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Abstract

Discrete-event knowledge (DEK) consists in a variety of automaton-based data structures which are generated by knowledge-
based and engineering systems, including intelligent diagnosis systems. Model-based diagnosis methods for discrete-event systems
(DESs) are typically supported by large automata that allow for the efficient generation of the candidate diagnoses when the DES is
being operated. However, the generation of the DEK may involve a determinization step, where a nondeterministic finite automaton
(NFA) is transformed into an equivalent deterministic finite automaton (DFA) by means of the classical Subset Construction
algorithm. When this determinization is performed online and the NFA is large, the diagnosis engine may slow down to such
an extent that the entire diagnosis task is jeopardized. This is why a novel determinization algorithm is proposed, called Quick
Subset Construction, which, instead of generating from scratch the equivalent DFA, removes the nondeterminism by operating
directly on the NFA. This way, the larger the NFA and the smaller the portion of nondeterminism involved, the faster Quick Subset
Construction will be over Subset Construction. Massive experimentation on large automata has confirmed this result empirically.
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1. Introduction

Knowledge-based and engineering systems exploit some sort of knowledge that is either provided by experts or
is generated by automated techniques, like in model-based diagnosis [36, 19]. In artificial intelligence, model-based
diagnosis was first proposed having in mind static systems, like combinational circuits [22, 23, 18, 15]. For diagnosing
a time-varying system [39], a discrete-event system (DES) model can be adopted [11], this being either a Petri net
[20, 10, 4, 12] or a net of communicating finite automata, one automaton for each component [3, 13, 33, 16, 21, 24,
17]. Although an automaton relevant to a DES component can represent just its nominal behavior [34], usually the
communicating automaton also describes the faulty behavior of the component, as proposed in the seminal work by
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Sampath et al. [37, 38]. Diagnosis a DES becomes a sort of abductive reasoning [32], based on the reconstruction of
the behavior that entails a temporal observation generated by the DES being operated. To speed up the online diagnosis
engine, knowledge compilation can be performed offline for generating a (temporal) diagnoser of the DES [38, 5, 9, 8],
which allows for online diagnosis in linear time. Such a data structure is a sort of discrete-event knowledge (DEK) that
is typically represented as a large (possibly huge) deterministic finite automaton (DFA). To make the compiled DEK
deterministic, a determinization step may be required, where a nondeterministic finite automaton (NFA) is transformed
into an equivalent DFA. For real DESs, the compilation of DEK may be prohibitive even if performed offline, as the
number of the states grows exponentially with the number of the DES components. This is why incremental techniques
have recently been proposed, where the DEK expands over time by exercising the diagnosis engine, thereby avoiding
total knowledge compilation [6, 7]. The problem of fixing nondeterminism in DEK becomes even more critical when
determinization is required online [28, 30], as the diagnosis engine may slow down to such an extent that the entire
diagnosis task is jeopardized. The classical algorithm for determinization of finite automata is Subset Construction
[35], which adopts a functional approach: given an NFA, it constructs from scratch an equivalent DFA. Since DEK
may be very large, functional determinization may be less than optimal, especially so when the nondeterminism is
confined to a tiny fraction of the NFA, in other words, when the DFA retains a large portion of the NFA where
the transition function is deterministic already. For this reason, a novel determinization algorithm is presented in
this paper, called Quick Subset Construction, which adopts an inward (rather than functional) approach. Instead
of generating an equivalent DFA from scratch, as functional determinization does, inward determinization fixes the
nondeterminism by operating directly on the NFA through specific repair actions, thereby leaving the rest of the NFA
untouched. Consequently, the larger the NFA and the smaller the number of repair actions involved, the better the
performance of inward determinization over functional determinization. Quick Subset Constructionwas not invented
overnight: it is the ultimate result of a research conducted over several years, aimed at finding alternative algorithms
for the determinization of the so-called mutating automata [26, 2, 27, 31, 25, 14] involved in model-based diagnosis
of active systems [29]. Still, despite its origins, Quick Subset Construction is a general-purpose algorithm which
can be regarded as a viable alternative to Subset Construction when inward determinization is expected to perform
significantly better than classical functional determinization.

2. Finite Automata and Functional Determinization

A finite automaton (FA) is a computational model that can describe a wide range of systems. An FA includes a
finite set of states, a set of actual states (ideally, just one), and a set of transitions that establish what the new set
of actual states is when an input is applied. An FA can be exploited for recognizing a regular language. A string in
the language is recognized when an accepting (final) state, is reached. An FA can be either deterministic (DFA) or
nondeterministic (NFA). Formally, a DFA D is a 5-tuple, D = (Σ,D, Td, d0, Fd), where Σ is the alphabet (a finite set
of symbols), D is the set of states, Td is the transition function, Td : DΣ �→ D, where DΣ ⊆ D×Σ, d0 is the initial state,
and Fd ⊆ D is the set of final states. Determinism is based on that Td maps a state-symbol pair into a single state.
Likewise, an NFA N is a 5-tuple, N = (Σ,N, Tn, n0, Fn), where the fields have the same meaning as they have in the
DFA, with the exception that the transition function is nondeterministic, Tn : Nε

Σ
�→ 2N , where Nε

Σ
⊆ N×(Σ∪{ε}), with

ε being the empty symbol, ε � Σ. Roughly, the regular language recognized by an FA is the set of strings generated by
the cascade application of the transition function from the initial state to a final state, where the occurrences of ε (if an
NFA) are immaterial. Two FAs are equivalent when they recognize the same regular language. A transition mapping
a pair (s, �) is said to be marked with �, and is called an �-transition. Let N be a set of states in an NFAN and let � be
a symbol in Σ. The ε-closure of N in N is the union of N and the set of states that are reached in N by a sequence of
transitions exiting a state in N, where all such transitions are marked by ε. The �-mapping of N is the set ε-closure of
the set of states reached by the �-transitions exiting the states in N. For each NFA there exists (at least) an equivalent
DFA. One particular such DFA is generated by the Subset Construction algorithm, which, for this reason, is said
to be SC-equivalent to the NFA. Determinization is notoriously convenient because processing a DFA is generally
more efficient than processing an NFA. For instance, in lexical analysis, the recognition of a string based on a DFA is
performed without backtracking [1].

The pseudocode of Subset Construction is listed in Algorithm 1 (lines 1–13), where N is the input NFA and D
is the output (SC-equivalent) DFA. By construction, each state in D is identified by a subset of the states of N . The
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Algorithm 1: Subset Construction
input : N = (Σ,N, Tn, n0, Fn): an NFA
output:D = (Σ,D, Td, d0, Fd): the DFA that is SC-equivalent to N

1 Generate the initial state d0 ofD, where ‖d0‖ = ε-closure({n0},N)
2 Push d0 onto the (empty) stack
3 repeat
4 Pop a state d from the stack
5 foreach � ∈ Σ such that 〈n, �, n′〉 ∈ Tn, n ∈ ‖d‖ do
6 N← �-mapping(‖d‖,N)
7 if there is no state d′ in D such that ‖d′‖ = N then
8 Insert a new state d′ into D, where ‖d′‖ = N, as well as into Fd provided that ‖d′‖ ∩ Fn � ∅
9 Push d′ onto the stack

10 else
11 Let d′ be the state in D where ‖d′‖ = N
12 Insert a new transition 〈d, �, d′〉 into Td

13 until the stack is empty

subset of the states of N identifying a state d of D is denoted ‖d‖, called the extension of d. The initial state d0 of D
is the ε-closure of the singleton {n0}, where n0 is the initial state of N . The generation of D is supported by a stack.
Each element in the stack is a state ofD to be processed. Processing a state d means generating the transition function
of d, that is, the set of transitions exiting d and entering another state d′, where each transition is denoted 〈d, �, d′〉,
with � being the symbol marking the transition. Initially, the stack contains the initial state d0 only (line 2). Then,
Subset Construction pops and processes one state d from the stack at a time, by generating the transitions exiting d,
until the stack becomes empty (lines 3–13). Each transition is generated by considering each symbol � ∈ Σ marking
a transition exiting a state n ∈ ‖d‖ (line 5). For each symbol �, a transition 〈d, �, d′〉 is created (line 12), where ‖d′‖ is
the �-mapping of ‖d‖ in N . Also, if d′ does not exist, then it is created and possibly qualified as final if it contains at
least one state that is final in N , and pushed onto the stack (lines 8 and 9). At the termination of the algorithm, D is
the DFA SC-equivalent to N .

Example 1. Shown on the left of Figure 1 is the diagrammatic representation of an NFA N , where states and tran-
sitions are denoted by circles and arcs, respectively, with 0 being the initial state, whereas the (only) final state is 5.
Nondeterminism of N is localized in the transition function mapping (1, b), and in the ε-transition exiting the state 3.
We have b-mapping({1},N) = {3, 4}. Depicted next toN are the intermediate configurations ofD generated by Subset
Construction, where the boxes in gray represent the content of the stack in each configuration. The six states in D
are named d0, d1, d2, d34, d4, and d5, where ‖d34‖ = {3, 4}.

Fig. 1. An NFA N (left) and the intermediate configurations of the SC-equivalent DFAD generated by Subset Construction (right).
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3. Inward Determinization of Finite Automata

Removing nondeterminism from an NFA by means of Subset Construction requires the generation of a DFA
that is equivalent to the NFA. This means that the NFA is not fixed directly by specific repair actions, but indirectly,
by generating a completely new DFA. To use a metaphor, it is like fixing the problem of a car by constructing an
equivalent new car where the problem has been removed. If the DFA differs from the NFA considerably, this functional
approach is reasonable, as there is no point in repairing an NFA by means of a (possibly costly) list of actions when
the complete generation of the equivalent DFA turns out to be less expensive. With reference to our metaphor, if the
cost for repairing a car is larger than the cost of an equivalent new car, there is no point in repairing the car. However,
if the NFA is large and nondeterminism affects a tiny fraction of the transition function, chances are that the equivalent
DFA can be obtained by a (relatively short) sequence of repair actions (metaphorically, it is worth fixing the car rather
than buying a new one). Admittedly, automata are not cars and generating a DFA involves computational resources
and software technology rather than physical materials and mechanical technology. Still, in specific circumstances,
the construct/repair dilemma may be equally applicable to the problem of NFA determinization.

The idea is to design a non-functional algorithm that solves the problem of NFA determinization by intervening
directly on the NFA rather than generating an equivalent DFA from scratch. This technique is called inward deter-
minization. To this end, each point of nondeterminism in the NFA is considered and a specific repair action is applied
in order to remove such nondeterminism. Nondeterminism occurs when a state is exited either by an ε-transition or
by several transitions marked with the same label. In order to capture all the nondeterminism points, relevant states of
the NFA are marked with a set of labels in Σ∪{ε}, where Σ is the alphabet of the NFA. Specifically, the initial marking
of the NFA is based on the following three rules:

1. If an ε-transition exits the initial state s0 of the NFA, then s0 is marked with ε.
2. If there is a transition 〈s, �, s′〉, where � � ε, and s′ is exited by an ε-transition, then s is marked with �.
3. If a state s is exited by two or more �-transitions, where � � ε, then s is marked with �.

If a label � marks a state s, then (s, �) is called a singularity.1 A singularity marking the initial NFA indicates that the
transition function mapping (s, �) results in several states, in other words, nondeterminism arises. Hence, a repair ac-
tion is required in order to fix this specific singularity. Fixing a singularity may cause the creation of new singularities,
not included in the initial set (defined by the three rules above). Generally speaking, a newly created singularity (s, �)
indicates that the transition function mapping (s, �) needs to be either generated or fixed.

An important issue in fixing an NFA by means of repair actions is concerned with the order in which singularities
are considered. In fact, choosing the singularities randomly is bound to run into two major problems: the discon-
nection of the resulting DFA and/or the nontermination of the algorithm. In order to avoid both disconnection and
nontermination, singularities are sorted based on the distance of the relevant states. The distance of a state s in an
FA with initial state s0 is the minimum number of transitions that connect s0 with s. The distance of s is denoted
δ(s); in particular, δ(s0) = 0. Since the distance only imposes a partial order on states, as several states may share
same distance, singularities (s, �) are totally ordered based not only on δ(s) but also on the natural (ascending) order
of the identifiers s and � (with the label ε being in first position). In other words, singularities (s, �) are sorted based
on three keys: δ(s), the identifier of s, and �. The resulting (ordered) list of singularities is called the singularity list.
Processing a singularity may cause the insertion/removal of transitions, with possible change in the distance of some
states. Consequently, during processing, singularities may change their position within the singularity list.

Since each state d in the SC-equivalent DFA is marked with a nonempty subset of the states of the NFA, a distinction
is in order between the identifier d and the subset of states marking d, denoted ‖d‖. During processing, the current
extension of a state d can change (before the termination of the algorithm), whereas the identifier d cannot. For formal
reasons, we extend the notion of extension to an NFA state s, namely ‖s‖ = {s}. Also, given a set S of states in the
automaton being processed, ‖S‖ denotes the union of the extensions of the states in S, in other words, a subset of the
states of the initial NFA.

1 Since the collection of labels marking a state forms a set, no duplication of the same singularity may exist.
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In order to avoid the disconnection of the automaton, the notion of safety of a state needs to be introduced. The
problem arises when a transition 〈d, �, d′〉 might be removed. If so, it is of utmost importance to know whether d′ will
still be connected with the initial state or not.

Definition 1 (Safety). Let (d, �) be a singularity in an FA D having initial state d0, and let D = �-mapping(d,D). A
state d̄ ∈ D is safe iff either d̄ = d0 or there is a transition 〈d′, �′, d̄〉 in D where (d′, �′) � (d, �) and δ(d′) ≤ δ(d);
otherwise, d̄ is unsafe.

In the next section, an algorithm called Quick Subset Construction is presented, which progressively transforms
an NFA into the SC-equivalent DFA by means of inward determinization.

4. Quick Subset Construction

Quick Subset Construction takes as input an NFA N and a copy D of N that is marked with the singularities.
When the algorithm terminates,D turns out to be the DFA SC-equivalent toN . The pseudocode of Quick Subset Con-
struction is listed in Algorithm 2 (lines 1–30). Singularities are considered one by one in their order in a singularity
list, and repair actions are applied depending on the actual scenario. Three scenarios exist: S0, S1, and S2.

Scenario S0 (lines 1–10) occurs for the singularity (ε, d0), called ε-singularity, where d0 is the initial state of D.
This means that d0 is exited by one or more ε-transitions. If present, the ε-singularity is in first position within the
singularity list; hence, it is the first singularity that is processed. Besides, since no singularity (d, ε) can be generated
subsequently (neither for the initial state nor for any other state), the processing of the ε-singularity is placed upfront
in the algorithm, before the main loop (lines 11–30), in which the other two scenarios are considered. The repair
action for (d0, ε) removes the ε-transitions exiting d0 while extending the extension of d0. First the sets D, N, and U
are determined (line 2), where D is the ε-closure of d0, N is the set of NFA states involved in D, and U is the set of
unsafe states in D (cf. Definition 1). Then, the extension of d0 is extended to N and new singularities are created for d0
(line 3). Specifically, for each transition 〈s, �, s′〉 inN such that s ∈ N and � � ε, a singularity (d0, �) is created, which
indicates that the transition function mapping (d0, �) possibly needs to be adjusted. Next, the ε-transitions exiting d0
are removed (line 4). Then, for each transition 〈u, �, d〉 in D where u is unsafe, � � ε, and d is not in the set of
unsafe states (possibly outside the set D), a transition 〈d0, �, d〉 is created (lines 5–6). These new transitions are meant
to prevent D from becoming disconnected owing to the subsequent removal of transitions. Then, every transition
〈d, �, u〉 exiting a state that is not unsafe (possibly outside the set D) and entering an unsafe state is removed and,
if � � ε, a singularity (d, �) is created (lines 7–8). This is necessary to avoid dangling transitions resulting from the
subsequent removal of the unsafe states. Eventually, the unsafe states and relevant transitions are removed from D
(line 9), as well as the ε-singularity from the singularity list (line 10).

After the (eventual) processing of the ε-singularity, a loop is entered (lines 11–30) where, at each iteration, the next
singularity (d, �) is considered. The processing of the singularity may cause the creation of new singularities and the
loop terminates when all singularities have been processed (the singularity list is empty). First, the set N is determined
(line 12) as the �-mapping of the extension of d in N . Then, two scenarios are possible, namely either S1 or S2.

Scenario S1 (lines 13–18) occurs when no transition marked with � exits d. Hence, the transition mapping (d, �)
needs to be created towards a state d′ such that ‖d′‖ = N. If d′ already exists, then a transition 〈d, �, d′〉 is inserted
into D (line 15); otherwise, d′ is created, with ‖d′‖ = N, as well as a transition 〈d, �, d′〉 (line 17). Since d′ is a
newly created state, relevant singularities need to be generated (line 18), so that the transition function mapping d′

and relevant labels can be subsequently built.
Scenario S2 (lines 19–29) occurs when a transition existing d and marked with � already exists.2 The condition

in line 19 serves two purposes: on the one hand, it avoids processing a singularity which does not change D, on the
other (and most importantly), in case of auto-transitions exiting d, it avoids the nontermination of the algorithm. In
the processing, first the sets D and U are computed (line 20). Then a state d′ is created (line 21), where ‖d′‖ = N
(with N being the �-mapping of ‖d‖ generated in line 12). The creation of d′ requires the generation of the relevant
singularities also. Then, the transitions exiting d and marked with � are removed in line 22 (they will be replaced by

2 To some extent, scenario S 2 is reminiscent of scenario S0; consequently, the repair actions are somewhat similar.
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Algorithm 2: Quick Subset Construction
input : N : an NFA, D: a copy of N being marked with the initial singularities
output:D is transformed into the DFA that is SC-equivalent to N

1 if there is a singularity (ε, d0), where d0 is the initial state ofD, then // Scenario S0 (lines 1-10)
2 D← ε-closure(d0,D), N← ‖D‖, U← { d | d ∈ D, d is unsafe }
3 Extend ‖d0‖ to N and create the new singularities for d0
4 Remove the ε-transitions exiting d0
5 foreach transition 〈u, �, d〉 inD where u ∈ U, � � ε, d � U do
6 Insert a transition 〈d0, �, d〉 intoD
7 foreach transition t = 〈d, �, u〉 inD where d � U, u ∈ U do
8 Remove the transition t fromD and, if � � ε, then create the singularity (d, �)

9 Remove fromD all the states in U and the relevant entering/exiting transitions
10 Remove the singularity (d0, ε)

11 while there is a singularity inD, with (d, �) being the first singularity to be processed, do
12 N← �-mapping(‖d‖,N)
13 if no transition marked with � exits d then // Scenario S1 (lines 13-18)
14 if there is a state d′ inD where ‖d′‖ = N then
15 Insert the transition 〈d, �, d′〉 intoD
16 else
17 Create a state d′, with ‖d′‖ = N, and insert a transition 〈d, �, d′〉 intoD
18 Create the singularities for d′

19 else if several transitions being marked with � exit d or 〈d, �, d′〉 is such that ‖d′‖ � N or d′ is exited by an
ε-transition then // Scenario S2 (lines 19-29)

20 D← �-mapping(d,D), U← {d | d ∈ D, d is unsafe}
21 Create a state d′, with ‖d′‖ = N, as well as the relevant singularities
22 Remove the transitions exiting d and marked with �
23 foreach transition 〈u, �′, d′′〉 inD where u ∈ U, �′ � ε, d′′ � U do
24 Insert the transition 〈d′, �′, d′′〉 intoD
25 foreach transition t = 〈d′′, �′, u〉 inD where u ∈ U, d′′ � U do
26 Remove the transition t fromD and, if �′ � ε, insert the singularity (d′′, �′)

27 Remove fromD all the states in U and the relevant entering/exiting transitions
28 Insert a new transition 〈d, �, d′〉 intoD
29 Possibly merge d′ with a state d̄, provided that ‖d′‖ = ‖d̄‖
30 Remove the singularity (d, �)

a new transition in line 28). Next, for each transition 〈u, �′, d′′〉 where u is unsafe, � � ε, and d′′ is not among the
unsafe states, a transition 〈d′, �′, d′′〉 is inserted (lines 23–24). Like in scenario S0, these new transitions are meant
to prevent D from becoming disconnected owing to the subsequent removal of transitions performed in lines 25–26,
where for each transition 〈d′′, �′, u〉 removed, with �′ � ε, a singularity (d′′, �′) is created. Then, all unsafe states and
relevant transitions are removed (line 27). Afterwards, in line 28, a new transition 〈d, �, d′〉 is inserted into D, where
d′ is the new state created in line 21. Eventually, if another state d̄ turns out to have the same extension as d′, then
d′ and d̄ are merged into a single state (line 29). Specifically, d̄ is preserved and d′ is removed, while the transitions
entering/exiting d′ are redirected to/from d̄, respectively; moreover, the singularities relevant to d′ (the state removed)
are inherited by d̄ (the state preserved), by transforming each singularity (d′, �′) into (d̄, �′); also, new singularities
are possibly created for d̄ (if nondeterminism arises). The singularity (d, �) is eventually removed (line 30) before
considering the next singularity (if any) in line 11.
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Fig. 2. Step-by-step transformation of an NFA (left) to the SC-equivalent DFA (right) by Quick Subset Construction.

The strong point of Quick Subset Construction over Subset Construction is the ability to confine its processing
to the singularities rather than generating the entire DFA from scratch (inward rather than functional determinization).
Intuitively, the convenience in using Quick Subset Construction depends on the number of singularities processed
compared to the total number of transitions generated by Subset Construction to make up the equivalent DFA. This
is captured by the notion of impact.

Definition 2 (Impact). Let N be an NFA and D the corresponding SC-equivalent DFA. The impact � of the inward
determinization ofN is the ratio between the number σ of singularities processed by Quick Subset Construction, for
transforming N intoD, and the number τ of transitions inD, namely � = σ/τ.

Note how the impact is only a theoretical notion, as the processing of a singularity is in general more complex than
the creation of a transition. For instance, � = 0.5 does not necessarily mean that the processing time of Quick Subset
Construction will be half the time of Subset Construction. Still, the experimental results indicate a clear (practically
linear) correlation between the impact and the processing time of Quick Subset Construction (cf. Section 5).

Example 2. Consider the NFA N displayed on the left of Figure 1, whose determinization was performed by Subset
Construction in Example 1. We now apply Quick Subset Construction to N , thereby obtaining the same DFA D,
displayed on the right of Figure 1, by means of inward (rather than functional) determinization. Outlined on the left
of Figure 2 is a copy of N being marked with the initial singularities, namely (d1, b) and (d4, b). In fact, according to
the classification defined in Section 3, the second rule applies, since the state d1 is exited by two transitions marked
by b. Moreover, the third rule applies also, as there are two transitions, namely 〈d1, b, d3〉 and 〈d4, b, d3〉, where d3 is
exited by an ε-transition. According to Algorithm 2, since the ε-singularity is missing, the processing starts at line 12,
where N = �-mapping({1},N) = {3, 4}. Then, the scenario S2 comes into play, where D = {d3, d4} and U = {d3}, with
the state d4 being safe owing to the entering transition 〈d2, a, d4〉, where δ(d2) = δ(d1) = 1 (cf. Definition 1). Then, a
state d34 is created, where ‖d34‖ = {3, 4}, along with the singularities involving the symbols a and b (line 21). After
removing the transitions exiting the state d1 and marked by b (line 22), a transition 〈d34, a, d5〉 is inserted (line 24).
The subsequent processing in line 26 removes the transition 〈d4, b, d3〉, while creating the singularity (d4, b), which
already exists. Eventually, after the insertion of the transition 〈d1, b, d34〉 (line 28), since no merging is applicable, the
resulting automaton is outlined in second position in Figure 2. At the second iteration, the singularity to be processed
is (d34, a). However, since the condition in line 19 is not fulfilled, no processing is performed, thereby leading to the
automaton in third position, the same as the previous one, without the singularity (d34, a). At the third iteration, the
relevant singularity is (d34, b), which corresponds to the scenario S1, which leads to the insertion of the auto-transition
〈d34, b, d34〉 (automaton in fourth position). Eventually, the singularity (d4, b) corresponds to the scenario S1, leading
to the insertion of the transition 〈d4, b, d34〉. At this point, since no other singularity is created, the resulting automaton
(shaded) on the right of Figure 2 is in fact the DFA SC-equivalent to N , exactly the same DFA generated by Subset
Construction in Example 1 (cf. Figure 1). According to Definition 2, the impact of the inward determinization of N
is � = σ/τ = 4/8 = 0.5. In other words, the number of singularities processed by Quick Subset Construction is half
the number of transitions generated by Subset Construction.
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Fig. 3. Empirical results from the experiments: E1 (left), E2 (center), and E3 (right).

5. Experimental Results

In order to evaluate functional versus inward determinization, both Subset Construction and Quick Subset Con-
struction have been implemented in the C++17 programming language, under the GNU/Linux 5.4.0-42-generic
x86 64 (Ubuntu 18.04.5 LTS) operating system, on a machine with Intel(R) Xeon(R) Gold 6140M CPU (2.30GHz)
and 128 GB of working memory. To compare the two algorithms, a procedure for automatic generation of varying
FAs has been developed. To make the comparison consistent, the two implementations share the same data struc-
tures for representing states, transitions, and automata. A large number of problem instances generated randomly have
confirmed the correctness of Quick Subset Construction empirically, namely that the DFA resulting from inward
determinization is identical to the DFA generated from scratch by functional determinization. Displayed in Figure 3
are the results of three specific experiments, named (from left to right) E1, E2, and E3. Each experiment is composed
of several configurations (one configuration for each point in the curves), where each configuration is composed of
100 test cases (thereby resulting in at least one thousand test cases for each experiment). Specifically, each point in the
curve represents the average of the results of 100 test cases. In the experiment E1, the NFAs were generated randomly
with increasing size (from 400 to 4000 states). However, the NFAs in E1 do not contain ε-transitions. The two curves
in the plot indicate the (average) processing (CPU) time (in seconds) for the two algorithms. Note how Quick Subset
Construction always outperforms Subset Construction, albeit not overwhelmingly so. However, when ε-transitions
are inserted into the NFA, results are different. In the experiment E2 (center of Figure 3), the size of the NFAs is kept
constant (10000 states), while varying the percentage of ε-transitions, form 0 to 100. The curves indicate that Quick
Subset Construction outperforms Subset Construction only up to a threshold (around 18% of ε-transitions), after
which the time of Quick Subset Construction continues growing up to a point (about 30% of ε-transitions), thereby
descending afterwards. This experiment clearly shows that inward determinization is convenient only within a limited
range of ε-transitions in the NFA. The circumstances in which inward determinization actually outperforms functional
determinization are connected with the notion of impact (cf. Definition 2), as shown in the experiment E3 (right of
Figure 3). The two algorithms are compared based on the impact, which in this experiment ranges from almost zero to
about 0.4, where the size of the NFA is invariant (10000 states). Unsurprisingly, the processing time of Quick Subset
Construction grows linearly with the impact (from 0.12 seconds to 23 seconds). Interestingly, the processing time
of Subset Construction also is linear, but from 26 to 45 seconds. In other words, the smaller the impact, the more
convenient it is to use Quick Subset Construction rather than Subset Construction, a confirmation of the idea behind
inward determinization. To quantify this convenience in empirical terms, we have defined the notion of gain.
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Definition 3 (Gain). Let t and tq denote the processing time of Subset Construction and Quick Subset Construction,
respectively, for the same NFA. The gain G is a number in the range [−1 .. 1] indicating the relative portion of process-
ing time either saved (if positive) or wasted (if negative) by Quick Subset Construction over Subset Construction,

G =
t − tq

max
(
t, tq
) . (1)

Based on Definition 3, the results of experiment E3 (right of Figure 3) indicate the gain also (gray curve, right axis),
which is always positive, ranging from 0.995 to 0.4948. So, when the impact is very low, Quick Subset Construction
allows for saving 99.5% of the processing time. Then, the gain decreases linearly with an increasing impact. With
impact 0.4, the gain is still consistent, namely almost 0.5, thus showing the robustness of inward determinization.

6. Conclusion

Large DEK may require determinization in order to be exploited efficiently, which consists in removing the uncer-
tainty caused by the nondeterminism. To this end, the classical Subset Construction algorithm can be used, which
generates an equivalent DFA from scratch, namely by functional determinization. However, when the determinization
needs to be performed online, like in model-based diagnosis of DESs, the processing time becomes an issue, possibly
jeopardizing the working task, e.g. the diagnosis engine. This is why a technique called inward determinization has
been proposed in this paper, which aims at fixing the nondeterminism directly within the NFA by means of repair ac-
tions. An algorithm based on this technique, called Quick Subset Construction, has been implemented and compared
with Subset Construction. Experimental results clearly indicate that Quick Subset Construction always outperforms
Subset Construction as long as ε-transitions are not involved in the NFA. Quick Subset Construction keeps being
advantageous when the percentage of ε-transitions is limited to a certain range. Most of all, the results indicate that
Quick Subset Construction outperforms Subset Construction in varying degree, depending on the topological dis-
tance between the NFA and the SC-equivalent DFA, which is somehow measured by the impact. In a nutshell, the
smaller the impact, the more efficient Quick Subset Construction over Subset Construction.
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