropy production; σ > 0 characterizes dissipative 
phenomena. About (6), and likewise (5), the constitutive functions 
for ψ, η, TRR, qR are physically admissible only if the left-hand side 
is non-negative for any process satisfying eqs. (1), (2). Rather we 
consider σ too as given by a constitutive function subject to taking 
non-negative values. Consequently, the constitutive functions ψ, η, 
TRR, qR, σ are physically admissible if they satisfy identically both 

conditions

. . . 1. . 0, 0R RR RT E q Jρ ψ ηθ θ θσ σ
θ

 − + + − ∇ − = > 
   (7)

 for any process subject to the balance equations. The assump-
tion that the entropy production σ, or the rate of dissipation θσ, be 
given by a constitutive equation traces back to [3]. Later on, this 
assumption was used in [4]. Recently we have shown how the con-
stitutive function for σ is essential in the modelling of ferroelectric 
hysteresis [5,6]. We now show that the constitutive property of the 
entropy production allows a thermodynamically consistent class of 
elastic-plastic models.

Stress-Strain Response in Three-Dimensional 
Plasticity

In plasticity, and likewise in any hysteretic model, the depen-
dence of TRR on E would be given by a multivalued function. To avoid 
this type of dependence it seems convenient to let the pertinent 
constitutive equations depend on both stress and strain. Moreover, 
since we look for rate-type models of the stress-strain relation we 
let E˙ and T˙RR be among the independent variables. Accordingly, we 
assume ψ, η, qR, σ are continuous functions of the set of variables

. .
, , , , ,RR R RRE T E Tθ θ Ξ = ∇ 

   

The function ψ is assumed to be continuously differentiable. 
Upon evaluation of ψ˙ substitution in (6) we find

( ) ( ) . .

. . . . .. .. 1. . . . . .
RR R

RR
R RR R E R T RR R R R R RR R R

E T
T E T E T q Jθ θρ ψ η θ ρ ψ ρ ψ ρ ψ θ ρ ψ ρ ψ θ θσ

θ∇− ∂ + + − ∂ − ∂ − ∂ ∇ − ∂ − ∂ − ∇ =  

where the derivatives of ψ, η and σ are continuous functions of 
Ξ. The linearity and arbitrariness of ∇R θ˙, E¨, T¨RR and θ˙ imply

. .0, 0, 0,
R

RRE T
θ θψ ψ ψ η ψ∇∂ = ∂ = ∂ = = −∂

 

Hence it follows the reduced dissipation inequality

( )
. . 1. . .

RRRR R E R T RR R RT E T q Jρ ψ ρ ψ θ θσ
θ

− ∂ − ∂ − ∇ =

 Since ψ is independent of ∇R θ then letting ∇R θ = 0 we have

( )
. .

. .
RRRR R E R T RR TET E T Jρ ψ ρ ψ θσ− ∂ − ∂ =

	 (8)

where σTE = σ at ∇R θ = 0 and σTE ≥ 0. Consequently

1 . ,R R q q TEq Jθ θσ σ σ σ
θ

− ∇ = = −
	

(9)

Given a constitutive equation for qR, eq. (9) yields the constitu-
tive function for σq, that is

2. /q R Rq Jσ θ θ= − ∇ . For instance, if ( ) , 0R Rq k kθ θ= − ∇ >

, then ( ) 22/q Rk Jσ θ θ= ∇ .
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Equation (8) yields different results depending on the function 
σTE. Anyway it is worth considering the following

Proposition. Let N be a second-order tensor with |N| = 1. Any 
second-order tensor Z can be represented in the form

( ). , . 0Z Z N N Z Z N⊥ ⊥= + =

In words, Z is split into the longitudinal part (Z · N) N and the 
transverse part Z⊥.

We first look at (8) in the case σTE = 0 whence

( )
. .

. . 0
RRRR R E R T RRT E Tρ ψ ρ ψ− ∂ − ∂ =

Letting

RR

RR

T

T

N
ψ

ψ

∂
=
∂

we can write

( )
.

. .

2

.
RR

RR

RR R E
RR T RR

R T

T E
T T

ρ ψ
ψ

ρ ψ ⊥

− ∂  = ∂ +   ∂

in geometrical words, the thermodynamic restriction (8) de-

termines the longitudinal part of 
.

RRT whereas the transverse part 
.

RRT
⊥

 
  

is left undetermined. This result yields infinitely many rep-

resentations of 
.

RRT compatible with thermodynamics. If, e.g., we let 
.

0RRT
⊥

  =    then we find

( )
. .

2
1

RR

RR

RR T RR R E

R T

T T Eψ ρ ψ
ρ ψ

 = ∂ ⊗ − ∂ 
∂

We now let 0TEσ ≠ . By (8) we have

( )
. .1. .

RRT RR RR R E TE
R R

JT T Eψ ρ ψ θσ
ρ ρ

∂ = − ∂ −

Assume again for simplicity 
.

0RRT
⊥

  =   . Hence, we find that

( )
. .

2 2
1 RR

RR

RR RR

T
RR T RR R E TE

RR T T

JT T E
ψθψ ρ ψ σ

ρρ ψ ψ

∂
 = ∂ ⊗ − ∂ − 

∂ ∂

Consequently, the non-zero entropy production σTE results in 
the additional contribution

( )2
/

RR RRTE R T TJθσ ρ ψ ψ∂ ∂  to the stress rate 
.

RRT . 

For definiteness, in light of the yield criteria, we denote by F 
(TRR) the hardening function such that F = 0 is the chosen yield cri-
terion ([7], ch. 76). We then define

( )
.

, . ,RR

RR

RR

T
F F TE T

T

F
N N E H

F
ξ σ λρ ψ ξ ξ

∂
= = = ∂
∂

where H is the Heaviside step function and λ a non-negative pa-
rameter, possibly dependent on temperature. Accordingly, σTE ≥ 0 as 
required by (7). Upon substitution we obtain

( ) ( )
. .

2
1

RR

RR

RR T RR R E

R T

T T E H Nψ ρ ψ λ ξ ξ
ρ ψ

 = ∂ ⊗ − ∂ − 
∂

 
(10)

 Some comments are in order about (10). The first term in the 
right-hand side can be viewed as the contribution of the elastic be-
haviour, the second one as the term providing hysteretic effects. If ψ 
is quadratic in TRR then N is collinear to TRR. This is consistent with 
flow rules where the plastic rate E˙p is in the direction of the stress. 
Sometimes the literature assumes the plastic strain rate in the form

.
. .

RR

p
TE Fζ= ∂

where ζ is an appropriate measure of deformation. If, e.g., as in 
the von Mises criterion F is quadratic in the deviator of the stress 

then 
RRT F∂  is proportional to TRR and we find again the flow rule 

in the direction of TRR. Furthermore, the yield criteria and the flow 
rules are usually stated in terms of the Cauchy stress T rather than 

of the Piola stress TRR; in linear approximations RRT T .
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