

UNIVERSITÀ DEGLI STUDI DI BRESCIA

DOTTORATO DI RICERCA IN Ingegneria Meccanica e Industriale

settore scientifico disciplinare ING-IND/13 Meccanica Applicata alle Macchine CICLO XXXIII

Advanced Dynamic Model and Analysis of Serial Robotics

> NOME DEL DOTTORANDO: Lei HAO

NOME DEL RELATORE: Giovann Lagnani

Abstract

Questa tesi si occupa dello studio di modelli dinamici e dei comportamenti derivanti da fenomi d'attrito durante le movimentazioni di manipolatori seriali a sei assi. Il modello dinamico viene discusso in primo luogo con la sua linearizzazione e successivamente viene introdotto un nuovo tipo di modello d'attrito. Le traiettorie utilizzate durante gli esperimenti sono state progettate allo scopo di identificare i parametri dinamici ed il comportamento dell'attrito dalla condizione di macchina fredda a quella di macchina calda. Al fine di creare una traiettoria di eccitazione appropriata per l'identificazione, sono stati applicati due differenti metodi per l'ottimizzazione. Successivamente le traiettorie sono state modificate ulteriormente per risolvere il problema del mancato raggiungimento della velocità massima. Una speciale sequenza di movimentazioni è stata configurata per misurare la coppia di attrito a diverse velocità ed a diverse temperature. Le traiettorie realizzate per gli esperimenti sono state eseguite ripetutamente su due robot dello stesso modello, e quindi teoricamente identici, con lo scopo di effettuare poi un confronto dei risultati ottenuti.

Abstract

This thesis deals with the study of dynamic models and friction phenomena during the movements of six-axis serial manipulators. The dynamic model is first discussed with its linearization, and then a new type of friction model is introduced. The trajectories used during the experiments were designed to identify the dynamic parameters of the model and the behaviour of friction from cold to hot machine. In order to create an appropriate excitation trajectory for identification, two different optimization methods were applied. Subsequently, the trajectories were further modified to solve the problem of not reaching the maximum speed of the robot. A special sequence of movements was configured to measure the friction torque at different velocities and temperatures. The trajectories created for the experiments were repeatedly performed on two robots of the same model (theoretically identical), to make a comparison of the results obtained.

Acknowledgements

This thesis is completed with many helps. In particular, I would like to thank:

Giovanni Legnani, my advisor, who guides me in the path of study, with many suggestions and conversations in the study, showing me the direction in the knowledge of robotics, providing the information in the living, and everything else. Roberto Pagani, who gives many helps in the study, and provides me with some of his previous works, which has helped me much to finish the working.

The companies of EFORT, ROBOX, CMA and EVOLUT, and the wonderful people who are in these companies. I would like to thank EFORT firstly, which provides this opportunity of study, and gives me a choice to touch the treasure hide in the knowledge. Then I would like to thank everyone from these companies who help me in the study with great supports.

And everyone else in the University of Brescia, who provide a fantastic environment of studying.

At last, I would like to thank my parents and my wife. Without your supports, this study would be lonely. Thanks to my wife, who brings us a daughter. This makes the life full of laughter.

Best wishes with everyone mentioned above, in this special period and for the future.

Contents

1	Intr	roduction 1
	1.1	Motivation And Background
	1.2	Technical Review
		1.2.1 Dynamic Model
		1.2.2 Friction
	1.3	Overview Of This Thesis
2	The	e Theories And Mathematics 5
	2.1	The Robot
		2.1.1 The Structure
		2.1.2 Denavit-Hartenberg Parameters
		2.1.3 The Link Transformation Matrix
		2.1.4 The Direct Kinematic
	2.2	The Mathematics
		2.2.1 The Least Squares
		2.2.2 Feature Scaling
3	Dvr	namic Study 11
Ŭ	31	Information Matrix 11
	0.1	3.1.1 The Newton-Euler Method (NE) 11
		3.1.2 Friction Model And Motor Inertia
		3.1.3 Information Matrix Formula
		3.1.4 Information Matrix In The Identification
	29	Base Parameters Selection 16
	0.2	$3.2.1 \text{OR Explorization} \qquad \qquad 17$
		3.2.2 SVD Decomposition 17
		3.2.3 Base Set Of Dynamic Parameters
4	\mathbf{Exp}	erimental Design 19
	4.1	The Test Trajectory Creation
	4.2	The Excitation Trajectory
		4.2.1 The 1^{st} Excitation Trajectory
		4.2.2 The 2^{nd} Excitation Trajectory $\ldots \ldots 22$
		4.2.3 The Optimization Of Excitation Trajectory
	4.3	Additional Excitation Trajectory
	4.4	The Friction Measure Trajectory 24
	4.5	The Warming Stage Trajectory
	4.6	The Software And Environment Of The Experiment

5	Dat	a Pro	cess And Analysis	31
	5.1	The D	Oynamic Parameters	31
		5.1.1	The Identification Process	31
		5.1.2	The Verification	32
		5.1.3	The Low Velocity Results Filter	33
		5.1.4	The Results Of The Verification	33
		5.1.5	The Results Of Dynamic Parameters	37
		5.1.6	The Errors Of Start And End Of Cycles	40
		5.1.7	Summary	41
	5.2	The F	riction	41
		5.2.1	Friction Measure	42
		5.2.2	Reduce The Gravity Effect	42
		5.2.3	The Friction And Velocities	43
		5.2.4	The Curve Fitting Of Friction	44
6	Cor	nclusio	n And Future Work	49
	6.1	Concl	usion	49
	6.2	Future	e Work	50
Re	efere	nes		51
A	open	dix A	The Dot Product And Cross Product	57
A	- open	dix B	The Rotation Matrix And Transformation Matrix	58
A	n	dix C	The Newton-Euler (NE) Recursions Algorithm	59
Aj	ppen	idix D	The QR And SVD Decomposition	63
	D.1	QR Fa	actorization	63
	D.2	SVDI	Decomposition	63
	D.3	Result	5	67
Aj	ppen	dix E	The MATLAB Code of Parameters Selection Analysis	69
A	open	dix F	The RMSD Values	72
-	F.1	The T	ables of RMSD	72
	F.2	The F	igures of RMSD	79
Aj	ppen	dix G	The Identification Results Of The Dynamic Parameters	85
A	ppen	dix H	The Statistics Data Of The Identification Results	107
Aj	open	dix I	The Identification Results Of Excitation Trajectory Of Robot 1	115
Aj	ppen	dix J	The Identification Results Of Excitation Trajectory Of Robot 2	129
Aj	ppen	dix K	The Verification Results Of The Excitation Trajectory	143
Aj	ppen	dix L	The Verification Results Of One Cycle In The Test Trajectory	168
Aj	open	dix M	The Friction Measurement	192
Aj	open	dix N	The Curve Fitting Results Of Fiction Measurement	197
Aj	open	dix O	The Fiction And Velocities	201

List of Tables

$2.1 \\ 2.2$	The specifications of ER3A	$6 \\ 7$
3.1	The Base Set of Dynamic Parameters	18
4.1	The optimization results of Equation 4.20, 4.20 and 4.21 \ldots \ldots \ldots	22
$5.1 \\ 5.2 \\ 5.3$	Some statistical values of Joint 3, 4 and 5 of Robot 1, and Joint 4 of Robot 2 The range of plots of joints in Figure 5.4, 5.6, 5.5 and 5.7	36 37
$5.4 \\ 5.5 \\ 5.6$	first 5 cycles	37 38 40 45
D.1	The values of $r_{1 diag}$ from QR results	49 64
D.2 D.3	The values of matrix of S and V form SVD results of Link 2	66 68
F.1 F.2 F 3	The relative RMSD values	73 74
г.3 F.4	results of Test 1 without low velocity data	75
F.5	results of Test 2 without low velocity data	76
F.6	results of Test 3 without low velocity data	77
	results of Test 4 without low velocity data	78
H.1	The statistics data of the identification results $(1/8)$	107
H.2	The statistics data of the identification results $(2/8)$	108
H.3	The statistics data of the identification results $(3/8)$	109
H.4	The statistics data of the identification results $(4/8)$	110
H.5	The statistics data of the identification results $(5/8)$	111
H.6	The statistics data of the identification results $(6/8)$	112
H.7	The statistics data of the identification results $(7/8)$	113
H.8	The statistics data of the identification results $(8/8)$	114
N.1	The coefficient values of curve fitting results based the data of velocity 60%	200

List of Figures

2.1	The anthropomorphic arm with the spherical wrist	5
2.2	The robot of ER3A from EFORT	5
2.3	The DH & MDH with their difference	6
2.4	The Schematic of MDH frame	7
2.5	The frame P, Q and R, and the MDH parameters	7
4.1	The velocity of one cycle in full test trajectory	20
4.2	The robot movement with the related position, velocity and acceleration of applied	<u>9</u> 3
13	The comparison between the measured torque and the estimated torque with the	20
4.0	2^{nd} excitation trajectory, the data is from Joint 5	23
4.4	The position, velocity and acceleration of the additional trajectory	24
4.5	The merged excitation trajectory	25
4.6	The joint movement in friction measurement. The thick yellow arrows show the rotation directions, and the thin brown arrows show the position changes	26
17	The velocity of one joint in the friction measure stars	$\frac{20}{97}$
4.1	The velocity of one joint in the includi measure stage	21
4.0	measure stage with the cold and warm conditions from Joint 1 to 6	27
19	The joint movement in warming stage	21
4.10	The Bobox Development Environment (BDE)	20
4.10 A 11	The robot controller of BP1	20
1.11	The oscillator in BDE	20
4.13	The communication between PC and robot	$\frac{29}{29}$
51	The measured torque and estimated torque of the 1^{st} stage from the Cycle 1 of	
0.1	the Test 1 of the Robot 2	31
5.2	The measured torque and estimated torque from the Cycle 1 of the Test 1 of the	01
0.2	Robot 2	32
5.3	The estimation errors at the low velocity duration of Joint 6 in Figure 5.2	32
5.4	The self verification of each joint of all tests of Robot 1	33
5.5	The self verification of each joint of all tests of Robot 2	34
5.6	The cross verification with the 1^{st} identification results of Robot 1	34
5.7	The cross verification with the 1^{st} identification results of Robot 2	35
5.8	The ideal friction model	35
5.9	The friction observed experimentally from Joint 4 in a test	35
5.10	mP_r of Joint 2	38
5.11	I_{rr} of Joint 2	39
5.12	f_1 of Joint 1	39
5.13	mP_x of Joint 2 of the Robot LEFT, the identified results and the related results	
	of selected cycles	40
5.14	mP_x of Joint 2 of the Robot RIGHT, the identified results and the related results	
	of selected cycles	41

5.15	The identification errors at the start and the end of the warming stage in the 1^{st} cycle $\ldots \ldots \ldots$								
5.16	The motor torque output measured in the friction stage, separated by the joints with the velocity of 60%								
5.17	The mean value of each cycle of motor torque output measured in the friction stage, separated by the joints with the velocity of 60%, base the data shown in Figure 5.16.								
F 10	Figure 0.10								
5.18 5.10	The plate of friction management of Joint 2 and 2 often the removal maxim								
5.19	offset base the Figure 5.16								
5 90	The friction versus velocities in diffident evelop of all joints								
5.20 5.91	The fliction versus velocities in difficient cycles of an joints								
5.21	The curve fitting regults of Figure 5.17 46								
0.22 5.93	The curve fitting results of Joint 5 of Robot 2 47								
0.20									
F.1	The RMSD values versus cycles of the self verifications								
F.2	The RMSD values versus cycles of the self verifications								
F.3	The RMSD values versus cycles, calculated from the cross verifications based the								
	identification results of Test 1 of Robot 1								
F.4	The RMSD values versus cycles, calculated from the cross verifications based the								
	identification results of Test 2 of Robot 1								
F.5	The RMSD values versus cycles, calculated from the cross verifications based the								
	identification results of Test 3 of Robot 1 81								
F.6	The RMSD values versus cycles, calculated from the cross verifications based the								
	identification results of Test 4 of Robot 1								
F.7	The RMSD values versus cycles, calculated from the cross verifications based the								
	identification results of Test 1 of Robot 2								
F.8	The RMSD values versus cycles, calculated from the cross verifications based the								
T o	identification results of Test 2 of Robot 2								
F'.9	The RMSD values versus cycles, calculated from the cross verifications based the								
E 10	Identification results of Test 3 of Robot 2								
F.10	identification regults of Test 4 of Debat 2								
	Identification results of Test 4 of Robot $2 \dots $								
G.1	I_{zz} of Joint 1								
G.2	mP_x of Joint 2								
G.3	mP_y of Joint 2								
G.4	I_{xx} of Joint 2								
G.5	I_{xy} of Joint 2								
G.6	I_{xz} of Joint 2								
G.7	I_{yz} of Joint 2								
G.8	I_{zz} of Joint 2								
G.9	mP_x of Joint 3								
G.10	mP_y of Joint 3								
G.11	I_{xx} of Joint 3								
G.12	I_{xy} of Joint 3								
G.13	I_{xz} of Joint 3								
G.14	I_{yz} of Joint 3								
G.15	I_{zz} of Joint 3								
G.16	mP_x of Joint 4								
G.I7	m_{Y} of Joint 4								
G.10	I_{xx} of joint 4								

G.19	I_{xy} of Joint 4	1.		• •		•••	•		• •	•			•		• •	•	•••	•		•	•	•••	•	• •	91
G.20	I_{xz} of Joint 4	1.								•						•				•	•				92
G.21	I_{yz} of Joint 4	1.								•						•				•	•				92
G.22	I_{zz} of Joint 4	1.														•		•		•	•				92
G.23	mP_x of Joint	5.														•		•		•	•				93
G.24	mP_y of Joint	5.														•									93
G.25	I_{xx} of Joint 3	5.														•									93
G.26	I_{xy} of Joint 3	5.														•									94
G.27	I_{xz} of Joint 5	5														•									94
G.28	I_{yz} of Joint 5	5														•									94
G.29	I_{zz} of Joint 5	5																							95
G.30	mP_x of Joint	6.																							95
G.31	mP_y of Joint	6.																							95
G.32	I_{xx} of Joint (3																							96
G.33	I_{xy} of Joint 6	3.																							96
G.34	I_{xz} of Joint 6	3																							96
G.35	I_{uz} of Joint 6	<u>.</u> .																							97
G.36	I_{zz}^{gz} of Joint 6	3																							97
G.37	f_1 of Joint 1																								97
G.38	f_2 of Joint 1																								98
G 39	f_2 of Joint 1															•		•							98
G 40	f_4 of Joint 1		• •	•••		• •	·		• •	•	• •		•	•••	• •	•	• •	•	•••	•	•	•••	•	• •	98
G_{41}	f_1 of Joint 2		• •	•••		• •	·		• •	•	• •		•	•••	• •	•	• •	•	•••	•	•	•••	•	• •	99
G_{42}	f_1 of Joint 2		• •	•••	• •	•••	•	•••	• •	•	•••	• •	•	•••	•••	•	•••	•	•••	•	•	•••	•	• •	99
G.12 G.43	f_2 of Joint 2		• •	•••	• •	• •	•	•••	• •	·	•••	• •	•	•••	• •	•	•••	·		·	·	•••	·	•••	90
G 44	f_4 of Joint 2		• •	•••	• •	• •	•	•••	• •	·	•••	• •	•	•••	• •	•	•••	·		·	·	•••	·	•••	100
C_{15}	f_4 of Joint 2		• •	•••	• •	• •	·	•••	• •	•	•••	• •	•	•••	• •	•	•••	·	•••	·	·	•••	·	• •	100
C 46	f_1 of Joint 3		• •	• •	• •	•••	•	• •	• •	·	•••	• •	•	•••	•••	•	• •	·	• •	·	·	• •	·	• •	100
C_{47}	f_2 of Joint 3		• •	•••	• •	• •	·	• •	• •	·	• •	• •	•	•••	•••	•	•••	•	•••	·	·	•••	·	•••	100
C_{18}	f_3 of Joint 3		• •	•••	• •	• •	·	• •	• •	·	• •	• •	•	•••	•••	•	•••	•	•••	·	·	•••	·	•••	101
C_{40}	f_4 of Joint 3		• •	•••	• •	• •	·	• •	• •	·	• •	• •	•	•••	•••	•	•••	•	•••	·	·	•••	·	•••	101
G.49	f_1 of Joint 4	• • •	• •	•••	• •	• •	·	• •	• •	·	• •	• •	·	•••	•••	•	• •	·	•••	·	·	•••	·	• •	101
G.50	f_2 of Joint 4	• • •	• •	•••	• •	• •	·	• •	• •	·	• •	• •	·	•••	•••	•	• •	·	•••	·	·	•••	·	• •	102
G.91	f_3 of Joint 4	• • •	• •	• •	• •	• •	·	• •	• •	·	• •	• •	·	• •	•••	•	• •	·	•••	·	·	•••	·	•••	102
G.92	J_4 of Joint 4	• • •	• •	• •	• •	• •	·	• •	• •	·	• •	• •	·	• •	•••	•	• •	·	•••	·	·	•••	·	•••	102
G.53	f_1 of Joint 5	•••	• •	•••	• •	• •	·	• •	• •	·	• •	• •	•	• •	•••	•	• •	·	•••	·	·	•••	·	• •	103
G.54	J_2 of Joint 5	•••	• •	•••	• •	• •	·	• •	• •	·	• •	• •	•	• •	•••	•	• •	·	•••	·	·	•••	·	• •	103
G.55	f_3 of Joint 5	• • •	• •	• •	• •	• •	·	• •	• •	·	• •	• •	•	• •	•••	•	• •	·	• •	·	·	•••	·	• •	103
G.56	f_4 of Joint 5	•••	• •	• •	• •	•••	·	• •	• •	·	•••	• •	·	• •	• •	·	• •	·		·	·	• •	·	• •	104
G.57	f_1 of Joint 6	•••	• •	• •	• •	•••	·	• •	• •	·	•••	• •	·	• •	• •	·	• •	·		·	·	• •	·	• •	104
G.58	f_2 of Joint 6	• • •	• •	• •	• •	• •	·	• •	• •	·	• •	• •	•	• •	•••	•	• •	·	• •	·	·	•••	·	• •	104
G.59	f_3 of Joint 6	• • •		• •		• •	•	• •	• •	·	• •	• •	•		• •	•		·		·	·	• •	·	• •	105
G.60	f_4 of Joint 6	• • •	• •	• •	• •	• •	•	• •	• •	•	• •	• •	•	•••	•••	•	• •	•		•	·	•••	·	• •	105
G.61	I_m of Joint 3		• •	• •	• •	• •	•	• •	• •	•	• •	• •	•	•••	•••	•	• •	•		•	•	•••	•	•••	105
G.62	I_m of Joint 4	• • •		• •		•••	•	•••	• •	•	•••		•	• •	• •	•		•		•	•	•••	•	• •	106
G.63	I_m of Joint 5			• •		• •	•			•	• •		•	•••	•••	•	• •	•		•	•	•••	•		106
G.64	I_m of Joint 6	. .		• •			•			•			•		•••	•		•		•	•	•••	•	•••	106
Т 1	т _ст · · ·		ب	ים	., •	- DD		• ,	L .'	1_	: 1	, • ,	с 1	ι.	. 1	L .	_ ſ	_ 1		_ 1		,			115
1.1 1.0	I_{zz} of Joint 1	l of the	ne 1	KODO	UT I	JEF . T T	י די ד	wit	nt.	ne	ide	ntii 1.	ned	res	sur	ts (DI S	sele r	ecte	ed	су л	CI6	es .1	•••	115
1.2 1.0	mP_x of Joint	2 of	the	e Ko	bot	LE	JF"]	ĽW	ith	th	е 10	ien		ed 1	esi	ult	s of	: SE	elec	cte	d	cyc	1	3.	116
1.3	mP_y of Joint	2 of	the	e Ko	bot	; LE	/F"]	L' W	ith	th	e ic	ien	tifie	ed 1	esi	ults	s of	se	elec	cte	d	cyc	les	;.	116
1.4	I_{xx} of Joint 2	2 of t	he	Rob	ot]	LEF	"T	wit	h t	he	ide	enti	tiec	t re	sul	ts	of s	sele	ect	ed	су	vcle	\mathbf{es}	•••	116
1.5	I_{xy} of Joint 2	2 of t	he	Rob	ot]	LEF	Γ	wit	h t	he	ide	nti	fiec	i re	sul	ts	of s	sele	ect	ed	су	<i>c</i> le	\mathbf{es}		117

I.6 I_{xz} of Joint 2 of the Robot LEFT with the identified results of selected cycles . . 117 I_{yz} of Joint 2 of the Robot LEFT with the identified results of selected cycles . . 117 I.7 I_{zz} of Joint 2 of the Robot LEFT with the identified results of selected cycles . . 118 I.8 I.9 mP_x of Joint 3 of the Robot LEFT with the identified results of selected cycles . 118 I.10 mP_y of Joint 3 of the Robot LEFT with the identified results of selected cycles . 118 I.11 I_{xx} of Joint 3 of the Robot LEFT with the identified results of selected cycles . . 119 I.12 I_{xy} of Joint 3 of the Robot LEFT with the identified results of selected cycles . . 119 I.13 I_{xz} of Joint 3 of the Robot LEFT with the identified results of selected cycles . . 119 I.14 I_{yz} of Joint 3 of the Robot LEFT with the identified results of selected cycles . . 120 I.15 I_{zz} of Joint 3 of the Robot LEFT with the identified results of selected cycles . . 120 I.16 mP_x of Joint 4 of the Robot LEFT with the identified results of selected cycles . 120 I.17 mP_y of Joint 4 of the Robot LEFT with the identified results of selected cycles . 121 I.18 I_{xx} of Joint 4 of the Robot LEFT with the identified results of selected cycles . . 121 I.19 I_{xy} of Joint 4 of the Robot LEFT with the identified results of selected cycles \ldots 121 I.20 I_{xz} of Joint 4 of the Robot LEFT with the identified results of selected cycles . . 122 I.21 I_{uz} of Joint 4 of the Robot LEFT with the identified results of selected cycles \therefore 122 I.22 I_{zz} of Joint 4 of the Robot LEFT with the identified results of selected cycles . . 122 I.23 mP_x of Joint 5 of the Robot LEFT with the identified results of selected cycles . 123 I.24 mP_y of Joint 5 of the Robot LEFT with the identified results of selected cycles . 123 I.25 I_{xx} of Joint 5 of the Robot LEFT with the identified results of selected cycles . . 123 I.26 I_{xy} of Joint 5 of the Robot LEFT with the identified results of selected cycles \ldots 124 I.27 I_{xz} of Joint 5 of the Robot LEFT with the identified results of selected cycles . . 124 I.28 I_{uz} of Joint 5 of the Robot LEFT with the identified results of selected cycles ... 124 I.29 I_{zz} of Joint 5 of the Robot LEFT with the identified results of selected cycles . . 125 I.30 mP_x of Joint 6 of the Robot LEFT with the identified results of selected cycles . 125 I.31 mP_y of Joint 6 of the Robot LEFT with the identified results of selected cycles . 125 I.32 I_{xx} of Joint 6 of the Robot LEFT with the identified results of selected cycles . . 126 I.33 I_{xy} of Joint 6 of the Robot LEFT with the identified results of selected cycles \ldots 126 I.34 I_{xz} of Joint 6 of the Robot LEFT with the identified results of selected cycles . . 126 I.35 I_{yz} of Joint 6 of the Robot LEFT with the identified results of selected cycles . . 127 I.36 I_{zz} of Joint 6 of the Robot LEFT with the identified results of selected cycles . . 127 I.37 I_m of Joint 3 of the LEFT Robot with the identified results of selected cycles . . 127 1.38 I_m of Joint 4 of the LEFT Robot with the identified results of selected cycles \therefore 128 1.39 I_m of Joint 5 of the LEFT Robot with the identified results of selected cycles \therefore 128 I.40 I_m of Joint 6 of the LEFT Robot with the identified results of selected cycles . . 128 J.1 I_{zz} of Joint 1 of the Robot RIGHT with the identified results of selected cycles \therefore 129J.2 mP_x of Joint 2 of the Robot RIGHT with the identified results of selected cycles 130J.3 mP_{y} of Joint 2 of the Robot RIGHT with the identified results of selected cycles 130 I_{xx} of Joint 2 of the Robot RIGHT with the identified results of selected cycles . J.4 130J.5 I_{xy} of Joint 2 of the Robot RIGHT with the identified results of selected cycles . 131 I_{xz} of Joint 2 of the Robot RIGHT with the identified results of selected cycles . 131 J.6 J.7 I_{yz} of Joint 2 of the Robot RIGHT with the identified results of selected cycles . 131J.8 I_{zz} of Joint 2 of the Robot RIGHT with the identified results of selected cycles 132. J.9 mP_x of Joint 3 of the Robot RIGHT with the identified results of selected cycles 132J.10 mP_y of Joint 3 of the Robot RIGHT with the identified results of selected cycles 132

J.11 I_{xx} of Joint 3 of the Robot RIGHT with the identified results of selected cycles . 133 J.12 I_{xy} of Joint 3 of the Robot RIGHT with the identified results of selected cycles . 133 J.13 I_{xz} of Joint 3 of the Robot RIGHT with the identified results of selected cycles . 133 J.14 I_{yz} of Joint 3 of the Robot RIGHT with the identified results of selected cycles . 134 J.15 I_{zz} of Joint 3 of the Robot RIGHT with the identified results of selected cycles . 134 J.16 mP_x of Joint 4 of the Robot RIGHT with the identified results of selected cycles . 134

T		105
J.17	mP_y of Joint 4 of the Robot RIGHT with the identified results of selected cycles	135
J.18	I_{xx} of Joint 4 of the Robot RIGHT with the identified results of selected cycles .	135
J.19	I_{xy} of Joint 4 of the Robot RIGHT with the identified results of selected cycles .	135
J.20	${\cal I}_{xz}$ of Joint 4 of the Robot RIGHT with the identified results of selected cycles $% {\cal I}_{xz}$.	136
J.21	I_{yz} of Joint 4 of the Robot RIGHT with the identified results of selected cycles $% I_{yz}$.	136
J.22	I_{zz} of Joint 4 of the Robot RIGHT with the identified results of selected cycles .	136
J.23	mP_x of Joint 5 of the Robot RIGHT with the identified results of selected cycles	137
J.24	mP_{y} of Joint 5 of the Robot RIGHT with the identified results of selected cycles	137
J.25	I_{xx} of Joint 5 of the Robot RIGHT with the identified results of selected cycles .	137
J.26	I_{ru} of Joint 5 of the Robot RIGHT with the identified results of selected cycles .	138
J.27	I_{rz} of Joint 5 of the Robot RIGHT with the identified results of selected cycles .	138
J.28	I_{uz} of Joint 5 of the Robot RIGHT with the identified results of selected cycles .	138
J 29	I_{zz} of Joint 5 of the Bobot BIGHT with the identified results of selected cycles	139
J 30	$mP_{\rm r}$ of Joint 6 of the Bobot RIGHT with the identified results of selected cycles	139
J 31	mP_{x} of Joint 6 of the Bobot RIGHT with the identified results of selected cycles	139
132	I of Joint 6 of the Bobot BIGHT with the identified results of selected cycles	1/0
1.32	I_{xx} of Joint 6 of the Robot RIGHT with the identified results of selected cycles .	140
J.JJ T 34	I_{xy} of Joint 6 of the Robot RICHT with the identified results of selected cycles .	140
J.04	I_{xz} of Joint 6 of the Robot RIGHT with the identified results of selected cycles .	140
J.JJ	I_{yz} of Joint 6 of the Robot RIGHT with the identified results of selected cycles .	141
J.30	I_{zz} of Joint 0 of the Robot RIGHT with the identified results of selected cycles .	141
J.37	I_m of Joint 3 of the RIGHT Robot with the identified results of selected cycles .	141
J.38	I_m of Joint 4 of the RIGHT Robot with the identified results of selected cycles .	142
J.39	I_m of Joint 5 of the RIGHT Robot with the identified results of selected cycles .	142
J.40	I_m of Joint 6 of the RIGHT Robot with the identified results of selected cycles \cdot .	142
K 1	The identification results of the excitation trajectory stage in the 1 st cycle of	
11.1	Robot 2	144
кэ	The identification results of the excitation trajectory stage in the 2 nd cycle of	144
11.2	Robot 2	145
КЗ	The identification results of the excitation trajectory stage in the 2^{rd} cycle of	140
N.0	Robot 2	146
КЛ	The identification regults of the excitation trajectory stage in the 4^{th} evelo of	140
N. 4	Pohot 2	147
KБ	The identification regults of the excitation trajectory stage in the 5 th cycle of	147
N .0	Pohot 2	1/9
KG	The identification regults of the excitation trajectory stage in the 6^{th} evale of	140
N .0	Pohot 2	140
K 7	The identification regults of the excitation trajectory stage in the 7^{th} evale of	149
K.1	Pohot 2	150
τzο	The identification model as the second se	100
n.8	The identification results of the excitation trajectory stage in the 8 th cycle of Data 4.2	151
τζο	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	191
K.9	The identification results of the excitation trajectory stage in the 9 ^{sh} cycle of Data 4.2	159
TZ 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	152
K.10	The identification results of the excitation trajectory stage in the 10^{cm} cycle of	150
TZ 11	Robot 2	153
K.11	The identification results of the excitation trajectory stage in the 11 ^{ch} cycle of	1 5 4
TZ 4 0	Kobot 2	154
K.12	The identification results of the excitation trajectory stage in the 12^{cm} cycle of	1
TZ 4 0	Robot 2	155
К.13	The identification results of the excitation trajectory stage in the 13^{th} cycle of	1
	Robot 2	156

K.14	The identification	results of	the ex	xcitation	trajectory	stage in th	ne 14^{th} cycle o	of
T7 4 W	Robot 2							157
K.15	The identificationRobot 2	results of	the ex	citation	trajectory	stage in th	ne 15 th cycle o	ot 158
K.16	The identification Robot $2 \ldots \ldots$	results of	the ex	xcitation	trajectory	stage in th	ne 16 th cycle o	of 159
K.17	The identification Robot 2	results of	the ex	xcitation	trajectory	stage in th	ne 17^{th} cycle o	of 160
K 18	The identification	results of	the ex	 voitation	trajectory	stage in th	18^{th} cycle of	100 of
11.10	Robot 2	1054105 01	0110 02	1010001011	ulajeetery	50050 111 01	ie ie eyele e	161
K.19	The identification	results of	the ex	citation	trajectory	stage in th	ne 19^{th} cycle o	of 169
12 90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · ·	••••		 	· · · · · · · ·	••••••••••••••••••••••••••••••••••••••	102
n.20	The identification	results of	the ex	xcitation	trajectory	stage in th	ie 20 ^{ch} cycle c)I 169
TZ 01	Robot $2 \ldots \ldots$	· · · · · ·	•••	••••			0.1st 1	103
K.21	Robot 2	results of	the ex	xcitation	trajectory	stage in th	$\begin{array}{c} \text{ne } 21^{\text{st}} \text{ cycle } \\ \dots \\$	or 164
K.22	The identification	results of	the ex	citation	trajectory	stage in th	e 22^{nd} cycle o	of
	Robot 2 \ldots							165
K.23	The identification Robot 2	results of	the ex	xcitation	trajectory	stage in th	ne 23 rd cycle o	of 166
K 24	The identification	results of	the ex	citation	trajectory	stage in th	24^{th} cycle o	of
11.21	Robot 2				••••••	· · · · · · · ·	· · · · · · · · · ·	167
L.1	The identification	results of t	the all	trajector	ry stage in	the $1^{\rm st}$ cvc	le of Robot 2	169
L.2	The identification	results of t	he all	trajector	v stage in	the 2^{nd} cvc	ele of Robot 2	. 170
L.3	The identification	results of t	the all	trajector	v stage in	the 3 rd cvc	le of Robot 2	. 171
L.4	The identification	results of t	the all	trajecto	v stage in	the 4 th cvc	le of Robot 2	. 172
L.5	The identification	results of t	the all	trajector	v stage in	the 5^{th} cvc	le of Robot 2	. 173
L.6	The identification	results of t	he all	trajector	v stage in	the 6 th cvc	le of Robot 2	. 174
L.7	The identification	results of t	the all	trajector	v stage in	the 7^{th} cvc	le of Robot 2	. 175
L.8	The identification	results of t	he all	trajector	v stage in	the 8 th cvc	le of Robot 2	. 176
L.9	The identification	results of t	the all	trajector	v stage in	the 9^{th} cvc	le of Robot 2	. 177
L.10	The identification	results of t	the all	trajector	v stage in	the 10^{th} cv	cle of Robot 2	2.178
L.11	The identification	results of t	the all	trajector	v stage in	the 11 th cv	cle of Robot 2	2.179
L.12	The identification	results of t	the all	trajecto	v stage in	the 12^{th} cv	cle of Robot 2	$2 \cdot 180$
L 13	The identification	results of t	the all	trajector	ry stage in	the 13^{th} cv	cle of Robot 2	2 181
L.14	The identification	results of t	the all	trajector	v stage in	the 14^{th} cv	cle of Robot 2	$\frac{1}{2}$. 182
L.15	The identification	results of t	the all	trajecto	v stage in	the 15^{th} cv	cle of Robot 2	$2 \cdot 183$
L.16	The identification	results of t	the all	trajector	ry stage in	the 16^{th} cy	cle of Robot 2	$\frac{1}{2}$. 184
L 17	The identification	results of t	the all	trajector	ry stage in	the 17 th cy	cle of Robot 2	$\frac{1}{2}$ 185
L 18	The identification	results of t	the all	trajector	ry stage in	the 18^{th} cy	cle of Robot 2	$\frac{1}{2}$ 186
L 19	The identification	results of t	the all	trajector	ry stage in	the 10^{th} cy	cle of Robot 2	$\frac{1}{2}$ 187
L 20	The identification	results of t	the all	trajecto	ry stage in	the 20^{th} cy	cle of Robot 2	$2 \cdot 107$
L 21	The identification	results of t	the all	trajector	ry stage in	the 21^{st} cv	cle of Robot 2	2 . 100 2 . 180
L 22	The identification	results of t	the all	trajecto	ry stage in	the 22^{nd} cy	cle of Robot '	2 190
L 23	The identification	results of f	the all	trajecto	ry stage in	the 23^{rd} cy	cle of Robot 2	$2 \cdot 100$ 2 191
L.20				f the Tree		D-h - ± 1		100
мі.1 М.9	The friction measu	mement res	suits 0	n une les fthe T	t 1 of the 1	nuuuut I Dobot 1		
WL.2 М. 9	The friction measu	mement re	suits 0	n une res .f +h - m	t 2 of the 1	nuuut⊥ Daha± 1		193
₩1.5 М 4	The friction measu	mement re	suits o	or the les	t of the l	novot I Dobet 1		193
W1.4	The friction measu	frement re	suits o	n une les	t 4 OI the 1	NUUUT I	••••	194
M.5	ine miction measu	rement re	suits o	n the Tes	ι ι or the l	nodot 2		194

M.6	The friction measurement results of the Test 2 of the Robot 2	195
M.7	The friction measurement results of the Test 3 of the Robot 2	195
M.8	The friction measurement results of the Test 4 of the Robot 2	196
N.1	The curve fitting results of Robot 1, the curve fitting results of the mixed data	
	are included	197
N.2	The friction measure results of Robot 1, the curve fitting results of the mixed	
	data are included	198
N.3	The curve fitting results of Robot 2, the curve fitting results of the mixed data	
	are included	198
N.4	The friction measure results of Robot 2, the curve fitting results of the mixed	
	data are included	199
0.1	The friction versus velocities in diffident cycles of all joints of Test 1 of Robot 1 .	201
O.2	The friction versus velocities in diffident cycles of all joints of Test 2 of Robot 1 .	202
O.3	The friction versus velocities in diffident cycles of all joints of Test 3 of Robot 1 .	202
O.4	The friction versus velocities in diffident cycles of all joints of Test 4 of Robot 1 .	203
O.5	The friction versus velocities in diffident cycles of all joints of Test 1 of Robot 2 .	203
O.6	The friction versus velocities in diffident cycles of all joints of Test 2 of Robot 2 .	204
O.7	The friction versus velocities in diffident cycles of all joints of Test 3 of Robot 2 .	204
O.8	The friction versus velocities in diffident cycles of all joints of Test 4 of Robot 2 .	205

Chapter 1

Introduction

1.1 Motivation And Background

Due to the industry growth, the intelligent manufacturing is introduced in the traditional manufacturing. As an integral part of intelligent manufacturing, the automatic machine in production lines has earned an increasing amount of attention. Specifically, the robot is becoming popular due to the flexible and multi-purpose usage. Generally, the industry robot refers to a machine with multi-degree-of-freedom or multi-joint manipulators in the industrial field, which is mainly applied in welding, processing, assembly, handling, painting, polishing and so on. Producing a robot requires the technologies of modern manufacturing, new material and control system. The research and development, manufacturing and applications of the industry robot have become important indicators of the manufacturing and technological innovation capabilities of a country or region.

In the traditional industrial field, such as auto manufacturing and metallurgy, the applications with the 6-serial-axis manipulator are in great demand. Recently, new applications, such as laser cutting and the 3D scanning, have obtained more attention with the development of new manufacturing processes. All these applications rely on high precision trajectory control with high velocity movement. In the early stage of development, the nonlinear elements of robot dynamics are not counted due to the computing performance, which includes the frictions and gravity. Usually, the robot drivers are simply controlled by PID regulator only to simplify the controller system design. However, this choice creates a disadvantage of the accuracy of the robot at high velocity movement. Additionally, to increase efficiency and reduce product cost, the equipment is configured at the highest operating rate. This requires robots to ensure accuracy in the trajectory with the shortest working cycle. To solve this problem, some methodologies are introduced for estimation and compensation of the torque. These methodologies include importing nonlinear elements in the dynamic model and creating the feed-forward control loop. These methods cause the benefits of reducing the errors created by the controllers and increasing the convergence rate of the errors inside the drivers, which improves the dynamic response of robot. However, the implementation of these methods relies on the accuracy of the robot dynamic parameters.

In China's market, the demand of industrial robot is arising. With the production growing, and with the problem of the shortage of labour, the demand of automation in industrial manufactures is increasing. The industrial robots have become the first choice for upgrading new and old production lines due to its wide applicability, controllable cost, and stability. Because of that, China becomes an indispensable part of the global robot market, which total annual sales exceed 50,000 units. Therefore, a large number of studies related to robotics have been performed by robotic companies and research departments. However, most of them focused on the field of traditional control methodologies. In terms of basic motion planning and control algorithms, theoretical research and virtual simulation are the main focus, which cannot solve

and verify system flexibility and nonlinear problems.

This thesis focuses on the study and experiments of robotic dynamics. The dynamic model is based the Newton-Euler functions. Additionally, for the purpose of increasing accuracy of the dynamic model, the nonlinear coefficients are introduced into the friction model. In this study, an optimal excitation trajectory has been found. In order to solve the problem that the gearbox temperature cannot be measured directly, a time-based friction observation model is introduced and discussed. Simultaneously, to observe whether the above test was repeatable, the tests were conducted in two robots and the results are compared.

1.2 Technical Review

1.2.1 Dynamic Model

The accuracy of dynamic parameters is crucial for establishing a robot dynamics model. The values extracted from general CAD files are not sufficient accurate for the actual calculation. This issue comes from nonlinear elements which cannot be obtained by the measurement of the CAD drawing, such as friction and dimension errors. Therefore, parameter identification through experimental data is the only reliable method to accurately obtain dynamic parameters. There are massive researches and studies of dynamic parameter identification, which parts of results have been applied to the actual production.

The work of Calafiore [8] and Indri [21] describe a procedure useful to obtain the dynamical parameters of a SCARA robot, which includes the parameter estimation and experiment trajectory optimization. Both articles are important because they provide a standard method for the dynamic parameter identification based on the fundamental concept of dynamic identification. This method demonstrates the calculation of robot dynamic model with the Newton-Euler equation, and also the creation of the excitation trajectory optimization. Additionally, the results are discussed in the articles with the figures and RMS values. Moreover, in the case of 6-axis manipulators, the base parameters are required to avoid complex calculation. This work is illustrated in many other papers [3, 7, 16–18, 24, 26, 27, 35, 36, 61]. These preview works create a complete method to estimate the dynamic parameters on 6-axis robots.

Due to the sensor size decreases, it becomes possible to insert torque sensors into the robot body. Therefore, the output torque can be measured directly in the recent released collaborative robot, such as KUKA LBR iiwa [29] and UR series of Universal Robots [58].

Jubien [23] studied the dynamic identification with the robot KUKA LWR, which the torque of robot joints can be obtained directly from the build-in sensors. He used two methods for the identification, one was established from the joint position and the motor current, and the other one was created by the data measured from the torque sensors. The comparison results proved that the above two methods were consistent in the identification results of dynamic parameters.

Memar [37] discussed parameter identification with a 6 DOF robot SCHUNK Powerball LWA 4P. The methods presented in this paper were based on the inverse kinetic model and least square. The results were verified with a designed experimental trajectory. It should point that there was a warm-up motion in the designed experiment to avoid reducing of the viscous friction due to the changes of the temperature of the lubrication, which means the results were calculated based on the warm conditions of the robot.

Toward the various researches based on dynamic parameters identification and friction of robots, it has been found that most of the studies were based on traditional robot dynamics models, which are Newton-Euler and Lagrange models. After the model established, the linearization has been down with the selected base parameters. Additionally, high-precision friction model is also essential for estimating the torque output. Recently, with the introduction of robots with build-in joint torque sensors, the data obtained from these sensors can be used in the parameter identification. The results of both methods are identical and proved by the Jubien [23].

In these studies, the physical elements are mainly focused, such as mass and inertia. However, the nonlinear coefficients are not described in the simplified model, therefore their impact on dynamic identification is ignored. This leads to future studies for these nonlinear elements to improve the robot performance with new control methodologies.

1.2.2 Friction

Friction is a complex phenomenon and it could be influenced by many factors. For example, the shape and roughness of the object surface, the velocity and pressure between the surface, the temperature and humidity, lubrication, and so on [4,48]. The mainly used friction models are based on the velocity. The classic friction model includes static friction and dynamic friction. The static friction presents the force between two solid objects that are not moving. The dynamic friction is the resistance force that appear when there is a relative motion between two materials. The most used friction model is based on the coulomb model and the viscous model. However, the precision of these models is low in complex scenarios, especially when the operations are affected by the alterations of the environment, for example, the temperature. Therefore, some models based on temperature changes have been studied in several papers [34, 38, 42].

The common friction models are also used in the study of dynamic model of the robots. Some models are introduced and created based on the Stribeck model [7, 47, 49, 50], which includes exponential coefficients. New friction models are introduced in the later last century with new theories, such as Dahl model [12], LuGre model [10] and Maxwell-Slip model [30, 51].

With respect to the mechanical structure of robotics, the assembly and contents of the robot joint effect the friction in the robot motions [4,34]. The assembly influences the pressure between the object surface, which creates friction in the movement due to the roughness and shape. However, this influence is controllable due to the usage of new tools and standardized production. Moreover, this influence may have negligible changes in the life cycle of the machine. Another issue could be linked with the inside and outside environment, for example, the temperature and lubrication. This situation has been examined with the temperature-based friction model. Many studies show that the most fiction changes during the motion depend on the lubrication. Since the lubrication has its own performance and it is linked with the temperature, the frictiontemperature affection related the internal lubrication has been studied.

Many papers and studies discussed the friction behaviours with temperature change. Bittencourt [5, 6] discussed the friction model with temperature effects. Both papers discussed the friction in robotics designed as the LuGre model with the influence of temperature. The book [4] discussed the friction and all possible influences in the theories and physics, including the relationship between friction and lubrication, and its behaviours with different temperatures. In addition, there are no temperature sensors in the most industrial robot due to the cost, which leads to the impossibility of obtaining the temperature values directly to establish the relationship between temperature and friction. To solve this problem, Pagani [39] provides an option for studying friction behaviour with a time-based friction model.

Since the inability of obtaining the temperature directly from the robot gearbox, alternative methods have been studied. Based on the studies of temperature-based friction model, it is assured that, using a specific protocol, the temperature rising can be estimated by time. In the paper of Simoni [47] and Pagani [39], a time-based friction observation model is introduced and discussed with some experiments, which describe the behaviour between the friction and time within the robot operations, with the purpose of trying to solve the problem that the temperature inside the gearboxes cannot be directly measured.

Based on the previews researches, Calafiore [8] provides a simplified friction model, but it can only describe the friction behaviour at specific range of velocity. Therefore, to provide a better description of the friction, a third order polynomial model is introduced by Visioli [59], and then continuously implemented in the paper of Indri [21], Legnani [32], Simoni [48] and Pagani [39]. These studies show a good estimation results with this new friction model, which is discussed in Section 3.1.2. The paper of Legnani [32], Simoni [47,48] and Pagani [39] demonstrate the basic theory and the methodologies. They described the relationship between the friction and temperature with a designed trajectory. Simoni [47,48] also analysed and modelled this thermal-friction effect. These studies provided the basic ideas of experiment design and they will be discussed in Section 4.

1.3 Overview Of This Thesis

This thesis provides a new methodology to investigate the relationship between the friction and the dynamic model, which is presented by the results of designed experiments. This thesis is organized into 7 parts, which include 6 chapters and an appendix. The introduction has been presented previously and shown the motivation and previews work reviews. The 2nd chapter demonstrates the based knowledge and mathematical theories used in this thesis. The study of robot dynamics is presented in Chapter 3, in which the creation of the information matrix of the dynamic model and the base parameter selection are explained. The experimental design is introduced in details in the Chapter 4. It is also presented the method and reason to create the experimental trajectory. In addition, a problem in excitation trajectory creation is illustrated and solved. The data obtained from the experimental trajectory have been calculated and presented in Chapter 5. The dynamic parameters found with the identification are verified and compared between the tests and robots. The friction behaviour during the experiments is discussed. The last chapter is the conclusion. Due to the larger number of the figures and tables, they are listed and described in the appendixes. Additionally, the code used in MATLAB and some calculation details are also presented in the appendixes.

Furthermore, the robots used in experiments are provided by EFORT and they are installed in the robotics laboratory at the university of Brescia. The mechanical characters of the manipulator are introduced in Section 2.1.1, and the robot movement configurations in experiments are demonstrated in Section 4.4. The experimental environment is explained in Section 4.6. In experiments, the position, velocity and acceleration of motion are collected. The related software and built-in functions that introduction in Section 4.6.

Chapter 2

The Theories And Mathematics

2.1 The Robot

2.1.1 The Structure

There are several types of robots used in manufacturing. The most popular manipulator is the anthropomorphic arm with Spherical Wrist as shown in Figure 2.1, which has 6 axes. In this thesis, the robot used is the ER3A from EFORT [14] and it is shown in Figure 2.2. The robot specifications are listed in Table 2.1.

Figure 2.1: The anthropomorphic arm with the spherical wrist

Figure 2.2: The robot of ER3A from EFORT

	Position	Maximum	Maximum	Rated Torque	
Joint		Velocity	Acceleration	of Motor	Gear ratio
	(aegree)	(degree/s)	$(degree/s^2)$	(Nm)	
1	$140 \sim -140$	230	510	0.64	121
2	$90 \sim -130$	230	495	0.64	121
3	$100 \sim -70$	250	510	0.318	101
4	$180 \sim -180$	320	1080	0.318	75.48
5	$110 \sim -110$	320	1080	0.159	81
6	$360 \sim -360$	420	1080	0.159	50

Table 2.1: The specifications of ER3A

2.1.2 Denavit-Hartenberg Parameters

The mathematical method of Denavit-Hartenberg [13], called DH from now on, is introduced to describe the relationship between all links. There are two types of DH methods, which are standard DH method [13] and modified DH method (MDH) [25]. There are four parameters used in both methods, which are a, α, d and θ . The most important difference between them is the definition of the θ angle, as shown in Figure 2.3. In the standard DH method, θ is defined as the angle between the X axis of Joint i and i + 1. Then this method leads to a_i and α_i , which are the distance and the angel between the Z axis of the same joint pairs respectively. By contrast, in the modified DH method, θ is defined as the angle between the X axis of Joint i - 1 and i. This change results to a_{i-1} and α_{i-1} , which have the same meanings as a_i and α_i respectively but with different joint pairs. These parameters are used in the calculation of the direct kinematic and the dynamic model of the robot, but they will be elaborated in Section 2.1.4 and Chapter 3 respectively.

Figure 2.3: The DH & MDH with their difference

In this thesis the MDH has been used as default due to the data provided by EFORT. The MDH parameters of ER3A are shown in Table 2.2, and their scheme is show in Figure 2.4. In this thesis, the MDH values are used to calculate the robot joint position with the link transformation matrix, see Section 2.1.3.

2.1.3 The Link Transformation Matrix

The link transformation matrix relocates the position of one link frame to another link frame. With the modified DH system, the DH parameters are built with three pre-defined

Figure 2.4: The Schematic of MDH frame

Table 2020 Hilb II Parameters of Ertori									
Link	$\begin{array}{c}a_{i-1}\\(m)\end{array}$	$\begin{array}{c} \alpha_{i-1} \\ (degree) \end{array}$	$d \ (m)$	$ heta \\ (degree)$					
1	0	0	0.32	0					
2	0.05	90	0	90					
3	0.27	0	0	0					
4	0.07	90	0.3	180					
5	0	90	0	180					
6	0	90	0.0785	0					

Table 2.2: MDH parameters of ER3A

frames (Figure 2.5), which are Frame R located on the Axis i - 1, Frame Q located on the Axis i, and frame P based on the position of the link i - 1 and link i.

Figure 2.5: The frame P, Q and R, and the MDH parameters

As stated in [11,45], the transfer function that describes the vector defined by link i in the frame of link i - 1 can be written as:

$$p^{i-1} = T_i^{i-1} p^i = R_{x,\alpha_{i-1}} D_{x,a_{i-1}} R_{z,\theta_i} D_{z,d_i} p^i$$
(2.1)

And the transfer elements of T_i^{i-1} can be written in a matrix form as follows:

$$\boldsymbol{T}_{i}^{i-1} = \boldsymbol{R}_{x,\alpha_{i-1}} \boldsymbol{D}_{x,a_{i-1}} \boldsymbol{R}_{z,\theta_{i}} \boldsymbol{D}_{z,d_{i}} = \begin{bmatrix} \cos \theta_{i} & -\sin \theta_{i} & 0 & a_{i-1} \\ \sin \theta_{i} \cos \alpha_{i-1} & \cos \theta_{i} \cos \alpha_{i-1} & -\sin \alpha_{i-1} & -d_{i} \sin \alpha_{i-1} \\ \sin \theta_{i} \sin \alpha_{i-1} & \cos \theta_{i} \sin \alpha_{i-1} & \cos \alpha_{i-1} & d_{i} \cos \alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.2)

Where the D is the displacement matrix [62, 67] and T is the transfer matrix from one frame to the next one with a given distance and rotation angles.

2.1.4 The Direct Kinematic

The direct Kinematic is used to calculate the robot end positions. It is based on the MDH parameters which are introduced in Section 2.1.3. Based on the previous references, the direct kinematic transfer matrix from Joint 0 to Joint 6 is shown as Equation 2.3 [11].

$$\boldsymbol{T}_{6}^{0} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{p} \\ \boldsymbol{0}_{1*3} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.3)

with

$$r_{11} = c_1 \left[c_{23} \left(c_4 c_5 c_6 - s_4 s_6 \right) - s_{23} s_5 c_6 \right] + s_1 \left(s_4 c_5 c_6 + c_4 s_6 \right)$$

$$(2.3a)$$

$$r_{21} = s_1 \left[c_{23} \left(c_4 c_5 c_6 - s_4 s_6 \right) - s_{23} s_5 c_6 \right] - c_1 \left(s_4 c_5 c_6 + c_4 s_6 \right)$$
(2.3b)

$$r_{31} = -s_{23} \left(c_4 c_5 c_6 - s_4 s_6 \right) - c_{23} s_5 c_6 \tag{2.3c}$$

$$r_{12} = c_1 \left[-c_{23} \left(c_4 c_5 s_6 + s_4 c_6 \right) + s_{23} s_5 s_6 \right] + s_1 \left(c_4 c_6 - s_4 c_5 s_6 \right)$$
(2.3d)

$$r_{22} = s_1 \left[-c_{23} \left(c_4 c_5 s_6 + s_4 c_6 \right) + s_{23} s_5 s_6 \right] - c_1 \left(c_4 c_6 - s_4 c_5 c_6 \right)$$

$$(2.3e)$$

$$r_{32} = s_{23} \left(c_4 c_5 s_6 + s_4 c_6 \right) + s_{23} s_5 s_6 \tag{2.3f}$$

$$r_{13} = -c_1 \left(c_{23} c_4 s_5 + s_{23} c_5 \right) - s_1 s_4 s_5 \tag{2.3g}$$

$$r_{23} = -s_1 \left(c_{23} c_4 s_5 + s_{23} c_5 \right) + c_1 s_4 s_5 \tag{2.3h}$$

$$r_{33} = s_{23}c_4s_5 - c_{23}c_5 \tag{2.3i}$$

$$p_x = c_1 \left(a_2 c_2 + a_3 c_{23} - d_4 s_{23} \right) - d_2 s_1 \tag{2.3j}$$

$$p_y = s_1 \left(a_2 c_2 + a_3 c_{23} - d_4 s_{23} \right) + d_2 c_1 \tag{2.3k}$$

$$p_z = -a_3c_{23} - a_2s_2 - d_4c_{23} \tag{2.31}$$

Where T_6^0 is the transfer matrix from the Joint 0 to Joint 6, and c_i and s_i stands for $\cos(\theta_i)$ and $\sin(\theta_i)$ respectively. For example, c_{23} is $\cos(\theta_2 + \theta_3)$.

2.2 The Mathematics

The mathematics used during the identification and raw data processing are explained below. Least Square is used in the identification, and Feature Scaling is used to improve the accuracy of the results and to reduce the sensitivity from the data dither.

2.2.1 The Least Squares

The Least Squares is used to identify the system dynamic parameters. It is an approach in regression analysis to obtain the optimal solution based on given data and equations. This method follows a linear system described as Equation 2.4:

$$\boldsymbol{y}(t) = \boldsymbol{\varphi}(t)\boldsymbol{\theta} \tag{2.4}$$

Where the y(t) and $\varphi(t)$ is the vector of system output and input at time t respectively, and θ is the system parameters to identify. The Least Squares procedure starts with the collected data of y and φ with the time series \overline{t} (from 1 to k), then it used the estimated parameters θ^* , the differences between the estimated results and desired results are:

$$\boldsymbol{\varepsilon} = \boldsymbol{y} - \boldsymbol{\varphi} \boldsymbol{\theta}^* \tag{2.5}$$

Minimizing j, which is the sum of squared residuals as shown in Equation 2.6, it is possible to find the optimal parameters θ^* .

$$j = \sum_{i=1}^{k} [\varepsilon(i)]^2 \tag{2.6}$$

In this process, the minimized j can be obtained by setting the partial derivative to zero as follows:

$$\left. \frac{\partial j}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^*} = 0 \tag{2.7}$$

Then:

$$j = \sum_{i=1}^{k} [\varepsilon(i)]^2 = \varepsilon^T \varepsilon$$

= $[\boldsymbol{y} - \boldsymbol{\varphi} \boldsymbol{\theta}^*]^T [\boldsymbol{y} - \boldsymbol{\varphi} \boldsymbol{\theta}^*]$
= $\boldsymbol{y}^T \boldsymbol{y} - 2(\boldsymbol{\theta}^*)^T \boldsymbol{\varphi}^T \boldsymbol{y} + (\boldsymbol{\theta}^*)^T \boldsymbol{\varphi}^T \boldsymbol{\theta}^*$ (2.8)

$$\frac{\partial j}{\partial \boldsymbol{\theta}}\Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}^*} = 0 \Rightarrow \frac{\partial j}{\partial \boldsymbol{\theta}}\Big|_{\boldsymbol{\theta}=\boldsymbol{\theta}^*} = -2\boldsymbol{\varphi}^T \boldsymbol{y} + 2\boldsymbol{\varphi}^T \boldsymbol{\varphi} \boldsymbol{\theta}^* = 0$$

$$\Rightarrow \boldsymbol{\theta}^* = \left[\boldsymbol{\varphi}^T \boldsymbol{\varphi}\right]^{-1} \boldsymbol{\varphi}^T \boldsymbol{y}$$
(2.9)

 $\boldsymbol{\theta}^*$ is obtained finally under the condition of $\boldsymbol{\varphi}^T \boldsymbol{\varphi} \neq 0$.

The Least Square method is used to identify the dynamic parameters in this work, and they are illustrated in Section 5.1.1.

2.2.2 Feature Scaling

The data collected have been feature-scaled by the method of L2-Norm (Euclidean Length) normalization [63] to reduce the noise and increase the redundancy of the data and the accuracy of the identification.

The normalization for a given vector $\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_i \end{bmatrix}$ is:

$$\bar{\boldsymbol{x}} = \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|} \tag{2.10}$$

Where ||x|| is the Euclidean Norm of vector x:

$$||x|| = norm(x) = \sqrt{x_1^2 + x_2^2 + \dots + x_i^2} = \sqrt{\sum_{i=1}^{i} x_i^2}$$
(2.11)

For the given data K_{n*m} , shown in matrix form as below:

$$\boldsymbol{K}_{n*m} = \begin{bmatrix} \boldsymbol{k}_1 & \boldsymbol{k}_2 & \cdots & \boldsymbol{k}_m \end{bmatrix}$$
(2.12)

where \mathbf{k}_i is an n * 1 column vector:

$$\boldsymbol{K}_{n*m} = \frac{\boldsymbol{K}}{\|\boldsymbol{K}\|} = \boldsymbol{K} \frac{1}{\|\boldsymbol{K}\|} = \boldsymbol{K} \begin{bmatrix} \frac{1}{\|\boldsymbol{k}_1\|} & 0 & 0 & \cdots & 0\\ 0 & \frac{1}{\|\boldsymbol{k}_2\|} & 0 & \cdots & 0\\ 0 & 0 & \frac{1}{\|\boldsymbol{k}_3\|} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \frac{1}{\|\boldsymbol{k}_m\|} \end{bmatrix}$$

$$= \boldsymbol{K} \begin{bmatrix} h_1 & 0 & 0 & \cdots & 0\\ 0 & h_2 & 0 & \cdots & 0\\ 0 & h_3 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & h_m \end{bmatrix} = \boldsymbol{K} \boldsymbol{H}$$
(2.13)

 \boldsymbol{H} is a normalization matrix with:

$$h_{i} = \begin{cases} \|\boldsymbol{k}_{i}\|^{-1}, & if \|\boldsymbol{k}_{i}\| \neq 0\\ 1, & if \|\boldsymbol{k}_{i}\| = 0 \end{cases}$$
(2.14)

The dynamic Equation 3.17, using a normalization matrix H, can be written as:

$$\boldsymbol{\tau} = \boldsymbol{K}\boldsymbol{\Phi} = (\boldsymbol{K}\boldsymbol{H}) \left(\boldsymbol{H}^{-1}\boldsymbol{\Phi}\right) = \bar{\boldsymbol{K}}\bar{\boldsymbol{\Phi}}$$
(2.15)

Therefore the Least Square method can be used for parameters identification. At the end, a reverse of normalization is needed:

$$\boldsymbol{\Phi} = \boldsymbol{H}\boldsymbol{\bar{\Phi}} \tag{2.16}$$

Chapter 3

Dynamic Study

3.1 Information Matrix

3.1.1 The Newton–Euler Method (NE)

There are two models for establishing the robot dynamic model. They are based on the Lagrange formulations [19] and Newton-Euler formulation [33]. Silver [46] proved that both models can be equivalent. However, based on the other analysis [46], the computation cost of the robot dynamic model coming from Lagrange formula is higher than the model built from Newton-Euler. Therefore, in this thesis, the dynamic model of the robot is built from the Newton-Euler formulation. It contains two sets of recursions: forward and backward recursions. The forward recursions transfer the arms' velocities and accelerations from the base to the end-effector; the backward recursions instead, transfer the forces of the joints from the end-effector to the base. The complete formulations [11, 33] are:

• Forward recursions, from Link $0 \rightarrow 5$:

$$\boldsymbol{\omega}_{i+1} = \boldsymbol{R}_i^{i+1} \boldsymbol{\omega}_i + \dot{\boldsymbol{\theta}}_{i+1} \boldsymbol{z}_{i+1}^{i+1} \tag{3.1}$$

$$\dot{\boldsymbol{\omega}}_{i+1} = \boldsymbol{R}_i^{i+1} \dot{\boldsymbol{\omega}}_i + \boldsymbol{R}_i^{i+1} \boldsymbol{\omega}_i \times \dot{\boldsymbol{\theta}}_{i+1} \boldsymbol{z}_{i+1}^{i+1} + \ddot{\boldsymbol{\theta}}_{i+1} \boldsymbol{z}_{i+1}^{i+1}$$
(3.2)

$$\dot{\boldsymbol{v}}_{i+1} = \boldsymbol{R}_i^{i+1} \left[\dot{\boldsymbol{\omega}}_i \times \boldsymbol{p}_{i+1}^i + \boldsymbol{\omega}_i \times \left(\boldsymbol{\omega}_i \times \boldsymbol{p}_{i+1}^i \right) + \dot{\boldsymbol{v}}_i \right]$$
(3.3)

$$\dot{\boldsymbol{v}}_{c_{i+1}} = \dot{\boldsymbol{\omega}}_{i+1} \times \boldsymbol{p}_{\boldsymbol{c}_{i+1}}^{i+1} + \boldsymbol{\omega}_{i+1} \times \left(\boldsymbol{\omega}_{i+1} \times \boldsymbol{p}_{\boldsymbol{c}_{i+1}}^{i+1}\right) + \dot{\boldsymbol{v}}_{i+1}$$
(3.4)

$$\hat{f}_{i+1} = m_{i+1} \dot{v}_{c_{i+1}} \tag{3.5}$$

$$\hat{\boldsymbol{n}}_{i+1} = \boldsymbol{I}_{i+1}^{c_{i+1}} \dot{\boldsymbol{\omega}}_{i+1} + \boldsymbol{\omega}_{i+1} \times \boldsymbol{I}_{i+1}^{c_{i+1}} \boldsymbol{\omega}_{i+1}$$
(3.6)

with $\boldsymbol{\omega}_0 = \dot{\boldsymbol{\omega}}_0 = \mathbf{0}$.

• Backward recursions, from Link $6 \rightarrow 1$:

$$\boldsymbol{f}_i = \boldsymbol{R}_{i+1}^i \boldsymbol{f}_{i+1} + \boldsymbol{\hat{f}}_i \tag{3.7}$$

$$\boldsymbol{n}_{i} = \hat{\boldsymbol{n}}_{i} + \boldsymbol{R}_{i+1}^{i} \boldsymbol{n}_{i+1} + \boldsymbol{p}_{ci}^{i} \times \hat{\boldsymbol{f}}_{i} + \boldsymbol{p}_{i+1}^{i} \times \boldsymbol{R}_{i+1}^{i} \boldsymbol{f}_{i+1}$$
(3.8)

$$\boldsymbol{\tau}_i = (\boldsymbol{n}_i)^T \boldsymbol{z}_i^i \tag{3.9}$$

Where:

 \mathbf{R}_{i}^{i+1} is the rotation matrix from link *i* to link *i* + 1.

 $\dot{\boldsymbol{\theta}}_i$ and $\ddot{\boldsymbol{\theta}}_i$ are the angle speed and acceleration of link *i*.

 ω_i , $\dot{\omega}_i$ and $\ddot{\omega}_i$ are the angular position, speed and acceleration vector of link *i*.

 \dot{v}_i is the linear acceleration of the origin of the link coordination system.

 \dot{v}_{ci} is the linear acceleration of the centre of mass of the link *i*.

 \hat{f}_i is the inertial force of the centre of mass of the link *i*.

 $\hat{\boldsymbol{n}}_i$ is the inertial torque of the centre of mass of the link *i*. f_i is the force on link *i* exerted from the link i - 1. n_i is the torque on link *i* exerted from the link i - 1. au_i is linear actuator force of the link *i*. p_{i+1}^i is the transformation vector of the link *i*, which is pointed from the origin of link *i* to link i-1. m_i is the mass of link *i*. $I_{i+1}^{c_{i+1}}$ is the inertia tensor of link i+1 based on its own centre of mass coordinate. $p_{c_i}^{i+1}$ is the vector of the central of mass of the link *i* in coordination with link *i*. $z_i^i = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$, with the meaning of selecting the value followed the z-axis of DH coordi-

nates.

It should be pointed out that with $\dot{v}_i = g$, the gravity acceleration of each link will be counted into the recursions process.

3.1.2Friction Model And Motor Inertia

Friction can be modelled from the coulomb friction and viscous friction, and it could be assumed the following polynomial function [21, 32, 39, 48, 59]:

$$\tau_f = f_1 sign(\dot{\theta}) + f_2 \dot{\theta} + f_3 \dot{\theta}^2 sign(\dot{\theta}) + f_4 \dot{\theta}^3$$
(3.10)

which $\hat{\theta}$ is the velocity of the joints, and f_1 , f_2 , f_3 and f_4 are the coefficients of the friction model.

Equation 3.10 can be rewritten in matrix form as:

$$\tau_f = \begin{bmatrix} sign(\dot{\theta}) & \dot{\theta} & \dot{\theta}^2 sign(\dot{\theta}) & \dot{\theta}^3 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} = \mathbf{K}_f \boldsymbol{\phi}_f \tag{3.11}$$

Where K_f is the friction information matrix that can be used in the robot dynamic model, and ϕ_f is the friction coefficients.

The motor inertia equation can be written in matrix form as:

$$\tau_m = I_m \ddot{\theta} \tag{3.12}$$

$$\Rightarrow \quad \tau_m = \begin{bmatrix} I_m \end{bmatrix} \begin{bmatrix} \ddot{\theta} \end{bmatrix} = \mathbf{K}_m \boldsymbol{\phi}_m \tag{3.13}$$

which I_m is the inertia of the motor, and $\ddot{\theta}$ is the angle acceleration.

3.1.3Information Matrix Formula

Using the Newton-Euler equation, discussed in Section 3.1.1 and also in Appendix C, and the friction model and motor inertia previously shown in Section 3.1.2, the parameters of each joint to identify become:

$$\boldsymbol{\phi}_{d} = \begin{bmatrix} m & mP_{x} & mP_{y} & mP_{z} & I_{xx} & I_{xy} & I_{xz} & I_{yy} & I_{yz} & I_{zz} \end{bmatrix}^{T}$$
(3.14)

$$\boldsymbol{\phi}_f = \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix}^T \tag{3.15}$$

$$\boldsymbol{\phi}_m = \left[I_m \right] \tag{3.16}$$

and the matrix equation can be written as:

$$\boldsymbol{\tau}_{dynamic} = \begin{bmatrix} \boldsymbol{\tau}_{Joint1} \\ \boldsymbol{\tau}_{Joint2} \\ \boldsymbol{\tau}_{Joint3} \\ \boldsymbol{\tau}_{Joint4} \\ \boldsymbol{\tau}_{Joint5} \\ \boldsymbol{\tau}_{Joint6} \end{bmatrix} = \boldsymbol{K}_{d}\boldsymbol{\phi} + \boldsymbol{\tau}_{f} + \boldsymbol{\tau}_{m} = \boldsymbol{K}_{d}\boldsymbol{\phi}_{d} + \boldsymbol{K}_{f}\boldsymbol{\phi}_{f} + \boldsymbol{K}_{m}\boldsymbol{\phi}_{m}$$

$$= \begin{bmatrix} \boldsymbol{K}_{d} \quad \boldsymbol{K}_{f} \quad \boldsymbol{K}_{m} \end{bmatrix} \begin{bmatrix} \boldsymbol{\phi}_{d} \\ \boldsymbol{\phi}_{f} \\ \boldsymbol{\phi}_{m} \end{bmatrix} = \boldsymbol{K}_{infor}\boldsymbol{\Phi}_{infor}$$

$$(3.17)$$

Where:

$$\mathbf{K}_{d} = \begin{bmatrix}
\mathbf{u}_{11} & \mathbf{u}_{12} & \mathbf{u}_{13} & \mathbf{u}_{14} & \mathbf{u}_{15} & \mathbf{u}_{16} \\
\mathbf{0}_{1*10} & \mathbf{u}_{22} & \mathbf{u}_{23} & \mathbf{u}_{24} & \mathbf{u}_{25} & \mathbf{u}_{26} \\
\mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{u}_{33} & \mathbf{u}_{34} & \mathbf{u}_{35} & \mathbf{u}_{36} \\
\mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{u}_{44} & \mathbf{u}_{45} & \mathbf{u}_{46} \\
\mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*5} & \mathbf{u}_{56} \\
\mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{0}_{1*10} & \mathbf{u}_{16} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{k}_{f, J2} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} & \mathbf{0}_{1*4} \\
\mathbf{0}_{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} &$$

$$\boldsymbol{\phi}_{m} = \begin{bmatrix} \phi_{m, J1} & \phi_{m, J2} & \phi_{m, J3} & \phi_{m, J4} & \phi_{m, J5} & \phi_{m, J6} \end{bmatrix}^{T}$$
(3.17f)

and the subscripts of "d", "f" and "m" present the first letter of "dynamic", "friction" and "motor" respectively. The elements of "u" in Equation 3.17a are vectors of the z-direction of "U" in Equation C.26.

3.1.4 Information Matrix In The Identification

Based o the discussion of the Least Square in Section 2.2.1, the estimated dynamic parameters $\hat{\phi}$ can be obtained from the given data \hat{K} . The data can be reorganized as a matrix with series points, which are:

$$\hat{\boldsymbol{K}}_{point1}, \hat{\boldsymbol{K}}_{point2}, \cdots, \hat{\boldsymbol{K}}_{pointn}$$
 (3.18)

To give an example, the information matrix K and the estimated parameters $\hat{\phi}$ of joint 1, based on Equation 3.17, can be determined as follows:

$$\boldsymbol{K}_{d, \ Joint \ 1} = \begin{bmatrix} \boldsymbol{u}_{11,Point \ 1} & \boldsymbol{u}_{12,Point \ 1} & \boldsymbol{u}_{13,Point \ 1} & \boldsymbol{u}_{14,Point \ 1} & \boldsymbol{u}_{15,Point \ 1} & \boldsymbol{u}_{16,Point \ 1} \\ \boldsymbol{u}_{11,Point \ 1} & \boldsymbol{u}_{12,Point \ 1} & \boldsymbol{u}_{13,Point \ 1} & \boldsymbol{u}_{14,Point \ 1} & \boldsymbol{u}_{15,Point \ 1} & \boldsymbol{u}_{16,Point \ 1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{u}_{11,Point \ n} & \boldsymbol{u}_{12,Point \ n} & \boldsymbol{u}_{13,Point \ n} & \boldsymbol{u}_{14,Point \ n} & \boldsymbol{u}_{15,Point \ n} & \boldsymbol{u}_{16,Point \ n} \end{bmatrix}_{n*60}$$
(3.19a)

$$\boldsymbol{K}_{f, \ Joint \ 1} = \begin{bmatrix} \boldsymbol{k}_{f,1,Point \ 1} & 0_{1*4} & 0_{1*4} & 0_{1*4} & 0_{1*4} & 0_{1*4} \\ \boldsymbol{k}_{f,1,Point \ 2} & 0_{1*4} & 0_{1*4} & 0_{1*4} & 0_{1*4} & 0_{1*4} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{k}_{f,1,Point \ n} & 0_{1*4} & 0_{1*4} & 0_{1*4} & 0_{1*4} & 0_{1*4} \end{bmatrix}_{n*24}$$
(3.19b)

$$\boldsymbol{K}_{m, \ Joint \ 1} = \begin{bmatrix} k_{m,1,Point \ 1} & 0 & 0 & 0 & 0 \\ k_{m,1,Point \ 2} & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ k_{m,1,Point \ n} & 0 & 0 & 0 & 0 \end{bmatrix}_{n*6}$$
(3.19c)

$$\hat{\phi}_{d, \ Joint \ 1} = \begin{bmatrix} \phi_{d,1} & \phi_{d,2} & \phi_{d,3} & \phi_{d,4} & \phi_{d,5} & \phi_{d,6} \end{bmatrix}_{1*60}^T$$
(3.19d)

$$\phi_{f, Joint 1} = \begin{bmatrix} \phi_{f,1} & \phi_{f,2} & \phi_{f,3} & \phi_{f,4} & \phi_{f,5} & \phi_{f,6} \end{bmatrix}_{1 \neq 24}^{T}$$
(3.19e)

$$\phi_{m, Joint 1} = \begin{bmatrix} \phi_{m,1} & \phi_{m,2} & \phi_{m,3} & \phi_{m,4} & \phi_{m,5} & \phi_{m,6} \end{bmatrix}_{1*6}^{1}$$
(3.19f)

And then the equation used in identification can be rewritten as:

$$[\boldsymbol{\tau}_{Joint \ 1}]_{n*1} = \begin{bmatrix} \tau_{Joint \ 1, \ Point \ 1} \\ \tau_{Joint \ 1, \ Point \ 2} \\ \vdots \\ \tau_{Joint \ 1, \ Point \ n} \end{bmatrix} = \boldsymbol{K}_{Joint \ 1, \ n*90} \boldsymbol{\hat{\Phi}}_{Joint \ 1, \ 90*1}$$
(3.20)

$$\Rightarrow \quad \hat{\boldsymbol{\Phi}}_{Joint \ 1} = (\boldsymbol{K}_{Joint \ 1}^T \boldsymbol{K}_{Joint \ 1})^{-1} \boldsymbol{K}_{Joint \ 1}^T [\boldsymbol{\tau}_{Joint \ 1}]$$
(3.21)

Using all the joints, the information matrix and the estimated parameters created from the Equation 3.17 are:

$$K = \begin{bmatrix} \tau_{Joint 1, Point 1} \\ \tau_{Joint 2, Point 1} \\ \tau_{Joint 3, Point 1} \\ \tau_{Joint 4, Point 1} \\ \tau_{Joint 5, Point 1} \\ \tau_{Joint 5, Point 1} \\ \tau_{Joint 1, Point 2} \\ \tau_{Joint 2, Point 2} \\ \tau_{Joint 3, Point 2} \\ \tau_{Joint 4, Point 2} \\ \tau_{Joint 5, Point 2} \\ \tau_{Joint 6, Point 2} \\ \tau_{Joint 1, Point 3} \\ \vdots \\ \tau_{Joint 1, Point 3} \\ \vdots \\ \tau_{Joint 1, Point n} \\ \tau_{Joint 1, Point n} \\ \tau_{Joint 3, Point n} \\ \tau_{Joint 4, Point n} \\ \tau_{Joint 4, Point n} \\ \tau_{Joint 5, Point n} \\ \tau_{Joint 6, Point 0} \\ \tau_{Joint 6, Point 0} \\ \tau_{Joint 6, Point 0} \\ \tau_{Joi$$

$$\phi = \begin{bmatrix} \phi_{d, Point 1} \\ \phi_{f, Point 1} \\ \phi_{m, Point 1} \\ \phi_{d, Point 2} \\ \phi_{f, Point 2} \\ \phi_{m, Point 2} \\ \phi_{d, Point 3} \\ \vdots \\ \phi_{m, Point n-1} \\ \phi_{d, Point n} \\ \phi_{f, Point n} \\ \phi_{m, Point n} \end{bmatrix}$$
(3.23)

and for the K_d , K_f and K_m :

	$oldsymbol{u}_{11,\ Point\ 1}$	$oldsymbol{u}_{12,\ Point\ 1}$	$oldsymbol{u}_{13,\ Point\ 1}$	$oldsymbol{u}_{14,\ Point\ 1}$	$oldsymbol{u}_{15,\ P}$	Point 1	$\boldsymbol{u}_{16, P}$	oint 1		
	0_{1*10}	$oldsymbol{u}_{22,\ Point\ 1}$	$oldsymbol{u}_{23,\ Point\ 1}$	$oldsymbol{u}_{24,\ Point\ 1}$	$oldsymbol{u}_{25,\ P}$	Point 1	$\boldsymbol{u}_{26, P}$	oint 1		
	0_{1*10}	0_{1*10}	$oldsymbol{u}_{33,\ Point\ 1}$	$oldsymbol{u}_{34,\ Point\ 1}$	$oldsymbol{u}_{35,\ P}$	oint 1	$\boldsymbol{u}_{36, P}$	oint 1		
	0_{1*10}	0_{1*10}	0_{1*10}	$oldsymbol{u}_{44,\ Point\ 1}$	$oldsymbol{u}_{45,\ P}$	oint 1	$\boldsymbol{u}_{46, P}$	oint 1		
	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*10}	$oldsymbol{u}_{55,\ P}$	oint 1	$\boldsymbol{u}_{56, P}$	oint 1		
	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*}	<10	$\boldsymbol{u}_{66, P}$	oint 1		
	$oldsymbol{u}_{11,\ Point\ 2}$	$oldsymbol{u}_{12,\ Point\ 2}$	$oldsymbol{u}_{13,\ Point\ 2}$	$oldsymbol{u}_{14,\ Point\ 2}$	$oldsymbol{u}_{15,\ P}$	Point 2	$\boldsymbol{u}_{16, P}$	oint 2		
	0_{1*10}	$oldsymbol{u}_{22, Point 2}$	$u_{23, Point 2}$	$u_{24, Point 2}$	$u_{25, P}$	Point 2	$\boldsymbol{u}_{26, P}$	oint 2		
	0_{1*10}	0_{1*10}	$u_{33, Point 2}$	$u_{34, Point 2}$	$\boldsymbol{u}_{35,\ P}$	Point 2	$u_{36, P}$	oint 2		
	0_{1*10}	0_{1*10}	0_{1*10}	$u_{44, Point 2}$	$u_{45, P}$	oint 2	$u_{46, P}$	oint 2		
$K_{1} -$	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*10}	$u_{55, P}$	oint 2	$u_{56, P}$	oint 2	(3 5	24)
\mathbf{n}_{d} –	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*10}	01*	(10)	u_{66} P	oint 2	(0.2	<u>24</u>)
	$u_{11. Point 3}$	$u_{12. Point 3}$	$u_{13, Point 3}$	$u_{14, Point 3}$	$u_{15, P}$	Point 3	$u_{16, P}$	oint 3		
	:	:	:	:	:		:			
	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*}	10 1	1 66 Poi	nt n-1		
	u_{11} Point n	u_{12} Point n	u_{13} Point n	u_{14} Point n	u_{15} P	oint n	u_{16} P	oint n		
	0_{1*10}	u_{22} Point n	u_{23} Point n	u_{24} Point n	$u_{25} P$	oint n	u_{26} P	oint n		
	0_{1*10}	0_{1*10}	U 33 Point n	u_{34} , Point n	U 25, P	oint n	U 36 P	oint n		
	0_{1*10}	0_{1*10}	0_{1*10}	u_{44} Point n	u_{45} P	oint n	U 46 P	oint n		
	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*10}	u_{55} P	oint n	u_{56} P	oint n		
	0_{1*10}	0_{1*10}	0_{1*10}	0_{1*10}	01*	10	u_{66} P	oint n		
	$\begin{bmatrix} k_{f,I} & R_{oint,I} \end{bmatrix}$	014	014	01/	1	014		0	1.5.4	
	0_{1+4}	$k_{if 12}$ Roint	0_{1*4}	01*4	E I	01*4	E I	0	1*4 14	
	0_{1+4}	$0_{1,4}$	$k_{III} = k_{III}$	0_{1*4}	E 1	0_{1}	E	0.	1 * 4	
	0_{1+4}	0_{1+4}	$0_{1,4}$	$k_{III} = k_{III}$	t 	0_{1*4}	E I	0.	1 * 4	ĺ
	0_{1*4}	0_{1*4}	0_{1*4}	$0_{1,1}$		$k_{f 15} D_{1*4}$	e nim + 1	0.	1*4 14	ĺ
	0_{1*4}	0_{1*4}	01.4	01.4	E .	$0_{1,J}$		k	D 1	
	k_{11} D (1×4)	0_{1*4}	0_{1*4}	01*4	t.	0_{1*4}	E .	$n_{f, J6}$	Point 1	
	0_1	$k_{\rm CD}$ \bar{b}	0_{1*4}	01*4	t.	0_{1*4}	E .	0	1*4	
	0_{1*4}	$0_{1,J2}$, Point	k 10 p ·	0_{1*4}	t.	0_{1*4}	E .	0	1*4	
	0_{1*4}	0_{1*4}	$n_{f,J3, Poir}$	\mathbf{k}_{1}	•	0_{1*4}	£	0	1*4	l
T /2	0_{1*4}	0_{1*4}	0_{1*4}	$n_{J,J4}, Pa$	oint 2	k		0	1*4	
$\mathbf{K}_f =$	01*4	0_{1*4}	01*4	01*4	L.	$n_{f,J5}, P_{c}$	oint 2	k	1*4 D: ()	
	b 1 b 1 b 1 1 	0_{1*4}	01*4	01*4	L.	01*4	Ł	$n_{f,J6,}$	Point 2	
	$\boldsymbol{\kappa}_{f,J1}, Point 3$	01*4	01*4	01*4	Ł	01*4	Ł	0	1*4	ĺ
	÷	÷	÷	÷		:			:	
	0_{1*4}	0_{1*4}	0_{1*4}	0_{1*4}	Ł	0_{1*4}	Ł	$k_{f,J6, \ I}$	Point $n-1$	ĺ
	$m{k}_{f,J1,\ Point\ n}$	0_{1*4}	0_{1*4}	0_{1*4}	Ł	0_{1*4}	Ł	0	1*4	ĺ
	0_{1*4}	$m{k}_{f,J2,~Point}$	$n = 0_{1*4}$	0_{1*4}	Ł	0_{1*4}	Ł	0	1*4	ĺ
	0_{1*4}	0_{1*4}	$m{k}_{f,J3,~Poin}$	$n_{t n} = 0_{1*4}$	L	0_{1*4}	Ł	0	1*4	ĺ
	0_{1*4}	0_{1*4}	0_{1*4}	$oldsymbol{k}_{f,J4,\ Pd}$	pint n	0_{1*4}	L	0	1*4	
	0_{1*4}	0_{1*4}	0_{1*4}	0_{1*4}	Ł	$k_{f,J5,Pc}$	pint n	0	1*4	
	0_{1*4}	0_{1*4}	0_{1*4}	0_{1*4}	L	0_{1*4}	Ł	$oldsymbol{k}_{f,J6,}$	Point n	
								. ,	(3.2)	25)

3.2 Base Parameters Selection

Parameter selection is useful to determine the minimum number of identifiable robot dynamic parameters, and to eliminate the parameters that have no effect on the dynamic model. It increases the robustness of the identification process and reduces the computation cost. Additionally, it eliminates the linearly dependent elements, which results in a higher rank of the information matrix. At the very first beginning, the selection was made by mathematical and mechanical analysis [7, 17, 27, 35, 36, 61], and the regrouping of initial parameters [18, 24, 26]. With the rising in electrical computing science, the selection can be carried out by using QR factorization and SVD decomposition [3,7,16,27], which results are presented by the relationship among the links.

The purpose of both decompositions is to factorize a matrix into a product of matrices. QR decomposition [65] is used to decompose a real matrix \boldsymbol{A} into a product as:

$$\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{R} \tag{3.27}$$

Where:

Q is an orthogonal matrix.

 \boldsymbol{R} is an upper triangular matrix.

This decomposition is often introduced to solve linear least square problems. Moreover, with QR decomposition, it is easy to solve the system with the equation Ax = b:

$$Ax = b \xrightarrow{A=QR} QRx = b \xrightarrow{Q^TQ=I} Q^TQRx = Q^Tb \Rightarrow Rx = Q^Tb$$
 (3.28)

Meanwhile, SVD factorization [66], as know as singular value decomposition, is a general eigenvalue decomposition of a matrix into any m * n matrix through an extension of the polar decomposition. It can be explained with an m * n real matrix \boldsymbol{A} as:

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T \tag{3.29}$$

Where:
U and V are m * m and n * n complex unitary matrix respectively.

 Σ is an m * n rectangular diagonal matrix with non-negative real numbers on the diagonal.

The diagonal elements of Σ are the singular values of A, and they are uniquely determined. Whereas U and V are not necessary to be unique.

In this section, there is a brief introduction and discussion in Subsection 3.2.1 and 3.2.2. The results are presented and discussed in Appendix D. Appendix E shows the MATLAB code.

3.2.1 QR Factorization

The QR factorization is used to search the zero-elements-columns of Matrix \mathbf{R} in Equation 3.31. The corresponded parameter can be eliminated during the identification of the dynamic model because they are unrecognizable or because they have a linear relationship with other parameters. The torque of each joint can be explained as follows:

$$\boldsymbol{\tau} = \boldsymbol{K}\boldsymbol{\phi} \tag{3.30}$$

where K is the information matrix and ϕ is a vector containing the set of the dynamic parameters of the links.

The matrix K can be factorized by QR decomposition in the following form:

$$\boldsymbol{K} = \boldsymbol{Q}\boldsymbol{R} = \begin{bmatrix} \boldsymbol{Q}_1 & \boldsymbol{Q}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{R}_1 \\ \begin{bmatrix} \boldsymbol{0} \end{bmatrix} \end{bmatrix} = \boldsymbol{Q}_1 \boldsymbol{R}_1$$
(3.31)

Where \mathbf{R}_1 is an upper triangular matrix:

$$\boldsymbol{R}_{1} = \begin{bmatrix} r_{1,1} & r_{1,2} & r_{1,3} & \cdots & r_{1,60} \\ 0 & r_{2,2} & r_{2,3} & \cdots & r_{2,60} \\ 0 & 0 & r_{3,3} & \cdots & r_{3,60} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & r_{60,60} \end{bmatrix}$$
(3.32)

The vector of main diagonal of \mathbf{R}_1 is:

$$\boldsymbol{r}_{1,diag} = \begin{bmatrix} r_{1,1} & r_{2,2} & r_{3,3} & \cdots & r_{60,60} \end{bmatrix}$$
(3.33)

The identifiable parameters of matrix $\boldsymbol{\Phi}$ are selected by the position of the no-zeros elements on the diagonal of the matrix \boldsymbol{R}_1 . It is worth noting that also the elements below a certain threshold are considered equal to zero. For more details see Appendix D.

3.2.2 SVD Decomposition

The SVD decomposition is applied to solve the rank deficiency problem of K. Its result can be used to verify the QR results. The main purpose of SVD decomposition is to obtain different values in matrix V with large condition number of the matrix S. The computing routine starts with Equation 3.34:

$$\boldsymbol{K} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T} = \boldsymbol{U}\begin{bmatrix}\boldsymbol{S}\\[\boldsymbol{0}\end{bmatrix}\end{bmatrix}\boldsymbol{V}^{T}$$
(3.34)

Where:

1, K is the information matrix, and has a dimension of m * n.

2, S is a diagonal matrix with non-negative real numbers, and its form is:

$$\boldsymbol{S} = \begin{bmatrix} r_{1,1} & 0 & 0 & \cdots & 0 \\ 0 & r_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & r_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & r_{n,n} \end{bmatrix}$$
(3.35)

or

$$\boldsymbol{s}_{diag} = \begin{bmatrix} r_{1,1} & r_{2,2} & r_{3,3} & \cdots & r_{n,n} \end{bmatrix}$$
(3.36)

with:

- a, The size of matrix S has been decided by the dimension of matrix K.
- b, All values of matrix \boldsymbol{S} are non-negative real number.
- c. The values on the diagonal are sorted by decreasing sequence, which is $r_{1,1} > r_{2,2} > r_{3,3} > \cdots > r_{n,n}$.
- d, s_{diag} is the vector of diagonal elements of S.

A larger condition number of matrix S indicates that there are some parameters needed to be cancelled. They can be found by the location of some particularly different values in the column of matrix V, which is the same as the minimum value in matrix s_{diag} . To avoid the zero rank, it should be pointed out that the friction elements should be introduced in the SVD decomposition. An example is provided in Appendix D.

3.2.3 Base Set Of Dynamic Parameters

The parameters defined from the Equation 3.14, 3.15 and 3.16 for each link of the 6-axis manipulator, are listed as follows:

$$m m P_x m P_y m P_z I_{xx} I_{xy} I_{xz} I_{yy} I_{yz} I_{zz} f_1 f_2 f_3 f_4 I_m$$

After the QR and SVD decomposition in Subsection 3.2.1 and 3.2.2, and Appendix D, the merged results are shown in Table D.3. Based on this table the selected dynamic parameters involved in the identification process are shown in the Table 3.1 below.

		The Dynamic Parameters														
		m	mP_x	mP_y	mP_z	I_{xx}	I_{xy}	I_{xz}	I_{yy}	I_{yz}	I_{zz}	f_1	f_2	f_3	f_4	I_m
	1										\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	2		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
nts	3		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark						
Joi	4		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark						
	5		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark						
	6		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark						

Table 3.1: The Base Set of Dynamic Parameters

Chapter 4

Experimental Design

4.1 The Test Trajectory Creation

The main purpose of the test trajectory is to obtain the data needed for the dynamic parameter identification and to observe the related influences in the long-duration operation. Since the friction elements are the only factors that may be affected by the temperature in these operations, the test trajectory has to be appropriately short to avoid a high increase in the temperature. To better understand the influences of friction, a warming trajectory was inserted between each motion. Therefore, the test trajectory is designed with three stages, which are: the excitation trajectory for the identification, the friction trajectory to understand the friction behaviour, and the warming trajectory to warm the robot. An example of one cycle of the full test trajectory is shown in Figure 4.1.

The excitation trajectory is specifically designed to excite the model parameters with the high range of velocity between zero and the maximum velocity. The second stage is specially designed for friction measurement and estimation. The last stage is the warming up procedure to prepare the robot for the next cycle. These three stages are explained in the following sections. The complete test trajectory has 24 cycles and lasts about 2 hours.

4.2 The Excitation Trajectory

There are two methods to create an appropriate excitation trajectory. The 1st one, illustrated below in Section 4.2.1, is a finite sum of N harmonic sine function. This method creates a high and sudden acceleration at the start of the trajectory, which results in the non-smooth movement. The 2nd one is a finite Fourier series formula [3,22,52,53,55] presented in Section 4.2.2. To obtain the optimized excitation trajectory, it is important to select an appropriate cost function. By the literature, there are several options, which are the condition number of the information matrix [22,28,52], the determinant of the information matrix [22,54,55], and a specific formula that mix the condition number and the determinant with different weights [1,9,60], as explained in Section 4.2.3. In this thesis, the excitation trajectory has been obtained and optimized by minimizing the condition number and the reciprocal of the determinant of the information matrix.

It is possible to use two different algorithms to optimize the excitation trajectory. They are the genetic algorithm "ga" [57] and the constrained nonlinear multivariable function "fmincon" [56]. Both are functions provided by the optimal toolbox in MATLAB.

Figure 4.1: The velocity of one cycle in full test trajectory

4.2.1 The 1st Excitation Trajectory

The first excitation trajectory introduced is created by the finite sum of N harmonic sine function :

$$q(t) = \sum_{k=1}^{N} a_k \sin(k\omega_f t) \tag{4.1}$$

Where:

t is the time sequence.

q(t) is the joint angle at time t.

 ω_f is the base frequency.

 \dot{N} is the number of elements introduced in the calculation.

The boundary applied in Equation 4.1 are:

$$q_{min} \leqslant q(t) \leqslant q_{max} \tag{4.2}$$

 $\dot{q}_{min} \leqslant \dot{q}(t) \leqslant \dot{q}_{max} \tag{4.3}$

$$\ddot{q}_{min} \leqslant \ddot{q}(t) \leqslant \ddot{q}_{max} \tag{4.4}$$

The upper limit of the Equation 4.1 is:

$$|q(t)| = \left|\sum_{k=1}^{N} a_k \sin(k\omega_f t)\right| \leq \sum_{k=1}^{N} |a_k \sin(k\omega_f t)| \leq \sum_{k=1}^{N} |a_k| \leq N a_{k, max}$$
(4.5)

Due to the limitation of Equation 4.2, it is possible to write:

$$a_{k, max} \leqslant \frac{q_{max}}{N} \tag{4.6}$$

Similar, for the angle velocity and acceleration in Equation 4.3 and 4.4 respectively:

$$\dot{q}(t)| = \left|\sum_{k=1}^{N} a_k k \omega_f \cos(k\omega_f t)\right| \leqslant \sum_{k=1}^{N} |a_k k \omega_f \cos(k\omega_f t)| \leqslant \sum_{k=1}^{N} |a_k k \omega_f| \leqslant N a_{k, max} k \omega_f$$

$$= N \frac{q_{max}}{N} k \omega_f = q_{max} k \omega_f \leqslant \dot{q}_{max}$$
(4.8)

$$\Rightarrow k\omega_f \leqslant \frac{\dot{q}_{max}}{q_{max}}$$
$$\ddot{q}(t) = -\sum_{k=1}^{N} a_k (k\omega_f)^2 \sin(k\omega_f t) \tag{4.9}$$

$$\begin{aligned} |\ddot{q}(t)| &= \left| -\sum_{k=1}^{N} a_k (k\omega_f)^2 \sin(k\omega_f t) \right| \leqslant \sum_{k=1}^{N} \left| a_k (k\omega_f)^2 \sin(k\omega_f t) \right| \leqslant \sum_{k=1}^{N} \left| a_k (k\omega_f)^2 \right| \\ &= N \frac{q_{max}}{N} (k\omega_f)^2 = q_{max} (k\omega_f)^2 \leqslant \ddot{q}_{max} \end{aligned} \tag{4.10}$$
$$\Rightarrow k\omega_f \leqslant \sqrt{\frac{\ddot{q}_{max}}{q_{max}}}$$

In conclusion, the limitation of a_k and $k\omega_f$ of the Equation 4.1 are:

$$a_k \leqslant \frac{q_{max}}{N} \tag{4.11}$$

$$k\omega_f \leqslant \min\left(\frac{\dot{q}_{max}}{q_{max}}, \frac{\ddot{q}_{max}}{q_{max}}\right)$$

$$(4.12)$$

Then, knowing the value of q(t), $\dot{q}(t)$ and $\ddot{q}(t)$, the value of a_k and $k\omega_f$ is obtained.

Using N = 3, Equation 4.1 can be rewritten as follows:

$$q(t) = a_1 \sin(\omega t) + a_2 \sin(2\omega t) + a_3 \sin(4\omega t)$$
(4.13)

$$\dot{q}(t) = a_1\omega\cos(\omega t) + 2a_2\omega\cos(2\omega t) + 4a_3\omega\cos(4\omega t)$$
(4.14)

$$\ddot{q}(t) = -\left[a_1\omega^2\cos(\omega t) + 4a_2\omega^2\cos(2\omega t) + 16a_3\omega^2\cos(4\omega t)\right]$$
(4.15)

Where $a_1 = a_2 = a_3 = a$, N = 3, and ω is the abbreviation of ω_f ;

$$q(t)| \leq |a_1 \sin(\omega t)| + |a_2 \sin(2\omega t)| + |a_3 \sin(4\omega t)| \leq a_1 + a_2 + a_3 = Na \Rightarrow |q(t)| \leq Na \quad (4.16)$$

With the same logic for $\dot{q}(t)$ and $\ddot{q}(t)$, it is possible to write:

$$|\dot{q}(t)| \leqslant Na4\omega \tag{4.17}$$

$$|\ddot{q}(t)| \leqslant Na(4\omega)^2 \tag{4.18}$$

Using k = 4, a small value of ω is obtained. It is clear that increasing the value of ω , the related joint velocity, acceleration and output torque will rise too during the movement. Hence, it is important to find the optimized ω with the given limitation of $q_{min} \leq q(t) \leq q_{max}$, $\dot{q}_{min} \leq \dot{q}(t) \leq \dot{q}_{max}$ and $\ddot{q}_{min} \leq \ddot{q}(t) \leq \ddot{q}_{max}$. The values of a_1 , a_2 and a_3 follow the same reasoning. In MATLAB, the functions "finincon" and "ga" can easily provide the optimized value of ω , and a_1 , a_2 , a_3 . Meanwhile, the bounds applied in the optimization are discussed and demonstrated in Equation 4.2, 4.3 and 4.4.

There was an acceleration problem at the start of the experiments using this excitation trajectory, which leads to inappropriate results of the identification. This is because the excitation trajectory has not been smooth enough. Therefore, the 2^{nd} excitation trajectory creation method is introduced in the Section 4.2.2.

4.2.2 The 2nd Excitation Trajectory

To solve the problem of the 1st excitation trajectory, the Equation 4.1 has been modified as follows:

$$\theta_i(t) = q_{i,0} + \sum_{l=1}^N \left[\frac{a_{l,i}}{w_f l} \sin(w_f lt) - \frac{b_{l,i}}{w_f l} \cos(w_f lt) \right]$$
(4.19)

and $\dot{\theta}_i(t)$, $\ddot{\theta}_i(t)$ are:

$$\dot{\theta}_{i}(t) = \sum_{l=1}^{N} \left[a_{l,i} \cos(w_{f} l t) + b_{l,i} \sin(w_{f} l t) \right]$$
(4.20)

$$\ddot{\theta}_i(t) = w_f \sum_{l=1}^N \left[-a_{l,i} \sin(w_f lt) + b_{l,i} \cos(w_f lt) \right]$$
(4.21)

Where:

 $\theta_i(t), \dot{\theta}_i(t), \ddot{\theta}_i(t)$ are the joint position, velocity and acceleration, respectively.

The subscript i is the joint index.

t is the time sequence.

 q_0 is the initial position of joint.

a and b is the elements of excitation trajectory, which has been obtained from the optimal algorithms.

N is the total number of elements a or b.

 w_f is the base frequency used to create the trial trajectory in optimal algorithm.

Based on [22, 28, 52, 55], N and w_f are equal to 5 and $2\pi * 0.1$ Hz respectively. The bounds of the MATLAB functions applied in optimization are the same as before, explained in Section 4.2.1. The optimization results are shown in Table 4.1.

The 4.1. The optimization results of Equation 4.20, 4.20 and 4									
Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6				
0.2428	-0.1795	0.0607	-0.0039	-0.0470	-1.2177				
0.3845	-0.0369	-0.2272	0.0725	0.0722	0.2676				
-0.6092	-0.1851	0.6706	0.0023	-0.0035	0.3225				
-0.1870	-0.2343	-0.8226	0.0022	0.0203	0.5088				
0.1689	0.6358	0.3185	-0.0731	-0.0419	0.1188				
-0.3678	0.4024	0.0005	0.2701	-0.3227	0.0210				
0.2845	-0.9426	-0.1154	0.4287	1.5358	0.0139				
0.0154	-0.6795	-0.2170	0.4011	-0.5949	-0.5578				
-0.7440	-0.2190	0.7542	-1.7803	-0.5858	0.8056				
0.5457	0.8795	-0.4271	0.9581	0.2758	-0.3196				
-0.4732	-0.2773	-0.0420	0.5805	0.2477	-0.0327				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Joint 1Joint 2Joint 3Joint 4Joint 5 0.2428 -0.1795 0.0607 -0.0039 -0.0470 0.3845 -0.0369 -0.2272 0.0725 0.0722 -0.6092 -0.1851 0.6706 0.0023 -0.0035 -0.1870 -0.2343 -0.8226 0.0022 0.0203 0.1689 0.6358 0.3185 -0.0731 -0.0419 -0.3678 0.4024 0.0005 0.2701 -0.3227 0.2845 -0.9426 -0.1154 0.4287 1.5358 0.0154 -0.6795 -0.2170 0.4011 -0.5949 -0.7440 -0.2190 0.7542 -1.7803 -0.5858 0.5457 0.8795 -0.4271 0.9581 0.2758 -0.4732 -0.2773 -0.0420 0.5805 0.2477				

Table 4.1: The optimization results of Equation 4.20, 4.20 and 4.21

4.2.3 The Optimization Of Excitation Trajectory

The target of optimization is to find the best trajectory that excites the robot. The optimization has been performed using the functions "fmincon" and "ga" provided by MATLAB. As mentioned at the beginning of Section 4.1, the optimization has been applied using the condition number and the determinant of the information matrix. Subsequently, the results are compared together to choose the best one, which is the result that provides the highest velocities in each joint without exceeding the limitations. In the following discussion, one excitation trajectory, optimized with the genetic algorithm minimizing the condition number of the information matrix, is implemented. A low value of the condition number indicates that the maximum velocity and acceleration are reached without exceeding the joint position limitations. Here, the robot workspace is fully covered during the movement. Additionally, it also provides large torque output values. As a result, the best result of dynamic parameter estimation is achieved. The applied excitation trajectory is shown in Figure 4.2 with the coefficient value shown in Table 4.1.

Figure 4.2: The robot movement with the related position, velocity and acceleration of applied excitation trajectory

However, in the experiments, there are some errors between the measured torque and the estimated torque, which are marked with numbers in Figure 4.3. After the analysis and discussions, it has been found that these errors occurred in the path when the joint velocity exceeds the maximum velocity of the test excitation trajectory. Due to this issue, the estimation results during these higher velocity are significantly abnormal compared with the measurement data. Additionally, another possible reason for this situation could depend on the robot specifications. The maximum velocity of some joints in the optimal trajectories based on these robot specifications can not reach the limitations. In this case, it is possible that the optimization cannot achieve the best excitation trajectory during the calculations. In light of this an additional part for the trajectory has been added in Section 4.3.

Figure 4.3: The comparison between the measured torque and the estimated torque with the 2^{nd} excitation trajectory, the data is from Joint 5.

4.3 Additional Excitation Trajectory

Due to the high errors illustrated in Section 4.2.3 and in Figure 4.3, an additional excitation trajectory is introduced. The equations are the following [31]:

$$\theta = \theta_0 + \Delta \theta \left[\frac{t}{T} - \frac{1}{2\pi} \sin\left(\frac{2\pi t}{T}\right) \right]$$
(4.22)

$$\dot{\theta} = \frac{\Delta\theta}{T} \left[1 - \cos\left(\frac{2\pi t}{T}\right) \right] \tag{4.23}$$

$$\ddot{\theta} = \frac{2\pi\Delta\theta}{T^2} \sin\left(\frac{2\pi t}{T}\right) \tag{4.24}$$

Where:

 θ , $\dot{\theta}$ and $\ddot{\theta}$ are the position, velocity and acceleration of joint of the additional excitation trajectory.

 θ_0 is the joint initial position, here is 0.

t, T are the time series in total time and the time duration, respectively.

 $\Delta \theta$ is the maximum position range of joint in movement.

Figure 4.4: The position, velocity and acceleration of the additional trajectory

The robot starts and ends in the same position with zero velocity for all joints, moreover the trajectory is executed in both positive and negative directions. Furthermore, this additional trajectory is attached after the 2^{nd} excitation trajectory. The merged excitation trajectory is shown in Figure 4.5. It should be noted that some idle movements have been added for some joints due to the different duration of the created trajectories.

4.4 The Friction Measure Trajectory

The friction measurements have been used to understand the behaviour of friction in the long-term movement. As mentioned in Section 1.2.2, with the same mechanical structure, the same contents, the same trajectory, and environment, the friction changes depend only on the temperature. The best method to obtain the temperature is to use internal sensors. However, the robot usually does not have temperature sensors inside its structure. Therefore, finding a way to measure the statement inside the robot body becomes a crucial task. Since the motor output torque can be easily obtained and monitored from the motor current with some calculations, this problem can be solved by collecting the motor torque.

The torque depends on the velocity and temperature. Therefore, referring to the experiments of [32, 39, 48], a trajectory with 6 constant velocities has been designed, which contains the

Figure 4.5: The merged excitation trajectory

velocities at 5%, 20%, 40%, 60%, 80% and 100% of the maximum speed of each joint. The motion is created individually for each joint, which means that the idle joints are fixed at a designed position while the test joint is moving. This design is clearly shown in Figure 4.1 at the "Friction Trajectory" section, and Figure 4.6. In Figure 4.6, the subplots show that the joint rotated repeatedly from one position to another. Also, a zoomed plot is shown in Figure 4.7 as an example. Besides, the movements for each velocity segment are specially calculated and configured to maintain the same duration for each segment. This configuration will provide the same quantity of data for each joint in the dynamic calculation, which will be discussed in Chapter 5.

To avoid the gravity contribution in torque, a special configuration is introduced during the friction measurement stage. This idea comes from the study of Simoni [47] and Pagani [39]. The main principle of this configuration is to maintain the joint test with horizontal motion, which leads to the elimination of the gravity effect. This configuration can be applied to Joint 1 (Figure 4.6(a)), 4 (Figure 4.6(d)), 5 (Figure 4.6(e)), which are clearly that all joints are moved horizontally. It should be pointed that the motion of Joint 6 (Figure 4.6(f)) is based on the horizontal movement of Joint 5, which the gravity effect are calculated. Due to the robot structure, the data collected from Joint 2 (Figure 4.6(b)) and 3 (Figure 4.6(c)) have been influenced by the gravity effect. The method used to remove the gravity contribution has been discussed in Section 5.2.2. An example of results for friction measurement is illustrated in Figure 4.8.

(a) Joint 1

(c) Joint 3

(e) Joint 5

(f) Joint 6

Figure 4.6: The joint movement in friction measurement. The thick yellow arrows show the rotation directions, and the thin brown arrows show the position changes.

Figure 4.7: The velocity of one joint in the friction measure stage

Figure 4.8: The velocity and torque versus time of obtained experimental data in the friction measure stage with the cold and warm conditions, from Joint 1 to 6

4.5 The Warming Stage Trajectory

The warming section of the trajectory was designed specifically to increase the internal temperature of the robot joints. As the discussed in Section 1.2.2 and 4.4, the temperature is one of the major factor that causes changing in friction. During the warming stage, all the joints move at their maximum speed simultaneously, as the trajectory shown in Figure 4.1 in the "Warming Trajectory" section, and the repeated movements between two positions shown in Figure 4.9. In experiment, all joints are configured about the 80% of angular limitations with 80% velocity. To capture the details of the friction changing and avoid that the temperature increases excessively, the duration of this stage has been chosen carefully. Base on the study of Simoni [47] and Pagani [39], and the results coming from the tests in the laboratory, the optimal duration for this warming stage is about 3 minutes. This leads to a 5 minutes duration in total considering all the trajectories of one cycle. To gather sufficient data for the feature analysis, the cycle has been repeated 24 times obtaining an experiment lasting 2 hours. To ensure the same condition at the start of each experiment, it is important to let the robot cool down after each experiment.

Figure 4.9: The joint movement in warming stage

4.6 The Software And Environment Of The Experiment

The robot model ER3A from EFORT has been used in the experiments, which is introduced in Chapter 2. The controller of the robot is an RP1 from ROBOX [44], which is shown in Figure 4.11. The experimental trajectory has been created using the proprietary software of Robox Development Environment (RDE) (Figure 4.10) [43]. This software also provides the built-in function for data collection (Figure 4.12).

Figure 4.10: The Robox Development Environment (RDE)

The experiments have been repeated on two robots of the very same model, called "Left" and "Right" with the index number of 1 and 2 respectively. For each robot, 4 experiments have been executed, and they have been numbered from 1 to 4 following the sequence of experiments. The data have been collected under an environment temperature of roughly 20°C, which results in the same execution condition at the start of the experiment. It is worth noting that this temperature depends only on the robot's location. In other words, in real applications, the environment temperature should be various. Moreover, the experiment is executed once only in a day to guarantee enough time for cooling down the robot. Additionally, the data of position, velocity and torque of each joint are collected in experiment. The signals to separate the different stages are also recorded. All these data are collected by built-in oscillator (Figure 4.12) and then export to the CSV files for the future calculation. The connection diagram is shown in Figure 4.13. The communications between computer and controller is made just using and internet cable, while the EtherCAT bus is used to connect the controller and the robot.

Figure 4.11: The robot controller of RP1

Figure 4.12: The oscillator in RDE

Figure 4.13: The communication between PC and robot

Chapter 5

Data Process And Analysis

5.1 The Dynamic Parameters

5.1.1 The Identification Process

As discussed in Section 3.1 and illustrated in Appendix C, the identification is carried out using the collected data, the creation of an information matrix, and then the calculation from the Least Square algorithm [2, 15, 20, 40, 41]. Figures 5.1 and 5.2 (or Figure K.1 in Appendix K and L.1 in Appendix L) show examples of the identification results between the collected torque and estimated torque. Base on these figures, the results clearly show that the errors between the estimated torque and the obtained torque are acceptable except for the very low-velocity. The errors on the low speed are clearly highlighted in Stage 2 of Figure 5.2 and more details are shown in Figure 5.3. These errors are due to the insufficient precision of the friction model at the low-velocity domain, which has been discussed in Section 5.2. The plots of the identification result of all dynamic parameters are shown in Appendix G.

Figure 5.1: The measured torque and estimated torque of the 1^{st} stage from the Cycle 1 of the Test 1 of the Robot 2

Figure 5.2: The measured torque and estimated torque from the Cycle 1 of the Test 1 of the Robot 2

Figure 5.3: The estimation errors at the low velocity duration of Joint 6 in Figure 5.2

5.1.2 The Verification

To understand the accuracy of the identification results, the verification is introduced and indicated by the root-mean-square deviation, or RMSD. The RMSD equation is shown in Equation 5.1. This value represents the measurement of the errors between the estimated values and the collected values. The RMSD values can be easily obtained by the function of "rms" in MATLAB.

$$\tau_{RMSD} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\tau_{n, \ estimated} - \tau_{n, \ collected})^2}$$
(5.1)

Figures 5.1 and 5.2 (or Figure K.1 in Appendix K and L.1 in Appendix L) shown the collected torque in blue, and the corresponding estimated torque in red. The green curves are the joint velocity. It should be emphasized that the velocity curves are scaled to make them more clear, as mentioned in Section 5.1.1 and also explained in Section 5.1.3. Additionally, the verification based on the identification results on other tests are implemented to demonstrate the accuracy of the identification in general robot operation cases. To make a clear description, the verification based on the identification trajectory are named "self-verification", while the verification based

on the identification on other tests are named "cross-verification". The data analysis has been carried out in Section 5.1.4.

The results of self-verification are shown in Table F.1 in Appendix F. It should be pointed that the values in those tables are the relative value with the unit of 100%, and the values highlighted in yellow are grated than 10%, which means the error presented with this value is considered bigger. Figures 5.4 and 5.5 represent the plots of the self-verification of each joint for all tests on both robots. Similarly, the tables of cross-verification are shown in Table F.3, F.4, F.5 and F.6 in the same appendix. Figures 5.6 and 5.7 represent the plot of the cross-verification with the 1st identification results on both robots. All tables and plots of the self-verification results of the excitation trajectory and the merged trajectory are plotted in Appendix K and L. It is worth noting that the figures shown in these appendixes are from the data of the 1st test of Robot 2.

Figure 5.4: The self verification of each joint of all tests of Robot 1

5.1.3 The Low Velocity Results Filter

As mentioned in Section 5.1.1, 5.1.2, and in Figure 5.3, large errors appear when the joint velocity is slow or equal to zero because of the low precision of the friction model during the low velocity motion (Figure 5.8 and 5.9). Since the joint at low speed can be assumed firm, the torque output can be considered constant in these situations. Therefore, the errors have been eliminated. The RMSD values without the low-velocity result have been calculated and then they are shown in Table F.2 in Appendix F.

It is worth noting that Figure 5.9 also proved that the friction is effected by the temperature, and it can be presented by the time. This aspect has been discussed in Section 5.2.3.

5.1.4 The Results Of The Verification

5.1.4.1 The Self Verification

Table F.2 shows the relative error between estimated and measured torque. The values greater than 10% and less than 15% are highlighted in yellow. The remaining values are less than 10%. It should be noted that these values are calculated without the data related to

Figure 5.5: The self verification of each joint of all tests of Robot 2

Figure 5.6: The cross verification with the $1^{\rm st}$ identification results of Robot 1

Figure 5.7: The cross verification with the 1^{st} identification results of Robot 2

Figure 5.8: The ideal friction model

Figure 5.9: The friction observed experimentally from Joint 4 in a test

low velocities, where the robot has been considered stationary (Section 5.1.3). The results are plotted in the Figures 5.4 and 5.5 to better understand the value development with cycles. All plots have the same scale on the y-axis.

Based on the results shown in Figures 5.4 and 5.5, it is possible to see that the verification results of the Joint 3 and 4 on Robot 1, and Joint 4 on Robot 2 are higher than 10%, which have the range of 0.1 and 0.12, 0.12 and 0.14, 0.1 and 0.12 respectively. According to Table F.2, the maximum differences between the start cycle and end cycle are 7.3%, 6.2% and 13.8% respectively. The statistic data of the joints mentioned before and also Joint 5 of Robot 1 are shown in Table 5.1. The standard deviation values in this table demonstrate that the fluctuations of Joint 5 of Robot 1 are much bigger than other joints, which are confirmed in Figure 5.4. This situation illustrates that the Joint 5 of Robot 1 has some problems, which turns out with larger noise in the experiments. This requires future examination to find the causes. The plots of other joints show the acceptable identification results because that the self-verification values are less than 10%. The statistical data of all joints and robots are analysed with other tables in Appendix F.

		ŝ	The Rang	ge in Plots					The Values	in Tables			
		est	Minmum	Movmum	Mini	mum	Max	mum	difference bwt	een MAX/MIN	difference bwteen	Standard	Deviation
		Ē	wiininun	Waxmum	Test	All Tests	Test	All Tests	Test	All Tests	Start/End Cycle	Test	All Tests
	Uni	t	100%	100%	100%	100%	100%	100%	-	-	-	100%	100%
		1			0.1027		0.1102		0.0679		0.0728	0.002	
	ŧ	2	0.1	0.12	0.1026	0 1001	0.1081	0.1102	0.0512	0.0913	0.0540	0.001308	0.0021
	oïc	3	0.1	0.12	0.1008	0.1001	0.1062		0.0513		0.0540	0.001188	
		4			0.1001				0.0617		0.0599	0.001736	
	+	1	1	0.14	0.1232	0.1214 0.1214 0.1290 0.1322	0.1277	0.1322	0.0352	0.0810	0.0505	0.001609	0.0018
Ч	Ę	2	0.12		0.1248		0.1287		0.0308		0.0001	0.00128	
8	0.	3	3 0.12		0.1214		0.1290		0.0587		0.0623	0.001599	
2		4			0.1238			0.0629		0.0145	0.001997		
		1		07 0.13	0.0787	0.1 0.0748 0.1	0.1131	0.1214	0.3045	0.4200	0.0841	0.009751	0.0105
	E E	2	0.07		0.0748		0.0926		0.1924		0.1281	0.00512	
	0.				0.0842		0.1020	0.1314	0.1742	0.4303	0.1841	0.006487	
		4			0.0912		0.1314		0.3057		0.1539	0.00992	
2	-+	1			0.1029		0.1172		0.1218		0.1384	0.002978	
ы	Ę	2	0.1	0.12	0.1057	0.1020	0.1183	0 1 1 0 /	0.1065	0.1307	0.0958	0.002949	0.0030
9	oľ.	3	0.1	0.12	0.1055	0.1029	0.1184	0.1104	0.1082		0.1213	0.00291	
1 m		4			0 1044		0 1 1 7 4		0 1103		0 1068	0.002739	

Table 5.1: Some statistical values of Joint 3, 4 and 5 of Robot 1, and Joint 4 of Robot 2

5.1.4.2 The Cross Verification

Additional verifications are implemented on the identification, using other tests coming from the same robot, to verify the accuracy of the results. The calculation is very similar to self-verification. The results of cross-verification on the 1st test are shown in Figure 5.6 and 5.7 for the Robot 1 and 2 respectively. The ranges shown in these figures are summarized in Table 5.2, and the average values of these figures, without first 5 cycles, are listed in Table 5.3. It should be pointed that the data of the self-verification from Figure 5.4 and 5.5 are also concluded in these tables. The complete results with tables and figures are listed in Appendix F.

As shown in these figures and tables, it is easy to see that the identification results for each joint are similar between the self-verification and cross-verification. Looking at the data in Table 5.2, it is possible to see that the range differences in figures are small for Robot 1, and are zero for Robot 2. This leads to a conclusion that the self-verification results are sufficient to describe the accuracy of the identification due to the similar results between the self-verification and cross-verification. A comparable and powerful evidence can be obtained from Table 5.3, which contains the data considered from each experiment without the first 5 cycles. This is because that there is a drastic change in the first 5 cycles of each sub-plot on these figures, which demonstrates the low accuracy of the identification results during the first few cycles. This phenomenon depends on the effects of friction, but it will be discussed in detail in the next sections. Moreover, the differences between Robot 1 and 2 in Table 5.2 and 5.3 show that Robot 2 has higher accuracy of the estimation compared to Robot 1. There is a strong oscillation in the sub-plot of Joint 5 of Robot 1 in Figure 5.6, and a similar situation is also shown in Figure 5.4. Additionally, this problem can be observed in the friction behaviours analysis in Figure N.1 and N.2. The causes of this situation require future studies as mentioned in Section 5.1.4.2.

		U I	J	0	, ,	
		Robot 1			Robot 2	
	Figure 5.4	Figure 5.6	Difference	Figure 5.5	Figure 5.7	Difference
Joint 1	$0.05 \sim 0.06$	0.05~0.08	0~0.02	0.05	0.05	0
Joint 2	$0.07 {\sim} 0.08$	0.08	0~0.01	0.06	0.06	0
Joint 3	0.1~0.11	0.12	$0.01{\sim}0.02$	0.09	0.09	0
Joint 4	$0.12 \sim 0.13$	0.14	$0.01{\sim}0.02$	$0.1 \sim 0.12$	$0.1 \sim 0.12$	0
Joint 5	$0.07 \sim 0.11$	0.08~0.13	$0.01{\sim}0.02$	0.05	0.05	0
Joint 6	$0.05 \sim 0.07$	0.05~0.08	0~0.01	0.08	0.08	0

Table 5.2: The range of plots of joints in Figure 5.4, 5.6, 5.5 and 5.7

Table 5.3: The average value of plots of joints in Figure 5.4, 5.6, 5.5 and 5.7 without the first 5 cycles

		Robot 1			Robot 2	
	Figure 5.4	Figure 5.6	Difference	Figure 5.5	Figure 5.7	Difference
Joint 1	0.05	0.06	0.01	0.05	0.05	0
Joint 2	0.075	0.08	0.005	0.06	0.06	0
Joint 3	0.105	0.1	0.005	0.085	0.08	0.005
Joint 4	0.13	0.13	0	0.115	0.115	0
Joint 5	/	/	/	0.05	0.05	0
Joint 6	0.06	0.07	0.01	0.08	0.08	0

5.1.5 The Results Of Dynamic Parameters

5.1.5.1 The Plots of Dynamic Parameters

To better understand the identification results, each parameter has been plotted. The examples are shown in Figures 5.10 and 5.11. It is possible to see that the identified dynamic parameters are different in each cycle. In these figures, there is a dramatic increase during the first 5 cycles, and then the curves gradually stabilize with fluctuations. Subplot B is the representation of subplot A with a widening on the y-axis to better evaluate the values. After the scaling of the y-axis, it is easy to understand that the fluctuation is small and the steady-state value is reached after approximately 15 cycles. Besides, the steady-state of the dynamic parameters can be observed by the standard deviation values shown in Table 5.4 with the picked parameters.

In Table 5.4, the values of the column "Last 19 Cycles" are the standard deviation of the last 19 cycles. The values in the column "All Cycles" are higher than those in the "Last 19 Cycles". This means that the parameters in last cycles have less fluctuation. This can be observed in Figure 5.10 and 5.11. The curve amplitude is reduced and it tends to be stable after 10 cycles in Figure 5.10(b), and 5 cycles in Figure 5.11(b).

However, despite the negative values show in the column of "Difference" in Table 5.4, the plots of f_1 (Figure 5.12) show large oscillations without the steady-state values. A possible reason for this could be the different attributes between mP_x , I_{xx} , and f_1 . Theoretically, the mP_x and I_{xx} have physical meaning, which are constants. But f_1 is one of the friction coefficients, which change during in the movement, due to internal temperature, lubrication, pressure and stress between parts, undetectable damages, and so on.

The figures of all the identified dynamic parameters and the tables of the related statistical data are listed in Appendix G and H.

 Table 5.4: The standard deviation of the identification results of selected parameters

 All Cycles
 Last 19 Cycles
 Difference *

				All Cycles	Last 19 Cycles	Difference
			T1	0.0524	0.0299	-0.0225
		Robot 1	T2	0.0618	0.0289	-0.0329
			T3	0.0537	0.0268	-0.0269
9	mP of Joint 2		T4	0.0560	0.0249	-0.0311
	mu_x of John 2		T1	0.0367	0.0113	-0.0255
		Pohot 9	T2	0.0345	0.0092	-0.0253
		Robot 2	T3	0.0365	0.0113	-0.0252
			T4	0.0374	0.0086	-0.0288
			T1	0.0694	0.0377	-0.0317
		Robot 1	T2	0.0686	0.0507	-0.0179
			T3	0.0813	0.0502	-0.0311
4	I of Joint 2		T4	0.0691	0.0343	-0.0348
4	I_{xx} of John 2	Robot 2	T1	0.0459	0.0214	-0.0245
			T2	0.0485	0.0166	-0.0319
			T3	0.0369	0.0118	-0.0251
			T4	0.0410	0.0161	-0.0249
			T1	0.2516	0.0954	-0.1562
		Pohot 1	T2	0.2064	0.0885	-0.1179
		100001	T3	0.1317	0.1070	-0.0248
37	f1 of Joint 1		T4	0.2168	0.0920	-0.1248
1 37			T1	0.1615	0.1241	-0.0374
		Robot 2	T2	0.1603	0.0868	-0.0735
		Robot 2	T3	0.1170	0.0753	-0.0417
			T4	0.1367	0.1327	-0.0040

* The equation is "Differences = Last 19 Cycles - All Cycles"

Figure 5.10: mP_x of Joint 2

Figure 5.11: $I_{xx} \ {\rm of} \ {\rm Joint} \ 2$

Figure 5.12: f_1 of Joint 1

5.1.5.2 The Multiple Selected Cycles

The identifications with few selected cycles have been carried out to make a clear demonstration of dynamic parameter behaviour during the robot operations. There are three groups of selected cycles, which are Cycle 10, 15, and 20 for Group 1, Cycle 3, 9, 16, and 22 for Group 2, and Cycle 3, 5, and 10 for Group 3. The results are shown in Table 5.5. The identification results of these groups have been named as "*Unit*" results.

Table 5.5 contains the cycle selection of the identification ordered from Unit 1 to 3. The cycles selected for Unit 1 are located at the later period of the experiment, and its identification result is closed to the results obtained at the end of the cycles. Similarly, the identification result of Unit 3 is closed to the results of the initial cycles. Due to the drastic change of curves in the first few cycles, this result has a larger error than other two groups. For Unit 2, due to the evenly selected cycles, the result is between the values of Unit 1 and 3. Moreover, the result of Unit 2 also can be regarded as the average value of identification result of experiments. These conclusions are also shown in Figures 5.13 and 5.14 highlighted by straight lines. Again, subplot B in these figures is the representation of subplot A with a widening on the y-axis to better evaluate the values. These lines show the tendency of curve development in a simple way, which is from low value at the beginning, to stable value at the ending. They also demonstrate that the magnitude of the curve amplitude changes from the beginning to the ending, which meet the size of gaps between lines. Moreover, this situation also illustrates the poor accuracy in the identification.

All the plots of the identification results are shown in Appendix I and J.

Table 5.5: The cycles selected in groups in unit identification

Figure 5.13: mP_x of Joint 2 of the Robot LEFT, the identified results and the related results of selected cycles

5.1.6 The Errors Of Start And End Of Cycles

As shown in Appendix L, it is clear that the verification results changed in the warming up stage between start and end in 1^{st} cycle. This is demonstrated in Figure 5.15 as an example from the 1^{st} cycle of one test. It is easy to note that the errors between the estimated torque

Figure 5.14: mP_x of Joint 2 of the Robot RIGHT, the identified results and the related results of selected cycles

and measured torque at the start of the warming stage are smaller than the ones at the end. This can be explained because friction changes dramatically in the first few cycles of the tests. This aspect has been discussed in Section of 5.2.

Figure 5.15: The identification errors at the start and the end of the warming stage in the 1^{st} cycle

5.1.7 Summary

In this section, the identification results of dynamic parameters are discussed and demonstrated. Generally, there is a drastic change at the first few cycles for the all identification results, except for figures made from the friction coefficients. This situation leads to the important conclusion that the identification result relies on the mechanism conditions, which accuracy changes during the operation. This could be caused by temperatures, lubrication, and so on. The similar conclusion can be found and observed from the figures in this chapter and in the related appendixes.

5.2 The Friction

This section analyses the friction behaviours in long-time duration movement. At first, the measuring method is discussed. Subsequently, the procedure applied to compensate the gravity contribution is explained. In the end, the curve fitting is implemented for the analysis. The related results of this section are listed and shown in the Appendix M, N and O.

5.2.1 Friction Measure

The friction measure stage is introduced in Section 4.4 with the trajectory example in Figure 4.7. The measurement is carried out on each joint separately while other joints maintain their designed position. The measurement trajectory is created with the selected velocity at 5%, 20%, 40%, 60%, 80%, 100% of the maximum speed. To avoid the effect of gravity and the affection from the movement of the other links, the joints' positions have been carefully designed. For example, Joints 1, 4, 5, and 6 are configured as a horizontal movement in the friction measurement stage. Due to the robot structure and installation, it is not possible to design the same movement for Joints 2 and 3, which leads to the feature process of removing the gravity effect as explained in Section 5.2.2.

Figure 5.16 shows an example of the friction measure results at the Velocity 60% of Test 1 from Robot 2. These plots clearly show that the torque output decreases from the start to the end of the cycles. This situation indicates the torque output of motor is reduced gradually in the friction trajectories of an experiment. For each joint, there are some constant sections in the torque output, corresponding to the constant velocity, except for Joints 2 and 3. To find the friction torque on Joint 2 and 3, a gravity effect compensation was needed and it was applied in the Section 5.2.2.

Figure 5.16: The motor torque output measured in the friction stage, separated by the joints with the velocity of 60%

To visualize the friction changing, the mean value of the torque output duration has been calculated and then it has been plotted as shown in Figure 5.17. Base on this figure, it is clear that the friction torque decrease during the cycles. And there is a dramatic decrease at the first $5 \sim 10$ cycles and then the curve becomes stable and maintains its value until the end of the test, which is similar to the situation mentioned in Section 5.1.7.

5.2.2 Reduce The Gravity Effect

As mentioned before, because of the robot structure (Figure 5.18), the torque output of Joint 2 and 3 contains the gravity contribution. An identification method using the Least Squares algorithm has been used to remove the gravity effect. The Equation 5.2 [39, 48] is used in this

Figure 5.17: The mean value of each cycle of motor torque output measured in the friction stage, separated by the joints with the velocity of 60%, base the data shown in Figure 5.16

stage.

$$\tau_{no-gravity} = \tau_{motor} - mP_x sin(\theta) - mP_y cos(\theta)$$
(5.2)

Where θ is the position of joint and the mP_x and mP_y are the parameters to identify. To increase the accuracy, the friction coefficients are introduced in this identification. This leads to the Equation 5.3 for the identification.

$$\tau_{no-gravity} = I_{motor}\ddot{\theta} - mP_x sin(\theta) - mP_y cos(\theta) + f_1 sign(\dot{\theta}) + f_2 \dot{\theta} + f_3 \dot{\theta}^2 sign(\dot{\theta}) + f_4 \dot{\theta}^3$$

$$= \begin{bmatrix} \ddot{\theta} & -sin(\theta) & -cos(\theta) & sign(\dot{\theta}) & \dot{\theta} & \dot{\theta}^2 sign(\dot{\theta}) & \dot{\theta}^3 \end{bmatrix} \begin{bmatrix} I_{motor} \\ mP_x \\ mP_y \\ f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$
(5.3)

Where θ , $\dot{\theta}$, and $\ddot{\theta}$ are the position, velocity, and acceleration of joints respectively. f_1 to f_4 are the friction coefficients that are not used in computing. After the identification, the friction measurement without gravity effect of Joint 2 and 3 can be obtained by the Equation 5.3. The results of Joint 2 and 3 after the removing gravity effect are shown in Figure 5.19, where the steady torque output is clearly shown.

All the plots of the friction measurement are listed in Appendix M. It should be noted that the gravity effect of Joint 2 and 3 is removed in these figures.

5.2.3 The Friction And Velocities

To better understand the friction behaviours with the different velocities, see Figures 5.9 and 5.20. These plots illustrate the friction changes based the velocities in different cycles. Friction decreases during the test from the cold to the hot condition, hence from the 1st cycle to the end. Because of these plots are generated from the same trajectory on one robot, it is possible to

Figure 5.18: The gravity effect in joints

Figure 5.19: The plots of friction measurement of Joint 2 and 3 after the removed gravity effect, base the Figure 5.16

consider that each curve corresponds to a specific temperature. Therefore, friction changes with the temperature. Again, the gaps between the cycles in these plots illustrates the magnitude of the change, which has been already mentioned. Furthermore, with the same reasons as before, the temperature can be considered related to the time because the temperature rises during the operation. This results in a time-based temperature model. Additionally, due to the precision of measurement and robot system limitation, the details of low velocities are loss. This problem can be solved by applying embedded sensors and high precision equipment, which will be implemented in the future studies. All the plots of the friction versus velocities are listed in Appendix O.

5.2.4 The Curve Fitting Of Friction

To describe the results of the friction measurement, the curve fitting is introduced with a double exponential equation which is shown in the following Equation:

$$\tau = a + be^{-\frac{t}{t_1}} + ce^{-\frac{t}{t_2}} \tag{5.4}$$

Where the t_1 and t_2 are the time constants in minutes, and a, b, and c are specific coefficients. This will help to establish the time-based friction model in the future and therefore, a dynamic model of robot developed by time could be realized.

Figure 5.20: The friction versus velocities in diffident cycles of all joints

With the help of Curve Fitting Toolbox in MATLAB (Figure 5.21), the fitted results of Figure 5.17 are shown in Figure 5.22. The related coefficient values and the time constants are shown in Table 5.6. The same curve fitting operations are carried out for all the joints in all tests, and the results are shown in Appendix N.

	no variable of the carte nothing repaired related with the								
	a	b	t_1 *	с	t_2^{*}				
J1	16.60894	4.87445	40.94343	8.56154	2.88916				
J2	20.25689	6.46293	56.55044	11.05555	7.43387				
J3	10.01373	6.35484	23.01969	8.42142	0.53915				
J4	19.10495	7.17766	25.88962	7.98374	3.76450				
J5	5.89756	3.85085	20.28498	19.59727	0.46770				
J6	4.14913	1.92346	12.83307	33.80185	0.31042				
*									

Table 5.6: The values of the curve fitting results related with the Figure 5.22

^{*} The unit is minutes.

An additional curve fitting operation is carried out with all 4 tests of one robot to obtain a better result. The results are labelled with "mix" data. An example is shown in Figure 5.23. In this figure, subplot A shows the mean values of friction cycle on each test, subplot B demonstrates the curve fitting results of subplot A. Subplot C indicates the curve fitting result of mixed data with the green curve, and the "*" are points from the mixed data. Subplot D shows the curve fitting results from both subplot B and C. From these plots, it is clear that the curve fitting results of Test 2, 3, and 4 are similar to the results of the mixed data. There is a small difference between the curves fitting result of Test 1 and the others at the first 20 minutes, which includes approximately 5 cycles. These curves indicate the friction behaviours can be described by a time-based model. This finding was the reason for using Equation 5.4.

All the plots and coefficients of this section are shown in Appendix N.

Figure 5.21: The Curve Fitting Toolbox in MATLAB

Figure 5.22: The curve fitting results of Figure 5.17

(c) The mixed points of tests and the curve (d) The results of the Figure 5.23(c) and fitting results 5.23(b)

Figure 5.23: The curve fitting results of Joint 5 of Robot 2 $\,$

Chapter 6

Conclusion And Future Work

6.1 Conclusion

The purpose of this thesis is to create the dynamic model of a specific industrial manipulator and to analyse its behaviours during robot operations. Moreover, the results of the dynamic estimation on two robots are compared. The identification and verification of the found parameters have been illustrated after the linearization of the dynamic model. To find the optimal trajectory that excites the robot, three excitation trajectories have been created and then they are combined to improve the results. The experiments have been designed to identify the dynamic parameters. Meanwhile, the behaviours of these dynamic parameters have been observed exploiting the motor torque output. It was observed that one of the most influencing factors on friction estimation is the lubrication in the gearbox. The results of the friction analysis are modelled as a time-based model. The results of the data analysis have been compared between two robots of the very same model.

The main contribution of this thesis is the experimental process specially designed to identify the dynamic and friction parameters of the robot model, as discussed in Chapter 4 and 5. The process is used to detect the robot's dynamic behaviours in any operation conditions, which is generally from the cold condition (environment temperature) to the hot condition because the robot warms up after the movements. The results of the analysis also provide that the dynamic parameter are approximately equivalent in the same robot for multiple tests.

In Chapter 3, the dynamic model of robot is illustrated. The model is formulated from the Newton Euler equations. To increase the accuracy of identification results, a new friction model has been designed. After that, the base parameters set are selected using QR and SVD analysis to reduce the complexity in the calculation.

The experimental design is explained in Chapter 4. The trajectories have been designed with three different purposes, which are the excitation trajectory to identify the dynamic parameter, the friction trajectory to observe the motor torque changing in the long-term operations, and the warming-up trajectory to arise the temperature inside the gearboxes. Three excitation trajectory have been created. The 1st was made to find the optimal trajectory that contains the larger acceleration at the start; the 2nd excitation trajectory used in the experiments was a merged motion coming from the 2nd excitation trajectory with an additional section. To observe the friction changing behaviours, the friction trajectory is designed to obtain the motor output torque with the different velocities. The warming-up stage was executed to raise the temperature inside the robot. It is worth noting that the trajectory created has been executed repeatedly to obtain and capture the torque changes.

The results have been analysed in Chapter 5. The dynamic parameters have been calculated firstly from the identification and then the results have been verified. The least-square method has been used in the identification process. The RMSD value is introduced to verify and evaluate the results. It should point that the estimated torque at the low velocities has been filtered because the friction model was imprecise at the very low speed. Another important issue was that the error between the estimated and measured torque at the start of the cycle was larger than the one calculated at the end of the cycle. This is because friction changed during the movement, hence the friction behaviour has been observed. Based on the idea provided by Simoni [47] and Pagani [39], a time-based friction model has been used and then it has been analysed with the curve fitting toolbox in MATLAB. It should be pointed that the data coming from Joint 2 and 3, has been modified with the least square method to remove the gravity contribution.

6.2 Future Work

This thesis was focused on the dynamic parameter identification and the friction variation due to the transmission temperature changes. In future, more aspects could be included to improve the quality of the identification. At this stage the fact that the friction changes in dependence of the temperature is confirmed, but there are no sufficient knowledge to insert this effect in the model. The algorithm used in the identification assumes a static model of robot. The effect of the temperature has been highlighted by successive estimation of the friction at different time instants while the robot was working in standard cycles. However, the incorporation of this effect in the model requires more investigation to be able to model the heat generation and its accumulation in the structure. This extension would require the use of extra sensors (namely temperature sensors) and a more complex model that would be time-dependent. That would increase the computation cost of the real time-control algorithms.

Additionally, due to the installation of robots and the seasons of winter, all tests are executed in-room with constant temperature of about 20°C. However, in real scenes, the environmental conditions could vary according to the locations and seasons. Additional experimental activity is necessary to include these factors. Moreover, the effects of different installation of robot, such as wall installation, and hanging installation, should be included in future studies.

Further research is also required to understand some unexpected and nearly instantaneous variation of friction that has been experienced in some circumstances (e.g. Figure G.43) and friction fitting results (e.g. Figure N.2), and larger oscillations in Joint 5 of identification results (e.g. Figure 5.4 and 5.6). These unexpected behaviours seem related to mechanical problem of the robot, but at the moment a final word cannot be told. An analysis of these factors could support the development of models for predictive maintenance.

Moreover, during this thesis, data collected on two theoretically identical robot specimens were compared. An extension of the work could include experimentation on additional robot specimens in order to analyse the variability of production and allow bettering understanding how to adapt a general model to individual manipulators and how to use the collected data to organize preventive maintenance.

References

- [1] G. Antonelli, F. Caccavale, and P. Chiacchio. A systematic procedure for the identification of dynamic parameters of robot manipulators. *Robotica*, 17(4):427–435, 1999.
- [2] B. Armstrong. On finding 'exciting' trajectories for identification experiments involving systems with non-linear dynamics. In *Proceedings. 1987 IEEE International Conference on Robotics and Automation*, volume 4, pages 1131–1139, March 1987.
- [3] Christopher G. Atkeson, Chae H. An, and John M. Hollerbach. Estimation of inertial parameters of manipulator loads and links. *The International Journal of Robotics Research*, 5(3):101–119, 1986.
- [4] Bharat Bhushan. Modern tribology handbook, two volume set. CRC press, 2000.
- [5] A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh. An extended friction model to capture load and temperature effects in robot joints. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 6161–6167, Oct 2010.
- [6] André Carvalho Bittencourt and Svante Gunnarsson. Static friction in a robot joint modeling and identification of load and temperature effects. *Journal of Dynamic Systems*, *Measurement, and Control*, 134(5), Jul 2012. 051013.
- [7] Nikolaos A Bompos, Panagiotis K Artemiadis, Apollon S Oikonomopoulos, and Kostas J Kyriakopoulos. Modelling, full identification and control of the mitsubishi pa-10 robot arm. pages 1–6, 2007.
- [8] G Calafiore, Marina Indri, and Basilio Bona. Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation. *Journal of robotic systems*, 18(2):55–68, 2001.
- [9] A. Calanca, L. M. Capisani, A. Ferrara, and L. Magnani. Mimo closed loop identification of an industrial robot. *IEEE Transactions on Control Systems Technology*, 19(5):1214–1224, 2011.
- [10] C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky. A new model for control of systems with friction. *IEEE Transactions on Automatic Control*, 40(3):419–425, 1995.
- [11] John J Craig. Introduction to robotics: mechanics and control, 3/E. Pearson Education India, 2009.
- [12] Phil R Dahl. A solid friction model. Technical report, Aerospace Corp El Segundo Ca, 1968.
- [13] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME E, Journal of Applied Mechanics, 22:215–221, June 1955.
- [14] EFORT Intelligent Equipment Co., Ltd. Efort. https://efort.com.cn/en/, 2021. [Online; accessed 2021-FEB-27].

- [15] M. Gautier and W. Khalil. Exciting trajectories for the identification of base inertial parameters of robots. In [1991] Proceedings of the 30th IEEE Conference on Decision and Control, pages 494–499 vol.1, Dec 1991.
- [16] Maxime Gautier. Numerical calculation of the base inertial parameters of robots. Journal of robotic systems, 8(4):485–506, 1991.
- [17] Maxime Gautier and Wisama Khalil. Identification of the minimum inertial parameters of robots. pages 1529–1530, 1989.
- [18] Maxime Gautier and Wisama Khalil. Direct calculation of minimum set of inertial parameters of serial robots. *IEEE Transactions on robotics and Automation*, 6(3):368–373, 1990.
- [19] J. M. Hollerbach. A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. *IEEE Transactions on Systems, Man,* and Cybernetics, 10(11):730–736, 1980.
- [20] G. E. Hovland, E. Berglund, and Ole Jakob Sørdalen. Identification of joint elasticity of industrial robots. In *The Sixth International Symposium on Experimental Robotics VI*, page 455–464, Berlin, Heidelberg, 1999. Springer-Verlag.
- [21] M Indri, G Calafiore, G Legnani, F Jatta, and A Visioli. Optimized dynamic calibration of a scara robot. *IFAC Proceedings Volumes*, 35(1):431–436, 2002.
- [22] Jingfu Jin and Nicholas Gans. Parameter identification for industrial robots with a fast and robust trajectory design approach. *Robotics and Computer-Integrated Manufacturing*, 31:21–29, 2015.
- [23] Anthony Jubien, Maxime Gautier, and Alexandre Janot. Dynamic identification of the kuka lwr robot using motor torques and joint torque sensors data. *IFAC Proceedings Volumes*, 47(3):8391–8396, 2014.
- [24] H. Kawasaki and K. Kanzaki. Minimum dynamics parameters of robot models. *IFAC Proceedings Volumes*, 24(9):33–38, 1991. 3rd IFAC Symposium on Robot Control 1991 (SYROCO'91), Vienna, Austria, 16-18 September 1991.
- [25] W. Khalil and J. Kleinfinger. A new geometric notation for open and closed-loop robots. 3:1174–1179, April 1986.
- [26] W. Khalil, J. Kleinfinger, and M. Gautier. Reducing the computational burden of the dynamic models of robots. In *IEEE International Conference on Robotics and Automation* (*ICRA*), volume 3 of *IEEE International Conference on Robotics and Automation* (*ICRA*), pages 525–531, San Francisco, CA, USA, 1986. IEEE. Conference Proceedings ER.
- [27] Wisama Khalil and Etienne Dombre. *Modeling, identification and control of robots.* Butterworth-Heinemann, 2004.
- [28] D. Kostic, Bram de Jager, M. Steinbuch, and R. Hensen. Modeling and identification for high-performance robot control: an rrr-robotic arm case study. *IEEE Transactions on Control Systems Technology*, 12(6):904–919, 2004.
- [29] KUKA AG. Lbr iiwa kuka ag. https://www.kuka.com/en-de/products/robot-systems/ industrial-robots/lbr-iiwa, 2021. [Online; accessed 2021-FEB-27].
- [30] V. Lampaert, J. Swevers, and F. Al-Bender. Modification of the leuven integrated friction model structure. *IEEE Transactions on Automatic Control*, 47(4):683–687, 2002.
- [31] G. Legnani and I. Fassi. *Robotica industriale*. Città Studi, 2019.
- [32] Giovanni Legnani, Luca Simoni, Manuel Beschi, and Antonio Visioli. A new friction model for mechanical transmissions considering joint temperature. 50183:V006T09A020, 2016.
- [33] John YS Luh, Michael W Walker, and Richard PC Paul. On-line computational scheme for mechanical manipulators. *Journal of Dynamic Systems, Measurement, and Control*, 102(2):69–76, Jun 1980.
- [34] Lőrinc Márton and Franciscus van der Linden. Temperature dependent friction estimation: Application to lubricant health monitoring. *Mechatronics*, 22(8):1078–1084, 2012.
- [35] H. Mayeda, K. Yoshida, and K. Ohashi. Base parameters of dynamic models for manipulators with rotational and translational joints. In *Proceedings*, 1989 International Conference on Robotics and Automation, pages 1523–1528 vol.3, 1989.
- [36] H. Mayeda, K. Yoshida, and K. Osuka. Base parameters of manipulator dynamic models. In Proceedings. 1988 IEEE International Conference on Robotics and Automation, pages 1367–1372 vol.3, 1988.
- [37] Amirhossein H Memar and Ehsan T Esfahani. Modelling and dynamic parameter identification of the schunk powerball robotic arm. 2015.
- [38] Matthias Neubauer, Hubert Gattringer, and Hartmut Bremer. A persistent method for parameter identification of a seven-axes manipulator. *Robotica*, 33(5):1099–1112, 2015.
- [39] Roberto Pagani, Giovanni Legnani, Giovanni Incerti, and Matteo Gheza. Evaluation and modelling of the friction in robotic joints considering thermal effects. *Journal of Mechanisms and Robotics*, 12(2), 2020.
- [40] M. T. Pham, M. Gautier, and P. Poignet. Identification of joint stiffness with bandpass filtering. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), volume 3, pages 2867–2872 vol.3, May 2001.
- [41] M. T. Pham, M. Gautier, and P. Poignet. Accelerometer based identification of mechanical systems. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), volume 4, pages 4293–4298 vol.4, May 2002.
- [42] D.M. Pirro, M. Webster, and E. Daschner. Lubrication Fundamentals, Revised and Expanded. CRC Press, 2016.
- [43] Robox Spa. Rde robox development environment. http://www.robox.it/en-US/ showprod.php?idpro=RDE, 2021. [Online; accessed 2021-FEB-27].
- [44] Robox Spa. Rp-1. http://www.robox.it/en-US/showprod.php?idpro=AS1017.004, 2021. [Online; accessed 2021-FEB-27].
- [45] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: modelling, planning and control. Springer Science & Business Media, 2010.
- [46] William M. Silver. On the equivalence of lagrangian and newton-euler dynamics for manipulators. The International Journal of Robotics Research, 1(2):60–70, 1982.
- [47] Luca Simoni, Manuel Beschi, Giovanni Legnani, and Antonio Visioli. On the inclusion of temperature in the friction model of industrial robots. *IFAC-PapersOnLine*, 50(1):3482– 3487, 2017.

- [48] Luca Simoni, Manuel Beschi, Giovanni Legnani, and Antonio Visioli. Modelling the temperature in joint friction of industrial manipulators. *Robotica*, 37(5):906–927, 2019.
- [49] R Stribeck. Kugellager für beliebige belastungen (ball bearings for arbitrary loads). Mitteilungen aus der Centralstelle für wissenschaftlichtechnische Untersuchungen, HS Hermann, Berlin, 1900.
- [50] Richard Stribeck. Die wesentlichen eigenschaften der gleit-und rollenlager. Zeitschrift des Vereines Deutscher Ingenieure, 46:1341–1348, 1902.
- [51] J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo. An integrated friction model structure with improved presliding behavior for accurate friction compensation. *IEEE Transactions on Automatic Control*, 45(4):675–686, 2000.
- [52] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel. Experimental robot identification using optimised periodic trajectories. *Mechanical Systems and Signal Processing*, 10(5):561–577, 1996.
- [53] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel. Generation of periodic trajectories for optimal robot excitation. *Journal of Manufacturing Science and Engineering*, 119(4A):611–615, Nov 1997.
- [54] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. Van Brussel. Optimal robot excitation and identification. *IEEE Transactions on Robotics and Automation*, 13(5):730– 740, 1997.
- [55] J. Swevers, W. Verdonck, and J. De Schutter. Dynamic model identification for industrial robots. *IEEE Control Systems Magazine*, 27(5):58–71, 2007.
- [56] The MathWorks, Inc. Find minimum of constrained nonlinear multivariable function. https://www.mathworks.com/help/optim/ug/fmincon.html, 2021. [Online; accessed 2021-FEB-27].
- [57] The MathWorks, Inc. Find minimum of function using genetic algorithm. https://www. mathworks.com/help/gads/ga.html, 2021. [Online; accessed 2021-FEB-27].
- [58] Universal Robots A/S. Collaborative robots from ur: Products overview. https://www. universal-robots.com/products/, 2021. [Online; accessed 2021-FEB-27].
- [59] Antonio Visioli and Giovanni Legnani. Experiments on model identification and control of an industrial robot manipulator. *IFAC Proceedings Volumes*, 33(27):285–290, 2000.
- [60] N.D. Vuong and M.H. Ang Jr. Dynamic model identification for industrial robots. 2009.
- [61] Wei Huo. New formulas for complete determining base parameters of robots. In Proceedings of 1995 IEEE International Conference on Robotics and Automation, volume 3, pages 3021– 3026 vol.3, 1995.
- [62] Wikipedia contributors. Displacement (geometry) Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Displacement_(geometry) &oldid=1006120237, 2021. [Online; accessed 10-March-2021].
- [63] Wikipedia contributors. Euclidean distance Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Euclidean_distance&oldid= 1007398353, 2021. [Online; accessed 2021-FEB-27].

- [64] Wikipedia contributors. Parallel axis theorem Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Parallel_axis_theorem&oldid= 1010787717, 2021. [Online; accessed 10-March-2021].
- [65] Wikipedia contributors. Qr decomposition Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=QR_decomposition&oldid= 1023213167, 2021. [Online; accessed 20-May-2021].
- [66] Wikipedia contributors. Singular value decomposition Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Singular_value_decomposition& oldid=1022188613, 2021. [Online; accessed 20-May-2021].
- [67] Wikipedia contributors. Translation (geometry) Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Translation_(geometry) &oldid=1002714403, 2021. [Online; accessed 10-March-2021].
- [68] Wikipedia contributors. Triple product Wikipedia, the free encyclopedia. https://en. wikipedia.org/w/index.php?title=Triple_product&oldid=1005995193, 2021. [Online; accessed 10-March-2021].

Appendix A

The Dot Product And Cross Product

In the vector and matrix calculation, the dot product and cross product are needed. With the given vectors of $\boldsymbol{\omega}$ and $\boldsymbol{\alpha}$:

$$\boldsymbol{\omega} = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T \quad and \quad \boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}^T$$
(A.1)

And the given matrix I:

$$\boldsymbol{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$
(A.2)

The cross product of $\boldsymbol{\omega}$ and $\boldsymbol{\alpha}$ will be:

$$\boldsymbol{\omega} \times \boldsymbol{\alpha} = \begin{bmatrix} -\omega_z \alpha_2 + \omega_y \alpha_3 \\ \omega_z \alpha_1 - \omega_x \alpha_3 \\ -\omega_y \alpha_1 + \omega_z \alpha_2 \end{bmatrix} \xrightarrow{in \ matrix \ form} \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \triangleq [\boldsymbol{\omega} \times] \boldsymbol{\alpha}$$
(A.3)

And:

$$\boldsymbol{\omega} \times \boldsymbol{\alpha} = [\boldsymbol{\omega} \times] \boldsymbol{\alpha} = -[\boldsymbol{\alpha} \times \boldsymbol{\omega}] = -[\boldsymbol{\alpha} \times] \boldsymbol{\omega}$$
(A.4)

The dot product of $\boldsymbol{\omega}$ and \boldsymbol{I} will be:

$$\boldsymbol{I} \cdot \boldsymbol{\omega} = \begin{bmatrix} \omega_x I_{xx} + \omega_y I_{xy} + \omega_z I_{xz} \\ \omega_x I_{xy} + \omega_y I_{yy} + \omega_z I_{yz} \\ \omega_x I_{xz} + \omega_y I_{yz} + \omega_z I_{zz} \end{bmatrix} = \begin{bmatrix} \omega_x & \omega_y & \omega_z & 0 & 0 & 0 \\ 0 & \omega_x & 0 & \omega_y & \omega_z & 0 \\ 0 & 0 & \omega_x & 0 & \omega_y & \omega_z \end{bmatrix} \begin{bmatrix} I_{xx} \\ I_{xy} \\ I_{xz} \\ I_{yy} \\ I_{yz} \\ I_{zz} \end{bmatrix} \triangleq [\boldsymbol{\omega} \cdot] \boldsymbol{I} \qquad (A.5)$$

In the test code, the cross product and dot product are used as an operator in matrix computation, thus these product matrix are pre-defined necessarily. It should be noted that $[\boldsymbol{\omega} \times]$, $[\boldsymbol{\alpha} \times]$ and $[\boldsymbol{\omega} \cdot]$ are matrices.

Appendix B

The Rotation Matrix And Transformation Matrix

A mathematics description has been used for the coordination transformation from the robot base to the end-effector to express the robot pose in the space. This description is based on linear algebra and divided into rotation and transformation matrices.

The rotation matrix describes the rotated coordination in the reference frame. It is shown by each reference XYZ axis. The general form is:

$$\boldsymbol{R} = \begin{bmatrix} x'_{x} & y'_{x} & z'_{x} \\ x'_{y} & y'_{y} & z'_{y} \\ x'_{z} & y'_{z} & z'_{z} \end{bmatrix}$$
(B.1)

Here x'_x presents the cosines of the unit vectors of the rotated frame axes based the reference one.

In elementary rotations, it will be shown based the axis as:

$$\boldsymbol{R}_{z}(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(B.1a)

$$\boldsymbol{R}_{y}(\beta) = \begin{bmatrix} \cos\beta & 0 & \sin\beta \\ 0 & 1 & 0 \\ -\sin\beta & 0 & \cos\beta \end{bmatrix}$$
(B.1b)

$$\boldsymbol{R}_{x}(\gamma) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\gamma & -\sin\gamma\\ 0 & \sin\gamma & \cos\gamma \end{bmatrix}$$
(B.1c)

The transformation matrix shows the transformation from the reference coordination to a new one by each XYZ axis:

$$\boldsymbol{p} = \begin{bmatrix} p_x & p_y & p_z \end{bmatrix}^T \tag{B.2}$$

In this thesis \mathbf{R} and \mathbf{p} are the rotation matrix and transformation vector respectively. In the form of Homogeneous Transformations, it can be written as (example from base joint to the first joint):

$$\boldsymbol{T}_{0}^{1} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{p} \\ \boldsymbol{0}_{1*3} & 1 \end{bmatrix} = \begin{bmatrix} x'_{x} & y'_{x} & z'_{x} & p_{x} \\ x'_{y} & y'_{y} & z'_{y} & p_{y} \\ x'_{z} & y'_{z} & z'_{z} & p_{z} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & 1 \end{bmatrix}$$
(B.3)

Then the general description of transformation from a given point in a given frame to the reference frame is:

$$\boldsymbol{a}_{new} = \boldsymbol{T}_1^0 \boldsymbol{T}_2^1 \boldsymbol{T}_3^2 \cdots \boldsymbol{T}_n^{n-1} \boldsymbol{a}_{ref}$$
(B.4)

Appendix C

The Newton-Euler (NE) Recursions Algorithm

The Newton-Euler (NE) can be implemented into MATLAB. The linearization is started from Equation 3.8:

$$\boldsymbol{n}_{i} = \boldsymbol{\hat{n}}_{i} + \frac{\boldsymbol{R}_{i+1}^{i} \boldsymbol{n}_{i+1}}{\boldsymbol{R}_{i+1}^{i}} + \boldsymbol{p}_{\boldsymbol{c}_{i}}^{i} \times \boldsymbol{\hat{f}}_{i} + \frac{\boldsymbol{p}_{i+1}^{i} \times \boldsymbol{R}_{i+1}^{i} \boldsymbol{f}_{i+1}}{\boldsymbol{f}_{i+1}}$$
(C.1)

with

$$\hat{f}_i = m_i \dot{v}_{c_i} \tag{C.2}$$

$$\dot{\boldsymbol{v}}_{c_{i+1}} = \dot{\boldsymbol{\omega}}_{i+1} \times \boldsymbol{p}_{\boldsymbol{c}_{i+1}}^{i+1} + \boldsymbol{\omega}_{i+1} \times \left(\boldsymbol{\omega}_{i+1} \times \boldsymbol{p}_{\boldsymbol{c}_{i+1}}^{i+1}\right) + \dot{\boldsymbol{v}}_{i+1}$$
(C.3)

$$\hat{\boldsymbol{n}}_{i+1} = \boldsymbol{I}_{i+1}^{c_{i+1}} \dot{\boldsymbol{\omega}}_{i+1} + \boldsymbol{\omega}_{i+1} \times \boldsymbol{I}_{i+1}^{c_{i+1}} \boldsymbol{\omega}_{i+1}$$
(C.4)

Then, taking Equation C.3 into Equation C.2, and rewriting Equation C.4:

$$\hat{f}_{i} = m_{i} \left[\dot{\boldsymbol{\omega}}_{i} \times \boldsymbol{p}_{\boldsymbol{c}_{i}}^{i} + \boldsymbol{\omega}_{i} \times \left(\boldsymbol{\omega}_{i} \times \boldsymbol{p}_{\boldsymbol{c}_{i}}^{i} \right) + \dot{\boldsymbol{v}}_{i} \right]$$
(C.5)

$$\hat{\boldsymbol{n}}_i = \boldsymbol{I}_i^{c_i} \dot{\boldsymbol{\omega}}_i + \boldsymbol{\omega}_i \times \boldsymbol{I}_i^{c_i} \boldsymbol{\omega}_i \tag{C.6}$$

Then Equation C.1 can be written with Equation C.5 and Equation C.6:

$$n_{i} = I_{i}^{c_{i}}\dot{\omega}_{i} + \omega_{i} \times I_{i}^{c_{i}}\omega_{i} + \frac{R_{i+1}^{i}n_{i+1}}{R_{i+1}^{i}n_{i+1}} + \frac{p_{i+1}^{i} \times R_{i+1}^{i}f_{i+1}}{P_{c_{i}}^{i} \times m_{i}\left[\dot{\omega}_{i} \times p_{c_{i}}^{i} + \omega_{i} \times \left(\omega_{i} \times p_{c_{i}}^{i}\right) + \dot{v}_{i}\right]}$$

$$= I_{i}^{c_{i}}\dot{\omega}_{i} + \omega_{i} \times I_{i}^{c_{i}}\omega_{i} + \frac{R_{i+1}^{i}n_{i+1}}{R_{i+1}^{i}n_{i+1}} + \frac{p_{i+1}^{i} \times R_{i+1}^{i}f_{i+1}}{P_{c_{i}}^{i} \times \left(\dot{\omega}_{i} \times p_{c_{i}}^{i}\right) + p_{c_{i}}^{i} \times \left[\omega_{i} \times \left(\omega_{i} \times p_{c_{i}}^{i}\right)\right] + p_{c_{i}}^{i} \times \dot{v}_{i}}\}$$

$$= I_{i}^{c_{i}}\dot{\omega}_{i} + \omega_{i} \times I_{i}^{c_{i}}\omega_{i} + \frac{R_{i+1}^{i}n_{i+1}}{R_{i+1}^{i}n_{i+1}} + \frac{p_{i+1}^{i} \times R_{i+1}^{i}f_{i+1}}{P_{c_{i}}^{i} \times \left(\omega_{i} \times p_{c_{i}}^{i}\right)}\right] + m_{i}\left\{p_{c_{i}}^{i} \times \left(\omega_{i} \times p_{c_{i}}^{i}\right)\right\} + m_{i}\left(p_{c_{i}}^{i} \times \dot{v}_{i}\right)$$
(C.7)

For the part of " $m_i \left[\boldsymbol{p_{c_i}}^i \times \left(\dot{\boldsymbol{\omega}}_i \times \boldsymbol{p_{c_i}}^i \right) \right] + m_i \left\{ \boldsymbol{p_{c_i}}^i \times \left[\boldsymbol{\omega}_i \times \left(\boldsymbol{\omega}_i \times \boldsymbol{p_{c_i}}^i \right) \right] \right\} + m_i \left(\boldsymbol{p_{c_i}}^i \times \dot{\boldsymbol{v}}_i \right)$ " in Equation C.7, with the cross product properties and the vector triple product [68] introduced in Appendix A, the below equations will easy the linearization:

$$a \times [b \times (b \times a)] = b \times (a^T a \mathbf{I}_{3*3} - aa^T) b$$

$$\Rightarrow \qquad a \times (b \times a) = (a^T a \mathbf{I}_{3*3} - aa^T) b$$
(C.8)

Here I_{3*3} is the 3 by 3 identical matrix. Then:

$$m_{i}\left[\boldsymbol{p_{c_{i}}}^{i}\times\left(\dot{\boldsymbol{\omega}}_{i}\times\boldsymbol{p_{c_{i}}}^{i}\right)\right]=m_{i}\left(\boldsymbol{p_{c_{i}}}^{i^{T}}\boldsymbol{p_{c_{i}}}^{i}\boldsymbol{I_{3*3}}-\boldsymbol{p_{c_{i}}}^{i}\boldsymbol{p_{c_{i}}}^{i^{T}}\right)\dot{\boldsymbol{\omega}}_{i}$$
(C.9)

$$m_{i} \left\{ \boldsymbol{p_{c_{i}}}^{i} \times \left[\boldsymbol{\omega}_{i} \times \left(\boldsymbol{\omega}_{i} \times \boldsymbol{p_{c_{i}}}^{i} \right) \right] \right\} = m_{i} \left[\boldsymbol{\omega}_{i} \times \left(\boldsymbol{p_{c_{i}}}^{i}^{T} \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{I_{3*3}} - \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{p_{c_{i}}}^{i}^{T} \right) \boldsymbol{\omega}_{i} \right]$$

$$= m_{i} \boldsymbol{\omega}_{i} \times \left(\boldsymbol{p_{c_{i}}}^{i}^{T} \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{I_{3*3}} - \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{p_{c_{i}}}^{T} \right) \boldsymbol{\omega}_{i}$$
(C.10)

take the parallel axis theorem [64] below into above two equations:

$$\boldsymbol{I}_{i}^{i} = \boldsymbol{I}_{i}^{c_{i}} + m_{i} \left(\boldsymbol{p_{c_{i}}}^{i^{T}} \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{I_{3*3}} - \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{p_{c_{i}}}^{i^{T}} \right) \Rightarrow m_{i} \left(\boldsymbol{p_{c_{i}}}^{i^{T}} \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{I_{3*3}} - \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{p_{c_{i}}}^{i^{T}} \right) = \boldsymbol{I}_{i}^{i} - \boldsymbol{I}_{i}^{c_{i}} \quad (C.11)$$

Then:

$$m_{i} \left[\boldsymbol{p_{c_{i}}}^{i} \times \left(\dot{\boldsymbol{\omega}}_{i} \times \boldsymbol{p_{c_{i}}}^{i} \right) \right] = m_{i} \left(\boldsymbol{p_{c_{i}}}^{i^{T}} \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{I_{3*3}} - \boldsymbol{p_{c_{i}}}^{i} \boldsymbol{p_{c_{i}}}^{T} \right) \dot{\boldsymbol{\omega}}_{i}$$

$$= \left(\boldsymbol{I}_{i}^{i} - \boldsymbol{I}_{i}^{c_{i}} \right) \dot{\boldsymbol{\omega}}_{i}$$
(C.12)

$$m_{i} \left\{ \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}} \times \left[\boldsymbol{\omega}_{i} \times \left(\boldsymbol{\omega}_{i} \times \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}} \right) \right] \right\} = m_{i} \left[\boldsymbol{\omega}_{i} \times \left(\boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{T} \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{i} \boldsymbol{I}_{3*3} - \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{i} \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{i^{T}} \right) \boldsymbol{\omega}_{i} \right]$$
$$= m_{i} \boldsymbol{\omega}_{i} \times \left(\boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{T} \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{i} \boldsymbol{I}_{3*3} - \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{i} \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{T} \right) \boldsymbol{\omega}_{i}$$
$$= \boldsymbol{\omega}_{i} \times m_{i} \left(\boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{T} \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{i} \boldsymbol{I}_{3*3} - \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{i} \boldsymbol{p}_{\boldsymbol{c}_{i}^{i}}^{T} \right) \boldsymbol{\omega}_{i}$$
$$= \boldsymbol{\omega}_{i} \times \left(\boldsymbol{I}_{i}^{i} - \boldsymbol{I}_{i}^{c_{i}} \right) \boldsymbol{\omega}_{i}$$
(C.13)

Now Equation C.7 can be written as follows and then expanded, merged and eliminated:

$$\boldsymbol{n}_{i} = \boldsymbol{I}_{i}^{c_{i}} \dot{\boldsymbol{\omega}}_{i} + \boldsymbol{\omega}_{i} \times \boldsymbol{I}_{i}^{c_{i}} \boldsymbol{\omega}_{i} + \boldsymbol{R}_{i+1}^{i} \boldsymbol{n}_{i+1} + \boldsymbol{p}_{i+1}^{i} \times \boldsymbol{R}_{i+1}^{i} \boldsymbol{f}_{i+1}$$

$$+ m_{i} \left[\boldsymbol{p}_{c_{i}}^{i} \times \left(\dot{\boldsymbol{\omega}}_{i} \times \boldsymbol{p}_{c_{i}}^{i} \right) \right] + m_{i} \left\{ \boldsymbol{p}_{c_{i}}^{i} \times \left[\boldsymbol{\omega}_{i} \times \left(\boldsymbol{\omega}_{i} \times \boldsymbol{p}_{c_{i}}^{i} \right) \right] \right\} + m_{i} \left(\boldsymbol{p}_{c_{i}}^{i} \times \dot{\boldsymbol{v}}_{i} \right)$$

$$= \boldsymbol{I}_{i}^{c_{i}} \dot{\boldsymbol{\omega}}_{i} + \boldsymbol{\omega}_{i} \times \boldsymbol{I}_{i}^{c_{i}} \boldsymbol{\omega}_{i} + \boldsymbol{R}_{i+1}^{i} \boldsymbol{n}_{i+1} + \boldsymbol{p}_{i+1}^{i} \times \boldsymbol{R}_{i+1}^{i} \boldsymbol{f}_{i+1}$$

$$+ \left(\boldsymbol{I}_{i}^{i} - \boldsymbol{I}_{i}^{c_{i}} \right) \dot{\boldsymbol{\omega}}_{i} + \boldsymbol{\omega}_{i} \times \left(\boldsymbol{I}_{i}^{i} - \boldsymbol{I}_{i}^{c_{i}} \right) \boldsymbol{\omega}_{i} + m_{i} \left(\boldsymbol{p}_{c_{i}}^{i} \times \dot{\boldsymbol{v}}_{i} \right)$$

$$= \boldsymbol{R}_{i+1}^{i} \boldsymbol{n}_{i+1} + \boldsymbol{p}_{i+1}^{i} \times \boldsymbol{R}_{i+1}^{i} \boldsymbol{f}_{i+1} + \boldsymbol{I}_{i}^{i} \dot{\boldsymbol{\omega}}_{i} + \boldsymbol{\omega}_{i} \times \boldsymbol{I}_{i}^{i} \boldsymbol{\omega}_{i} + m_{i} \boldsymbol{p}_{c_{i}}^{i} \times \dot{\boldsymbol{v}}_{i}$$

$$(C.14)$$

For the Joint 6, Equation 3.7, Equation C.5 and C.14 can be written as:

=

$$f_{6} = \hat{f}_{6} = m_{6} \left[\dot{\boldsymbol{\omega}}_{6} \times \boldsymbol{p_{c}}_{6}^{6} + \boldsymbol{\omega}_{6} \times \left(\boldsymbol{\omega}_{6} \times \boldsymbol{p_{c}}_{6}^{6} \right) + \dot{\boldsymbol{v}}_{6} \right]$$

$$= m_{6} \dot{\boldsymbol{\omega}}_{6} \times \boldsymbol{p_{c}}_{6}^{6} + m_{6} \boldsymbol{\omega}_{6} \times \left(\boldsymbol{\omega}_{6} \times \boldsymbol{p_{c}}_{6}^{6} \right) + m_{6} \dot{\boldsymbol{v}}_{6} \qquad (C.15)$$

$$= m_{6} \dot{\boldsymbol{v}}_{6} + m_{6} \dot{\boldsymbol{\omega}}_{6} \times \boldsymbol{p_{c}}_{6}^{6} + m_{6} \boldsymbol{\omega}_{6} \times \left(\boldsymbol{\omega}_{6} \times \boldsymbol{p_{c}}_{6}^{6} \right)$$

$$\boldsymbol{n}_{6}^{6} = \boldsymbol{I}_{6}^{6} \dot{\boldsymbol{\omega}}_{6} + \boldsymbol{\omega}_{6} \times \boldsymbol{I}_{6}^{6} \boldsymbol{\omega}_{6} + m_{6} \boldsymbol{p_{c}}_{6}^{6} \times \dot{\boldsymbol{v}}_{6} \qquad (C.16)$$

 $-\dot{\boldsymbol{v}}_{6} \times m_{6} \boldsymbol{p}_{c6}^{} + \boldsymbol{I}_{6}^{6} \dot{\boldsymbol{\omega}}_{6} + \boldsymbol{\omega}_{6} \times \boldsymbol{I}_{6}^{6} \boldsymbol{\omega}_{6}$

It should be pointed that $\mathbf{R}_{i+1}^{i}\mathbf{f}_{i+1}$ in Equation 3.7 and $\mathbf{R}_{i+1}^{i}\mathbf{n}_{i+1} + \mathbf{p}_{i+1}^{i}\mathbf{R}_{i+1}^{i}\mathbf{f}_{i+1}$ in Equation 3.8 for Joint 6 is 0 because there is no forward axis.

Transfer Equation C.15 and C.16 to matrix form:

$$\begin{bmatrix} \boldsymbol{f}_{6} \\ \boldsymbol{n}_{6}^{6} \end{bmatrix} = \begin{bmatrix} \dot{\boldsymbol{v}}_{6} & [\dot{\boldsymbol{\omega}}_{6} \times] + [\boldsymbol{\omega}_{6} \times][\boldsymbol{\omega}_{6} \times] & 0 \\ 0 & -[\dot{\boldsymbol{v}}_{6} \times] \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{6} \cdot] + [\boldsymbol{\omega}_{6} \times][\boldsymbol{\omega}_{6} \cdot] \end{bmatrix} \begin{bmatrix} \boldsymbol{m}_{6} \\ \boldsymbol{m}_{6} \boldsymbol{p}_{c6}^{6} | \boldsymbol{z} \\ \boldsymbol{m}_{6} \boldsymbol{p}_{c6}^{6} | \boldsymbol{z} \\ \boldsymbol{I}_{xx} \\ \boldsymbol{I}_{xy} \\ \boldsymbol{I}_{xz} \\ \boldsymbol{I}_{yy} \\ \boldsymbol{I}_{yz} \\ \boldsymbol{I}_{zz} \end{bmatrix} \triangleq \boldsymbol{A}_{6} \boldsymbol{\phi}_{6} \quad (C.17)$$

For Joint 5:

$$\begin{aligned} \mathbf{f}_5 &= m_5 \dot{\mathbf{v}}_5 + \mathbf{R}_5^6 \mathbf{f}_6 \\ &= \hat{\mathbf{f}}_5 + \mathbf{R}_5^6 \mathbf{f}_6 \end{aligned} \tag{C.18}$$

$$n_{5}^{5} = I_{5}^{5} \dot{\omega}_{5} + \omega_{5} \times I_{5}^{5} \omega_{5} + m_{5} p_{c}_{5}^{5} \times \dot{v}_{5} + R_{6}^{5} n_{6} + p_{6}^{5} \times R_{6}^{5} f_{6}$$

= $-\dot{v}_{5} \times m_{5} p_{c}_{5}^{5} + I_{5}^{5} \dot{\omega}_{5} + \omega_{5} \times I_{5}^{5} \omega_{5} + R_{6}^{5} n_{6} + p_{6}^{5} \times R_{6}^{5} f_{6}$ (C.19)

and then the matrix form is:

$$\begin{bmatrix} \boldsymbol{f}_5 \\ \boldsymbol{n}_5^5 \end{bmatrix} = \boldsymbol{A}_5 \boldsymbol{\phi}_5 + \begin{bmatrix} \boldsymbol{R}_6^5 & 0 \\ [\boldsymbol{p}_6^5 \times] \boldsymbol{R}_6^5 & \boldsymbol{R}_6^5 \end{bmatrix} \begin{bmatrix} \boldsymbol{f}_6 \\ \boldsymbol{n}_6^6 \end{bmatrix} \triangleq \boldsymbol{A}_5 \boldsymbol{\phi}_5 + T_{56} \boldsymbol{A}_6 \boldsymbol{\phi}_6$$
(C.20)

Thus, similar for other joints:

$$\begin{bmatrix} \boldsymbol{f}_4 \\ \boldsymbol{n}_4^4 \end{bmatrix} = \boldsymbol{A}_4 \boldsymbol{\phi}_4 + \boldsymbol{T}_{45} \boldsymbol{A}_5 \boldsymbol{\phi}_5 + \boldsymbol{T}_{45} \boldsymbol{T}_{56} \boldsymbol{A}_6 \boldsymbol{\phi}_6 \tag{C.21}$$

$$\begin{bmatrix} \mathbf{f}_3\\ \mathbf{n}_3^3 \end{bmatrix} = \mathbf{A}_3 \phi_3 + \mathbf{T}_{34} \mathbf{A}_4 \phi_4 + \mathbf{T}_{34} \mathbf{T}_{45} \mathbf{A}_5 \phi_5 + \mathbf{T}_{34} \mathbf{T}_{45} \mathbf{T}_{56} \mathbf{A}_6 \phi_6$$
(C.22)

$$\begin{bmatrix} \mathbf{f}_2 \\ \mathbf{n}_2^2 \end{bmatrix} = \mathbf{A}_2 \phi_2 + \mathbf{T}_{23} \mathbf{A}_3 \phi_3 + \mathbf{T}_{23} \mathbf{T}_{34} \mathbf{A}_4 \phi_4 + \mathbf{T}_{23} \mathbf{T}_{34} \mathbf{T}_{45} \mathbf{A}_5 \phi_5 + \mathbf{T}_{23} \mathbf{T}_{34} \mathbf{T}_{45} \mathbf{T}_{56} \mathbf{A}_6 \phi_6 \qquad (C.23)$$

$$\begin{bmatrix} f_1 \\ n_1^1 \end{bmatrix} = A_1 \phi_1 + T_{12} A_2 \phi_2 + T_{12} T_{23} A_3 \phi_3 + T_{12} T_{23} T_{34} A_4 \phi_4 + T_{12} T_{23} T_{34} T_{45} A_5 \phi_5$$

$$+ T_{12} T_{23} T_{34} T_{45} T_{56} A_6 \phi_6$$
(C.24)

Concluding from Equation C.17 to Equation C.24 and then transfer to matrix form:

$$\begin{bmatrix} f_1 \\ n_1^1 \\ f_2 \\ n_2^2 \\ f_3 \\ n_3^3 \\ f_4 \\ n_4^4 \\ f_5 \\ n_5^5 \\ f_6 \\ n_6^6 \end{bmatrix} = \begin{bmatrix} \bar{U}_{11} & \bar{U}_{12} & \bar{U}_{13} & \bar{U}_{14} & \bar{U}_{15} & \bar{U}_{16} \\ 0_{6*10} & \bar{U}_{22} & \bar{U}_{23} & \bar{U}_{24} & \bar{U}_{25} & \bar{U}_{26} \\ 0_{6*10} & 0_{6*10} & \bar{U}_{33} & \bar{U}_{34} & \bar{U}_{35} & \bar{U}_{36} \\ 0_{6*10} & 0_{6*10} & 0_{6*10} & \bar{U}_{44} & \bar{U}_{45} & \bar{U}_{46} \\ 0_{6*10} & 0_{6*10} & 0_{6*10} & 0_{6*10} & \bar{U}_{55} & \bar{U}_{56} \\ 0_{6*10} & 0_{6*10} & 0_{6*10} & 0_{6*10} & 0_{6*10} & \bar{U}_{66} \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \\ \phi_6 \end{bmatrix} = \bar{K}_{36*60} \psi_{60*1} \qquad (C.25)$$

Here:

$$\bar{\boldsymbol{U}}_{ij} = \begin{cases} \boldsymbol{A}_i, & i = j \\ \boldsymbol{T}_{i,i+1} \boldsymbol{T}_{i+1,i+2} \cdots \boldsymbol{T}_{j-1,j} \boldsymbol{A}_j, & i \neq j \end{cases}$$
(C.26)

$$\boldsymbol{\psi} = \begin{bmatrix} \boldsymbol{\phi}_1 & \boldsymbol{\phi}_2 & \boldsymbol{\phi}_3 & \boldsymbol{\phi}_4 & \boldsymbol{\phi}_5 & \boldsymbol{\phi}_6 \end{bmatrix}^T$$
(C.27)

Because only the torque in the z-axis direction is considered, we have:

$$\tau_{i} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{f}_{i} \\ \boldsymbol{n}_{i}^{i} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} f_{ix} & f_{iy} & f_{iz} & n_{ix}^{i} & n_{iy}^{i} & n_{iz}^{i} \end{bmatrix}^{T} = n_{iz}^{i}$$
(C.28)

Thus the concluded matrix can be written as:

$$\boldsymbol{\tau}_{dynamic} = \begin{bmatrix} \tau_{Joint1} \\ \tau_{Joint2} \\ \tau_{Joint3} \\ \tau_{Joint4} \\ \tau_{Joint5} \\ \tau_{Joint6} \end{bmatrix}_{6*1} = \boldsymbol{K}_{6*60} \boldsymbol{\psi}_{60*1} = \begin{bmatrix} \boldsymbol{U}_{11} & \boldsymbol{U}_{12} & \boldsymbol{U}_{13} & \boldsymbol{U}_{14} & \boldsymbol{U}_{15} & \boldsymbol{U}_{16} \\ \boldsymbol{0}_{6*10} & \boldsymbol{U}_{22} & \boldsymbol{U}_{23} & \boldsymbol{U}_{24} & \boldsymbol{U}_{25} & \boldsymbol{U}_{26} \\ \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{U}_{33} & \boldsymbol{U}_{34} & \boldsymbol{U}_{35} & \boldsymbol{U}_{36} \\ \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{U}_{6*10} & \boldsymbol{U}_{44} & \boldsymbol{U}_{45} & \boldsymbol{U}_{46} \\ \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{U}_{55} & \boldsymbol{U}_{56} \\ \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{0}_{6*10} & \boldsymbol{U}_{62} \end{bmatrix} \begin{bmatrix} \boldsymbol{\phi}_{1} \\ \boldsymbol{\phi}_{2} \\ \boldsymbol{\phi}_{3} \\ \boldsymbol{\phi}_{4} \\ \boldsymbol{\phi}_{5} \\ \boldsymbol{\phi}_{6} \end{bmatrix}$$
(C.29)

Here: K is the matrix of \overline{K} with the values of z-axis direction only.

It should be pointed that, the total torque of motor output is presented by joints is:

$$\tau_{total} = \tau_{dynamic} + \tau_{motor} \tag{C.30}$$

Moreover, the $\tau_{dynamic}$ can be separated by τ_{ne} and $\tau_{friction}$, which the subscript of ne is the abbreviation of Newton-Euler.

Appendix D

The QR And SVD Decomposition

As described in Section 3.2, the QR and SVD decomposition are used to recognize the identifiable dynamic parameters. In this appendix the explanations of both methods are demonstrated in Section D.1 and D.2. The results are shown in Section D.3.

D.1 QR Factorization

The positions of no-zeros values in vector $\mathbf{r}_{1,diag}$ (Equation D.1) of Equation 3.33 in Section 3.2.1 are recorded. The example $\mathbf{r}_{1,diag}$ of all joints is shown in Table D.1. It should be pointed that the small value is considered as a zero value.

$$\boldsymbol{r}_{1,diag} = \begin{bmatrix} r_{1,1} & r_{2,2} & r_{3,3} & \cdots & r_{60,60} \end{bmatrix}$$
 (D.1)

In Table D.1, the parameters that have not highlighted in yellow are identifiable with the corresponded link. For example, the parameter $I_{5,xx}$ of Joint 1 is identifiable due to its value of -168.5869. On the other hand, the parameter m_3 of Joint 2 is unidentifiable due to its value of 5.08E-14, which is less than 1/10000 (small value).

D.2 SVD Decomposition

As shown in Section 3.2.2, the information matrix K has been analysed by the SVD decomposition (Equation 3.34 and Equation D.2). The matrix Σ is diagonal and contains the singular values of K organized in descending value order. When K is ill-defined, Σ has a high condition number. To easy the discussion, the sub-matrix S (Equation 3.35 and Equation D.3) of Σ is used. Mathematically, the condition number of S can be easily obtained in Equation D.4. In our case, the threshold of high condition number is 100. And the singular values with smaller value are associated to parameters that cannot be reliably estimated. These parameters will be eliminated by the model.

$$\boldsymbol{K} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T} = \boldsymbol{U}\begin{bmatrix}\boldsymbol{S}\\[\boldsymbol{0}\end{bmatrix}\end{bmatrix}\boldsymbol{V}^{T}$$
(D.2)

$$\boldsymbol{S} = \begin{bmatrix} r_{1,1} & 0 & 0 & \cdots & 0 \\ 0 & r_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & r_{3,3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & r_{n,n} \end{bmatrix}$$
(D.3)

$$cond(\mathbf{S}) = r_{1,1}/r_{n,n} \tag{D.4}$$

	Items $\downarrow \searrow$	${\rm Link} \rightarrow$	1	2	3	4	5	6
	1	m	0	0	0	0	0	0
	2	mP_x	0	0	0	0	0	0
	3	mP_{u}	0	0	0	0	0	0
	4	mP_{r}	Õ	Ő	Ő	Õ	Õ	Õ
-	5	I	Ő	0 0	Ő	Õ	Õ	0 0
nk	6		0	0	0	0	0	0
Li	7	Ixy	0	0	0	0	0	0
	1		0	0	0	0	0	0
	8	I_{yy}	0	0	0	0	0	0
	9	I_{yz}	0	0	0	0	0	0
	10	I_{zz}	-228.6174	0	0	0	0	0
	11	m	-4.52E-16	0	0	0	0	0
	12	mP_x	9.8627	253.4396	0	0	0	0
	13	mP_y	2.4353	593.2077	0	0	0	0
	14	mP_z	2.52E-14	0	0	0	0	0
k 2	15	I_{xx}	2.7684	-56.3891	0	0	0	0
in	16	I_{xy}	23.0138	-97.8936	0	0	0	0
П	17	I _{xz}	130.5884	-211.0123	0	0	0	0
	18	I_{uu}	3.12E-14	5.69E-14	0	0	0	0
	19	Iuz	62.9039	81.4132	0	0	0	0
	20	122 122	-1.98E-15	-122.6476	0	0	0	0
	21	 	-2.07E-15	5.08E-14	0	0	0	0
	22	mP	37 9513	-334 7127	467 3072	0 0	Õ	0 0
	22	mP	33 2534	354 3488	455 3011	0	0	0
	23	mIy	-55.2554	5 20F 14	400.0911	0	0	0
3	24	1111 z	-4.90E-14	47 7176	66 9421	0	0	0
nk	2.0		-100.5171	-47.7170	-00.0431	0	0	0
Li	20	I_{xy}	174.042	105.1597	112.4007	0	0	0
	21		205.2117	-99.1000	-104.7055	0	0	0
	28	I_{yy}	6.53E-14	-5.46E-15	-3.16E-14	0	0	0
	29	I_{yz}	-248.5508	101.679	152.7053	0	0	0
	30	I_{zz}	-1.28E-14	-206.4943	-281.2688	0	0	0
	31	m	2.70E-14	-8.97E-14	-7.50E-14	0	0	0
	32	mP_x	-108.4773	-386.0355	-286.5489	-398.1636	0	0
	33	mP_y	-123.4907	-472.5241	374.8688	-335.879	0	0
	34	mP_z	-7.44E-14	-2.67E-13	-2.09E-13	0	0	0
k 4	35	I_{xx}	-144.5376	-187.3428	-197.3844	-107.9234	0	0
in	36	I_{xy}	280.2405	-365.3538	-383.3898	190.8098	0	0
П	37	I_{xz}	108.9514	-162.0417	-247.1844	239.729	0	0
	38	I_{uu}	1.22E-13	2.17E-13	-1.50E-13	6.28E-14	0	0
	39	I_{uz}	94.7208	224.0334	274.2623	-246.0824	0	0
	40	Izz	-228.3691	78.9371	-108.739	-431.3956	0	0
	41	 	-1.62E-14	5.48E-14	3.45E-14	0	0	0
	42	mP _m	110.3607	407.323	315.8836	65.6913	396.6561	0
	43	mP	126 9043	-404 1635	-281 1052	208 6213	394 49	0
	10	mP	$6.67E_{-14}$	-3.01F-13	$9.77E_{-1/}$	$1.77E_{-13}$	0	ů Ú
2	45	I	-168 5834	-171 4806	-186 6335	212 6078	201 7761	0
nk	46		380.4686	306 1781	318 4133	513 4550	300 6301	0
Li	40	I xy	280 2779	-315 7677	-910.4199	363 8805	-000.0001	0
	41		1.01E 12	-515.7077	-522.041 1 59E 19	1 505 12	-411.4902	0
	40	I yy	210 6101	-1.00E-13	241 9021	1.59E-15	-1.91E-14	0
	49	Iyz	319.0101	334.8072	341.2031	308.3970	400.04/0	0
	50	I_{zz}	101.8988	-205.6505	-215.2295	142.2798	-403.0538	0
	51		2.08E-14	-6.87E-14	-4.33E-14	2.36E-14	7.80E-15	
	52	mP_x	426.2574	1068.3319	699.9122	295.3725	292.5512	417.3724
	53	mP_y	-434.786	-1079.0873	-704.9352	303.1425	-347.0608	407.0301
	54	mP_z	-1.11E-13	-2.31E-13	-2.41E-13	-6.23E-14	-1.29E-13	0
k (55	I_{xx}	339.3361	-408.1584	-413.338	-238.2624	-476.7573	190.3695
lin	56	I_{xy}	679.9189	824.2461	829.0289	-506.5916	913.3395	-362.6816
	57	I_{xz}	452.786	-637.3979	-635.4993	617.0631	-1038.9653	445.405
	58	I_{yy}	2.44E-13	-3.99E-13	3.25E-13	2.28E-13	3.06E-13	-1.21E-13
	59	I_{yz}	507.4218	593.0612	551.2006	-655.9884	1109.9515	-479.4588
	60	Ĭzz	320.3927	293.4021	310.0073	558.9444	279.1904	-875.2979

Table D.1: The values of $r_{1,diag}$ from QR results

An example of matrix S and V of Link 2 is given in Table D.2. The condition number of matrix S is 1.5742E+16, which is more than 100. This leads to the minimum value of 1.15E-16 in the column of I_m in matrix S, which is highlighted in yellow. In this case, there are some minimum values in the column of I_m in matrix V, which are significantly different with others, and also they are located in row I_{zz} and I_m . This means that the parameter I_{zz} is unidentifiable. And it is clear that I_{zz} and I_m are paralleled in this link.

Two things should be pointed before the SVD decomposition process, which are:

- 1. The friction elements should be introduced, which means ϕ_f will be used in the identification.
- 2. The results of QR decomposition should be applied. Thus based the results of QR factorization, the parameters of m, mP_x , mP_y , mP_z , I_{xx} , I_{xy} , I_{xz} , I_{yy} , I_{yz} and I_{zz} of Link 1 will be eliminated in the decomposition process due to the value of zero.

The parameters selected from the results of the SVD Decomposition are marked in red in Table D.1.

	65	I_m	0	0	0	0	0	0	0	0	0	0	0	1.15E-16	0	7.22E-16	9.96E-17	1.98E-16	-8.37E-16	-2.44E-16	-0.7071	-1.95 E- 16	3.23E-16	-1.64E-15	7.77E-16	0.7071
	64	f_4	0	0	0	0	0	0	0	0	0	0	0.1751	0	-0.1043	0.7125	-0.0319	0.0157	0.0003	-0.0067	0.0201	0.4725	-0.0026	-0.506	0.0066	0.0201
	63	f_3	0	0	0	0	0	0	0	0	0	0.3673	0	0	-0.1423	0.2362	-0.0967	-0.0308	0.0057	0.0189	0.0182	0.2106	-0.0422	0.5553	-0.747	0.0182
of Link 2	62	f_2	0	0	0	0	0	0	0	0	0.4606	0	0	0	-0.3493	0.2735	-0.2928	0.2751	-0.0303	0.055	0.0531	-0.5559	0.5665	-0.0349	-0.0313	0.0531
) results of	61	f_1	0	0	0	0	0	0	0	0.6295	0	0	0	0	0.4576	0.0935	0.3981	-0.4626	-0.0116	-0.0708	-0.0719	-0.1208	0.5468	-0.1258	-0.2539	-0.0719
form SVI	20	I_{zz}	0	0	0	0	0	0	0.7574	0	0	0	0	0	-0.4601	-0.2685	-0.3665	-0.7078	-0.0864	-0.0924	0.0728	0.0719	0.0454	-0.2091	-0.0578	0.0728
and V i	19	$I_y z$	0	0	0	0	0	0.8861	0	0	0	0	0	0	0.0309	0.002	0.1256	0.1145	-0.8693	-0.3221	0.1729	-0.1039	-0.1343	-0.0883	-0.1199	0.1729
atrix of <i>S</i>	17	I_{xz}	0	0	0	0	0.9735	0	0	0	0	0	0	0	-0.1928	0.0136	0.3815	-0.1181	-0.1477	0.7856	0.2835	-0.0207	-0.0246	0.0245	0.0428	0.2835
lues of ma	16	I_{xy}	0	0	0	1.0627	0	0	0	0	0	0	0	0	0.4367	0.013	-0.5606	-0.0448	-0.3055	0.4957	-0.2435	-0.0547	-0.0902	-0.1158	-0.1027	-0.2435
: The va	15	I_{xx}	0	0	1.3755	0	0	0	0	0	0	0	0	0	-0.077	0.0411	0.1676	-0.0172	0.238	-0.0035	-0.0663	-0.5192	-0.5067	-0.4304	-0.4325	-0.0663
Table D.2	13	mP_y	0	1.6202	0	0	0	0	0	0	0	0	0	0	0.4319	0.0052	-0.3267	-0.0017	0.2506	-0.0885	0.5584	-0.0481	-0.0415	-0.0612	-0.0681	0.5584
-	12	mP_x	1.8091	0	0	0	0	0	0	0	0	0	0	0	0.0662	0.528	-0.0254	-0.4229	-0.0355	-0.0924	-0.0153	-0.3428	-0.3016	0.405	0.3932	-0.0153
	5000	GIIID	mP_x	mP_y	I_{xx}	I_{xy}	I_{xz}	$I_y z$	I_{zz}	f_1	f_2	f_3	f_4	I_m	mP_x	mP_y	I_{xx}	I_{xy}	I_{xz}	I_{yz}	I_{zz}	f_1	f_2	f_3	f_4	I_m
	Ţ	1	12	13	15	16	17	19	20	61	62	63	64	65	12	13	15	16	17	19	20	61	62	63	64	65
	Matriv	VIINPIN						ŭ	2											11	>					

D.3 Result

Based on the introduction of Section 3.2.1 and 3.2.2, the results are shown in Table D.3. The table clearly shows the linear relationship between the parameters. The non-zero values, highlighted in yellow and red, indicate that the corresponded parameter are linear with the others. This means that the information matrix created by these parameter pairs has not full rank, and results in unrecognizable parameters for the identification. This problem can be solved by select the parameters that could create the full rank information matrix, which is the base set of the dynamic parameters, called base parameters. These parameters are shown in Table 3.1.

Link	It	ems	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6
	1	m	1	1	1	1	1	1
	2	mP_x	1	1	1	1	1	1
	3	mP_y	1	1	1	1	1	1
	4	mP_z	1	1	1	1	1	1
1	5	I_{xx}	1	1	1	1	1	1
1	6	I_{xy}	1	1	1	1	1	1
	7	I_{xz}	1	1	1	1	1	1
	8	I_{yy}	1	1	1	1	1	1
	9	I_{yz}	1	1	1	1	1	1
	10	Izz	1	1	1	1	1	1
	11	m	1	1	1	1	1	1
	12	mP_x	0	0	1	1	1	1
	13	mP_y	0	0	1	1	1	1
	14	mP_z	1	1	1	1	1	1
2	15	I_{xx}	0	0	1	1	1	1
-	16	I_{xy}	0	0	1	1	1	1
	17	I_{xz}	0	0	1	1	1	1
	18	I_{yy}	1	1	1	1	1	1
	19	I_{yz}	0	0	1	1	1	1
	20	I_{zz}	1	1	1	1	1	1
	21	m	1	1	1	1	1	1
	22	mP_x	0	0	0	1	1	1
	23	mP_y	0	0	0	1	1	1
	24	mP_z	1	1	1	1	1	1
3	25	I_{xx}	0	0	0	1	1	1
0	26	I_{xy}	0	0	0	1	1	1
	27	I_{xz}	0	0	0	1	1	1
	28	I_{yy}	1	1	1	1	1	1
	29	I_{yz}	0	0	0	1	1	1
	30	I_{zz}	1	0	0	1	1	1
	31	m	1	1	1	1	1	1
	32	mP_x	0	0	0	0	1	1
	33	mP_y	0	0	0	0	1	1
	34	mP_z	1	1	1	1	1	1
4	35	I_{xx}	0	0	0	0	1	1
4	36	I_{xy}	0	0	0	0	1	1
	37	I_{xz}	0	0	0	0	1	1
	38	I_{yy}	1	1	1	1	1	1
	39	I_{yz}	0	0	0	0	1	1
	40	I_{zz}	0	0	0	0	1	1
	41	$\mid m$	1	1	1	1	1	1
	42	mP_x	0	0	0	0	0	1
	43	mP_y	0	0	0	0	0	1
	44	mP_z	1	1	1	1	1	1
5	45	I_{xx}	0	0	0	0	0	1
0	46	I_{xy}	0	0	0	0	0	1
	47	Ixz	0	0	0	0	0	1
	48	I_{yy}	1	1	1	1	1	1
	49	I_{yz}	0	0	0	0	0	1
	50	I_{zz}	0	0	0	0	0	1
	51	m	1	1	1	1	1	1
	52	mP_x	0	0	0	0	0	0
	53	mP_y	0	0	0	0	0	0
	54	mP_z	1	1	1	1	1	1
6	55	Ixx	0	0	0	0	0	0
v	56	I_{xy}	0	0	0	0	0	0
	57	I_{xz}	0	0	0	0	0	0
	58	I_{yy}	1	1	1	1	1	1
	59	I_{yz}	0	0	0	0	0	0
	60	I_{zz}	0	0	0	0	0	0

Table D.3: The merged decomposition result

Appendix E

The MATLAB Code of Parameters Selection Analysis

The code shown in this appendix is the main part of MATLAB code used to calculate the results of the base parameters of the dynamic model.

```
%% QR decomposition
1
   QR\_Zeros\_temp = zeros(size(K,2), 6+1+7); \% size predefinition
2
3
   for i = 1:6
4
       [\neg, R] = qr(K(:,:,i), 0); \% QR decomposition
5
      % Select the upper triangular matrix in the R matrix as R1
6
      % Select the diagonal elements in R1
7
      % Then select all zero values, or values close to zero and very different ...
8
           from
      \% other values (here, the value less than 0.0001 is considered as zero)
9
      % Find the location of these values and record (the corresponding position is
10
      % assigned the value zero)
11
      % The parameters corresponded to these positions are unrecognizable or are
12
      % linearized with other parameters
13
      % -----
14
      % QR_Zeros_temp is the result aggregation matrix.
15
      % Each line corresponds to one parameter:
16
17
       %
             - Each 10 rows corresponds to a parameter set in one axis;
18
      %
             - In each set, in order, it has (1 mass, 2 centroid moment X, 3 ...
           centroid
      %
               moment Y, 4 centroid moment Z, 5 moment of inertia XX, 6 moment of
19
      %
               inertia XY, 7 moment of inertia XZ, 8 moment of inertia YY , 9 moment
20
               of inertia YZ,\ 10 moment of inertia ZZ)\,.
       %
21
      % Columns 1 to 6 correspond to the parameter correlation of the 1st to 6th
22
      % axes, respectively.
23
      % Columns 7 & 8 are statistical columns. Used to view the relevance of each
24
      % parameter globally.
25
       QR\_Zeros\_temp(:, i) = logical(abs(diag(R)) \le 0.0001) .* (1:1:size(K, 2))';
26
       QR\_Zeros\_temp(:, i+7) = logical(QR\_Zeros\_temp(:, i) == 0) .* (1:1:size(K, ...)
27
           2))';
28
   end
29
  % Product of array elements in rows
30
  QR\_Zeros\_temp(:, 7) = prod(QR\_Zeros\_temp(:, 1:6), 2);
31
  % the no-zero value will be replaced by its row number
32
   QR\_Zeros\_temp(:, 7) = logical(QR\_Zeros\_temp(:,7) \neq 0) .* (1:1:size(K,2))';
33
   QR\_Zeros\_temp(:, 14) = logical(QR\_Zeros\_temp(:,7) == 0) .* (1:1:size(K,2))';
34
35
  % Positive order display, which is the last 7 columns of QR_Zeros
36
37
   QR\_Zeros = QR\_Zeros\_temp(:, 8:end);
```

```
% Negative order display, which is the first 7 columns of QR_Zeros
38
    QR Zeros I = QR Zeros temp(:, 1:7);
39
40
   %% SVD decomposition A
41
   KFs_CndNum_A = zeros(6, 8);
42
    for k = 1: size (KFs_CndNum_A, 2)
43
         for i = 1:6
44
               switch~k~\% create KFs matrix
45
                    \% The following analysis is based on the combined QR results for <math display="inline">\ldots
46
                         comparison only
                    case 1 % Independent analysis of parameter sets for each axis - ...
47
                         QR_Zeros(:,end)
                         \mathrm{KFs} = [\mathrm{K}(:\,,~\mathrm{QR\_Zeros}\,(:\,,\mathrm{end}\,) \geq ( i * 10 - 9 ) & ( \ldots
48
                              QR_Zeros(:,end) \le i * 10, i), Kf(:,1:5,i);
49
50
                    case 2 % 1-2, 2-3, 3-4 4-5, 5-6, 6-6 axis group analysis. (Note: ...
                         For calculation convenience, the calculated value range in the ...
                         6th axis is 51\neg70)
51
                         KFs = [K(:, QR\_Zeros(:,end) \ge (i * 10 - 9) \& (...
                              QR_Zeros(:,end) \le (i + 1) * 10, i), Kf(:,1:5,i);
52
                    case 3 \% 1\neg 3 2\neg 3 3 4\neg 65\neg 66\neg6 axis group analysis
53
                          if \quad i \ \le \ 3
54
                               KFs = [K(:, QR\_Zeros(:,end) \ge (i * 10 - 9) \& (...
55
                                    QR\_Zeros(:,end) \le 30), i), Kf(:,1:5,i)];
56
                          else
                               KFs = [K(:, QR\_Zeros(:,end) \ge (i * 10 - 9) \& (...
57
                                    QR\_Zeros(:,end) \le 60), i), Kf(:,1:5,i)];
                         end
58
59
                    case 4 % 1¬6 2¬6 3¬6 4¬65¬66¬6 axis group analysis
60
                         \mathrm{KFs} = \ [\mathrm{K}(:\,,\ \mathrm{QR\_Zeros}\,(:\,,\mathrm{end}\,) \ \geq \ (\ i \ * \ 10 \ - \ 9 \ ) \ \& \ (\ \ldots
61
                               QR_Zeros(:,end) \leq 60), i), Kf(:,1:5,i)];
62
63
                    % The following is an analysis based on the QR results of each ...
                         axis (theoretically based on this)
64
                    case 5 % Independent analysis of parameter sets for each axis - ...
                         QR\_Zeros(:, i+7)
                         KFs = [K(:, QR\_Zeros(:, i) \ge (i * 10 - 9) \& (QR\_Zeros(:, i) \le ... 
65
                               i * 10 ), i ), Kf(:,1:5,i)];
66
                    case 6 % 1¬2 2¬3 3¬4 4¬55¬66¬6 axis group analysis
(Note: For ...
67
                         calculation convenience, the calculated value range in the 6th ...
                         axis is 51\neg70)
                         \mathrm{KFs} \ = \ \left[\mathrm{K}\left(: \ , \ \mathrm{QR\_Zeros}\left(: \ , \ i \ \right) \ \ge \ \left( \ \ i \ \ \ast \ \ 10 \ \ - \ \ 9 \ \ \right) \ \& \ \left( \ \ \mathrm{QR\_Zeros}\left(: \ , \ i \ \right) \ \le \ \ldots \right) \ = \ \ldots \right)
68
                               (i + 1) * 10), i), Kf(:,1:5,i)];
69
                    case 7 % 1¬3 2¬3 3 4¬65¬66¬6 axis group analysis
70
                          if i \leq 3
71
                               \mathrm{KFs} \; = \; \left[\mathrm{K}\left(: \; , \; \; \mathrm{QR\_Zeros}\left(: \; , \; i \;\right) \; \ge \; \left( \; \; i \; * \; 10 \; - \; 9 \; \right) \; \& \; \left( \; \; \ldots \right. \right. \right.
72
                                    QR\_Zeros(:,i) \le 30), i), Kf(:,1:5,i)];
                          else
73
                               KFs \;=\; \left[ K \left(:\,, \;\; QR\_Zeros \left(:\,,\,i\,\right) \;\geq\; \left( \;\; i \;\ast\; 10 \;\;\text{-}\;\; 9 \;\;\right) \;\&\; \left( \;\; \dots \right. \right. \right.
74
                                    QR\_Zeros(:,i) \le 60), i), Kf(:,1:5,i)];
                         end
75
76
77
                    case 8 % 1¬6 2¬6 3¬6 4¬65¬66¬6 axis group analysis
78
                         KFs = [K(:, QR\_Zeros(:, i) \ge (i * 10 - 9) \& (QR\_Zeros(:, i) \le ...
                              60 ), i ), Kf(:,1:5,i)];
79
               end
80
               [KFs\_CndNum\_A(i, k), S, V] = SVD\_CndNum(KFs); \% go to the ...
81
                    sub-function
```

82	
83	% matrix condition number comparison
84	% If the condition number is too large (>100), save the corresponding SVD
85	% matrix (variable name is automatically generated)
86	%
87	% The principle of it is that the differences between the maximum value and
88	% the minimum value on the diagonal of the S matrix are too large (3 orders
89	% of magnitude here)
90	% Then in the V matrix, look for the column of data corresponding to the minimum
91	% value (generally the last column, because the result of the decomposition, the
92	% diagonal elements of the S matrix are arranged from large to small, so the
93	% minimum value is in the last column)
94 95	% In the last column of the V matrix, find a value such that the value is $%$ significantly larger than the other values (that is, the distance is
	very
96	% long with all values are taken as absolute values), it indicates that the
97	% parameter corresponding to this row needs to be eliminated (it will have
98	% a great impact on the identification results)
99	% [The above steps cannot be written in MATLAB with code]
100	if KFs_CndNum_A(i, k) ≥ 100
101	eval(['J',num2str(k),num2str(i),'S = S;']);
102	eval(['J',num2str(k),num2str(i),'V=V;']);
103	end
104	end
105 <mark>e</mark> 1	ad

Appendix F

The RMSD Values

This appendix shows the RMSD values listed in tables with the related statistic data and some figures. It should be noted that the values and the plots demonstrated in this appendix are obtained without the data coming from the low speed; except for the values in the Table F.1. The analyses related with RMSD are presented in Section 5.1.2, 5.1.3 and 5.1.4.

F.1 The Tables of RMSD

The tables listed in this section show the RMSD values of the verification. The values highlighted in yellow are grater than 10% except the standard deviation values. Furthermore, the statistical results of verification are attached with tables. The statistics data includes the mean, maximum and minimum values, the differences between the maximum and minimum values, the differences between the standard deviation.

								<u>,</u>												<u>,</u>				_															~				_	_		_		-	-
eviation	All Tests		0,000063	505000.0			0.0017345				0.0016631	1750100.0			0 0010447				0002453				CT + 00000 0	C/T6000'0			0.0021458	00+1000-0			0.0049555				0.0116144				0.0030320				0 0043051				0.0023419		
Standard D	Test	02837	09782	012197	08471	016809	017897	016853	016520	011776	011393	017857	10497	011616	011009	010808	07617	021032	016166	014395	020013	08734	08437	07492	08172	018422	30826	35975	32327	050740	150277	148961	43550	14328	53771	077661	085484	35405	029239	026861	028575	45620	942413	942335	40235	127077	20663	024888	020256
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0
Diff of	Start/End Cycl	0.00721	0.09263	0.11406	0.07530	0.16087	0.17716	0.16299	0.16497	0.02830	0.00845	0.01271	0.02050	0.07047	0.06335	0.06700	0.04080	0.05863	0.04385	0.05014	0.06156	0.00161	0.00890	0.00617	0.00434	0.05165	0.09695	0.11774	0.09509	0.17837	0.16195	0.16254	0.14256	0.11651	0.13837	0.10250	0.03274	0.23612	0.20229	0.18895	0.19823	0.26748	0.18361	0.26005	0.24271	0.14689	0.11075	0.13331	0.10395
NIN/X	AITests		13667	10007110							30001 0	07071.0			0.09648				11001				0.1100	90TC0.0			12707	76/07-0			0 18755				0.41378				0.26876				0.25682				0.15258		
Diff of MA	Test	.02353	.09501	.12120	.08537	.16598	.17579	.16135	.16420	.05878	.07410	.11274	.04656	.09479	.08668	.09207	.06028	.07910	.06981	.06735	.08466	.04033	.04094	.03475	.03790	.05975	.10889	.12350	.11363	.17562	.16268	.16536	.14901	.29605	.24475	.24753	.27023	.26876	.22960	.21229	.22711	.24620	.19790	.23952	.23480	.14708	.11740	.13350	.11847
E	I Tests	0	0 000	0	0	0	DIS EKB	2	0	0	0 0020	200	0	0	DE 264	0	0	0	0 10201	0	0	0	0 01000	0	0	0	16017		0	0	15022	•	0	0	13958	•	0	<u>•</u>	01010	<u>•</u>	0		07906	<u> </u>	0	0	09.765	<u>_</u>	0
Maximu	est A	5366	5346	5429	5463	5 568	5468	5505	5476	7677	7585	7983	7373	6264	6196	6252	6054	0721	0522	0338	0424	8711	8772	8782	8810	5 583	5993	5749	6012	4896	4992	5022	4738	2 004	0834	2143	3958	7010	6683	6655	6646	7795	7906	7839	7755	9702	9701	9659	9765
	Tests 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	5.41 0.1	10	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	1.0	0.1	0.1	182 0.1	0.1	0.1	0.0	176 0.0	8	0.0	0.0	876 0.0	0.0	0.0	0.0	1275 0.0	0:0	0.0
Minimum	st All	240	338 0.07	71	397	544	507	517	577	225	0.23 0.07	283	029	570	559 0.0 ^r	576	589	373	788	542	541	360	113 0.00	1/1	176	552	252	5	193	280	553 0.13	538	542	150	182 0.05	137	186	126	149 0.0	242	136	376	342 0.05	961	93.4	275	562 0.06	370	508
_	ts Tes	0.052	6.048	0.047	0.045	0.046	0.045	0.046	0.045	0.072	0.070	0.070	0.070	0.056	6 0.056	0.056	0.056	360.0	0.097	0.096	60.0	0.083	0.084	0.087	0.08/	0.146	0.142	0.135	0.141	0.122	0.125	0.12	0.125	0.082	0.081	0.091	0.101	0.051	0.051	0.052	0.051	0.058	o.063	0.055	0.055	0.082	0.085	0.083	0.086
Mean	AITes		0.0631	1000	-		0.053/	2	-		0 0 073/	200			0.0581	-			0100			_	o vor c	1000	-		0.1550		-	_	0 1446			-	0.1036	_			0.0535				0.0746	:	-		0.0945		
	Test	0.05285	0.05286	0.05315	0.05373	0.05391	0.05305	0.05365	0.05332	0.0746	0.07270	0.07285	0.07192	0.05822	0.05804	0.05833	0.05807	0.10452	0.10217	0.10125	0.10125	0.08541	0.08546	0.08636	0.08605	0.15405	0.15634	0.15429	0.15542	0.14470	0.14586	0.14576	0.14330	0.1032	0.09335	0.10251	0.1154/	0.05355	0.05331	0.05397	0.05328	0.07447	0.07506	0.07511	0.07374	0.09490	0.09511	0.09485	0:09503
	C24	0.05267	0.05346	0.05364	0.05405	0.05410	0.05336	0.05281	0.05321	0.07603	0.07307	0.07246	0.07238	0.05874	0.05748	0.05860	0.05689	0.10721	0.10522	0.10338	0.10379	0.08632	0.08567	0.08689	0.08726	0.15435	0.15644	0.15728	0.15711	0.14773	0.14794	0.14827	0.14613	0.10280	0.09408	0.09878	0.13566	0.05292	0.05361	0.05384	0.05298	0.07725	0.07865	0.07839	0.07648	0.09675	0.09548	0.09462	0.09551
	C33	0.05246	0.05323	0.05429	0.05398	0.05312	0.05379	0.05399	0.05337	0.07496	0.07316	0.07198	0.07244	0.05832	0.05815	0.05794	0.05769	0.10524	0.10351	0.10074	0.10424	0.08559	0.08739	0.08757	0.08810	0.15539	0.15487	0.15676	0.15451	0.14779	0.14842	0.14607	0.14560	0.10166	0.09462	0.09730	0.13958	0.05267	0.05397	0.05424	0.05350	0.07765	0.07892	0.07766	0.07549	0.09702	0.09542	0.09380	0.09590
	C22	0.05278	0.05326	0.05383	0.05383	0.05419	0.05355	0.05365	0.05287	0.07624	0.07233	0.07317	0.07044	0.05865	0.05845	0.05772	0.05752	0.10666	0.10347	0.10259	0.10262	0.08711	0.08772	0.08681	0.08600	0.15299	0.15713	0.15318	0.15745	0.14687	0.14992	0.14849	0.14447	0.10059	0.08993	0.10120	0.10784	0.05369	0.05381	0.05354	0.05358	0.07795	0.07855	0.07798	0.07575	0.09690	0.09603	0.09460	0.09443
	C21	0.05250	0.05277	0.05385	0.05409	0.05308	0.05315	0.05368	0.05401	0.07438	0.07206	0.07256	0.07370	0.05780	0.05659	0.05687	0.05806	0.10622	0.10307	0.10150	0.10347	0.08635	0.08561	0.08709	0.08660	0.15530	0.15662	0.15480	0.15693	0.14514	0.14861	0.14973	0.14612	0.11006	0.09145	0.09709	0.10186	0.05317	0.05272	0.05486	0.05254	0.07760	0.07899	0.07798	0.07609	0.09526	0.09502	0.09370	0.09535
	C20	0.05305	0.05326	0.05413	0.05444	0.05387	0.05195	0.05361	0.05339	0.07422	0.07405	0.07465	0.07106	0.05744	0.05781	0.05676	0.05744	0.10717	0.10328	0.10143	0.10205	0.08615	0.08558	0.08516	0.08706	0.15437	0.15679	0.15596	0.15663	0.14793	0.14774	0.14797	0.14449	0.10370	0.10068	0.10102	0.11022	0.05317	0.05329	0.05344	0.05224	0.07767	0.07816	0.07710	0.07614	0.09610	0.09552	0.09590	0.09525
	C19	0.05283	0.05262	0.05391	0.05367	0.05351	0.05312	0.05312	0.05389	0.07442	0.07277	0.07170	0.07140	0.05716	0.05718	0.05885	0.05781	0.10617	0.10385	0.10221	0.10159	0.08653	0.08514	0.08632	0.08669	0.15251	0.15604	0.15386	0.15621	0.14643	0.14886	0.14896	0.14628	0.11546	0.09723	0.09598	0.12002	0.05371	0.05316	0.05287	0.05281	0.07703	0.07778	0.07795	0.07755	60960.0	0.09574	0.09507	0.09403
	C18	0.05310	0.05314	0.05387	0.05442	0.05423	0.05296	0.05334	0.05378	0.07628	0.07348	0.07458	0.07118	0.05855	0.05876	0.05854	0.05748	0.10490	0.10288	0.10222	0.10177	0.08641	0.08656	0.08610	0.08694	0.15388	0.15788	0.15463	0.15639	0.14896	0.14854	0.14911	0.14346	0.11059	0.09706	0.10415	0.12006	0.05354	0.05315	0.05360	0.05136	0.07781	0.07883	0.07744	0.07687	0.09528	0.09559	0.09583	0.09554
	C17	0.05285	0.05295	0.05387	0.05344	0.05409	0.05284	0.05366	0.05323	0.07478	0.07319	0.07271	0.07088	0.05840	0.05718	0.05781	0.05781	0.10558	0.10426	0.10197	0.10217	0.08554	0.08512	0.08707	0.08641	0.15522	0.15559	0.15520	0.15686	0.14639	0.14877	0.14837	0.14539	0.11448	0.09704	0.09148	0.11242	0.05211	0.05272	0.05358	0.05260	0.07590	0.07906	0.07694	0.07551	0.09541	0.09514	0.09483	0.09639
	C16	0.05263	0.05321	0.05351	0.05378	0.05344	0.05333	0.05429	0.05282	0.07475	0.07188	0.07211	0.07373	0.05828	0.05773	0.05904	0.05709	0.10545	0.10243	0.10286	0.10299	0.08494	0.08572	0.08734	0.08579	0.15518	0.15694	0.15572	0.15889	0.14670	0.14980	0.15022	0.14614	0.08979	0.09331	0.10427	0.10961	0.05233	0.05196	0.05377	0.05407	0.07656	0.07797	0.07781	0.07661	0.09594	0.09423	0.09552	0.09452
	C15	0.05 289	0.05316	0.05355	0.05 366	0.05362	0.05 330	0.05324	0.05357	0.07622	0.07272	0.07 229	0.07115	0.05748	0.05742	0.05862	0.05 775	0.10640	0.10284	0.10218	0.10261	0.08547	0.08551	0.08604	0.08510	0.15472	0.15808	0.15533	0.16012	0.14722	0.14817	0.14754	0.14738	0.11312	97790.0	0.09803	0.12084	0.05 147	0.05222	0.05362	0.05 215	0.07674	0.07739	107 701	0.07661	209 507	0.09529	0.09575	605 600
	C14	05296 (.05314 0	0.5305 (05381 0	0.5388 (0.5306 (05421 0	05325 (0.7601 (07344 (.07160 (07220 0	05706 (05731 0	05861 (.05846 0	10558	10290	.10170 (10112 (08553 (.08446 0	.08782 (.08578 (15331 (15607 (15552 (.15527 (.14675 (.14726 0	.14840 (.14540 (.11743 (00500	.09923 (11399 (05244 0	.05169 (05327 (05314 0	07748 0	0.7783 0	07701 0	07681 0	09530	09540	.09371 (09474 0
	C13	05366 0	05322 0	05292 0	05363 0	0 5393 0	05331 0	05354 0	05364 0	0.7677 0	0 7090	.07166 0	07225 0	05794 0	0.5698 0	05840 0	05901 0	10603	10064 0	10230	10229	.08612 0	.08436 (.08631 (08624 0	15414 0	15637 0	15438 0	15530 0	14751 0	.14840 0	.14661 0	14529	12004 0	.09524 (.11266	.11016 0	.05240 0	.05182 0	05373 0	05215 0	07642 0	07681 0	0.7708	07575 0	09562 0	09610	0 69560	09471 0
Cycles	C12	.052.40 0	.05307 0	.05271 0	05363 0	.05406 0	.05334 0	.05358 0	05330 0	07333 0	07239 0	07251 0	07317 0	.05802 0	.05743 0	.05786 0	.05786 0	.10465 0	.102.25 0	.102.76 0	10282 0	.08521 0	.08532 0	.08606 0	.08523 0	.15547 0	15561 0	15336 0	.15522 0	.14617 0	.147.49 0	.14770 0	.14527 0	10874 0	0 05739	10195 0	.11593 0	.05237 0	.05149 0	.053.05 0	.05318 0	07720 0	07598 0	.07736 0	07574 0	.09417 0	.09428 0	.09610 0	09541 0
	C11	05298 0	05329 0	05311 0	05347 0	05441 0	05359 0	05490 0	05307 0	07418 0	07254 0	07277 0	07184 0	05702 0	05824 0	05772 0	05891 0	105.63 0	103.09 0	10115 0	10094 0	08536 0	08555 0	08547 0	08689	15368 0	15832 0	15505 0	15375 0	14633 0	14672 0	14615 0	14574 0	09902 0	09459 0	10036 0	11746 0	05313 0	05287 0	05242 0	05173 0	07625 0	07616 0	07632 0	07490 0	09452 0	09471 0	09582 0	09541 0
	C10	052.89 0	05336 0	05326 0	05352 0	05423 0	05192 0	05455 0	05317 0	07514 0	072.62 0	07105 0	07181 0	05768 0	05773 0	05908 0	05758 0	10493 0	10139 0	10197 0	10251 0	08422 0	08543 0	08700 0	08499 0	15340 0	15683 0	15702 0	15356 0	14577 0	14724 0	14663 0	14323 0	08829 0	08660 0	10643 0	12244 0	05316 0	05197 0	05283 0	05203 0	07449 0	07538 0	07624 0	07403 0	09479 0	095760	09623 0	09516 0
	8	0.52.94 0.	0 023320	02330	02350	0.054.86	0 0	05486 0	0 0 0	07403 0	0 273.04 0	07285 0	07032 0	0 0	0.05726 0	0.5804 0	05780 0	10517 0	10110 0	10061 0	10190 0	385 23 0	38413 0	38611 0	0 00	15422 0	15602 0	15515 0	15407 0	14614 0	14743 0	14627 0	14457 0	38680 0	9366 0	0 99601	108.85 0	0 0 0	00175 0	0 0	0.52.69 0	07535 0	07570 0	07622 0	07468 0	9654 0	9538 0	39492 0	0 95.59
	8	52.69 0.0	5333 0.0	5314 0.0	5406 0.0	5463 0.0	5385 0.0	5475 0.0	63 99 0.0	7420 0.0	7178 0.0	7231 0/	7029 0/	5670 0.0	5753 0.0	5856 0.0	5802 0.0	03.60 0.2	03.40 0.5	9934 0.	00.28 0.	8462 0.0	8629 0.0	8633 0.0	8618 0.0	52.83 0.3	5812 0.	5400 0.2	5458 0.3	4331 0.	4536 0.3	4640 0.3	43.36 0.	8450 0.0	9047 0.0	9693 0.3	0608 0.	5383 0.0	5264 0.0	5414 0.0	5274 0.0	7509 0.0	7454 0.0	7617 0.0	7371 0/	9471 0.0	9701 0/	9497 0.0	9538 0.0
		5317 0.0	5314 0.0	53.43 0.0	5398 0.0	5534 0.0	5392 0.0	5433 0.0	5476 0.0	7388 0.0	7253 0.0	7158 0.0	72.78 0.0	5765 0.0	5798 0.0	5833 0.0	5835 0.0	0.1	0.168 0.1	0.0 0.0	0.09	33.60 0.0	34.65 0.0	3623 0.0	3476 0.0	5458 0.1	5656 0.1	53.73 0.1	5435 0.1	1496 0.1	1557 0.1	1415 0.1	1238 0.1	90.59 0.0	3741 0.0	0.0 8686	0.1	5350 0.0	5181 0.0	53.55 0.0	5283 0.0	7362 0.0	73.27 0.0	7480 0.0	72.84 0.0	9532 0.0	9609	95.50 0.0	9516 0.0
	9	319 0.0	332 0.0	311 0.0	379 0.0	478 0.0	387 0.0	467 0.0	465 0.0	364 0.03	585 0.0	480 0.0	207 0.0	769 0.0	795 0.0	799 0.0	721 0.0	314 0.10	001 0.10	997 0.10	997 0.10	375 0.00	526 0.00	477 0.0	5.67 0.00	387 0.1	763 0.1	339 0.1	692 0.1	627 0.1	646 0.14	323 0.1	303 0.14	028 0.09	2.45 0.00	893 0.0	941 0.10	126 0.0	248 0.0	254 0.0	156 0.0	282 0.0	253 0.0	396 0.0	123 0.0	368 0.0	520 0.09	654 0.09	453 0.0
	8	314 0.05	246 0.05	293 0.05	12.4 0.05	18.7 0.05	139 0.05	139 0.05	t0.4 0.05	544 0.07	110 0.07	175 0.07	293 0.07	366 0.05	359 0.05	340 0.05	35.3 0.05	166 0.10	153 0.10	00.0 200	883 0.09	145 0.08	520 0.08	548 0.08	176 0.08	583 0.15	523 0.15	145 0.15	115 0.15	215 0.14	100 0.14	508 0.14	111 0.14	910 0.09	90.0 7.66	137 0.09	787 0.10	320 0.05	308 0.05	33.5 0.05	198 0.05	253 0.07	388 0.07	362 0.07	559 0.07	18.8 0.09	528 0.09	120 0.09	562 0.09
	5	01 0.053	5.4 0.052	69 0.052	63 0.054	71 0.054	47 0.054	66 0.054	65 0.054	74 0.075	97 0.071	89 0.071	38 0.072	19 0.058	9.4 0.058	84 0.058	61 0.058	07 0.101	96 0.101	2.5 0.100	02 0.098	2.9 0.084	90 0.085	97 0.085	71 0.084	82 0.155	04 0.156	94 0.154	90 0.154	65 0.142	33 0.142	47 0.146	73 0.141	23 0.085	19 0.085	06 0.091	39 0.117	22 0.053	17 0.053	45 0.053	03 0.051	34 0.072	59 0.065	94 0.075	63 0.070	60.0 89	49 0.096	59 0.094	360.0 68
	2	55 0.053	4 0.052	0.052	3 0.054	88 0.054	88 0.054	0.054	88 0.053	5 0.073	10.071	3 0.072	0.070	10.058	95 0.057	0.056	0.058	0.101	0.100	101.0 0.	0.100	88 0.085	4 0.084	1 0.086	3 0.085	72 0.155	3 0.157	9 0.153	0.155	57 0.141	52 0.143	68 0.144	0.141	560.0 6	12 0.087	6 0.120	2 0.114	1 0.052	2 0.053	0.052	0.052	10.071	13 0.069	2 0.070	4 0.070	960.0 86	7 0.095	12 0.096	960.0 01
	U	7 0.0526	6 0.0525	2 0.0529	1 0.0542	0.0556	8 0.0546	4 0.0550	8 0.0535	1 0.0722	7 0.0702	3 0.0708	8 0.0714	9 0.0594	0.0595	7 0.0575	3 0.0585	1 0.1026	0.1001	7 0.1012	3860.0 5	6 0.0855	9 0.0857	2 0.0857	1 0.0865	6 0.1547	2 0.1595	0.1574	6 0.1573	0.1416	3 0.1406	2 0.1425	4 0.1390	3 0.1123	7 0.0815	3 0.0987	6 0.1122	1 0.0547	4 0.0545	7 0.0535	8 0.0544	4 0.0695	0.0684	2690.0 8	5 0.0697	1 0.0955	1 0.0960	10.0962	5 0.0963
	8	0.0526.	0.0526	0.0529	0.0537.	0.0547	0.0526	7 0.0535-	0.0543	0.0736.	0.0742	0.0798	0.0726	0.0595	0.05934	0.0588.	0.0587.	0.1023.	0.1002	0.1000	0.0986	0.0845	0.0849	0.0861	0.0862.	0.1557	0.1584	0.1547	0.1567	0.1402	0.1384.	0.1394.	0.1380	0.1185	0.0870	0.1214	0.1182	0.0520.	1 0.0527	0.0534.	0.0540.	0.0639	0.0676	0.0679	0.0667.	0.0933.	0.0957	2960 [°] .0	0.0976
	5	0.0532)	0.04835	0.04771	0.04993	0.04644	0.04507	0.0461)	0.04575	0.07257	0.07331	0.07375	0.07342	0.06264	0.0619t	0.06252	0.06054	0.09875	0.09785	0.09642	0.09541	0.08555	0.08471	0.08585	0.08572	0.14652	0.14252	0.13804	0.14193	0.12280	0.12553	0.12538	0.12542	0.1169	0.10834	0.1142	0.1193	0.0701(0.06685	0.06655	0.0664t	0.05874	0.06342	0.05961	0.05934	0.08275	0.08562	0.0837(0.08605
Tect		F	12 T 10	цоя Кор	T4	F	12 0f 2	Щ qoa	T4	11	12 T 10	Ц Корі	T4	F	12 0f 3	Ц Кор	T4	F	12 T 10	р р	T4	F	12 04 5	Ц Кор	T4	F	12 T 10	р Чоя	74 1	F	12 0f 3	Щ Чоя	T4	F	12 t 100	ея Кой	T4	F	101	ц Кор	T4	Ē	12 T 10	Ш Чоя	14	Ę	12 pot 5	ря Кол	T4
	- 1				τu	JOI				l I			Z 1	Joir							£ 11	loi							t u	loi							s tu	lot				i i			9 1 U	lol			

Table F.1: The relative RMSD values

Table F.2: The relative RMSD values calculated without low velocity data

	Tests	-	-	-	-	-	-	-	-	-		د ا	ycles		-	-	-	-	_		-			Mean		Minimum	Maxim	mnu	Dift of MAX/N		fof Sta	andard Deviati	5
- 11	-	5	8	ن ۳	4	5 S	9		හ න	C10	CII	C12	C13	G4	CIS	C16	17 C1	8 C15	C20	C21	C22	C23	C24 T	est All To	sts Tes	: All Tests	Test	All Tests	Test All T	Tests StartyE	n cycle Te	st AIIT	ests
	T1 0.0	05486 0	0.05274 0.0	05278 0.05	5329 0.02	5346 0.05	5361 0.05	5364 0.05	314 0.053	58 0.0532	28 0.0536.	1 0.05296	0.05428	0.05361	0.05344 0	05329 0.01	5334 0.05	372 0.053	43 0.05368	0.05318	0.05342	0.05316 C	0.05339 0.0	5345	0.052	74	0.05486	0	03870	0.0	2683 0.000	04411	
	T2 0.0	04980 0	0.05323 0.0	05276 0.05.	5296 0.01	5283 0.05	376 0.05	5374 0.05	401 0.053	81 0.0541	11 0.0539	6 0.05378	0.05403	0.05401	0.05390 0	05405 0.01	5365 0.05;	387 0.053	31 0.05397	0.05354	0.05401	0.05403 C	0.05415 0.0	5355 0.05	0.045	80 0.04922	0.05415	0.05486	0.10	0.0	3737 0.000	8975 0.000	8045
- ко	T3 0.0	04922 0	0.05317 0.0	05317 0.05.	5298 0.01	5330 0.05	359 0.05	5387 0.05	371 0.053	96 0.0538	38 0.0535.	7 0.05341	0.05366	0.05357	0.05394 0	05376 0.01	5435 0.05	120 0.054	45 0.05445	0.05418	0.05421	0.05484 C	0.05412 0.0	5365	0.045	22	0.05484	0	.10257	0.0	9967 0.001	0501	
ſ	T4 0.0	05170 0	0.05320 0.0	05415 0.05	5449 0.05	5426 0.05	399 0.05	5412 0.05	429 0.053	90 0.0537	74 0.0537.	7 0.05384	0.05394	0.05402	0.05399 0	05416 0.05	5372 0.054	185 0.054	07 0.05486	0.05447	0.05431	0.05425 C	0.05447 0.0	5402	0.051	70	0.05486	0	1.05769	0.0	5357 0.000	06143	
2	T1 0.0	04538 0	0.05122 0.C	05143 0.05	5079 0.05	5145 0.05	\$146 0.05	5185 0.05	111 0.051	80 0.051C	0.0514	9 0.05122	0.05119	0.05122	0.05102 0	05076 0.05	5110 0.05:	143 0.050	72 0.05114	0.05056	0.05163	0.05055 C	0.05135 0.0	5095	0.045	38	0.05185	0	12471	0.1	3142 0.001	12372	
0 f 3	T2 0.0	04504 0	0.05036 0.0	05253 0.05.	5230 0.05	5219 0.05.	171 0.05	5249 0.05	215 0.052.	21 0.0501	19 0.0524.	1 0.05198	0.05179	0.05167	0.05197 0.	05213 0.05	5165 0.05	167 0.051	87 0.05049	0.05198	0.05230	0.05247 C	0.05213 0.0	5157 0.05	0.045	04 0.0440	0.05253	0 OEDED	14268	0.1	5750 0.001	15325 0.001	100
кор	T3 0.0	04449 0	0.04910 0.C	05146 0.05.	5128 0.05	5129 0.05.	0.05 0.05	5090 0.05	126 0.051	62 0.0517	74 0.0517 ³	9 0.05049	0.05100	0.05126	0.05114 0.	05124 0.05	5092 0.05(0.050	54 0.05084	0.05099	0.05083	0.05178 C	0.05013 0.0	5073	0.044	64	0.05179	0	14096	1.0	2681 0.001	4528	R.
1	T4 0.0	04461 0	0.05077 0.0	05076 0.05	5076 0.05	5091 0.05.	147 0.05	5116 0.05	088 0.050.	59 0.0506	57 0.0501	8 0.05056	0.05085	0.05039	0.05071 0.	05065 0.05	5068 0.05	132 0.050	92 0.05097	0.05128	0.05031	0.05094 C	0.05028 0.0	5053	0.044	61	0.05147	C	13324	0.1	2709 0.001	13001	
1	T1 0.0	07815 0	0.07762 0.0	07651 0.07.	7738 0.01	7958 0.07.	769 0.07	7811 0.07	853 0.078.	54 0.0796	55 0.0788.	1 0.07803	0.08179	0.08098	0.08124 0.	0.050 0.01	7958 0.082	135 0.079	27 0.07888	0.07921	0.08121	0.07991 C	0.08110 0.0	7928	0.076	51	0.08179	C	1.06452	0.0	3772 0.001	4345	
£ 10	T2 0.0	07824 0	0.07736 0.0	07349 0.07:	7580 0.07	7477 0.08	302.1 0.07	7655 0.07	603 0.077.	19 0.0766	52 0.07670	5 0.07649	0.07505	0.07793	9.07708 0.	07629 0.05	7768 0.078	302 0.077	14 0.07859	0.07647	0.07674	0.07761 C	0.07756 0.0	7690	0.073	49	0.08021	0,0000	08373	0.0	0.001	I3566	0000
opo	T3 0.0	07882 0	0.08401 0.0	07414 0.07	7675 0.07	7563 0.07	920 0.07	7579 0.07	.668 0.077	06 0.0753	31 0.0772(0.07673	0.07586	0.07593	 0.07655 0. 	07663 0.07	7721 0.075	910 0.076	05 0.07940	0.07722	0.07771	0.07642 C	0.07687 0.0	7718 0.07	0.074	14 0.07349	0.08401	0.08401	11751	0.0	2480 0.001	100 n.001	8840
	T4 0.0	07827 0	0.07601 0.0	0.074 99 0.074	7416 0.07	7704 0.07	622 0.07	7713 0.07	447 0.074	38 0.0761	11 0.07615	7 0.07749	0.07680	0.07671	 0.07549 0. 	07843 0.07	7517 0.075	551 0.075	80 0.07560	0.07828	0.07468	0.07692 C	0.07692 0.0	7620	0.074	16	0.07843	0	1.05435	0.0	1718 0.001	12385	
1	T1 0.0	0 86990	0.06201 0.0	06209 0.06	3080 0.06	6124 0.06	015 0.05	5985 0.05	907 0.060	81 0.0602	16 0.0597(3 0.06058	0.06066	0.05950	3.06002 0.	06110 0.06	5131 0.061	143 0.059	99 0.06024	0.06071	0.06156	0.06110 C	0.06158 0.0	5095	0.055	07	0.06698		111803	0.0	3063 0.001	15057	
7 JC	T2 0.0	06610 0	0.06168 0.0	062.29 0.060	3032 0.06	6103 0.06	031 0.06	5036 0.05	999 0.059	63 0.0600	18 0.06081	1 0.06018	0.05954	0.05996	0.06015 0.	06053 0.05	5975 0.061	165 0.059	96 0.06085	0.05946	0.06143	0.06128 C	0.06037 0.0	6074	0.055	46	0.06610	0	10041	0.0	3661 0.001	13601	-
odof	T3 0.0	0 6899 0	0.06081 0.0	05994 0.05	5901 0.06	6063 0.06	037 0.06	5093 0.06	118 0.060.	37 0.0618	35 0.0605-	4 0.06070	0.06124	0.06149	0.06122 0.	06181 0.06	3072 0.061	135 0.061	97 0.05934	0.05964	0.06046	0.06099 0	0.06160 0.0	6104 0.06	0.055	10650.0	0.06689	0.06698	11772 0.10	0.0	7906 0.001	14615 0.001	9230
	T4 0.0	06432 0	0.06121 0.0	06062 0.06	3095 0.06	6120 0.05	962 0.06	5103 0.06	069 0.060	39 0.0603	15 0.0619(0.06060	0.06201	0.06145	0.06040 0.	05982 0.06	3070 0.066	041 0.060	73 0.06019	0.06106	0.06042	0.06050 C	0.05950 0.0	6084	0.055	50	0.06432	0	.07499	0.0	7499 0.000	9633	
Ľ	T1 0.1	10271 0	0.10497 0.1	10470 0.10	0.10 0.10	0431 0.10	164.5 0.10	1596 0.10	625 0.108	11 0.1077	78 0.10834	4 0.10755	0.10910	0.10894	0.10966 0.	10885 0.10	3818 0.10	317 0.108	75 0.10992	0.10861	0.10940	0.10730	0.11020 0.1	0743	0.102	71	0.11020	0	06789	0.0	7284 0.002	0432	
t to	T2 0.1	10255 0	0.10309 0.1	10369 0.10	3459 0.10	0433 0.10	133.4 0.10)416 0.10	598 0.104	56 0.1043	14 0.1058	4 0.10502	0.10326	0.10559	0.10549 0.	10440 0.10	0.10	559 0.106	93 0.10576	0.10561	0.10605	0.10594 0	0.10808 0.1	0504	0.102	55	0.10808	0	.05119	0.0	5395 0.001	13360	- Dr -
qoy	T3 0.1	10076 0	0.10394 0.1	10368 0.10	3425 0.10	0324 0.10	1320 0.10	7275 0.10	226 0.103.	33 0.1050	0.1038	8 0.10570	0.10516	0.10447	9.10448 0.	105.89 0.10	01.0	179 0.105	03 0.10384	0.10351	0.10485	0.10377 C	0.10621 0.1	0411	0.100	4T00100 92	0.10621		.05125 U.U	0'0	5402 0.001	12133 U.UUZ	\$0T
- 1	T4 0.1	10014 0	0.10152 0.1	10077 0.10	J334 0.10	0186 0.10	324 0.10	7417 0.10	309 0.104	87 0.1054	11 0.1035	4 0.10633	0.10523	0.10310	0.10493 0.	10572 0.10	3447 0.10	113 0.103	92 0.10422	0.10664	0.10496	0.10672 0	0.10614 0.1	0410	0.100	14	0.10672	0	06169	0.0	100.0 5993	17736	
	T1 0.0	08844 0	0.08568 0.0	08727 0.08	3613 0.05	8547 0.08.	511 0.08	3551 0.06	625 0.086.	77 0.0852	28 0.0861.	1 0.08646	0.08709	0.08687	0.08705 0.	08664 0.01	3744 0.08	721 0.087	88 0.08748	0.08721	0.08813	0.08729 C	0.08775 0.0	8677	0.085	11	0.08844	0	03762	0.0	000.0 0.000	9217	
7 10	T2 0.0	08824 0	0.08617 0.0	08640 0.08	3605 0.05	8686 0.08.	9647 0.08	3599 0.06	748 0.085	41 0.0865	55 0.0872.	2 0.08667	0.08604	0.08655	0.08693 0.	08706 0.01	3660 0.085	787 0.086	75 0.08741	0.08675	0.08891	0.08827 C	0.08742 0.0	8692	0.085	41 0.000 11	0.08891	0,00001	103 939	0.0	924 0.000	8226 0.00r	2200
doA	T3 0.0	08795 0	0.08644 0.0	08603 0.08	3732 0.05	8627 0.08.	563 0.08	3682 0.05	696 0.087.	15 0.0878	36 0.0863:	9 0.08667	0.08699	0.08884	0.08688 0.	08804 0.05	3762 0.087	715 0.087	34 0.08624	0.08780	0.08756	0.08855 C	0.08782 0.0	8718	0.085	11 00000 29	0.08884	0 1600010	03613	0.0	0.000 0.000	08016 U.U.U	0000
	T4 0.0	08822 0	0.08647 0.0	08703 0.08	3676 0.02	8568 0.08.	615 0.08	3575 0.06	649 0.086.	54 0.0861	19 0.0873	0 0.08610	0.08684	0.08639	0.08654 0.	08649 0.05	3705 0.087	753 0.087	28 0.08805	0.08755	0.08676	0.08886 C	0.08782 0.0	8691	0.085	68	0.08886	C	03578	0.0	0.000	07945	
1	T1 0.1	13051 0	0.12556 0.1	12389 0.12	2695 0.12	2770 0.12	386 0.12	3560 0.12	402 0.125.	74 0.1237	72 0.1236	4 0.12460	0.12392	0.12345	0.12398 0.	12499 0.12	2500 0.125	320 0.123	87 0.12515	0.12500	0.12346	0.12520 C	0.12391 0.1	2487	0.123	20	0.13051	C	1.05 595	0.0	5053 0.001	6433	
t to	T2 0.1	12731 0	0.12815 0.1	12980 0.12	2604 0.12	2689 0.12	741 0.12	3660 0.12	674 0.126.	53 0.1283	34 0.1285.	1 0.12476	0.12619	0.12546	0.12872 0.	12590 0.12	2526 0.128	820 0.125	45 0.12718	0.12616	0.12713	0.12477 0	0.12730 0.1	2687	0.124	76 0.1.21.45	0.12980	0 1 2 2 1 5	0.03877	0.0	0.001 0.001	13075	8558
роя	T3 0.1	12145 0	0.12359 0.1	12746 0.12	2476 0.13	2562 0.12	387 0.12	2390 0.12	349 0.125	83 0.1276	59 0.1245.	2 0.12318	0.12495	0.12598	0.12619 0	12618 0.13	2473 0.12	544 0.125	32 0.12612	0.12604	0.12468	0.12680 C	0.12902 0.1	2528	0.121	45	0.12902	0	1.05868	0.0	5234 0.001	16330	2
	T4 0.1	12654 0	0.12741 0.1	12882 0.12	2617 0.12	2438 0.12	773 0.12	3534 0.12	385 0.124.	16 0.1245	95 0.1238	9 0.12619	0.12483	0.12516	0.13215 0.	12912 0.13	2777 0.12	796 0.126	50 0.12736	0.12689	0.12851	0.12431 C	0.12837 0.1	2660	0.123	85	0.13215	C	06 287	0.0	1447 0.002	0403	
	T1 0.1	10289 0	0.11125 0.1	11182 0.11	1116 0.11	1277 0.11	408 0.11	1371 0.11	099 0.114.	13 0.1136	56 0.1139	0.11271	0.11643	0.11624	0.11539 0.	11468 0.11	1454 0.11	716 0.115	91 0.11610	0.11579	0.11539	0.11716 C	0.11712 0.1	1396	0.102	89	0.11716	0	12185	0.1	8838 0.003	0423	
of 2	T2 0.1	10574 0	0.11006 0.1	11047 0.11	1133 0.11	1423 0.11	625 0.11	1488 0.11	348 0.114	64 0.1149	0.1141	1 0.11546	0.11834	0.11640	0.11585 0.	11750 0.11	1760 0.113	742 0.118	05 0.11574	0.11670	0.11819	0.11661 C	0.11586 0.1	1499	0.105	74 0 1000	0.11834	0 11075	10651	0.0	579 0.003	0127	0000
qоу	T3 0.1	10555 0	0.11011 0.1	11233 0.11	1319 0.11	1454 0.11	173 0.11	1208 0.11	510 0.114.	38 0.1152	11 0.1159.	7 0.11624	0.11692	0.11626	0.11587 0.	11810 0.11	1755 0.11	757 0.117	04 0.11704	0.11764	0.11629	0.11435 C	0.11835 0.1	1498	0.105	55 U.LUZ 03	0.11835	CCOTTO	10818	0.1	2130 0.002	9731	0500
	T4 0.1	10442 0	0.10859 0.1	11086 0.11	1121 0.11	1064 0.11	113 0.11	1154 0.11	317 0.114	80 0.1125	6 0.1157.	1 0.11314	0.11372	0.11434	0.11737 0.	11492 0.11	1517 0.11	303 0.115	25 0.11307	0.11607	0.11303	0.11608 C	0.11558 0.1	1318	0.104	42	0.11737	0	11029	0.1	0.002	27978	
τ	T1 0.1	10089 0	0.10336 0.0	09768 0.08	3753 0.01	8211 0.08	8400 0.08	3443 0.07	869 0.081	49 0.0821	14 0.0884.	3 0.09914	0.11314	0.10941	0.10508 0	08466 0.1(0581 0.10	258 0.104	93 0.09282	0.09635	0.09189	0.09088 0	0.09241 0.0	9416	0.078	69	0.11314		.30454	0.0	3411 0.009	9612	
poq	7 C.L		VO CHOLOGY	10.0 01410	000 100	070 6170	1000 000	1000 1000	100.0 012			100001		0000000	0 00000	0.00 0.00	110L 0.00		0.00001	100000	100000			0.09	128 0.01	0.07475	SOLOT 0	0.13136	0.45	309.4		0.010	5446
ъЯ	T4 0.1	0 99601	0.0 8060.0	19634 0.10	N56 0.10	0.091	561 0.09	1477 0.09	510 0.095	75 0.1130	10 0.10745	0.10514	0.09910	0.00000	0.00342 0	0.10 0.100	2110 011	1110 018	57 0.09832	0.09120	0.09700	0.13136	0.12653 0.1	0429	0.091	20	0.13136		30575	1.0	3387 0.010	1336	
Ī	T1 0.0	06895 0	0.04870 0.0	05101 0.04	1899 0.05	5005 0.04.	783 0.05	1053 0.04	999 0.049.	28 0.0506	i1 0.04994	1 0.04981	0.04934	0.04999	J.04866 0.	04904 0.04	1858 0.05C	054 0.050	33 0.05014	0.05041	0.05086	0.04995 C	0.05027 0.0	5058	0.047	83	0.06895	0	.30635	0.2	7092 0.003	1001	
of 2	T2 0.0	06513 0	0.04960 0.0	05129 0.04	1970 0.04	495.4 0.04	957 0.04	1932 0.04	980 0.049	01 0.0484	17 0.05020	5 0.04869	0.04890	0.04877	9.04904 0.	04891 0.04	1959 0.054	0:050	55 0.05070	0.04972	0.05144	0.05106 C	0.05085 0.0	5044	0.048	47 0.04700	0.06513	Concern	125568	0.2	1920 0.003	\$2454	
qоу	T3 0.0	06405 0	0.04990 0.0	0.4987 0.04	1910 0.01	5037 0.04:	940 0.05	5091 0.05	111 0.049.	17 0.0498	39 0.04934	4 0.05062	0.05125	0.05065	0.05108 0.	05138 0.05	5087 0.05	102 0.049	86 0.05058	0.05273	0.05073	0.05171 C	0.05117 0.0	5111	0.045	10 0.047 03	0.06405	0 000000	123334	0.0	0116 0.002	5889 5889	
	T4 0.0	06515 0	0.05041 0.0	05058 0.04	1812 0.04	4902 0.04.	874 0.05	5001 0.04	989 0.049.	65 0.0492	20 0.0489t	6 0.05020	0.04913	0.05045	0.04907 0.	05171 0.04	1962 0.04	314 0.050	12 0.04931	0.04961	0.05109	0.05067 C	0.04982 0.0	5036	0.048	12	0.06515	C	.26142	0.2	3528 0.003	\$2678	
	T1 0.0	04925 0	0.05240 0.0	05645 0.05	5943 0.0t	6029 0.06.	02.7 0.06	5169 0.0£	243 0.063.	35 0.0632	20 0.0642:	3 0.06399	0.06452	0.06435	0.06495 0.	06448 0.0t	5392 0.065	533 0.064	72 0.06543	0.06610	0.06525	0.06597 C	0.06649 0.0	6244	0.045	25	0.06649		.25930	0.3	0.004	13 2 3 2	
t to	T2 0.0	05048 0	0.05527 0.0	05575 0.05	5686 0.05	5852 0.06.	070 0.06	5056 0.0E	271 0.063.	51 0.0636	53 0.0634;	1 0.06449	0.06443	0.06543	0.06582 0.	06536 0.0t	5643 0.06t	565 0.065	72 0.06499	0.06709	0.06638	0.06568 C	0.06629 0.0	6276	0.050	48 0.040.75	0.06709	0 06746	24759	0.3	1318 0.004	13924	1 205
qoy	T3 0.0	05197 0	0.05630 0.0	05861 0.06	5040 0.0t	6269 0.06.	287 0.06	5439 0.06	441 0.064	90 0.0647	76 0.0663t	8 0.06482	0.06633	0.06511	9.06639 0.	06591 0.0t	5740 0.06t	511 0.067	46 0.06696	0.06694	0.06668	0.06680 C	0.06708 0.0	6424	0.051	67 U.V.4523	0.06746	0 04/00/0	.22959	0.2	9066 0.003	8536 0.001	CCCT
	T4 0.0	04976 0	0.05539 0.0	05735 0.05	5888 0.05	5982 0.06.	035 0.06	5170 0.0£	237 0.062.	33 0.0630	0.0643	1 0.06401	0.06518	0.06557	0.06447 0.	06484 0.0t	5515 0.065	588 0.066	07 0.06523	0.06516	0.06478	0.06506 C	0.06547 0.0	6259	0.045	76	0.06607	C	.24686	0.3	1570 0.003	10 12 13 12 1 1 13 11 11 11 11 11 11 11 11 11 11 11	
1	T1 0.0	07238 0	0.07841 0.C	08018 0.08.	3191 0.05	8133 0.07.	90.0 866*	3039 0.06	100 0.082	74 0.0815	31 0.0805:	5 0.08164	0.08192	0.08127	0.08158 0.	08447 0.05	32.48 0.082	217 0.083	37 0.08210	0.08227	0.08286	0.08365 C	0.08261 0.0	8138	0.072	38	0.08447	0	14310	0.1	1130 0.002	23158	
z toc	T2 0.0	07436 0	0.08090 0.0	08141 0.08.	3240 0.05	8226 0.08	198 0.08	3228 0.06	134 0.081	16 0.0818	34 0.0812.	2 0.08082	0.08205	0.08350	0.08184 0	08108 0.05	8174 0.08.	296 0.082	60 0.08218	0.08330	0.08268	0.08109 C	0.08242 0.0	8164 0.08	0.074	36 0.07238	0.08350	0.08447	10951 0.14	4310 0.1	0.001	17200 0.001	8970
юя	T3 0.0	07331 0	0.08107 0.0	08242 0.08	8173 0.01	8190 0.08	\$232 0.08	3226 0.0t	191 0.081	93 0.0821	17 0.0816	4 0.08229	0.08244	0.08192	0.08220 0	08183 0.01	8181 0.08:	326 0.081	78 0.08170	0.08044	0.08169	0.08257 C	0.08207 0.0	8161	0.073	31	0.08326	<u> </u>	11957	1.0	1949 0.001	8459	
	T4 0.0	07425 0	0.08269 0.0	08160 0.08	8237 0.01	8235 0.08	3138 0.0E	8247 0.0	104 0.082	50 0.0823	33 0.0819.	1 0.08224	0.07985	0.08069	0.08328 0	08040 0.01	8286 0.08.	175 0.080	67 0.08184	0.08148	0.08105	0.08205 C	0.08250 0.0	8148	0.074	25	0.08328	0	.10847	0.1	1116 0.001	17581	٦

	viation	All Tests		0115374			0009152			0191029			0013004			0023851			0008071			0022479			0028520			0245855			.0039035			0034681			0024094	
lata	Standard De	Test	0145060	0133756 0	0032317	177000	0008460 (7 66 7 00 0	0216008	0182801 0	0180137	0014147	0014595 0	0010140	0022751	0020812 0	0027635	0008717	0007943 0	0007841	0023225	0020428 0	0023222	0032133	0031354 0	0021328	0101174	0147214 0	0268214	7069600	0032208 (0047597	0041408	0026175 0	0022202	0015852	0018822 (0020994
ity c	fof	nd Cycle	361 0.	836 0)	1684 0.1	'964 0.	1789 01	1433 01	3841 0.1	10 01	026 0.	0 226	8082 0.1	7340 0.1	10 2261	0 290	3325 0.1	1583 0.1	932 0.	1557 0.1	1532 0.1	2668 OJ	0)	831 0)	0 600	003 01	611 0.	884 0.	047 0.	917 0)	0 01	037 0.	928 0.	924 0.	3565 0J	8272 0)	527 0J	J475 0.1
reloc	Dif	ts Start/Er	0.55	8 0.47	0.21	20:0	0.0.	0.0	50'0	4 0.13	0.07	30:0	4 0.08	0.07	70'0	90.0	90.0	0.01	0.00	0.01	70'0	0.02	0.00	0.12	71.0 0.	0.0	0.26	3 0.16	0.23	0.23	6 0.22	0.25	0.23	20:0	0.03	30'0	5 0.12	0.0
V WO	of MAX/MIN	All Test	88	0.5633	0	12	1960.0	14	11	6 0.5612	2	13	4 0.1161	13	52	0.1196	99	54	33 0.0488	12	19	0.0853	36	0	88 0.1267	18	55	0.5911	0	15	6.3208	1	82	13 0.2602	33	1	10.1791	96
out l	Diffe	ts Test	0.5595	54 0.5361	0.1782	0.0851	53 0.0754	0.0817	0.5563	0.5075	0.5062	0.1027	90 0.1161	0.0764	0.1076	22 0.0959	0.119	0.040	36 0.0385	0.0394	0.0765	33 0.0614	0.0678	0.1267	15 0.1228	0.0887	0.330	33 0.3632	0.5310	0.2771	30 0.246	0.3152	0.220	0.184	0.110	0.1001	11 0.118	0.08.20
vithc	Maximum	: AII Tes	58	54 0.1245	81	53	99 0.0525	71	01	56 0.1690	18	37	5990'0 66	70	8	41 0.1152	22	36	42 0.0895	03	33	87 0.1353	79	15	66 0.1201	74	96	17 0.2013	33	66	36 0.0713	30	22	07 0.0750	52	90	25 0.0894	41
1 4	_	sts Tes:	0.123	38 0.124	0.066	0.052	48 0.051	0.051	0.169	15 0.153	0.150	0.066	21 0.066	0.064	0.114	44 0.113	0.115	0.089	99 0.088	0.089	0.135	78 0.133	0.132	0.120	93 0.119	0.117	0.122	32 0.140	0.201	0.066	42 0.066	0.071	0.071	53 0.075	0.072	0.085	39 0.083	0.089
Test	Minimum	t All Te	38	76 0.054	06	90	0.047	48	66	62 0.074	15	65	21 0.059	76	45	54 0.101	44	73	99 0.084	52	97	65 0.123	78	93	96 0.104	28	32	24 0.082	42	42	00 0.048	83	53	22 0.055	53	54	39 0.073	07
s of		sts Tes	0.054	64 0.057	0.054	0.048	.15 0.048	0.047	0.074	21 0.075	0.074	0.055	0.055	0.055	0.102	64 0.102	0.101	0.085	04 0.084	0.085	0.124	62 0.125	0.123	0.104	57 0.104	0.107	0.082	12 0.085	0.094	0.048	.84 0.050	0.048	0.055	50 0.061	0.064	0.076	0.073	0.082
sult	Mean	t All Te	17	15 0.063	60	57	95 0.051	93	03	10 0.083	50	89	16 0.061	20	14	27 0.106	51	98	06 0.087	07	20	10 0.128	56	93	69 0.115	08	86	15 0.112	35	40	26 0.051	86	33	22 0.067	94	29	72 0.083	25
on re		4 Tes	517 0.063	497 0.066	681 0.061	189 0.051	036 0.050	101 0.050	761 0.084	683 0.083	766 0.082	041 0.060	157 0.061	995 0.061	909 0.107	767 0.106	793 0.106	746 0.086	760 0.087	764 0.087	919 0.129	881 0.128	196 0.128	839 0.115	966 0.115	694 0.115	024 0.093	360 0.105	351 0.133	097 0.051	165 0.052	060 0.051	882 0.065	871 0.065	835 0.067	287 0.082	259 0.081	436 0.085
catic		3 C2	526 0.05!	428 0.064	490 0.064	227 0.05	179 0.050	120 0.05:	840 0.07	632 0.076	680 0.07	142 0.060	0.06 860	207 0.059	823 0.109	743 0.10	777 0.10	763 0.08	828 0.08	853 0.08:	717 0.129	735 0.121	636 0.13:	887 0.118	662 0.119	677 0.110	148 0.090	163 0.093	443 0.173	086 0.050	253 0.05:	141 0.050	914 0.061	982 0.061	815 0.061	125 0.08:	275 0.08:	475 0.084
ntifi		22 CJ	5529 0.05	6319 0.06	6513 0.06	5209 0.05	5082 0.05	5051 0.05	7683 0.07	7773 0.07	7486 0.07	6146 0.06	6064 0.06	6129 0.06	0898 0.10	0865 0.10	0743 0.10	8936 0.08	8774 0.08	8778 0.08	3002 0.12	2711 0.12	3279 0.12	1845 0.11	1728 0.11	1343 0.11	8304 0.09	2107 0.13	2014 0.17	5121 0.05	5127 0.05	5104 0.05	6896 0.06	702.0 0.06	7010 0.06	8287 0.08	8188 0.08	8375 0.08
ide		21 C	5438 0.0	6631 0.0	6651 0.0	5192 0.0	5108 0.0	15171 0.0	7660 0.0	7723 0.0	7820 0.0	15961 0.0	5965 0.0	6244 0.0	0815 0.1	0614 0.1	0.1	8696 0.0	8754 0.0	8749 0.0	2789 0.1	2813 0.1	2695 0.1	1721 0.1	1900 0.1	1630 0.1	8985 0.0	0165 0.1	9442 0.1	5032 0.0	5188 0.0	4951 0.0	7122 0.0	7229 0.0	17093 0.0	8338 0.0	803.4 0.0	8417 0.0
the		C20 0	05622 0.C	06475 0.0	06445 0.0	05038 0.0	05082 0.C	05145 0.0	07872 0.0	0.7948 0.0	07561 0.0	06117 0.0	05956 0.0	0.0099 0.0	10727 0.1	10635 0.1	10610 0.1	08706 0.C	08649 0.C	08760 0.C	12696 0.1	12871 0.1	12875 0.1	11735 0.1	11881 0.1	11548 0.1	0.0945 0.0	12293 0.1	10894 0.C	05122 0.C	05091 0.0	04972 0.0	06922 0.C	06991 0.0	06952 0.0	08245 0.C	08185 0.0	08464 0.0
with		C19	05494 0.	06452 0.	0 36395	05160 0.	05045 0.	05135 0.	07729 0.	0 7597 0.	07554 0.	06015 0.	06213 01	0 0004 0	10794 0.	10639 0.	10683 0.	08688 0.	08739 0.	08758 0.	12696 0.	12722 0.	12592 0.	11924 0.	11744 0.	.11626 0.	09443 0.	09816 0.	12133 0.	0 20030	05018 0.	0.4981 0.	07021 0.	07120 0.	07252 01	08290 0.	08177 0.	08319 0.
fied		C18	0 69950	06280 0	0 6389 0	0.05169 0	05102 0	0.05160 0	0.07819 0	0 356701	0.07639 0	06175 0	0.06135 0	0.06056 0	10643 0	10555 0	0.10625 0	0.08820 0	08754 0	0 8769 0	13087 0	12726 0	12974 0	0 0111790	11824 0	.11515 0	0.08603 0	10308 0	12122 0	05121 0	0.05235 0	05020 0	0.06910 0	0 88690	0 7007 0	08313 0	08325 0	08388 0
veri		C17	0.05656 (0.06287 (0.06352 (0.05148 (0.05101 (0.05109 (0.07816 0	0.07741 (0.07514 (0.05974 0	0.06080 (0.06077 0	0.10805 0	0.10492 (0.10676 0	0.08684 (0.08718 (0.08704 (0.12765 0	0.12586 (0.12871 0	0.11808 0	0.11821 0	0.11523 (0.09307	0.08924	0.10401 (0.05056 0	0.05154 0	0.05035 (0.06788 (0.06957 0	0.06776 (0.08192 0	0.08183 (0.08546 (
SSO.		C16	0.05746	0.06184	0.06180	0.05205	0.05142	0.05089	0.07657	0.07723	0.07842	0.06047	0.06184	0.05976	0.10624	0.10688	0.10730	0.08673	0.08748	0.08647	0.13009	0.12873	0.13112	0.11792	0.11841	0.11620	0.08680	0.11455	0.11252	0.04946	0.05160	0.05221	0.06643	0.06803	0.06763	0.08169	0.08212	0.08254
ne cı		C15	0.05794	0.05900	0.06159	0.05165	0.05086	0.05092	0.07732	0.07687	0.07551	0.06044	0.06135	0.06063	0.10743	0.10600	0.10741	0.08728	0.08703	0.08694	0.13191	0.12863	0.13207	0.11574	0.11566	0.11732	0.09610	0.09432	0.12730	0.04913	0.05141	0.04991	0.06801	0.06936	0.06572	0.08266	0.08276	0.08486
m tl		C14	0.05902	0.05776	0.06311	0.05157	0.05135	0.05076	0.07809	0.07615	0.07745	0.06027	0.06173	0.06151	0.10535	0.10614	0.10459	0.08700	0.08825	0.08661	0.12786	0.12878	0.12641	0.11747	0.11703	0.11495	0.10150	0.09180	0.11704	0.04954	0.05128	0.05043	0.06677	0.06890	0.06857	0.08390	0.08273	0.082.62
l fro	rcles	C13	0.05900	0.05838	0.06175	0.05157	0.05116	0.05122	0.07499	0.07603	0.07717	0.05955	0.06139	0.06214	0.10661	0.10617	0.10762	0.08662	0.08711	0.08692	0.12497	0.12579	0.12571	0.12015	0.11871	0.11644	0.10427	0.11500	0.10611	0.04932	0.05142	0.04992	0.06687	0.07153	0.06857	0.08190	0.08239	0.08207
lated	6	C12	0.05945	0.05924	0.06346	0.05171	0.05048	0.05072	0.07644	0.07733	0.07822	0.06047	0.06111	0.06062	0.10582	0.10533	0.10672	0.08652	0.08652	0.08631	0.12873	0.12565	0.13044	0.11475	0.11593	0.11431	0.09938	0.09606	0.12041	0.04842	0.05055	0.05017	0.06697	0.06917	0.06875	0.08064	0.08189	0.08426
alcu		C11	7 0.05955	0.05979	9 0.06183	1 0.05237	5 0.05199	0.05075	5 0.07688	2 0.07689	9 0.07594	2 0.06100	5 0.06059	0.06200	0.10581	7 0.10556	0.10536	1 0.08708	9 0.08635	5 0.08708	1 0.13397	1 0.12635	9 0.12846	5 0.11516	3 0.11563	0.11690	3 0.10072	3 0.09952	3 0.13058	2 0.05062	5 0.05000	1 0.04922	5 0.06418	0.06915	1 0.06546	0.08134	0.08151	5 0.08426
es c		C10	8 0.05963	2 0.0600:	0 0.06329	2 0.0500:	1 0.05160	0 0.05070	8 0.0763	3 0.0756:	2 0.07649	6 0.0602	0 0.06224	6 0.06120	6 0.10579	6 0.1062	5 0.1066(6 0.08674	8 0.08749	6 0.0863!	9 0.1290	3 0.1313	1 0.12709	3 0.1154(4 0.11538	4 0.11429	7 0.0898:	1 0.1200	1 0.2013	3 0.0496;	6 0.0509	3 0.04974	3 0.0652(8 0.06809	5 0.0679:	9 0.08190	7 0.08239	2 0.0864!
valu		ଥ	0 0.0596	2 0.0603	6 0.0600	7 0.0519	9 0.0514	3 0.0508	9 0.0774	1 0.0767.	5 0.0743	4 0.0596	2 0.0605	1 0.0605	1 0.1079	2 0.1067	8 0.1082	8 0.0858	1 0.0871	3 0.0869	3 0.1280	9 0.1276	8 0.1269	9 0.1164	2 0.1151	0.1177	1 0.0869	9 0.1330	0.1567	5 0.0494	8 0.0503	3 0.0501	2 0.0635	8 0.0665	2 0.0647	5 0.0813	4 0.0822	1 0.0855
SD		8	9 0.0614	4 0.0611	1 0.0592	3 0.0520	0 0.0514	0 0.0512	2 0.0757	2 0.0765	9 0.0741	9 0.0599.	3 0.0611	5 0.0607	1 0.1070	6 0.1043	8 0.1046	0 0.0872	2 0.0867	4 0.0868	1 0.1271	3 0.1269	0.1237	0.1147	9 0.1142	0.1154	2 0.0843	6 0.1184	0.1624	6 0.0492	0.0508	6 0.0488	0.0651	6 0.0678	9 0.0674	9 0.0827	0 0.0821	1 0.0884
RM		D	2 0.0612	1 0.0615	6 0.0579	4 0.0525	9 0.0511	2 0.0515	2 0.0766	2 0.0778	7 0.0830	4 0.0601	6 0.0608	4 0.0611	2 0.1052	3 0.1032	8 0.1048	3 0.0862	9 0.0867.	2 0.0859.	3 0.1279	3 0.1265	6 0.1303	5 0.1164	4 0.1130	5 0.1152	6 0.0823	8 0.1107	8 0.1407	2 0.0510	8 0.0519	8 0.0509	6 0.0626	0.0698	2 0.0647	2 0.0824	7 0.0823	5 0.0894
ive		C6	3 0.0633	3 0.0627:	0.05826	0.05134	0.05059	0.0514	1 0.0803	0.0795	0.0777	0.0605	0.0604	0.05994	0.1041	0.1038	0.10261	0.0857	0.08499	0.0855	0.1298	0.1269	0.1292	0.1167	0.11374	0.1154	0.08526	0.11561	0.15918	0.0498	0.05081	0.04981	0.0613(0.06570	0.0657	3 0.0821:	0.0819	0.0852
elat		C5	0.06498	0.06638	0.05695	0.05191	0.05135	0.05090	0.07862	0.07806	0.07945	0.06135	0.06064	0.06153	0.10875	0.10775	0.10447	0.08642	0.08671	0.08631	0.13073	0.12975	0.12855	0.11381	0.11238	0.11235	0.08355	0.0903	0.14805	0.05250	0.05305	0.05191	0.06195	0.07142	0.06465	0.08288	0.08201	0.08750
her		C4	5 0.06810	0.06852	5 0.05741	5 0.05243	3 0.05145	7 0.05083	0.07902	0.07945	20670.0	2 0.06054	2 0.05921	5 0.06104	3 0.10761	3 0.10670	1 0.1095	0.08605	1 0.08665	3 0.08696	3 0.12805	3 0.12686	5 0.12635	3 0.11200	0.11373	5 0.11506	0.08742	0.14017	3 0.13598	5 0.05242	0.05305	3 0.05365	9 0.06173	0.07507	0.06945	5 0.08506	3 0.08142	0.08000
Ē		3	0.07270	0.07240	0.0576	\$ 0.0524	0.0516	0.0509	0.1347:	0.1274	0.1290	0.0627	0.0601	16090'0 1	0.1061	0.1064	0.1014	8 0.08659	0.0859	8 0.0873	0.1307	0.12778	0.1285	8 0.1128	0.1143	8 0.1142	0.1144	0.0924	0.0993	0.0562	8 0.05540	3 0.0605	0.05949	0.0709:	0.0684	0.0843	0.0828	0.0869
Б		C2	0.08440	0.08034	0.06005	0.05063	0.04924	0.05123	0.1690	0.15356	0.1501	0.06184	36090 [°] 0 U	0.06141	0.10245	0.10254	0.10195	0.08615	0.0861	0.08675	0.1296	0.1338	0.12791	0.11218	0.1129	0.11318	11 0.0991	0.1134	0.1280	0.05252	0.05295	0.0531	0.05740	0.06122	0.06455	0.0826	0.0810	0.0886
able		5	0.12356	0.12454	0.05490	0.04806	0.04806	0.04748	0.08606	0.08875	0.08356	0.06637	0.06695	0.06470	0.11480	0.11341	0.11522	0.08886	0.08842	£0680'0	0.13533	0.13234	0.13123	0.10495	0.10496	0.10726	0.12296	0.11262	0.13657	0.06695	0.06636	0.07130	0.05553	0.06676	0.07087	0.07654	0.07335	0.08396
Η	Toote	ests	т T2	13 Dod	т 4	2 7	10qq	т 4	т T2	todi	м Т4	2 12	13 Dot	м Т4	т Т2	todi	т 44 Ва	2 12	13	д Т	т T2	10 T	е Т4	72 72	10 do	е Т4	т T2	10 Dot	е Т4	12 7 7	2 poq	8 Т4	т Т2	2 poq	8 Т4	12 7 7	1 opo	œ 14
					t t	iol.					2 tr	iol					£ JI	niol.					1t 4	iol					S tr	iol					9 tu	liol		

	Deviation	All Toete
data	Standard	Tor+
locity	Diffof	Start/End Cvcle
v ve.	NIW/X	All Torte
t lov	Diff of MA	Tor+
hou	mnu	All Torte
. wit	Maxir	Tor+
est 1	mm	All Torte
of Te	Minin	Tor+
ults e	an	All Torte
resi	Me	Tor+
tion		VLJ
ifica		663
lent		222
ne ic		101
ch t]		06.2
l wit		C10
erifiec		C10
S VE		5
cros		362
$_{\mathrm{the}}$		35
om		11
d fr	Cycles	212
late		C17
alcu		C11
es c		C10
valu		0
SD		2
RMS		5
ive l		J.
elati		2
he r		54
H		5

	viation	All Tests		.0133520			.0012315			.0129797			.0013729			.0026632			0007879			.0033189			.0026867			.0286416			.0036783			.0031465			.0022181	
lata	Standard De	Test	0150127	0091773 0	0094011	0007315	0014767 C	0013569	0211846	0028749 C	0017157	0015598	0015672 C	009638	0021513	0014109 C	0017464	008927	007308 C	0007582	0027647	041209 C	0022887	0027150	030072 C	0021841	0158360	0197650 C	0288197	045715	0028163 C	0035340	037982	0028283 C	0025363	0017300	0011738 C	0022864
ity d	of	d Cycle	yo 060	528 0.0	771 0.0	277 0.0	70 06E	444 0.0	655 0.A	618 0.0	327 0.4	200 0.V	YO 068	508 0.0	291 0.0	623 0.0	453 0.0	1287 D.I	043 0.0	1335 O.I	004 0.0	887 0.4	449 0.0	064 0.0	186 0.0	yo 678	972 0.0	047 0.0	780 0.0	290 0.0	638 0.0	247 0.0	648 0.0	170 0.4	137 0.0	501 0.0	176 0.0	011 0.0
reloc	Diff	:s Start/Er	0.56	7 0.43	0.32	0.06	7 0.13	0.14	0.04	8 0.03	0.02	0.08	90.0	0.06	0.06	7 0.06	0.07	0.00	6 0.00	0.00	50'0	1 0.04	0.04	0.10	5 0.11	0.07	0.21	1 0.37	0.06	0.25	0 0.15	0.24	0.21	0 0.18	0.14	50'0	4 0.06	0.13
A WC	of MAX/MIN	All Test	4	0.6092	80	5	1 0.1448	6	2	0.5624	6	1	9 0.1243	5	3	1 0.1469	4	2	8 0.0467	6	1	7 0.1551	8	3	9 0.1195	5	4	6 0.6598	3	0	0.3285	1	0	9 0.2152	3	4	4 0.1343	1
ut l	Diff.c	ts Test	0.5720	10.3340	0.3437	0.0702	6 0.1420	0.1361	0.5382	6 0.1639	0.0834	0.1195	8 0.1243	0.0724	5060'0	4 0.0621	0.0782	0.0356	10:0391	0.0405	0.0989	3 0.1536	0.0653	0.1071	3 0.1094	0.0935	0.3955	9 0.4705	0.5778	0.3285	0.2262	0.2688	0.2152	0.1606	0.1332	0.1055	8 0.0709	0.1263
vithc	faximum	All Tes	55	33 0.1258	5	96	9 0.0522	¥	98	6 0.1698	6	54	88 0.0673	00	27	9911.0	35	13	E680'0 61	23	1	3 0.1437	90	6/	13 0.1184	8	8	0.2377	6	0	0.071C	8	20	57 0.0700	[4	55	0.0877	8
2 ¤	~	ts Test	0.1258	17 0.0738	0.1081	0.0522	59 0.052(0.0519	0.169	32 0.0896	0.0810	0.0672	0.0673	0.0645	0.116	50 0.106	0.107	0.088	0.0891	0.0893	0.1347	14 0.1437	0.1316	0.1167	27 0.118/	0.1172	0.1338	90.168	0.2375	0.0710	68 0.0640	0.0664	0.0700	9 0.0675	0.0661	0.0845	99 0.0833	0.0875
Test	Ainimum	All Tes	36	17 0.049	20	69	69 0.0446	87	14	97 0.0743	\$2	11	0.059(33	14	1660°0 90	0	61	0.085	0	14	55 0.121	15	2	16 0.104	51	68	14 0.0801	89	88	68 0.0476	51	66	72 0.0549	\$3	66	89 0.0755	69
s of	-	ts Test	0.0538	93 0.0491	0.070	0.0485	15 0.0446	0.0448	0.078/	58 0.0745	0.0743	0.0592	0.0590	0.0598	0.1060	0.1000	660'0	0.0851	33 0.0856	0.0857	0.1214	19 0.1216	0.1230	0.1042	38 0.1054	0.106	0.0805	32 0.0891	0.100	0.0476	11 0.0495	0.0486	0.0545	51 0.0567	0.0573	0.0755	99 0.0775	0.0766
sult	Mean	All Tes	1,	32 0.0665	24	14	0.0511	0	94	35 0.0805	[3	80	0.0610	20	6/	0.1060	33	35	0.086	33	38	0.1264	51	25	57 0.1138	12	80	0.1243	15	\$2	13 0.0511	58	[3	13 0.0646	99	1	98 0.0829	38
n re		Test	38 0.0627	58 0.0613	71 0.0767	64 0.0514	68 0.051C	35 0.0510	33 0.0867	70 0.0778	32 0.0771	73 0.0610	73 0.0611	30 0.061C	30 0.1087	69 0.1044	91 0.1048	89 0.0868	57 0.0870	58 0.0865	64 0.1248	59 0.1270	66 0.1275	77 0.1132	26 0.1146	69 0.1137	99 0.1038	14 0.1207	39 0.1484	20 0.0513	50 0.0514	36 0.0505	22 0.0651	02 0.0651	43 0.0635	21 0.0821	17 0.0815	67 0.0848
atio		C24	35 0.0543	19 0.070	04 0.072	80 0.0510	03 0.050	52 0.051	08 0.081	83 0.076	68 0.0773	14 0.061	85 0.061	49 0.0603	52 0.109	01 0.106	95 0.106	33 0.0878	19 0.087	37 0.087	82 0.122	11 0.127	18 0.131	04 0.114	26 0.117	63 0.114	40 0.0949	54 0.089:	25 0.162	22 0.050	72 0.051	58 0.0503	31 0.069;	76 0.0670	07 0.065	86 0.083;	59 0.082:	16 0.086
ltific		c23	67 0.054	37 0.070	67 0.071	93 0.050	.18 0.052	90 0.051	55 0.081	64 0.076	78 0.077	93 0.061	58 0.060	91 0.061	86 0.108	82 0.104	90 0.107	71 0.088	28 0.089	31 0.089	44 0.125	60 0.126	04 0.126	18 0.115	98 0.114	14 0.114	96 0.093	52 0.114	71 0.160	.17 0.050	50 0.052	26 0.051	62 0.069	72 0.066	34 0.065	10 0.083	82 0.082	41 0.086
ider		L C23	86 0.054	37 0.065	49 0.071	68 0.051	22 0.051	91 0.050	76 0.081	83 0.077	65 0.074	87 0.061	66 0.060	87 0.060	73 0.105	84 0.104	30 0.105	0.087	37 0.087	30 0.087	05 0.121	14 0.124	38 0.125	40 0.115	43 0.116	69 0.113	14 0.093	97 0.127	05 0.125	96 0.051	39 0.051	79 0.051	07 0.067	96 0.066	16 0.065	41 0.083	26 0.081	32 0.085
$_{\mathrm{the}}$		C21	91 0.053	83 0.071	01 0.071	41 0.050	08 0.051	84 0.051	46 0.079	80 0.077	89 0.078	40 0.060	17 0.059	44 0.061	38 0.109	44 0.102	85 0.106	25 0.087	68 0.087	78 0.087	19 0.124	29 0.126	19 0.125	58 0.115	12 0.118	63 0.115	03 0.102	52 0.114	39 0.102	08 0.049	45 0.051	02 0.048	58 0.070	14 0.066	16 0.065	33 0.082	76 0.080	39 0.085
ith		9 C2C	04 0.055	.72 0.073	97 0.073	20 0.051	120.0 96	.94 0.051	73 0.079	45 0.079	14 0.075	090'0 96	95 0.059	172 0.060	116 0.110	01.0 104	30 0.104	880.0 88'	12 0.086	25 0.087	60 0.126	63 0.128	58 0.129	84 0.114	10 0.117	88 0.113	47 0.099	14 0.104	88 0.100	83 0.050	135 0.050	67 0.049	0.069	28 0.067	14 0.065	:71 0.082	.82 0.081	21 0.086
sd w		3 C19	31 0.055	10.01	20 0.070	.64 0.051	.28 0.050	.61 0.051	95 0.079	162 0.076	54 0.076	60 0.055	.41 0.061	157 0.060	901.0 10	174 0.105	84 0.105	10:087	14 0.087	26 0.087	78 0.125	20 0.125	90 0.125	79 0.114	77 0.116	51 0.114	83 0.113	72 0.112	16 0.138	128 0.050	90 0.050	80 0.045	90'0 66.	35 0.067	0.066	62 0.083	30 0.081	80.0.85
%rifi€		C18	26 0.056	60 0.072	66 0.073	36 0.051	25 0.051	33 0.051	32 0.081	42 0.080	57 0.075	40 0.061	78 0.061	80 0.060	74 0.107	71 0.104	61 0.105	29 0.086	89 0.087	67 0.087	69 0.122	74 0.125	38 0.126	14 0.116	711.0 0.117	85 0.114	77 0.107	54 0.107	10 0.128	68 0.050	63 0.051	45 0.049	98 0.067	57 0.066	50 0.066	92 0.082	66 0.083	59 0.085
S VE		C17	37 0.056	07 0.072	81 0.073	88 0.051	59 0.051	03 0.051	02 0.080	43 0.077	03 0.075	28 0.061	88 0.060	83 0.060	00 0.108	42 0.103	38 0.104	03 0.087	76 0.086	69 0.086	60 0.123	99 0.123	05 0.126	47 0.114	90 0.117	51 0.114	97 0.114	15 0.097	65 0.117	68 0.047	00 0.050	58 0.049	73 0.065	00 0.067	16 0.065	95 0.082	58 0.081	91 0.087
CLOS		C16	97 0.056	15 0.072	20 0.071	48 0.050	26 0.051	26 0.051	11 0.080	83 0.077	79 0.079	91 0.061	18 0.061	29 0.059	52 0.111	50 0.106	05 0.106	75 0.087	76 0.087	67 0.086	30 0.123	33 0.126	44 0.128	52 0.114	73 0.117	28 0.115	17 0.087	55 0.106	13 0.106	66 0.048	32 0.051	76 0.051	01 0.065	42 0.066	47 0.065	48 0.084	11 0.081	78 0.084
$_{\mathrm{the}}$		C15	27 0.056	68 0.068	66 0.072	51 0.051	49 0.051	89 0.051	14 0.082	76 0.076	15 0.076	50 0.059	70 0.061	32 0.060	63 0.110	61 0.104	50 0.106	48 0.086	79 0.086	05 0.086	48 0.122	87 0.127	82 0.130	44 0.115	90 0.115	66 0.117	41 0.117	21 0.109	64 0.149	82 0.048	72 0.051	68 0.049	28 0.067	85 0.066	90 0.064	77 0.082	18 0.082	79 0.087
om		C14	9 0.058	10.068	54 0.0766	57 0.051	17 0.0514	18 0.0501	9 0.081:	13 0.076	0.078	35 0.059!	10 0.061	31 0.0613	52 0.109(0.106	0.104	⁴ 0.086 ⁴	53 0.087	27 0.0860	52 0.1214	0.1261	0.1241	37 0.1154	4 0.115	0.113	11 0.1274	0.109	0.149	24 0.0491	0.050.0	3 0.0496	0.065	96 0.0651	25 0.0659	24 0.081	6 0.082	12 0.084
й Г	Cycles	C13	39 0.0583	37 0.0534	38 0.074!	75 0.0510	90 0.051	0.051	14 0.082	45 0.076	98 0.078	78 0.0601	78 0.061/	33 0.062:	91 0.108	0.104	0.106	96 0.086	71 0.086	34 0.086	39 0.125	32 0.127.	37 0.1270	70 0.114	14 0.116	33 0.1140	32 0.129	36 0.143	58 0.130	12 0.049;	32 0.050	39 0.049;	76 0.0670	10 0.066	38 0.065;	38 0.082	0.082	37 0.083:
ılate		C12	1 0.058	55 0.053:	3 0.078	74 0.051	0:050	77 0.0510	9 0.078	13 0.0774	33 0.0779	38 0.060	0.060	15 0.0609	55 0.107	57 0.1050	60.106	33 0.086	17 0.086	18 0.086	53 0.1218	82 0.122	52 0.126	0.113	57 0.116	8 0.114	0.111	0.114	57 0.147	38 0.050:	8 0.0501	73 0.0503	64 0.065	0.065	19 0.064	0 0.081	82 0.0820	88 0.084
alcu		C11	9 0.0585	6 0.0536	0.0757	1 0.0513	5 0.0520	1 0.0503	8 0.0790	5 0.0767	8 0.0758	1 0.0598	0.0605	3 0.0621	8 0.1085	3 0.1056	7 0.1055	980.0 6:	980.0	6 0.0871	1 0.1276	6 0.1283	2 0.1276	3 0.1130	4 0.1145	1155	7 0.1074	5 0.1330	9 0.1685	2 0.0496	14 0.0495	1 0.0487	0.0646	1 0.0673	2 0.064/	0.0800	2 0.081	2 0.085
es c		C10	9 0.0587	9 0.0538	2 0.0785	6 0.0514	5 0.0518	3 0.0508	3 0.0804	7 0.0757	9 0.0764	6 0.0603	5 0.0621	4 0.0603	4 0.106	9 0.1047	7 0.1050	4 0.0851	1 0.0873	8 0.0863	2 0.1258	1 0.1305	6 0.126	8 0.1132	7 0.1147	5 0.1133	9 0.0934	6 0.1482	9 0.2375	2 0.0496	8 0.0498	8 0.0486	7 0.0645	3 0.0651	0 0.0640	3 0.0819	4 0.0822	9 0.0868
valu		ଥ	7 0.0593	9 0.0541	0 0.0737	6 0.0522	2 0.0517	8 0.0510	1 0.0798	5 0.0770	2 0.0761	1 0.0605	8 0.0605	8 0.0605	1 0.1081	1 0.1034	9 0.1042	0 0.0865	9 0.0865	6 0.0863	5 0.1247	6 0.1267	5 0.1252	8 0.1132	0 0.1133	0 0.1145	9 0.0834	0 0.1410	8 0.1671	5 0.0490	2 0.05 00	2 0.0498	9 0.0636	6 0.0655	1 0.0635	3 0.0827	0 0.0823	7 0.0851
SD		8	4 0.0601	8 0.0534	2 0.0736	0 0.0514	8 0.0516	4 0.0511	9 0.0790	2 0.0765	9 0.0743	9 0.0592	3 0.0611	8 0.0606	4 0.1063	7 0.1040	2 0.1045	1 0.0865	9 0.0869	0 0.0871	3 0.1243	6 0.1257	3 0.1230	3 0.1098	9 0.1127	8 0.1134	8 0.0808	8 0.1104	5 0.1531	3 0.0508	8 0.0515	2 0.0493	3 0.0652	9 0.0647	4 0.0630	7 0.0820	4 0.0826	7 0.0837
RM		D	3 0.0607.	2 0.0538	1 0.0712	5 0.0522	3 0.0509	7 0.0514	5 0.0787	9 0.0766	9 0.0810	3 0.0600	1 0.0610	3 0.0612	1 0.1069	0.1029	1 0.1038	0.0853	9 0.0864	3 0.0857	5 0.1251	0.1261	9 0.1309	3 0.1122	0.1112	0.1131	2 0.0894	1 0.1258	7 0.1584	0.0539	2 0.0525	0.0509	1 0.0637	7 0.0654	1 0.0619	0.0805	2 0.0822	2 0.0874
ive		C6	0.06291	0.05363	5 0.0748 ⁴	0.05200	0.05101	0.0518	0.0786!	0.08009	0.0790	0.0599	0.06024	0.0598	0.1080	0.1056	0.10384	0.08590	0.08569	0.0861	0.1235	0.1261	0.13059	0.11368	0.1131	0.1144	0.0863	0.1100	0.1508	0.04890	0.0502	0.0491	0.06094	0.0638	0.06294	0.0805	0.0829	0.0837
elat		C5	0.06530	0.05337	0.07376	0.05201	0.05175	0.05117	0.08374	0.07585	0.07808	0.06122	0.06034	0.06115	0.10808	0.10402	0.10314	0.08603	0.08715	0.08663	0.12492	0.12718	0.12709	0.11328	0.11274	0.11248	0.08324	0.09290	0.15334	0.05104	0.05008	0.04867	0.06337	0.06430	0.06007	0.08192	0.08244	0.08467
he r		C4	0.06786	0.05279	0.07558	0.05121	0.05163	0.05091	0.08057	0.07731	0.07486	0.06123	0.05906	0.06114	0.10896	0.10485	0.10448	0.08620	0.08661	0.08678	0.12570	0.12516	0.12515	0.11085	0.11300	0.11383	0.09778	0.16850	0.16245	0.05161	0.04974	0.04875	0.06464	0.06411	0.06038	0.08386	0.08308	0.08333
Ei 		8	0.07227	0.05305	0.08229	0.05184	0.05169	0.05104	0.13719	0.07497	0.07561	0.06255	0.06007	0.06066	0.10660	0.10371	0.10247	0.08727	0.08575	0.08696	0.12542	0.13032	0.13021	0.10974	0.11200	0.11080	0.13383	0.12632	0.14779	0.05625	0.05053	0.05182	0.06078	0.06192	0.05978	0.08267	0.08311	0.08184
н. 4		C2	0.08332	0.05315	0.10365	0.05174	0.04905	0.05084	0.16986	0.08966	0.07881	0.06194	0.06084	0.06135	0.10604	0.10315	0.10264	0.08576	0.08612	0.08663	0.12817	0.14373	0.13018	0.10970	0.11068	0.11009	0.12029	0.14696	0.17044	0.05294	0.05083	0.05106	0.05499	0.05742	0.05859	0.08029	0.08203	0.08414
able		C1	0.12585	0.04917	0.10815	0.04859	0.04469	0.04487	0.08530	0.07957	0.07916	0.06724	0.06738	0.06450	0.11664	0.10006	05660.0	0.08814	0.08753	0.08788	0.13477	0.12165	0.12605	0.10427	0.10546	0.10631	0.12174	0.14160	0.17420	0.07100	0.06408	0.06648	0.05690	0.05672	0.05733	0.07599	0.07739	0.07669
Ĥ	To de	cisa i	f t	13 poq	ъ8 4	11 7	10q	ъ8 4	L L	13 pot	д 14	11	13 poto	д 14	т Т	13 pot	ъя 4	11	13 poto	ъя 4	T T	13 poto	Ř T4	11	13 Dod	е Т4	τ τ	13 Dod	е Т4	E Z	2 oqo	м Т4	τ τ	13 Dod	к 14	E z	13 opo	е Т4
			F		t tr	iol			F		2 tr	iol.			Ė		t 3	niol.			Ė		1t 4	niol			F		2 tr	iol	-		İ.		9 tu	iol		

a	lard Deviatior
dat	Stanc
elocity	Diffof
low ve	Diff of MAX/MIN
without	Maximum
st 2	
of Tes	Minimum
results a	Mean
ation	
entific	
id.	
th€	
with	
verified	
cross	
the	
from	se
ted	Cycl
cula	
cald	
values	
SD	
RM	
elative	
$\Gamma he r$	

	eviation	All Tests		0.0132082			0.0012364			0.0106079			0.0013427			0.0027372			0.0008161			0.0039548			0.0028144			0.0136238			0.0037796			0.0041561			0.0026652	
lata	Standard D	Test	0.0140393	0.0086724	0.0154174	0.0006742	0.0015075	0.0013218	0.0170036	0.0019576	0.0013358	0.0015223	0.0014601	0.0010309	0.0026459	0.0013836	0.0021294	0.0009649	0.0008112	0.0006757	0.0041697	0.0040155	0.0030126	0.0026466	0.0030394	0.0024290	0.0098753	0.0151134	0.0154647	0.0045863	0.0032855	0.0034376	0.0031696	0.0038639	0.0038450	0.0021768	0.0012682	0.0016830
city (Diffof	'End Cycle	50112 C	39351 0	.50218 C	.04888 C	.15207 C	.13382 C	.05801 C	.00423 C	.02513 C	.08078 C	.09161 C	.07684 C	.07261 C	.04933 C	.07736 C	.01018 C	.01341 C	.00233 C	.11992 C	.01478 C	.02349 C	.10518 C	.10432 C	.09668 C	.06328 C	.34293 C	.31463 C	. <mark>29990</mark> 0	.22428 C	.24118 C	.07688 C	.28589 C	.31114 C	.13170 C	.05480 C	.00734 C
velo	4IN D	rests Start/	0	0613 0	0	0	4788 0	0	0	0681 0	0	0	1638 0	0	0	5335 0	0	0	4591 0	0	0	0 0	0	0	2087 0	0	0	4420 0	0	0	2847 0	0	0	2521 0	0	0	7560 0	0
low	iff of MAX/N	est All	4943	1474 0.6	0666	6718	4486 0.1	3 2 6 8	7502	0.839 0.5	5860	1638	0670 0.1	7684	1552	4701 0.1	8202	4377	3866 0.0	3375	4085	3222 0.1	0429	9600	1117 0.1	9879	3635	8758 0.4	8720	2416	5879 0.3	7175	2 698	3098 0.3	4564	3738	8363 0.1	7649
lout	-	Tests T	0.5	L2720 0.3	0.5	0.0	15251 0.1	0.1	0.4	15050 0.1	0.0	0.1	0.1	0.0	0.1	1820 0.0	0.0	0.0	0.0 0.0 0.0 D	0.0	0.1	14438 0.1	0.1	0.1	1932 0.1	0.0	0.3	15867 0.3	0.3	0.3	0.2	0.2	0.2	0.7429	0.2	0.1	0.0 0.0	0.0
with	Maximun	Test All	12720	07311 0.1	10947	05 232	05251 0.0	05159	15050	0.1008325	07929	06705	06657 0.0	06493	11820	10841 0.1	10902	08904	08924 0.C	08878	14135	14438 0.1	13579	11667	11932 0.1	11696	13 288	14872 0.1	15867	07139	06525 0.C	06583	07429	0.0	06645	08510	08518 0.0	08905
$\operatorname{st} 3$	۶	I Tests	0	05010 0.0	0.	0	04475 0.	0	0	07422 0.	0.	0.	05925 0.	õ	0	10007 0.	0	0	08514 0.	0.0	0	12144 0.	0.	0.	10489 0.	0.	0.	08819 0.	0	0.	04794 0.	0.	0.0	05013 0.	0.	0	07341 0.	0.
f Te	Minimur	Test AI	05731	05010 0.0	05401	04881	04490	04475	07901	07422 0.1	07464	05925	05947 0.1	05994	10455	10332 0.	10007	08514	08579 01	08578	12144	12529 0.	12163	10489	10605 0.	10540	08819	09108 0)	09723	04825	04836 0.1	04794	05743	05181 0.0	05013	07341	07806 01	08223
lts o		I Tests	ö	06504 0.	0	0	05111 0.	Ö	0	08020 0.	0	0	06101 0.	Ö	ö	10624 0.	Ö	0	08716 0.	0.	ö	12689 0.	0	0	11433 0.	0.	0	11311 0.	0	0	05060 0.	0	0	06463 0.	0	0	08346 0.	0
resul	Mean	Test AI	06546	06115 0.0	06851	05119	05140 0.0	05073	08597	07787 0	07678	06109	06083 0.1	06112	10872	10519 0.	10481	08716	08722 0)	08708	12511	12837 0.	12718	11387	11553 0.	11359	11097	11360 0.	11476	05114	05036 0.1	05030	06754	06355 0.1	06280	08181	08226 0.	08630
ion		C24	.06346 0.	.06981 0.	.05450 0.	.05119 0.	.05173 0.	.05073 0.	.08195 0.	.07809 0.	.07720 0.	.06163 0.	.06047 0.	.05994 0.	.10962 0.	.10841 0.	.10782 0.	.08813 0.	.08769 0.	.08783 0.	.12440 0.	.12966 0.	.13166 0.	.11593 0.	.11712 0.	.11559 0.	.10043 0.	.09108 0.	.15867 0.	.04998 0.	.05061 0.	.04996 0.	.06865 0.	.06663 0.	.06573 0.	.08308 0.	.08233 0.	.08645 0.
icat		C23	0.06206 0	0.06887 0	0.05421 0	0.05055 0	0.05226 0	0.05120 0	0.08057 0	0.07839 0	0.07716 0	0.06131 0	0.06145 0	0.06169 0	0.10991 0	0.10620 0	0.10902 0	0.08764 0	0.08780 0	0.08878 0	0.12596 0	0.12606 0	0.12649 0	0.11526 0	0.11685 0	0.11452 0	0.13288 0	0.11440 0	0.13724 0	0.04941 0	0.05022 0	0.05068 0	0.06912 0	0.06583 0	0.06513 0	0.08387 0	0.08109 0	0.08627 0
entii		C22	0.06177 0	0.06856 (0.05449 (0.05172 0	0.05216 (0.05056 (0.08198 (0.07723 0	0.07533 (0.06189 (0.06134 (0.06070	0.11107 (0.10641 (0.10671 (0.08805 (0.08924 (0.08755 (0.12144 (0.12740 (0.12987	0.11461 (0.11758 (0.11232 (0.12074 (0.11935 (0.09863	0.05048 (0.05078 (0.05050 (0.06876 (0.06658 (0.06504 (0.08288 (0.08260 (0.08473 0
le id		C21	0.06477	0.07036	0.05451	0.05051	0.05189	0.05159	0.07959	0.07700	0.07828	0.06084	0.05956	0.06215	0.11153	0.10666	0.10741	0.08749	0.08724	0.08779	0.12481	0.12651	0.12557	0.11518	0.11636	0.11470	0.10834	0.11077	0.09723	0.05148	0.05125	0.05031	0.07155	0.06738	0.06507	0.08264	0.08350	0.08554
h th		C20	0.06364	0.07311	0.05525	0.05119	0.05042	0.05149	0.08012	0.07967	0.07608	0.06071	0.06110	0.06069	0.11034	0.10531	0.10443	0.0880.0	0.08707	0.08737	0.12639	0.12669	0.12868	0.11482	0.11587	0.11322	0.12014	0.10143	0.10511	0.05020	0.05087	0.04921	0.06835	0.06509	0.06525	0.08216	0.08219	0.08569
l wit		C19	0.06308	0.07037	0.05417	0.05085	0.05172	0.05148	0.07956	0.07762	0.07553	0.06003	0.06005	6/090'0	0.10920	0.10764	0.10513	0.08845	0.08709	0.08744	0.12564	0.12529	0.12562	0.11623	0.11932	0.11542	0.11660	0.11216	0.11711	0.05026	0.05057	0.04951	0.06893	0.06604	0.06645	0.08352	0.08276	0.08410
ified		C18	0.06154	0.07121	0.05492	0.05138	0.05168	0.05157	0.08218	69620.0	0.07848	0.06155	0.06175	0.06065	0.10798	0.10570	0.10584	0.08717	0.08806	0.08721	0.12280	0.12882	0.12740	0.11667	0.11728	0.11414	0.11421	0.09899	0.11494	0.04948	0.04989	0.04877	0.06903	0.06670	0.06578	0.08246	0.08303	0.08518
S Ver		C17	0.06146	0.07161	0.05401	0.05107	0.05142	0.05108	0.080.0	0.07784	0.07526	0.06143	0.05975	0.06079	0.10942	0.10754	0.10548	0.08816	0.08743	0.08737	0.12463	0.12639	0.12757	0.11436	0.11789	0.11403	0.11236	0.09938	0.10539	0.04828	0.05014	0.04959	0.06641	0.06634	0.06525	0.08310	0.08193	0.08780
CLOSS		C16	0.06107	0.07229	0.05424	0.05064	0.05194	0.05077	0.08021	0.07686	0.07929	0.06131	0.06056	0.05997	0.10987	0.10457	0.10609	0.08757	0.08756	0.08686	0.12308	0.12769	0.12864	0.11509	0.11806	0.11508	0.11006	0.10007	0.10091	0.04905	0.04930	0.05197	0.06709	0.06576	0.06488	0.08510	0.08136	0.08498
the c		C15	1 0.05752	7 0.06773	0.05440	0.05137	9 0.05192	5 0.05120	5 0.08231	0.07747	5 0.07630	0.05995	5 0.06031	0.06046	3 0.11022	0.10557	3 0.10605	3 0.08704	7 0.08730	1 0.08676	9 0.12274	3 0.13095	7 0.13025	3 0.11592	0.11621	1 0.11696	7 0.11195	1 0.10573	3 0.12035	1 0.04860	2 0.04901	0.04960	0.06801	5 0.06602	5 0.06482	2 0.08245	4 0.082.03	5 0.08765
om t		C14	5 0.05731	1 0.06897	1 0.05535	3 0.05130	0.05145	9 0:05066	5 0.08226	1 0.07980	5 0.07696	5 0.05931	7 0.06006	2 0.06131	0.10768	5 0.10381	1 0.10268	5 0.08775	2 0.08775	1 0.08704	0.12179	5 0.12618	0.12337	0.11593	0.11687	3 0.11394	2 0.11547	7 0.10434	0.11695	7 0.04971	0.04882	0.0496	3 0.06785	3 0.06626	0.06545	2 0.08172	7 0.08334	3 0.08496
d Fr	Cycles	C13	2 0.0588	6 0.05424	7 0.0744:	3 0.0511	1 0.05140	8 0.05099	4 0.0825!	9 0.07514	9 0.0769	1 0.0607	3 0.0594:	9 0.0622	0.1085	4 0.1049	0.1066	0 0.0872	5 0.0865;	2 0.08674	0.1248	6 0.1256	3 0.1258	3 0.1154:	0.1186	7 0.1138	1 0.1245	0.1308	0.1009	5 0.0500	5 0.0496:	8 0.0496	1 0.0699:	2 0.0650	1 0.0653:	9 0.0820	3 0.0819	5 0.0822
llate		C12	0 0.0586	3 0.0538	3 0.0786	3 0.0513	8 0.0517	6 0.0506	06/0.0 0	7 0.0770	7 0.0777	5 0.0608	6 0.0601	3 0.0609	5 0.1083	0 0.1059	6 0.1069	5 0.0869	3 0.0866	8 0.0863	5 0.1228	5 0.1261	5 0.1279	5 0.1139	6 0.1155	7 0.1136	7 0.1047	4 0.1110	5 0.1118	4 0.0499	7 0.0485	8 0.0501	1 0.0681	0 0.0652	1 0.0639	8 0.0821	1 0.0811	3 0.0852
alcu		C11	13 0.0594	18 0.0535	14 0.0765	38 0.0514	19 0.0521	64 0.0504	6 0.0795	33 0.0775	10 0.0762	23 0.0597	90 0.0608	50 0.062C	23 0.107C	0.1043	58 0.1038	58 0.0863	14 0.0872	1 0.0870	72 0.1226	55 0.131C	86 0.126C	18 0.1146	4 0.1157	15 0.1164	0.0955	84 0.1247	0.1147	79 0.0496	66 0.0501	55 0.0483	73 0.0670	18 0.0646	0.0648	14 0.0811	28 0.0816	0.0860
les c		C10	3 0.0594	3 0.0541	6 0.0794	.1 0.0513	.2 0.0501	1 0.0506	0.080.0	9 0.0768	2 0.0761	7 0.0602	0.0599	2 0.0605	4 0.1072	2 0.1050	4 0.1056	9:00.0856	9 0.0871	5 0.0867	3 0.1227	2 0.1255	1 0.1238	5 0.1141	0.1157	8 0.1134	4 0.1035	1 0.1333	0.1503	5 0.0497	6 0.0486	1 0.0486	4 0.0667	4 0.064/	2 0.0630	3 0.0824	7 0.0822	3 0.0890
valu		ຍ	9 0.0595	7 0.0536	15 0.0735	0.0521	17 0.0521	10:050	2 0.0800	9 0.0780	4 0.0755	0.0603	14 0.0595	·3 0.0604	5 0.1079	0.1045	0.1040	1 0.0867	6 0.0857	1 0.0868	0.1252	3 0.1273	3 0.1262	2 0.114	3 0.1158	2 0.1157	0.1171	7 0.1286	6 0.1065	8 0.0482	2 0.048	3 0.0490	3 0.0652	1 0.0642	3 0.0622	5 0.0825	0.0816	6 0.0873
$^{\mathrm{SD}}$		8	3 0.0605	3 0.0542	3 0.0740	2 0.0511	1 0.0518	6 0.0508	6 0.0798	8 0.0766	3 0.0746	3 0.0592	0 0.0600	3 0.0607	4 0.1045	1 0.1045	3 0.1027	3 0.0867	9 0.0877	8 0.0865	2 0.1243	2 0.1255	1 0.1216	8 0.1128	9 0.1161	8 0.1150	7 0.1091	6 0.1031	9 0.1112	4 0.0504	9 0.0495	1 0.0490	4 0.0660	0 0.0626	5 0.0624	2 0.0811	9 0.0823	8 0.0874
RM		D	3 0.0608	9 0.0537	4 0.0713	5 0.0523	0 0.0525	7 0.0514	1 0.0812	2 0.0779	7 0.0783	0 0.0601	2 0.0604	9 0.0611	5 0.1064	8 0.1044	6 0.1039	5 0.0858	2 0.0864	9 0.0859	8 0.1244	6 0.1269	7 0.1272	0 0.1134	6 0.1159	6 0.1131	8 0.1043	5 0.1150	0.1060	0 0.0511	0 0.0487	4 0.0496	8 0.0673	9 0.0617	6 0.0620	3 0.0805	8 0.0823	9 0.0882
ive		99	4 0.0625	0.0537	5 0.0740	1 0.0515	9 0.0513	5 0.0513	1 0.0790	1 0.0817	5 0.0772	3 0.0602	1 0.0605	3 0.0600	3 0.1060	3 0.1038	5 0.1021	1 0.0859	0.0865	3 0.0860	3 0.1217	2 0.1270	0.1261	9 0.1127	0.1152	1 0.1124	9 0.1102	3 0.1032	0.1124	5 0.0489	0.0491	3 0.0485	0.0629	0.0614	0.0607	2 0.0811	2 0.0836	7 0.0880
elat		C5	0.06634	0.05290	0.07486	0.05151	0.05175	0.05075	0.08284	0.07554	0.07725	0.06153	0.06142	0.06153	0.10683	0.10363	0.10206	0.08514	0.08601	0.08578	0.12475	0.12792	0.12371	0.11529	0.11620	0.11342	0.08819	0.09123	0.12670	0.05155	0.04996	0.04913	0.06941	0.06060	0.06080	0.08142	0.08282	0.08727
he r		C4	0.06868	0.05322	0.07644	0.05080	0.05217	0.05062	0.08031	0.07659	0.07510	0.06134	0.06044	0.06127	0.10739	0.10419	0.10445	0.08704	0.08682	0.08741	0.12564	0.12622	0.12465	0.11137	0.11174	0.11329	0.12399	0.14872	0.11101	0.05170	0.04915	0.04794	0.07429	0.06017	0.05933	0.08235	0.08518	0.08887
H H		υ	0.07181	0.05296	0.08155	0.05161	0.05233	0.05077	0.12943	0.07422	0.07508	0.06238	0.06252	0.06070	0.10697	0.10380	0.10287	0.08755	0.08671	0.08721	0.12528	0.13304	0.12949	0.11013	0.11084	0.11112	0.10037	0.11280	0.10079	0.05584	0.05105	0.05138	0.06899	0.05844	0.05722	0.08084	0.08281	0.08449
E L		C	0.07956	0.05385	0.09933	0.05173	0.05045	0.05093	0.15050	0.08325	0.07727	0.06197	0.06173	0.06129	0.10700	0.10392	0.10353	0.08616	0.08654	0.08685	0.13308	0.14438	0.13579	0.10948	0.10969	0.10908	0.11025	0.12724	0.10809	0.05159	0.04891	0.05018	0.05743	0.05581	0.05635	0.07896	0.08230	0.08772
able		C1	0.12720	0.05010	0.10947	0.04881	0.04490	0.04475	0.08700	0.07842	0.07919	0.06705	0.06657	0.06493	0.11820	0.10332	0.10007	0.08904	0.08888	0.08803	0.14135	0.13161	0.12864	0.10489	0.10605	0.10540	0.10721	0.13861	0.12069	0.07139	0.06525	0.06583	0.06375	0.05181	0.05013	0.07341	0.07806	0.08582
Ĥ	To she	aca.	11	12	2 14	11 7	100	74 74	T1	100	Z 14	11 7	100 ⁴	4	11 T	12	4	11 7	100 ⁴	ž T4	11 1	100 ⁴	ž T4	7 T1	100r	ž T4	- T1	T2	2 7	11 7	12	ž 14	- T1	12	ž 14	11	12	ъ 4
			-	,	t tr	niol. c	4	~a		,oyi	- a	iol.	,oqu	-d	-	,~yu	e ti - q	loir v	,oqu	a	-	,oqu	t⊳ tr ∙a	iol C i	,~yu	a	E.	,oqu	s tr	iol C i	,~4 ⁶	a	F -	,044	9 tr 9 d	iol C 1	-40	a

	riation	VII Tests		0121505			0013107			0107182			0014916			0027606			0009131			0027431			0022693			0244954			0045764			0036465			0016982	
ata	standard Dev	Test	030841	094821 0	150869	008328	014971 0	014612	172615	018829 0	023964	015748	013782 0	015547	031940	012772 0	012976	010924	008885 0	007662	024003	025236 0	023713	016620	023891 0	025510	203077	285254 0	118860	059853	040169 0	034522	024260	035095 0	035428	014487	021711 0	011336
ty d	÷	Cycle .	54 0.0	18 0.0	13 0.0	0.0	16 0.0	95 0.0	18 0.0	36 0.0	16 0.0	38 0.0	0.0	57 0.0	55 0.0	11 0.0	57 0.0	51 0.0	0.0	0.0 07	23 0.0	20 0.0	0.0 00	33 0.0	35 0.0	56 0.0	76 0.0	0.0	20 0.0	28 0.0	32 0.0	56 0.0	10 0.0	35 0.0	53 0.0	27 0.0	25 0.0	28 0.0
eloci	Diffo	Start/End	0.1170	0.331	0.498	0.058	0.145	0.116	0.003	0.000	0.034:	0.0751	0.0756	0.079	9560'0	0.041	090.0	0.021	0.022	0.007	0.073	0.006	0.050	0.052	0.068	0.091	0.137	0.217	0.084	0.352	0.265	0.240	0.013	0.198	0.253	0000'0	0.112	0.000
M VE	MAX/MIN	All Tests		0.50355			0.14954			0.51204			0.12407			0.16321			0.05313			0.09506			0.09303			0.60273			0.37930			0.25656			0.12359	
ut lo	Diff of I	Test	0.15628	0.34952	0.50355	0.07853	0.14295	0.14176	0.47867	0.11145	0.13611	0.11443	0.10077	0.12407	0.13603	0.05586	0.05720	0.05313	0.04477	0.03230	0.09506	0.07120	0.08324	0.06125	0.08125	0.08662	0.46143	0.58326	0.36322	0.37930	0.29953	0.26206	0.14384	0.17965	0.21084	0.06044	0.11311	0.04443
thou	dmum	All Tests		0.10823			0.05236			0.15176			0.06733			0.12087			0.09012			0.13499			0.12046			0.21993			0.07766			0.07205			0.08823	
4 Wi	Max	Test	0.06513	0.10735	0.10823	0.05213	0.05236	0.05188	0.15176	0.08334	0.08596	0.06716	0.06608	0.06733	0.12087	0.10807	0.10728	0.09012	0.08972	0.08865	0.13499	0.13402	0.13422	0.11827	0.12046	0.11962	0.18126	0.21993	0.13721	0.07766	0.06924	0.06762	0.07205	0.06758	0.06787	0.08823	0.08719	0.08812
[est	imum	All Tests		0.05373			0.04453			0.07405			0.05898			0.10114			0.08533			0.12216			0.10926			0.08737			0.04820			0.05356			0.07733	
of J	Mir	Test	0.05495	0.06983	0.05373	0.04803	0.04487	0.04453	0.07912	0.07405	0.07426	0.05948	0.05943	0.05898	0.10443	0.10203	0.10114	0.08533	0.08570	0.08579	0.12216	0.12448	0.12305	0.11103	0.11068	0.10926	0.09762	0.09165	0.08737	0.04820	0.04850	0.04990	0.06168	0.05544	0.05356	0.08290	0.07733	0.08421
ults	fean	All Tests		0.06802			0.05103			0.08079			0.06115			0.10588			0.08720			0.12705			0.11655			0.12093			0.05157			0.06548			0.08539	
l res	4	Test	0.06023	0.07594	0.06788	0.05111	0.05131	0.05066	0.08629	0.07821	0.07787	0.06127	0.06094	0.06125	0.10836	0.10504	0.10423	0.08723	0.08722	0.08715	0.12543	0.12867	0.12704	0.11602	0.11729	0.11634	0.12584	0.13311	0.10384	0.05210	0.05090	0.05171	0.06799	0.06380	0.06464	0.08513	0.08493	0.08610
atior		C24	0.06513	0.07176	0.05428	3 0.05085	0.05140	0.04973	0.08261	0.07859	0.07708	0.06207	0.06113	0.06197	0.10931	0.10807	3 0.10728	6 0.08818	0.08769	6 0.08784	0.12511	0.13132	0.12921	0.11689	0.11824	0.11926	0.14687	0.13148	0.12506	3 0.05030	0.05084	0.05135	0.06965	0.06643	0.06714	0.08400	0.08601	0.08567
tificé		C23	2 0.06337	3 0.07032	0.05502	2 0.05038	9 0.05212	1 0.05161	1 0.08030	2 0.07842	3 0.07635	1 0.06264	3 0.06235	3 0.06192	0.10659	0.10655	0.10548	7 0.08776	5 0.08787	2 0.08865	3 0.12356	3 0.12484	5 0.12514	2 0.11802	0.11961	1 0.11707	0.14715	0.13072	3 0.10000	9 0.04948	0.05025	5 0.05185	0.06899	1 0.06575	7 0.06675	5 0.08592	3 0.08480	3 0.08637
den		C22	9 0.06363	2 0.07078	3 0.05429	3 0.0515	5 0.05199	2 0.0506	1 0.0820:	0.0772	0.0781	2 0.06274	7 0.06181	0.0609	0.1082	7 0.1059	1 0.1051	0.0873	3 0.08854	7 0.0868	3 0.1251	3 0.12974	5 0.1278	0.1165	0.11946	3 0.1180	2 0.1136	3 0.1115	0.0911	3 0.05139	1 0.0516	3 0.0516	5 0.07029	3 0.0669:	5 0.0667	7 0.0851(2 0.08654	1 0.08518
he i		C21	1 0.06465	3 0.07022	9 0.05418	1 0.0503	9 0.05176	0.05073	0.07974	0.07701	0.07741	3 0.06162	7 0.05975	0.06015	0.10981	1 0.10607	7 0.1033	0.08740	5 0.08713	5 0.08777	7 0.12593	5 0.12813	5 0.12785	3 0.11705	0.11829	3 0.11938	3 0.09762	0.09318	0.09320	5 0.05118	0.05081	5 0.05238	2 0.07205	5 0.06758	5 0.06706	0.08507	3 0.08712	1 0.08421
th t		C20	2 0.06254	3 0.07151	1 0.05429	2 0.05084	0.05019	1 0.0505	5 0.07970	1670.0 1	0.0795	0.0606	0.0608	5 0.0591(1 0.1095	7 0.10524	3 0.1039	2 0.0888:	0.08776	0.0869!	0.1243	5 0.1255	3 0.1266!	0.1157	3 0.1166:	5 0.1174	0.1012	0.09260	0.1010	3 0.0506	7 0.0510	5 0.0508(0.0699	7 0.06516	7 0.0672(2 0.08439	1 0.08628	1 0.08514
ų M		C19	9 0.0627.	2 0.0698	3 0.0544:	3 0.0504	3 0.05140	5 0.0501:	5 0.08016	1 0.07834	5 0.0766/	3 0.06010	2 0.06010	7 0.0620	9 0.1085	0.1067	7 0.1039	3 0.08843	3 0.0869	5 0.0872	9 0.1262:	3 0.1272	3 0.1275	3 0.1169:	3 0.1198	5 0.1172	1 0.1150	5 0.1175	0.0916	5 0.0514	7 0.05133	3 0.0510	3 0.0716	0.0663	0.0678	1 0.0855	7 0.0867:	1 0.0847:
rifie		C18	0.06199	0.0718	0.05418	0.0514	8 0.05141	0.0510	0.0832	0.0787:	3 0.0824	8 0.06141	3 0.0616	0.0613	0.1063	0.1045	0.1035	3 0.0876	3 0.0885	0.08754	0.1241	8 0.1294	0.1263	0.1169	0.1174	0.1175	0.1163	0.1047	0.0982	0.0496	0.0500	3 0.0510	12 0.06971	0.0669	0.0662	0.0846	0.0870	0.0866
S VC		C17	0.06226	0.07280	0.05417	0.05086	0.05125	0.05079	0.08024	0.07850	32770.0	0.06133	0.05968	0.06070	0.10974	0.1069	0.1040	36780.0	0.08718	0.08735	0.1253	0.12698	0.12554	0.11697	0.12046	0.11962	0.10958	0.10175	0.08737	0.04852	0.05035	0.05108	0.06664	0.06632	0.06734	0.08521	0.08635	0.08634
CLOS		C16	0.06057	0.0716	0.05375	0.05061	0.05190	0.05127	7.670.0	0.07682	0.0776	0.06148	0.06075	0.06218	0.10987	0.1040	0.10566	0.08756	0.08750	0.08787	0.12434	0.12781	0.12763	0.11695	0.1196	0.11914	0.0996	0.09165	0.09205	0.04894	0.0491	0.05125	0.06775	0.06595	0.06596	0.08645	0.08564	0.08591
the c		C15	0.06010	0.07173	0.05433	0.05120	0.05170	0.05096	0.08242	0.07888	0.07777	0.06017	0.06037	0.06135	0.10904	0.10454	0.10350	0.08684	0.08710	0.08666	0.12501	0.13282	0.12888	0.11827	0.11848	0.11764	0.12133	0.12679	0.09760	0.04820	0.04850	0.05072	0.06632	0.06610	0.06681	0.08290	0.08605	0.08607
om t		C14	0.06195	0.07635	0.05460	0.05105	0.05126	0.05102	0.08250	0.08016	0.07594	0.05960	0.06018	0.06180	0.10913	0.10472	0.10565	0.08753	0.08747	0.08847	0.12502	0.12970	0.12895	0.11696	0.11768	0.11701	0.12198	0.13264	0.09996	0.05071	0.04972	0.05155	0.06748	0.06623	0.06536	0.08297	0.08715	0.08628
ц Ц	ycles	C13	0.06120	0.07429	0.07359	0.05115	0.05133	0.05092	0.08356	0.07669	0.07693	0.06056	0.05943	0.06127	0.10720	0.10360	0.10384	0.08742	0.08664	0.08711	0.12376	0.12448	0.12492	0.11732	0.12019	0.11802	0.11910	0.11843	0.10351	0.04998	0.04940	0.05101	0.06822	0.06472	0.06662	0.08390	0.08457	0.08440
late	С	C12	0.06207	0.07807	0.07801	0.05134	0.05163	0.05045	0.07912	0.07684	0.07708	0.06066	0.06058	0.06129	0.10815	0.10535	0.10529	0.08694	0.08652	0.08656	0.12396	0.12643	0.12418	0.11559	0.11668	0.11695	0.11410	0.13309	0.09640	0.05025	0.04879	0.05084	0.06872	0.06552	0.06499	0.08429	0.08374	0.08501
alcu		C11	0.06052	0.07517	0.07576	0.05135	0.05206	0.05162	0.07998	0.07771	0.07732	0.05973	0.06102	0.06062	0.10682	0.10425	0.10380	0.08666	0.08750	0.08666	0.12216	0.12780	0.12342	0.11647	0.11724	0.11701	0.11189	0.14990	0.09703	0.05050	0.05090	0.05007	0.06525	0.06376	0.06682	0.08297	0.08472	0.08508
es ce		C10	0.06194	0.07807	0.07881	0.05166	0.05039	0.05188	0.08114	0.07704	0.07563	0.06083	0.06020	0.06217	0.10693	0.10480	0.10503	0.08533	0.08687	0.08750	0.12370	0.12680	0.12911	0.11561	0.11690	0.11600	0.18126	0.21993	0.13721	0.05083	0.04974	0.05095	0.06852	0.06541	0.06514	0.08556	0.08594	0.08812
7alu		ອ	0.05886	0.07298	0.07367	0.05213	0.05204	0.05155	0.07983	0.07926	0.07763	0.06087	0.05956	0.06048	0.10977	0.10572	0.10451	0.08698	0.08570	0.08731	0.12401	0.12576	0.12572	0.11629	0.11652	0.11498	0.14637	0.15942	0.10999	0.04891	0.04906	0.04994	0.06640	0.06545	0.06528	0.08559	0.08396	0.08678
Ď		8	0.05708	0.07288	0.07276	0.05155	0.05213	0.05155	0.07980	0.07678	0.07694	0.05948	0.06019	0.06138	0.10496	0.10554	0.10273	0.08659	0.08770	0.08669	0.12574	0.12791	0.12639	0.11414	0.11688	0.11520	0.15155	0.14345	0.10551	0.05159	0.05046	0.05219	0.06782	0.06328	0.06478	0.08801	0.08405	0.08802
SMS		D	0.05642	0.07052	0.07074	0.05199	0.05228	0.05074	0.08489	0.08087	0.07676	0.06017	0.06041	0.06089	0.10739	0.10467	0.10330	0.08568	0.08633	0.08662	0.12615	0.12942	0.12490	0.11502	0.11716	0.11256	0.13286	0.14719	0.10213	0.05196	0.04902	0.05145	0.06496	0.06105	0.06494	0.08698	0.08685	0.08757
veI		C6	0.05684	0.07400	0.07308	0.05167	0.05138	0.05067	0.07988	0.08334	0.07995	0.06009	0.06053	0.06051	0.10720	0.10440	0.10456	0.08623	0.08674	0.08579	0.12640	0.13402	0.12862	0.11573	0.11777	0.11375	0.15044	0.14085	0.10610	0.04925	0.04943	0.04990	0.06569	0.06332	0.06350	0.08409	0.08412	0.08775
elati		CS	0.05549	0.07229	0.07376	0.05177	0.05198	0.05150	0.08273	0.07621	0.07584	0.06157	0.06134	0.06065	0.10523	0.10445	0.10382	0.08540	0.08612	0.08645	0.12789	0.13212	0.12810	0.11657	0.11725	0.11481	0.13418	0.14047	0.11313	0.05194	0.05021	0.05072	0.06519	0.05917	0.06363	0.08675	0.08482	0.08708
he r		C4	0.05503	0.07400	0.07454	0.05097	0.05227	0.05145	0.08265	0.07708	0.07804	0.06092	0.06031	0.05898	0.11039	0.10404	0.10465	0.08666	0.08634	0.08681	0.12730	0.12841	0.12673	0.11387	0.11374	0.11442	0.12646	0.14831	0.11849	0.05434	0.05027	0.05011	0.07017	0.05814	0.06116	0.08823	0.08377	0.08723
F		U	0.05495	0.08076	0.08011	0.05168	0.05236	0.05147	0.13060	0.07405	0.07426	0.06249	0.06235	0.05999	0.10443	0.10497	0.10528	0.08776	0.08674	0.08603	0.12467	0.13158	0.12803	0.11673	0.11613	0.11761	0.10213	0.13266	0.09606	0.06076	0.05202	0.05108	0.06815	0.05819	0.05913	0.08563	0.08219	0.08511
Ь.6		C2	0.05795	0.10332	0.09863	0.05190	0.05039	0.04907	0.15176	0.08073	0.08596	0.06199	0.06184	0.06089	0.10515	0.10203	0.10206	0.08626	0.08654	0.08632	0.12536	0.12920	0.13422	0.11278	0.11210	0.11205	0.13035	0.15806	0.11386	0.05194	0.04927	0.05031	0.06168	0.05784	0.05714	0.08493	0.08252	0.08593
able		C1	0.05827	0.10735	0.10823	0.04803	0.04487	0.04453	0.08233	0.07865	0.07981	0.06716	0.06608	0.06733	0.12087	0.10380	0.10114	0.09012	0.08972	0.08853	0.13499	0.13044	0.12305	0.11103	0.11068	0.10926	0.12909	0.16807	0.11534	0.07766	0.06924	0.06762	0.07060	0.05544	0.05356	0.08402	0.07733	0.08569
Ĥ	Tacte	000	L L	12 poq	т3 В	11	T2	т3 В	E T	12	т3 К	11	12 Dot	к ТЗ	τ τ	12	т ж	11	12 Dot	т в	T T	12 Dot	е 13	11	12 Dopot	œ T3	τ τ	12 Dod	к Т3	11 7 1	12	к Т3	τ τ	12 Dot	к Т3	11 7 1	12 000	е ТЗ
			Ė		t t	iol			Ē	-	t 2	iol					۲ 3	niol			Ė		1t 4	iol			-		S tr	iol			-		9 1 L	iol		

F.2 The Figures of RMSD

Figure F.1 and F.2 are the plots of RMSD values obtained from the self verification, which the verification is established based the identification results of itself. The rest figures (from Figure F.3 to Figure F.10) are the plots of RMSD values calculated from the cross verification, which the verification is established based the identification results of other tests.

Figure F.1: The RMSD values versus cycles of the self verifications

Figure F.2: The RMSD values versus cycles of the self verifications

Figure F.3: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 1 of Robot 1

Figure F.4: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 2 of Robot 1

Figure F.5: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 3 of Robot 1 $\,$

Figure F.6: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 4 of Robot 1

Figure F.7: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 1 of Robot 2 $\,$

Figure F.8: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 2 of Robot 2

Figure F.9: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 3 of Robot 2 $\,$

Figure F.10: The RMSD values versus cycles, calculated from the cross verifications based the identification results of Test 4 of Robot 2 $\,$

Appendix G

The Identification Results Of The Dynamic Parameters

The figures shown in this appendix are the dynamic parameter identification results of both robots, which are used for the analysis in Section 5.1.1 and 5.1.5.1. The subplot A of all figures are the plots with the y-axis labelled automatically, and the subplots B of all figures are the plots with the widening scale of y-axis, which the scaling are chosen with the values multiplied by 0.5. It should be pointed that some dynamic parameters have the same plots between two subplots because the original y-axis range of the right subplot meets the requirements of multiply by 0.5.

Figure G.1: I_{zz} of Joint 1

Figure G.2: mP_x of Joint 2

Figure G.3: mP_y of Joint 2

Figure G.4: I_{xx} of Joint 2

Figure G.5: I_{xy} of Joint 2

Figure G.6: I_{xz} of Joint 2

Figure G.7: I_{yz} of Joint 2

Figure G.8: I_{zz} of Joint 2

Figure G.9: mP_x of Joint 3

Figure G.10: mP_y of Joint 3

Figure G.11: I_{xx} of Joint 3

Figure G.12: I_{xy} of Joint 3

Figure G.13: I_{xz} of Joint 3

Figure G.14: I_{yz} of Joint 3

Figure G.15: I_{zz} of Joint 3

Figure G.16: mP_x of Joint 4

Figure G.17: mP_y of Joint 4

Figure G.18: I_{xx} of Joint 4

Figure G.19: I_{xy} of Joint 4

(a) Labelled automatically

(b) Labelled with the widening scale of y-axis

Figure G.20: I_{xz} of Joint 4

Figure G.21: I_{yz} of Joint 4

Figure G.22: I_{zz} of Joint 4

Figure G.23: mP_x of Joint 5

Figure G.24: mP_y of Joint 5

Figure G.25: I_{xx} of Joint 5

Figure G.26: I_{xy} of Joint 5

Figure G.27: I_{xz} of Joint 5

Figure G.28: I_{yz} of Joint 5

Figure G.29: I_{zz} of Joint 5

Figure G.30: mP_x of Joint 6

Figure G.31: mP_y of Joint 6

Figure G.32: I_{xx} of Joint 6

Figure G.33: I_{xy} of Joint 6

Figure G.34: I_{xz} of Joint 6

Figure G.35: I_{yz} of Joint 6

Figure G.36: ${\cal I}_{zz}$ of Joint 6

Figure G.37: f_1 of Joint 1

Figure G.38: f_2 of Joint 1

Figure G.39: f_3 of Joint 1

Figure G.40: f_4 of Joint 1

Figure G.41: f_1 of Joint 2

Figure G.42: f_2 of Joint 2

Figure G.43: f_3 of Joint 2

Figure G.44: f_4 of Joint 2

Figure G.45: f_1 of Joint 3

Figure G.46: f_2 of Joint 3

Figure G.47: f_3 of Joint 3

Figure G.49: f_1 of Joint 4

Figure G.50: f_2 of Joint 4

Figure G.51: f_3 of Joint 4

Figure G.52: f_4 of Joint 4

Figure G.53: f_1 of Joint 5

Figure G.55: f_3 of Joint 5

Figure G.56: f_4 of Joint 5

Figure G.57: f_1 of Joint 6

Figure G.58: f_2 of Joint 6

Figure G.59: f_3 of Joint 6

Figure G.60: f_4 of Joint 6

Figure G.61: I_m of Joint 3

Figure G.62: I_m of Joint 4

Figure G.63: I_m of Joint 5

Figure G.64: I_m of Joint 6

Appendix H

The Statistics Data Of The Identification Results

The tables shown in this section contain the statistics results of all dynamic parameters and are used to analysis in Section 5.1.5.1. To make the tables more clear, the titles of "Minimum", "Maximum", "Difference between Minimum and Maximum", "Differences between Start and End Cycles" and "Standard Deviation" have been noted as "MIN", "MAX", "D/MM", "D/SE" and "Sdv" respectively.

						All Cy	cles			The cycles without 1st 5 cycles					
				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
		L	T1	395.0708	377.9726	404.6069	0.0658	0.0705	8.6134	398.6718	387.4123	404.6069	0.0425	0.0444	5.2102
		ot	T2	394.2585	365.8972	407.3106	0.1017	0.0778	12.1522	399.5416	385.4614	407.3106	0.0536	0.0567	6.2626
		lob	Т3	399.3032	365.9901	412.9436	0.1137	0.0813	13.6214	404.7900	388.4364	412.9436	0.0593	0.0631	8.2498
1	Izz	<u>u</u>	T4	405.1108	379.4690	417.0318	0.0901	0.0727	11.0691	409.7180	395.3692	417.0318	0.0519	0.0548	6.5554
T	5	2	T1	425.3887	396.6843	437.2569	0.0928	0.0998	12.3072	430.8098	419.0915	437.2569	0.0415	0.0410	5.5211
		ot	T2	423.1736	393.5597	436.1905	0.0977	0.1083	11.3952	427.9718	415.2093	436.1905	0.0481	0.0505	5.8352
		doð	Т3	427.1423	393.5951	438.5863	0.1026	0.1121	12.1928	432.2010	417.8618	438.5863	0.0473	0.0475	6.3375
			T4	428.9708	397.5389	442.0354	0.1007	0.1011	12.3984	434.2622	419.2267	442.0354	0.0516	0.0441	6.2522
		L	T1	2.4475	2.2733	2.4969	0.0895	0.0842	0.0524	2.4661	2.3836	2.4969	0.0454	0.0340	0.0299
		ot :	T2	2.4420	2.2862	2.5097	0.0890	0.0807	0.0618	2.4683	2.4126	2.5097	0.0387	0.0146	0.0289
	~	2ob	Т3	2.4460	2.2924	2.5154	0.0887	0.0882	0.0537	2.4680	2.4240	2.5154	0.0363	0.0291	0.0268
2	ηD		T4	2.4480	2.3051	2.5018	0.0786	0.0821	0.0560	2.4719	2.4108	2.5018	0.0364	0.0264	0.0249
	2	2	T1	2.4345	2.2966	2.4682	0.0695	0.0735	0.0367	2.4492	2.4247	2.4682	0.0176	0.0168	0.0113
		ъ	T2	2.4331	2.3007	2.4581	0.0640	0.0662	0.0345	2.4468	2.4258	2.4581	0.0132	0.0113	0.0092
		lob	Т3	2.4374	2.3117	2.4678	0.0633	0.0675	0.0365	2.4532	2.4288	2.4678	0.0158	0.0161	0.0113
		Ч	T4	2.4387	2.2984	2.4641	0.0672	0.0634	0.0374	2.4537	2.4385	2.4641	0.0104	0.0023	0.0086
		L	T1	0.2740	0.2426	0.3317	0.2686	0.1928	0.0185	0.2687	0.2426	0.2894	0.1617	0.0748	0.0139
		ot	T2	0.2665	0.2238	0.3397	0.3411	0.2805	0.0281	0.2568	0.2238	0.2913	0.2315	0.1003	0.0181
	~	Sob	Т3	0.2511	0.2218	0.3137	0.2929	0.2323	0.0201	0.2453	0.2218	0.2730	0.1877	0.0857	0.0142
з	μb	4	T4	0.2505	0.2196	0.3046	0.2789	0.2268	0.0203	0.2446	0.2196	0.2717	0.1916	0.0391	0.0142
5	2	2	T1	0.1761	0.1582	0.1921	0.1763	0.1045	0.0085	0.1772	0.1582	0.1921	0.1763	0.0470	0.0090
	_,	đ	T2	0.1804	0.1670	0.1955	0.1458	0.1041	0.0072	0.1814	0.1716	0.1955	0.1223	0.0788	0.0069
		Sob	Т3	0.1697	0.1445	0.1952	0.2597	0.1380	0.0124	0.1725	0.1572	0.1952	0.1945	0.0118	0.0108
		ł	T4	0.1782	0.1622	0.1939	0.1633	0.0401	0.0075	0.1789	0.1622	0.1939	0.1633	0.0399	0.0081
		ц.	T1	-0.8427	-1.1130	-0.7464	0.4910	0.2875	0.0694	-0.8237	-0.8840	-0.7464	0.1843	0.0139	0.0377
		ы	T2	-0.8213	-1.0264	-0.6997	0.4669	0.2055	0.0686	-0.8186	-0.8971	-0.6998	0.2818	0.0364	0.0507
		Sob	Т3	-0.7895	-1.0746	-0.6653	0.6152	0.2368	0.0813	-0.7785	-0.8856	-0.6953	0.2737	0.1796	0.0502
л	×.	-	T4	-0.8085	-1.0680	-0.6921	0.5431	0.2565	0.0691	-0.7973	-0.8442	-0.7278	0.1599	0.0911	0.0343
4	2	~	T1	-0.6187	-0.8033	-0.5581	0.4394	0.2268	0.0459	-0.6164	-0.6493	-0.5623	0.1547	0.0431	0.0214
		ot	T2	-0.6459	-0.8433	-0.5717	0.4752	0.2118	0.0485	-0.6454	-0.6773	-0.6175	0.0968	0.0549	0.0166
		Sob	Т3	-0.6317	-0.7851	-0.5789	0.3562	0.2122	0.0369	-0.6284	-0.6473	-0.6030	0.0735	0.0213	0.0118
		ßo	T4	-0.6525	-0.8243	-0.6061	0.3602	0.1743	0.0410	-0.6495	-0.6806	-0.6181	0.1012	0.0793	0.0161

Table H.1: The statistics data of the identification results (1/8)

						All Cyc	cles				The c	ycles withou	ut 1st 5 cycle	es	
				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
			T1	0.1735	0.0751	0.2243	0.6653	0.8505	0.0392	0.1898	0.1666	0.2243	0.2572	0.1171	0.0173
		t 1	T2	0.1806	0.0903	0.2304	0.6082	1.0812	0.0258	0.1848	0.1634	0.2081	0.2146	0.0642	0.0115
		bdo	T3	0.1892	0.1127	0.2790	0.5962	0.6540	0.0274	0.1895	0.1674	0.2224	0.2475	0.0050	0.0131
	×	Ř	T4	0.1831	0.1124	0 2249	0.5002	0.6430	0.0234	0.1886	0.1646	0.2249	0.2680	0.0178	0.0152
5	2		T1	0 1662	0.0959	0 1899	0.4951	0 8204	0.0197	0 1728	0 1449	0 1899	0 2371	0 2047	0.0111
	<u> </u>	t 2	T2	0.1002	0.0555	0.1000	0.4001	1 3/80	0.0137	0.1720	0.1445	0.1000	0.2371	0.2047	0.0111
		pq	T2	0.1587	0.0723	0.1020	0.5335	1.3403	0.0238	0.1077	0.1430	0.1820	0.2001	0.1707	0.0088
		Ro	T4	0.1038	0.0047	0.1079	0.3493	0.7466	0.0213	0.1711	0.1340	0.1073	0.1772	0.0049	0.0080
			14 T1	0.1309	0.1034	0.1032	0.4410	0.7400	0.0196	0.1045	0.1422	0.1652	0.2322	0.2337	0.0124
		1	11	0.4122	0.3535	0.0375	0.4459	0.4459	0.0021	0.3604	0.3533	0.4145	0.1474	0.1129	0.0101
		bot	12	0.4062	0.3136	0.5132	0.3890	0.2191	0.0349	0.4020	0.3689	0.4313	0.1447	0.0336	0.0185
	z	Ro	13	0.3668	0.3037	0.4834	0.3/1/	0.2342	0.0401	0.3615	0.3037	0.4280	0.2906	0.0083	0.0294
6	×.		14	0.3651	0.3230	0.4689	0.3112	0.2079	0.0338	0.3581	0.3230	0.3888	0.1692	0.0242	0.0191
	J2	2	T1	0.3409	0.3132	0.3649	0.1418	0.0002	0.0167	0.3439	0.3177	0.3649	0.1293	0.0496	0.0156
		oot	T2	0.3684	0.3353	0.3954	0.1519	0.0010	0.0155	0.3696	0.3520	0.3898	0.0970	0.0017	0.0117
		Ro	Т3	0.3513	0.3237	0.3826	0.1540	0.0181	0.0139	0.3522	0.3380	0.3747	0.0980	0.0215	0.0099
			T4	0.3590	0.3345	0.3823	0.1250	0.0615	0.0142	0.3584	0.3373	0.3823	0.1176	0.0712	0.0132
		-	T1	0.1572	0.1184	0.2684	0.5590	0.3849	0.0305	0.1544	0.1184	0.1939	0.3896	0.3946	0.0192
		ot	T2	0.0783	-0.0342	0.1596	1.2143	0.1704	0.0563	0.0930	0.0188	0.1596	0.8821	6.7013	0.0437
		%	T3	0.0697	-0.1223	0.1271	1.9624	0.0486	0.0556	0.0876	0.0412	0.1271	0.6758	0.9559	0.0290
7	lγz		T4	0.0807	-0.0269	0.1726	1.1559	0.3012	0.0418	0.0881	0.0318	0.1218	0.7387	1.7129	0.0267
ŕ	J2_	~	T1	0.1829	0.1590	0.2018	0.2123	0.0080	0.0115	0.1847	0.1590	0.2018	0.2123	0.0469	0.0109
		ot ;	T2	0.1773	0.1520	0.1982	0.2333	0.0887	0.0142	0.1798	0.1520	0.1982	0.2333	0.1250	0.0139
		qo	Т3	0.1804	0.1448	0.2018	0.2825	0.0381	0.0134	0.1827	0.1638	0.2018	0.1886	0.1266	0.0113
1		Я	T4	0.1734	0.1603	0.1948	0.1770	0.1236	0.0098	0.1757	0.1618	0.1948	0.1695	0.1060	0.0096
			T1	393.3510	355.8586	414.4113	0.1413	0.1606	18.5070	401.4059	380.1329	414.4113	0.0827	0.0849	9.7060
		t 1	T2	399,2003	359,4052	414,5698	0.1331	0.1535	14.0913	404.8964	391,4186	414,5698	0.0558	0.0591	7.4715
		oqc	T3	402 7142	377 9599	415 7144	0.0908	0.0904	11 5533	407 4524	396 5497	415 7144	0.0461	0.0419	6 6260
	22	R	Τ <i>Δ</i>	402.7142	372 1880	/15 8227	0.0500	0.0304	13 1/38	407.4324	39/ 5189	415,8227	0.0512	0.0417	6 5612
8	2 12		14 T1	403.0440	202 0012	413.0227	0.1049	0.1120	0 1046	400.0437	410 5026	413.8227	0.0312	0.0417	4 5520
	ſ	ť 2	11	410.2713	201 6126	420.3103	0.0840	0.0721	9.1040	420.0207	410.3930	420.3103	0.0414	0.0250	4.5556
		bot	12	416.2688	391.0130	429.3532	0.0879	0.0964	9.3161	420.1095	413.2470	429.3532	0.0375	0.0358	4.5383
		ßo	13	417.1380	390.0389	427.1992	0.0870	0.0863	8.3807	420.3124	414.9353	427.1992	0.0287	0.0189	3.8523
			T4	414.7046	397.0552	427.6990	0.0716	0.0663	7.5208	417.6654	411.0373	427.6990	0.0390	0.0278	4.5984
		t 1	T1	0.6513	0.6115	0.6671	0.0834	0.0731	0.0118	0.6530	0.6386	0.6649	0.0396	0.0185	0.0079
		ot	T2	0.6448	0.5950	0.6643	0.1044	0.0768	0.0180	0.6506	0.6247	0.6604	0.0540	0.0407	0.0091
	×	Rot	Т3	0.6425	0.5660	0.6861	0.1749	0.0947	0.0236	0.6500	0.6249	0.6861	0.0891	0.0308	0.0135
9	шP	_	T4	0.6434	0.5980	0.6684	0.1055	0.0974	0.0186	0.6501	0.6219	0.6684	0.0696	0.0631	0.0123
5]3_	5	T1	0.6053	0.5529	0.6225	0.1118	0.1096	0.0164	0.6124	0.5975	0.6225	0.0403	0.0269	0.0061
	,	ot	T2	0.6066	0.5529	0.6239	0.1137	0.1174	0.0162	0.6131	0.5998	0.6239	0.0387	0.0263	0.0068
		Robo	Т3	0.6050	0.5527	0.6225	0.1121	0.1240	0.0169	0.6113	0.5882	0.6225	0.0551	0.0562	0.0091
			T4	0.6042	0.5520	0.6252	0.1171	0.1326	0.0169	0.6114	0.5950	0.6252	0.0483	0.0507	0.0074
		٦	T1	-1.3082	-1.3280	-1.2678	0.0475	0.0378	0.0139	-1.3138	-1.3280	-1.3004	0.0212	0.0118	0.0076
		ot :	T2	-1.3058	-1.3208	-1.2658	0.0434	0.0421	0.0151	-1.3124	-1.3208	-1.2994	0.0165	0.0152	0.0068
		qo	Т3	-1.3052	-1.3237	-1.2618	0.0491	0.0434	0.0153	-1.3111	-1.3237	-1.2934	0.0234	0.0178	0.0080
	γL	8	T4	-1.3041	-1.3208	-1.2622	0.0464	0.0418	0.0154	-1.3104	-1.3208	-1.2932	0.0213	0.0169	0.0084
10			T1	-1.2576	-1.2771	-1.2070	0.0581	0.0546	0.0170	-1.2646	-1.2771	-1.2494	0.0222	0.0188	0.0081
	i iii	ot 2	T2	-1.2570	-1.2764	-1.2089	0.0558	0.0528	0.0173	-1.2643	-1.2764	-1.2499	0.0212	0.0179	0.0086
1		obc	Т3	-1.2504	-1.2684	-1.1893	0.0665	0.0655	0.0194	-1.2584	-1.2684	-1.2418	0.0214	0.0205	0.0077
		Å	T4	-1 2508	-1 2699	-1 1934	0.0641	0.0613	0.0181	-1 2580	-1 2699	-1 2376	0.0261	0.0234	0.0085
<u> </u>		-	T1	0 4806	0 4559	0.5355	0.1487	0 1123	0.0178	0 4743	0 4559	0 4937	0.0766	0.0220	0.0093
		ť1	т2	0 4/100	0 3212	0 4797	0 3302	0.0126	0.0367	0 4/9/	0 4050	0 4707	0 1557	0 1665	0.0207
		oqc	Τ2	0 1100	0.3213	0.4030	0 3302	0.0120	0.03/1	0 // 85	0 / 205	0/8/2	0 1217	0.0709	0.0186
1	Ş	R	тл	0.1/66	0.3300	0 5170	0.3307	0.0002	0.0341	0 1/75	0 3025	0 /071	0 20/12	0 2029	0.0100
11	<u>_</u>	-	14 T1	0.4400	0.3333	0.51/9	0.2302	0.0005	0.0279	0.4473	0.3333	0.45/1	0.2043	0.2038	0.0230
1	i iii	t 2	11 T2	0.4331	0.4234	0.4532	0.0057	0.0008	0.0079	0.4336	0.4204	0.4532	0.005/	0.0000	0.0001
		, poq	12	0.4329	0.410/	0.4538	0.0600	0.0102	0.0090	0.4340	0.4204	0.4538	0.0735	0.0193	0.0093
		Ro	13	0.4411	0.4218	0.4519	0.0666	0.0125	0.0079	0.4409	0.4218	0.4519	0.0666	0.0420	0.0081
┣			14	0.4413	0.4257	0.4513	0.0567	0.0087	0.0067	0.4419	0.4293	0.4510	0.0479	0.0228	0.0055
		-	T1	-0.1525	-0.1632	-0.1417	0.1517	0.0255	0.0055	-0.1519	-0.1622	-0.1417	0.1450	0.0377	0.0055
		ot	T2	-0.1439	-0.1620	-0.1281	0.2640	0.1767	0.0078	-0.1441	-0.1533	-0.1356	0.1307	0.1119	0.0053
	-	Rot	Т3	-0.1377	-0.1586	-0.0879	0.8031	0.2191	0.0144	-0.1405	-0.1586	-0.1268	0.2506	0.1239	0.0087
12	×.		T4	-0.1390	-0.1523	-0.1219	0.2494	0.1641	0.0075	-0.1393	-0.1523	-0.1285	0.1854	0.0408	0.0070
1	J3	2	T1	-0.0810	-0.0859	-0.0657	0.3075	0.3019	0.0045	-0.0818	-0.0859	-0.0768	0.1195	0.0268	0.0031
1		ot	T2	-0.0832	-0.0928	-0.0770	0.2061	0.0565	0.0041	-0.0828	-0.0891	-0.0786	0.1333	0.0273	0.0030
1		Rob	Т3	-0.0840	-0.0945	-0.0745	0.2689	0.1413	0.0038	-0.0843	-0.0945	-0.0763	0.2388	0.0058	0.0036
		_	T4	-0.0862	-0.0920	-0.0751	0.2241	0.2241	0.0036	-0.0863	-0.0920	-0.0814	0.1290	0.0506	0.0028
		1	T1	-0.1310	-0.2127	-0.1101	0.9319	0.4485	0.0206	-0.1236	-0.1338	-0.1101	0.2147	0.0747	0.0072
		ot	T2	-0.1133	-0.1542	-0.0861	0.7905	0.2015	0.0137	-0.1139	-0.1287	-0.0998	0.2887	0.2142	0.0088
1		tob	Т3	-0.1102	-0.1411	-0.0567	1.4886	0.1621	0.0152	-0.1127	-0.1230	-0.0986	0.2471	0.0731	0.0079
12	Ixz	Ľ.	T4	-0.1172	-0.1546	-0.1038	0.4898	0.2443	0.0105	-0.1149	-0.1247	-0.1038	0.2018	0.0271	0.0065
13	13		T1	-0.1103	-0.1206	-0.1024	0.1774	0.1095	0.0046	-0.1089	-0.1162	-0.1024	0.1340	0.0754	0.0036
	,	t 2	T2	-0.1142	-0.1263	-0.1077	0.1735	0.1204	0.0052	-0.1128	-0.1188	-0.1077	0.1038	0.0631	0.0039
1		obc	T3	-0.1127	-0.1219	-0,1047	0.1634	0.0474	0.0042	-0.1115	-0.1197	-0.1047	0.1428	0.0194	0.0035
1		Ř	T4	-0.1110	-0.1218	-0.1006	0.2103	0.0338	0.0051	-0.1093	-0.1168	-0.1006	0.1610	0.0730	0.0038
1								2.2000							

Table H.2: The statistics data of the identification results (2/8)

						All Cy	cles				The o	ycles withou	ut 1st 5 cycle	es	
				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
			T1	-0.0360	-0.0502	-0.0178	1.8170	1.4575	0.0072	-0.0379	-0.0502	-0.0281	0.7869	0.4323	0.0059
14		ot 1	T2	-0.0073	-0.0241	0.0268	1.8982	0.8196	0.0154	-0.0123	-0.0241	0.0085	3.8472	4.8040	0.0111
		qo	T3	-0.0115	-0.0345	0.0249	2.3837	0.2681	0.0179	-0.0174	-0.0345	0.0090	4.8374	5.4503	0.0130
	lγz	8	T4	-0.0181	-0.0394	0.0065	7.0143	0.2108	0.0127	-0.0213	-0.0340	-0.0027	11.5102	10.4404	0.0087
14	_ ۲		T1	-0.0091	-0.0218	0.0025	9.5669	0.5727	0.0068	-0.0104	-0.0201	0.0012	17.4370	8.6142	0.0052
		ot 2	T2	-0.0028	-0.0109	0.0100	2.0911	0.1932	0.0067	-0.0048	-0.0109	0.0080	2.3695	1.6244	0.0053
		tob	Т3	-0.0100	-0.0182	0.0096	2.8974	0.1386	0.0071	-0.0123	-0.0182	-0.0015	10.9075	9.3915	0.0044
		æ	T4	-0.0076	-0.0208	0.0087	3.3877	0.3037	0.0079	-0.0097	-0.0208	0.0045	5.5951	5.5951	0.0060
			T1	83.8558	80.2832	94.9495	0.1545	0.1258	2.9938	83.1668	80.2832	85.7274	0.0635	0.0300	1.6871
		ot	T2	86.5038	80.2403	92.2948	0.1306	0.0635	2.4621	86.2699	80.2403	89.3271	0.1017	0.0073	2.2032
		Sob	Т3	87.8249	83.5209	91.8600	0.0908	0.0354	2.4466	87.5858	83.5209	91.5062	0.0873	0.0268	2.5635
15	Izz	4	T4	88.4538	85.4983	91.7778	0.0684	0.0382	1.5500	88.1063	85.4983	90.7594	0.0580	0.0189	1.4281
15	J3_	2	T1	107.5389	105.1102	110.0484	0.0449	0.0164	1.1787	107.6684	105.1102	109.1375	0.0369	0.0098	1.0139
		ot	T2	107.5948	104.2960	112.1501	0.0700	0.0360	1.5284	107.7278	105.3502	108.8903	0.0325	0.0262	0.9206
		Rob	Т3	107.5403	105.6798	112.8990	0.0639	0.0505	1.4495	107.4109	105.6798	109.3831	0.0339	0.0034	0.9524
			T4	107.7769	105.5349	111.3217	0.0520	0.0344	1.1970	107.7888	106.6055	110.1088	0.0318	0.0069	0.8759
		1	T1	-0.0216	-0.0541	0.0265	3.0441	2.1373	0.0191	-0.0259	-0.0541	0.0032	17.8573	2.4272	0.0172
		bot	T2	-0.0151	-0.0442	0.0359	2.2308	1.3145	0.0191	-0.0194	-0.0442	0.0097	5.5422	3.2756	0.0157
	×	Ro	T3	-0.0188	-0.0424	0.0024	18.3375	9.9202	0.0122	-0.0211	-0.0424	0.0024	18.3375	5.4568	0.0127
16	Ľ,		14	-0.0216	-0.04/1	0.0309	2.5253	2.5253	0.0170	-0.0262	-0.04/1	-0.0083	4.6611	0.7492	0.0107
	J4	2	11	-0.0103	-0.0266	0.0882	1.3021	1.1956	0.0221	-0.0163	-0.0266	-0.0017	14.7764	0.2084	0.0058
		bot	12	-0.0093	-0.0241	0.0758	1.3185	1.2882	0.0195	-0.0146	-0.0241	-0.0037	5.4459	0.5801	0.0056
		Rc	13	-0.0110	-0.0288	0.0778	1.3090	1.1901	0.0210	-0.0176	-0.0288	0.0001	14 0200	0.0100	0.0076
			14 T1	-0.0110	-0.0323	0.0827	0.4453	0.7888	0.0215	-0.0105	-0.0323	-0.0020	0 2530	0.0950	0.0075
1		t 1	T2	0.1710	0.1000	0.1901	0.4455	1 362/	0.0208	0.1033	0.1403	0.1901	0.2330	0.3263	0.0133
		oqc	T3	0.1510	0.0520	0.2247	0.3094	0.5969	0.0341	0.2001	0.1001	0.2247	0.1603	0.1374	0.00117
	Ργ	Rc	T4	0.1905	0.1345	0.2200	0.3554	0.3505	0.0240	0.2036	0.1759	0.2200	0.1983	0.1922	0.0037
17	بة 1		T1	0.1204	0.1145	0.1442	0.2191	0.0200	0.0077	0.1175	0.1126	0.1277	0.1303	0.0001	0.0035
	۶ſ	t 2	T2	0.1148	0.1055	0.1310	0.1949	0.1122	0.0056	0 1141	0.1075	0.1236	0.1308	0.0361	0.0037
		opqo	T3	0.1084	0.0992	0.1282	0.2259	0.1385	0.0068	0.1069	0.0992	0.1199	0.1724	0.0643	0.0047
		Я	T4	0.1141	0.1041	0.1346	0.2261	0.1763	0.0075	0.1111	0.1041	0.1186	0.1217	0.0390	0.0037
		1	T1	0.0004	-0.0190	0.0184	2.0287	1.8818	0.0118	-0.0029	-0.0190	0.0117	2.6251	2.3361	0.0104
		bot 1	T2	-0.0020	-0.0263	0.0212	2.2413	1.7566	0.0117	-0.0044	-0.0263	0.0108	3.4299	4.7904	0.0103
		ope	Т3	-0.0081	-0.0292	0.0081	4.6161	2.0510	0.0101	-0.0093	-0.0292	0.0081	4.6161	1.9483	0.0103
10	XX	æ	T4	-0.0029	-0.0228	0.0195	2.1687	1.1011	0.0107	-0.0054	-0.0228	0.0079	3.8894	0.0982	0.0097
10	J4_	2	T1	0.0145	-0.0160	0.0275	1.5803	1.8453	0.0082	0.0153	0.0063	0.0275	0.7712	0.5094	0.0051
		ot	T2	0.0159	-0.0051	0.0250	1.2035	4.3330	0.0065	0.0175	0.0117	0.0250	0.5304	0.3102	0.0040
		Rob	Т3	0.0155	-0.0034	0.0232	1.1483	3.9642	0.0055	0.0164	0.0102	0.0232	0.5628	0.3993	0.0040
			T4	0.0133	-0.0046	0.0258	1.1781	4.7850	0.0067	0.0138	0.0057	0.0258	0.7804	0.1627	0.0052
		1	T1	-0.0437	-0.0524	-0.0335	0.5647	0.4683	0.0044	-0.0437	-0.0492	-0.0371	0.3249	0.2047	0.0035
		oot	T2	-0.0415	-0.0585	-0.0331	0.7674	0.0679	0.0051	-0.0404	-0.0472	-0.0331	0.4270	0.0021	0.0035
	~	Ro	Т3	-0.0405	-0.0474	-0.0363	0.3032	0.0497	0.0029	-0.0401	-0.0449	-0.0363	0.2360	0.0888	0.0025
19	×.		T4	-0.0426	-0.0485	-0.0376	0.2923	0.1715	0.0031	-0.0418	-0.0459	-0.0376	0.2220	0.1251	0.0024
	Ъ	5	11	-0.0475	-0.0549	-0.0435	0.2619	0.0877	0.0027	-0.0469	-0.0505	-0.0435	0.1607	0.0976	0.0019
		bot	12	-0.0475	-0.0543	-0.0430	0.2640	0.0590	0.0023	-0.0469	-0.0503	-0.0430	0.1705	0.0838	0.0019
		Rc	13	-0.0473	-0.0516	-0.0433	0.1911	0.0557	0.0022	-0.0407	-0.0497	-0.0433	0.1424	0.0102	0.0016
			T1	0.0480	-0.0511	0.0433	0.1240	0.0381	0.0017	-0.0470	-0.0505	0.0433	0.1101	0.0522	0.0013
1		t 1	T2	0 0842	0.0647	0 1156	0 4404	0 0292	0.0118	0.0817	0.0647	0.0966	0.330/	0.0843	0.0093
1		oqc	T3	0.0795	0.0508	0.0957	0.4688	0.1586	0.0107	0.0781	0.0508	0.0957	0.4688	0.1011	0.0110
	zΧ	Ř	T4	0.0845	0.0653	0.1208	0.4597	0.2597	0.0132	0.0829	0.0653	0.1011	0.3542	0.0907	0.0109
20	14_1		T1	0.0987	0.0892	0.1281	0.3037	0.2855	0.0090	0.0952	0.0892	0.1047	0.1479	0.0937	0.0046
		ot 2	T2	0.0991	0.0895	0.1371	0.3473	0.3393	0.0098	0.0957	0.0895	0.1034	0.1348	0.1242	0.0038
		tob	Т3	0.1015	0.0887	0.1416	0.3732	0.3231	0.0103	0.0978	0.0887	0.1049	0.1539	0.0291	0.0040
		æ	T4	0.0987	0.0901	0.1426	0.3682	0.3157	0.0106	0.0950	0.0901	0.1017	0.1142	0.0406	0.0032
		1	T1	-0.0316	-0.1091	-0.0062	16.6549	0.8190	0.0244	-0.0214	-0.0429	-0.0062	5.9511	0.4936	0.0109
		ot	T2	-0.0302	-0.0985	0.0107	10.2136	0.7427	0.0218	-0.0224	-0.0544	0.0107	6.0843	0.5338	0.0136
		Rob	Т3	-0.0259	-0.0656	-0.0040	15.3931	0.5742	0.0187	-0.0209	-0.0612	-0.0040	14.2947	0.5529	0.0123
21	_lyz	_	T4	-0.0298	-0.0801	0.0104	8.7052	0.7286	0.0212	-0.0206	-0.0358	0.0104	4.4495	0.1750	0.0110
	J4	2	T1	-0.0625	-0.0822	-0.0528	0.5586	0.2554	0.0060	-0.0607	-0.0703	-0.0528	0.3316	0.1285	0.0041
1		bot	T2	-0.0609	-0.0869	-0.0519	0.6759	0.3110	0.0073	-0.0590	-0.0698	-0.0519	0.3467	0.1341	0.0048
		Ro	T3	-0.0594	-0.0803	-0.0508	0.5815	0.2825	0.0067	-0.0579	-0.0712	-0.0508	0.4030	0.1046	0.0053
<u> </u>			T4	-0.0590	-0.0810	-0.0519	0.5593	0.2377	0.0059	-0.0574	-0.0638	-0.0519	0.2285	0.0401	0.0033
1		,	11	0.0039	-0.0282	0.0384	1./342	0.6090	0.0179	0.0040	-0.0282	0.0384	1./342	1.2663	0.0169
1		bod	1Z T2	0.0011	-0.0300	0.0422	1./121	0.5096	0.0170	0.0028	-0.0153	0.0274	1.5581	0.4313	0.0125
1	Zž	Rc	13 T/	0.0059	-0.0358	0.03//	1 6265	0.1300	0.01/9	-0.0028	-0.0358	0.0331	2.0819	0.1952	0.01/5
22	4_l;		T1	-0.0507	-0.0320	-0.0312	0.522/	0.260/	0.0224	-0.0030	-0.0320	-0.0222	0 2823	0.1260	0.0107
1	Ĺ	t 2	T2	-0.0486	-0.0710	-0.0370	0.9223	0.2297	0.0077	-0.0460	-0.0585	-0.0370	0.5822	0.0283	0.0053
1		opo	Т3	-0.0560	-0.0678	-0.0484	0.4027	0.2871	0.0050	-0.0548	-0.0650	-0.0484	0.3446	0.1305	0.0044
1		æ	T4	-0.0527	-0.0685	-0.0431	0.5872	0.2539	0.0065	-0.0507	-0.0603	-0.0431	0.3975	0.1326	0.0047

Table H.3: The statistics data of the identification results $\left(3/8\right)$

						All Cy	cles				The c	ycles withou	ut 1st 5 cycle	es	
				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
			T1	0.0345	0.0195	0.0721	0.7298	0.5221	0.0118	0.0301	0.0195	0.0417	0.5326	0.1160	0.0062
23		t 1	T2	0.0319	0.0121	0.1085	0.8880	0.7428	0.0192	0.0254	0.0121	0.0416	0.7078	0.1450	0.0080
		opc	T3	0.0333	0.0150	0.0675	0.7781	0.5495	0.0118	0.0290	0.0150	0.0393	0.6191	0.0401	0.0058
	ЪХ	ã	T4	0.0305	0.0098	0.1023	0.9046	0.8919	0.0175	0.0257	0.0098	0.0372	0.7376	0.6064	0.0081
23	<u>اح</u>		T1	0.0103	0.0041	0.0423	0.9027	0.7425	0.0073	0.0094	0.0050	0.0126	0.6019	1.0762	0.0025
	5	t 2	T2	0.0098	0.0052	0.0265	0.8047	0.5505	0.0041	0.0091	0.0052	0.0127	0 5919	1 3021	0.0020
		bc	T3	0.0104	0.0056	0.0257	0 7830	0.6024	0.0040	0.0098	0.0056	0.0143	0.6111	0.0024	0.0021
		R	TA	0.0100	0.0037	0.0257	0.200	0.8069	0.0040	0.0094	0.0050	0.0135	0.0111	0.0024	0.0021
			T1	-0.0332	-0.0562	-0.0115	3 8909	0.3601	0.0001	-0.0310	-0.0451	-0.0115	2 9236	0.1001	0.0017
		t 1	T2	-0.0332	-0.0302	-0.0115	1 6657	0.3001	0.0034	-0.0310	-0.0431	-0.0115	1 4002	0.0272	0.0083
		poq	12	-0.0291	-0.0442	-0.0100	1.0057	0.0236	0.0074	-0.0290	-0.0415	-0.0100	1.4992	0.3923	0.0071
	Ł	Rc	13	-0.0342	-0.0403	-0.0169	2.2752	1 2411	0.0001	-0.0333	-0.0403	-0.0169	2,7252	1.4605	0.0070
24	E		14	-0.0257	-0.0634	0.0267	3.3752	1.3411	0.0223	-0.0193	-0.0460	0.0267	2.7253	1.4695	0.0203
	J5	2	11	-0.0471	-0.0770	-0.0399	0.9285	0.4815	0.0071	-0.0448	-0.0508	-0.0399	0.2720	0.1590	0.0027
		bot	12	-0.0448	-0.0736	-0.0380	0.9347	0.4586	0.0071	-0.0425	-0.0473	-0.0380	0.2433	0.1422	0.0027
		ß	13	-0.0449	-0.0797	-0.0389	1.0513	0.5125	0.0082	-0.0422	-0.0472	-0.0389	0.2137	0.1292	0.0027
			14	-0.0454	-0.0701	-0.0395	0.7750	0.4217	0.0059	-0.0434	-0.0466	-0.0395	0.1790	0.1194	0.0018
		7	11	-0.0208	-0.0370	-0.0061	5.1094	1.4832	0.0093	-0.0226	-0.0370	-0.0061	5.1094	0.3808	0.0091
		bot	T2	-0.0218	-0.0474	-0.0057	7.2906	0.4034	0.0103	-0.0180	-0.0306	-0.0057	4.3587	0.2886	0.0070
	v	Ro	Т3	-0.0182	-0.0393	-0.0046	7.5511	0.7871	0.0096	-0.0172	-0.0294	-0.0046	5.3837	0.8289	0.0077
25	_≃_		T4	-0.0179	-0.0523	0.0038	14.6853	294.5798	0.0143	-0.0222	-0.0523	-0.0029	16.8128	14.8539	0.0127
	JS	2	T1	-0.0121	-0.0182	-0.0085	1.1448	0.2135	0.0027	-0.0109	-0.0136	-0.0085	0.6002	0.1960	0.0014
		ot	T2	-0.0123	-0.0165	-0.0068	1.4113	0.1976	0.0021	-0.0119	-0.0164	-0.0068	1.3948	0.0781	0.0019
		Rot	T3	-0.0117	-0.0184	-0.0076	1.4304	0.3069	0.0023	-0.0112	-0.0136	-0.0076	0.7888	0.1043	0.0014
			T4	-0.0130	-0.0206	-0.0092	1.2305	0.4166	0.0026	-0.0120	-0.0143	-0.0092	0.5485	0.1241	0.0015
		ц	T1	-0.0205	-0.0294	-0.0078	2.7754	0.0623	0.0069	-0.0197	-0.0277	-0.0078	2.5620	1.4047	0.0066
		ot	T2	-0.0173	-0.0245	-0.0079	2.1133	0.3251	0.0048	-0.0185	-0.0245	-0.0093	1.6243	0.0078	0.0039
		2 Rob	T3	-0.0192	-0.0284	-0.0043	5.6557	0.0330	0.0060	-0.0192	-0.0257	-0.0045	4.7613	0.3442	0.0050
26	<u>×</u>		T4	-0.0215	-0.0315	-0.0082	2.8550	0.5606	0.0053	-0.0197	-0.0280	-0.0082	2.4292	0.5061	0.0043
20	5,		T1	-0.0095	-0.0112	-0.0073	0.5314	0.3038	0.0010	-0.0097	-0.0112	-0.0082	0.3661	0.0963	0.0009
		ot	T2	-0.0091	-0.0113	-0.0050	1.2858	0.9949	0.0013	-0.0094	-0.0113	-0.0078	0.4481	0.2638	0.0008
		qo	Т3	-0.0093	-0.0113	-0.0061	0.8608	0.6223	0.0011	-0.0093	-0.0113	-0.0081	0.3927	0.1282	0.0008
			T4	-0.0088	-0.0110	-0.0057	0.9369	0.1551	0.0012	-0.0092	-0.0110	-0.0076	0.4456	0.0776	0.0009
		1	T1	0.0285	0.0182	0.0395	0.5389	0.3636	0.0062	0.0296	0.0197	0.0395	0.5017	0.2818	0.0059
		ot 1	T2	0.0318	0.0236	0.0410	0.4239	0.0364	0.0056	0.0303	0.0236	0.0387	0.3898	0.1231	0.0050
		qo	Т3	0.0298	0.0164	0.0445	0.6311	0.4795	0.0063	0.0294	0.0164	0.0380	0.5674	0.5674	0.0054
27	IXZ	æ	T4	0.0293	0.0150	0.0501	0.7007	0.4668	0.0087	0.0311	0.0185	0.0501	0.6306	1.5647	0.0084
27	۲		T1	0.0231	0.0211	0.0363	0.4174	0.3539	0.0030	0.0222	0.0211	0.0234	0.0983	0.0665	0.0008
	-	ot 2	T2	0.0235	0.0201	0.0354	0.4324	0.3367	0.0029	0.0225	0.0201	0.0247	0.1878	0.0509	0.0011
		Robo	Т3	0.0232	0.0202	0.0344	0.4149	0.3387	0.0028	0.0224	0.0202	0.0245	0.1769	0.0452	0.0012
			T4	0.0235	0.0205	0.0335	0.3874	0.3335	0.0026	0.0225	0.0205	0.0239	0.1402	0.0015	0.0009
-			T1	0.0230	0.0099	0.0354	0.7200	0.1186	0.0072	0.0236	0.0099	0.0354	0.7200	0.4108	0.0075
		ot 1	T2	0.0265	0.0160	0.0383	0.5836	0.3218	0.0071	0.0242	0.0160	0.0326	0.5106	0.1119	0.0056
		opc	Т3	0.0244	0.0151	0.0385	0.6084	0.4619	0.0059	0.0239	0.0167	0.0336	0.5037	0.4243	0.0043
	λz	Я	T4	0.0241	0.0037	0.0492	0.9243	1.1266	0.0106	0.0269	0.0089	0.0492	0.8183	3.9453	0.0098
28	5		T1	0.0161	0.0126	0.0266	0.5267	0.3535	0.0026	0.0154	0.0126	0.0176	0.2825	0.3659	0.0013
	_	t 2	T2	0.0168	0.0145	0.0223	0.3523	0.2460	0.0015	0.0165	0.0145	0.0188	0.2317	0.0557	0.0010
1		obc	Т3	0.0165	0.0133	0.0221	0.3975	0.2454	0.0017	0.0162	0.0133	0.0179	0.2554	0.2524	0.0011
		æ	T4	0.0172	0.0147	0.0250	0.4142	0.3450	0.0019	0.0167	0.0147	0.0180	0.1851	0.0100	0.0009
<u> </u>			T1	-0.0996	-0.1228	-0.0757	0.6220	0.1149	0.0149	-0.0980	-0.1200	-0.0757	0.5849	0.2680	0.0144
1		к1	T2	-0.0935	-0.1287	-0.0754	0.7076	0.3047	0.0113	-0.0931	-0.1079	-0.0754	0.4315	0.0264	0.0085
1		opc	T3	-0.0973	-0.1317	-0.0678	0,9419	0.2921	0.0151	-0.0942	-0,1094	-0.0695	0,5756	0.0351	0.0101
	ZZ	Å	T4	-0.1113	-0.1313	-0.1003	0.3084	0.1532	0.0084	-0.1112	-0.1313	-0.1003	0.3084	0.3084	0.0093
29	5_	<u> </u>	T1	-0.0276	-0.0441	-0.0248	0.7802	0.4001	0.0039	-0.0267	-0.0295	-0.0248	0.1896	0.0052	0.0014
1		it 2	T2	-0.0274	-0.0350	-0.0243	0.4475	0.2312	0.0022	-0.0267	-0.0284	-0.0240	0.1725	0.0567	0.0010
		oqc	T٦	-0.0273	-0.0358	-0 0272	0.6210	0 1890	0.0022	-0.0265	-0 0292	-0.0272	0 3210	0 0755	0.0019
		Å	TA	-0.0274	-0.0427	-0.0239	0.0210	0.1000	0.0027	-0.0268	-0.0291	-0.0239	0.3213	0.0542	0.001/
<u> </u>	-	-	T1	0.0274	-0 0020	0 0038	1 76/1	2 1079	0.0017	0.0200	0.0291	0.0233	0 5323	0.0130	0.00014
		t 1	T2	0.0023	0.0023	0.0030	0.69/15	0 5627	0.0017	0.0038	0.0010	0.0035	0.3509	0.0130	0.0000
1		oqc	T2	0.0034	-0 00014	0.0043	1 112/	8 1/179	0.0009	0.0030	0.0029	0.0043	0 2204	0.0111	0.0003
	ΡX	R	T4	0.0036	0.0003	0.0047	0 5011	0.4420	0.0012	0.0038	0.0030	0.0047	0.2234	0.0938	0.0003
30	۶	┣──	T1	0.0030	0.0010 _0.0010	0.0044	1 6120	0.1190	0.0000	0.0030	0.0032	0.0044	0.2030	0.0000	0.0004
1	J6	t 2	11 T2	0.0027	-0.0027	0.0044	1 1 1 1 1 1 1	7 7256	0.0013	0.0032	0.0020	0.0044	0.54/9	0.4207	0.0000
		, po	12 T2	0.0028	-0.0004	0.0043	1.1449	10 5442	0.0013	0.0033	0.0021	0.0043	0.3140	0.4540	0.0005
		Ro	13	0.0032	-0.0004	0.0047	1.0915	10.5442	0.0011	0.0035	0.0027	0.0047	0.4360	0.1272	0.0006
<u> </u>			14	0.0035	0.0010	0.004/	0.7827	2.9290	0.0009	0.0038	0.0027	0.0047	0.4364	0.1290	0.0005
			11	-0.0062	-0.0081	-0.0001	33.9259	48.3894	0.0015	-0.0067	-0.0081	-0.0054	0.4902	0.3400	0.0007
1		bot	12	-0.0059	-0.0095	-0.0045	1.1045	0.4921	0.0010	-0.0057	-0.0070	-0.0045	0.5521	0.2336	0.0007
	γ	Ro	13	-0.0047	-0.0057	0.0027	3.13/9	2.9642	0.0016	-0.0051	-0.0057	-0.0040	0.4113	0.0265	0.0004
31	Ē	<u> </u>	T4	-0.0056	-0.0081	-0.0024	2.3656	1.0557	0.0011	-0.0055	-0.0063	-0.0047	0.3358	0.1249	0.0004
1	J6_	2	Γ1 	-0.0126	-0.0147	0.0007	21.0242	20.4729	0.0030	-0.0135	-0.0147	-0.0116	0.2686	0.2336	0.0008
		bot	T2	-0.0125	-0.0148	0.0026	6.6648	6.2457	0.0033	-0.0132	-0.0148	-0.0121	0.2282	0.1374	0.0006
		Rot	Т3	-0.0131	-0.0148	-0.0022	5.8395	4.7139	0.0024	-0.0136	-0.0144	-0.0122	0.1833	0.1328	0.0007
			T4	-0.0133	-0.0148	-0.0017	7.8986	7.4097	0.0025	-0.0136	-0.0145	-0.0123	0.1723	0.1322	0.0005

Table H.4: The statistics data of the identification results (4/8)

						All Cy	cles				The c	ycles withou	ut 1st 5 cycle	es	
L				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
		1	T1	0.0135	0.0102	0.0152	0.3287	0.4329	0.0016	0.0142	0.0129	0.0152	0.1546	0.1399	0.0007
32		ot	T2	0.0139	0.0117	0.0155	0.2464	0.0401	0.0010	0.0142	0.0133	0.0149	0.1056	0.0963	0.0005
		Sob	T3	0.0130	0.0080	0.0153	0.4794	0.9208	0.0017	0.0138	0.0125	0.0153	0.1807	0.2152	0.0007
32	××.		T4	0.0138	0.0125	0.0146	0.1432	0.1498	0.0006	0.0140	0.0131	0.0146	0.1081	0.1047	0.0005
52	<u>ј</u> б	2	T1	0.0170	0.0062	0.0199	0.6894	2.0586	0.0029	0.0182	0.0163	0.0199	0.1804	0.1592	0.0009
		oot	T2	0.0173	0.0090	0.0193	0.5345	1.1480	0.0023	0.0182	0.0170	0.0193	0.1168	0.0930	0.0006
		Rot	Т3	0.0177	0.0091	0.0193	0.5291	1.0257	0.0020	0.0184	0.0177	0.0193	0.0844	0.0372	0.0005
			T4	0.0182	0.0109	0.0199	0.4506	0.7983	0.0019	0.0189	0.0175	0.0199	0.1172	0.0665	0.0007
		ц,	T1	-0.0020	-0.0027	-0.0014	0.9105	0.1868	0.0003	-0.0019	-0.0023	-0.0014	0.6111	0.3044	0.0003
		oot	T2	-0.0016	-0.0022	-0.0013	0.6643	0.2080	0.0002	-0.0015	-0.0018	-0.0013	0.3350	0.1095	0.0001
	~	Rot	Т3	-0.0015	-0.0028	-0.0011	1.4954	0.5045	0.0003	-0.0014	-0.0017	-0.0011	0.4948	0.0364	0.0002
33	×.		T4	-0.0016	-0.0027	-0.0012	1.2581	0.3714	0.0003	-0.0015	-0.0020	-0.0012	0.6532	0.1414	0.0002
	JG	2	T1	-0.0037	-0.0052	-0.0031	0.6623	0.2526	0.0004	-0.0037	-0.0044	-0.0031	0.4097	0.0552	0.0003
		bot	T2	-0.0039	-0.0057	-0.0034	0.6821	0.3350	0.0004	-0.0038	-0.0042	-0.0034	0.2313	0.0418	0.0002
		Ro	T3	-0.0039	-0.0058	-0.0035	0.6506	0.3217	0.0005	-0.0037	-0.0042	-0.0035	0.1822	0.0530	0.0002
			T4	-0.0039	-0.0062	-0.0033	0.9004	0.3809	0.0005	-0.0037	-0.0040	-0.0033	0.2244	0.0297	0.0002
		H	T1	0.0022	0.0007	0.0027	0.7264	2.4167	0.0005	0.0024	0.0019	0.0027	0.3183	0.1770	0.0002
		bot	T2	0.0023	0.0019	0.0031	0.3783	0.3783	0.0002	0.0023	0.0019	0.0026	0.2522	0.1770	0.0002
	z	Ro	13	0.0021	0.0018	0.0026	0.3203	0.0931	0.0002	0.0021	0.0018	0.0026	0.2962	0.0929	0.0002
34	×.		14	0.0022	0.0017	0.0034	0.5030	0.2780	0.0003	0.0022	0.0018	0.0027	0.3256	0.1138	0.0002
	9ſ	5	11	0.0056	0.0044	0.0067	0.3453	0.0928	0.0005	0.0057	0.0046	0.0067	0.3187	0.3556	0.0005
		bot	12	0.0057	0.0050	0.0062	0.1898	0.1539	0.0004	0.0059	0.0052	0.0062	0.1523	0.1784	0.0002
		Ro	13	0.0061	0.0054	0.0075	0.2762	0.1629	0.0004	0.0061	0.0057	0.0066	0.1375	0.0499	0.0002
			14	0.0059	0.0054	0.0071	0.2407	0.1049	0.0003	0.0058	0.0054	0.0063	0.1517	0.0432	0.0002
		H	11	-0.0013	-0.0071	0.0007	10.4869	0.9037	0.0023	-0.0003	-0.0016	0.0007	3.1384	0.8324	0.0007
		Robo	12	-0.0006	-0.0037	0.0027	2.3506	1.2089	0.0012	-0.0004	-0.0018	0.0009	3.0076	1.0130	0.0005
	Z		13	-0.0007	-0.0047	0.0009	0.2891	4.3601	0.0011	-0.0003	-0.0011	0.0009	2.2300	1.3005	0.0005
35	2		14 T1	-0.0003	-0.0020	0.0041	1.0372	15 2272	0.0013	-0.0003	-0.0023	0.0010	0.0221	2.1393	0.0008
	JE	t 2	11	0.0010	-0.0010	0.0033	1.2960	15.3372	0.0012	0.0021	0.0005	0.0035	0.9221	0.7728	0.0008
		poq	12	0.0017	0.0010	0.0030	0.9002	0.0030	0.0011	0.0021	0.0000	0.0030	0.7903	1 2702	0.0007
		Rc	13	0.0023	0.0008	0.0041	0.6092	0.4669	0.0007	0.0024	0.0009	0.0032	0.7099	0.0926	0.0003
			T1	0.0013	0.0004	0.0030	0.3603	0.0444	0.0007	0.0021	0.0012	0.0028	0.3010	0.0030	0.0004
		t 1	T2	0.0127	0.0030	0.0143	0.3033	0.0070	0.0010	0.0123	0.0113	0.0143	0.1070	0.0203	0.0007
		oqo	T2	0.0134	0.00111	0.0131	0.4210	0.3310	0.0010	0.0133	0.0122	0.0145	0.1011	0.0023	0.0008
	ZZ	R	T4	0.0110	0.0032	0.0135	0.3182	0.2811	0.0010	0.0121	0.0103	0.0135	0.2222	0.0203	0.0000
36	9		T1	0.0110	0.0101	0.0140	0.3034	0.2733	0.0011	0.0110	0.0101	0.0151	0.2312	0.1050	0.0000
		Robot 2	T2	0.0152	0.0127	0.0171	0.2598	0.7550	0.0010	0.0156	0.0143	0.0171	0.1533	0 1205	0.0007
			T3	0.0152	0.0101	0.0167	0.3948	0.5280	0.0014	0.0155	0.0145	0.0166	0.1237	0.0673	0.0006
			T4	0.0161	0.0145	0.0177	0.1789	0.0951	0.0009	0.0162	0.0149	0.0172	0.1339	0.0394	0.0007
			T1	4 4958	4 2167	5 4280	0.2232	0.2022	0.2516	4 3964	4 2167	4 5848	0.0803	0.0450	0.0954
		t 1	T2	4 4967	4.2519	5 1785	0.1789	0.1674	0.2064	4 4124	4 2519	4 5710	0.0698	0.0391	0.0885
		opc	T3	4.6521	4.4210	5.0691	0.1279	0.0628	0.1317	4.6260	4.4210	4,7953	0.0781	0.0267	0.1070
	Ę	Я	T4	4.9124	4.6619	5.4463	0.1440	0.0965	0.2168	4.8147	4.6619	4,9798	0.0638	0.0366	0.0920
37	<u>1</u>		T1	5 6097	5.3787	5 9978	0.1032	0.0245	0.1615	5 5628	5.3787	5 8037	0.0732	0.0732	0.1241
		ot 2	T2	5.3224	5.0787	5.8448	0.1311	0.0131	0.1603	5.2766	5.0787	5.4650	0.0707	0.0481	0.0868
		opc	Т3	5.5485	5.3322	5.8166	0.0833	0.0138	0.1170	5.5095	5.3322	5.6680	0.0592	0.0217	0.0753
		8	T4	5.6402	5.3735	5.8402	0.0799	0.0795	0.1367	5.6460	5.4240	5.8402	0.0713	0.0425	0.1327
			T1	17.5642	14.3273	41.2369	0.6526	0.6526	5.4959	15.7002	14.3273	18.1752	0.2117	0.2117	1.0636
		ot 1	T2	15.5475	13.8972	32.3553	0.5705	0.5705	3.6876	14.4754	13.8972	15.6816	0.1138	0.1138	0.4745
		(ob	T3	17.1639	14.4062	31.7808	0.5467	0.4586	3.3813	16.4586	14.4062	18.1219	0.2050	0.0994	1.4015
20	f2	8	T4	19.8272	17.3108	40.5248	0.5728	0.5728	4.7990	18.2063	17.3108	20.1045	0.1390	0.1390	0.8020
зŏ	1	~	T1	10.8538	8.9510	22.0535	0.5941	0.5647	2.6155	9.9610	8.9510	10.9695	0.1840	0.1092	0.5802
		ot	T2	11.1639	9.5642	21.5798	0.5568	0.5257	2.4312	10.3284	9.5642	11.6255	0.1773	0.1196	0.5286
		tob	Т3	10.7218	9.0853	20.8768	0.5648	0.5521	2.4010	9.8718	9.0853	10.8245	0.1607	0.1362	0.4660
		æ	T4	10.4502	8.8769	20.9830	0.5769	0.5769	2.5310	9.5226	8.8769	10.9706	0.1908	0.1908	0.5784
		1	T1	-6.0070	-14.4364	-4.8289	1.9896	0.6603	1.9557	-5.3456	-6.2875	-4.8289	0.3021	0.2201	0.3721
		ъ	T2	-5.6212	-13.0272	-4.8974	1.6600	0.6241	1.6093	-5.1824	-5.6671	-4.8974	0.1572	0.1358	0.2032
		{ob	T3	-6.0004	-12.5938	-5.2033	1.4204	0.5519	1.4348	-5.6354	-6.1349	-5.2033	0.1790	0.0065	0.2305
30	_f3		T4	-6.6168	-14.8954	-5.6458	1.6383	0.6205	1.9197	-5.9564	-6.8580	-5.6458	0.2147	0.1758	0.3630
55	Ъ,	2	T1	-3.3692	-7.5206	-2.7255	1.7594	0.5820	0.9255	-3.0883	-3.2968	-2.7255	0.2096	0.0170	0.1537
1		ot	T2	-3.6064	-7.7394	-3.0565	1.5321	0.5468	0.9273	-3.3126	-3.6671	-3.0565	0.1998	0.0435	0.1453
		Rob	T3	-3.3489	-7.4277	-2.8410	1.6145	0.5983	0.9215	-3.0529	-3.2456	-2.8410	0.1424	0.0724	0.1178
			T4	-3.2300	-7.3724	-2.6803	1.7506	0.6327	0.9580	-2.8986	-3.3055	-2.6803	0.2333	0.1808	0.1752
		7	T1	0.7778	0.6069	1.7821	0.6595	0.6487	0.2434	0.6896	0.6069	0.8278	0.2668	0.2436	0.0541
		ot	T2	0.7242	0.6167	1.7288	0.6433	0.6433	0.2190	0.6640	0.6167	0.7317	0.1572	0.1572	0.0313
		Rot	Т3	0.7674	0.6700	1.6528	0.5947	0.5760	0.1924	0.7162	0.6700	0.7782	0.1390	0.0536	0.0274
40	-f4	_	T4	0.8262	0.6990	1.9158	0.6351	0.6308	0.2544	0.7371	0.6990	0.8643	0.1912	0.1815	0.0503
	11	2	T1	0.4065	0.3298	0.9614	0.6569	0.5877	0.1213	0.3751	0.3298	0.4102	0.1961	0.1748	0.0221
		oot	T2	0.4448	0.3786	1.0083	0.6245	0.5475	0.1241	0.4086	0.3786	0.4562	0.1701	0.0556	0.0185
1		Rot	Т3	0.4069	0.3417	0.9681	0.6470	0.6135	0.1238	0.3721	0.3417	0.3942	0.1332	0.0167	0.0152
			T4	0.3891	0.3187	0.9523	0.6654	0.6547	0.1271	0.3484	0.3187	0.3857	0.1739	0.1407	0.0212

Table H.5: The statistics data of the identification results (5/8)

						All Cy	cles				The c	ycles withou	ut 1st 5 cycle	es	
				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
			T1	3.4887	2.9899	4.0302	0.2581	0.1328	0.2910	3.3953	2.9899	3.8046	0.2141	0.1909	0.2366
41		t 1	T2	3,5379	3.2256	4,2587	0.2426	0.1581	0.2645	3,4283	3,2256	3,7407	0.1377	0.1066	0.1393
		obc	T3	3.3900	3.0687	4.1570	0.2618	0.2526	0.2884	3.2675	3.0687	3.6230	0.1530	0.1425	0.1504
	1	æ	T4	3 4028	3.0938	4.1552	0.2554	0.2390	0.2735	3,2818	3 0938	3 4311	0.0983	0.0754	0.0865
41	2		T1	3 1583	2,9219	3,3636	0.1313	0.1082	0.0976	3 1676	3.0071	3,3636	0.1060	0.0678	0.0839
	7	t 2	T2	3 1821	3.0487	3,3162	0.0807	0.0101	0.0740	3,1788	3 0487	3,3031	0.0770	0.0059	0.0763
		bbc	T3	3 1646	3 0160	3 3368	0.0961	0.0022	0.0716	3 1532	3 0160	3 2747	0.0790	0.0126	0.0639
		Å	T4	3,2105	3.0132	3,3952	0.1125	0.0104	0 1147	3,1996	3 0132	3,3838	0 1095	0.0108	0.1198
			T1	28 5754	23 2129	41 7296	0.4437	0.0104	3 8375	27 8209	25 4920	32 5727	0.1055	0.0100	1 7968
		t 1	T2	30.0690	25.2125	41.7250	0.4437	0.3403	1 889/	28.0571	25.4520	33 9983	0.2174	0.1020	1.9680
		oqo	T2	30.0390	25.6470	45 6382	0.4380	0.4007	4.0094	27 9789	25.6470	33,2600	0.2420	0.2105	1 9258
	2	Å	Τ/	29 //18	25.0470	40.0952	0.4300	0.4155	4.5500	27.39/0	25.0470	31 9289	0.2205	0.1954	1 7472
42	2_f		T1	17 5127	1/ 0528	31 /000	0.5220	0.4174	3 505/	16 1216	1/ 0528	18 / 786	0.2010	0.1934	0.0063
	ſ	t 2	T2	17 5224	1/ 9353	30 6671	0.5235	0.5100	3 / 319	16 1692	1/ 9353	18 0610	0.1307	0.1017	0.5505
		oqo	T2	17.5224	15 2509	31 2694	0.5130	0.5011	3 /880	16 2283	15 2509	18 1983	0.1731	0.1520	0.807/
		R	Τ <i>Δ</i>	17.3301	15 2918	29 8801	0.3123	0.3123	3 2590	16 1692	15 2918	18 1/155	0.1020	0.1020	0.0374
			T1	-0.8168	-13 3300	-7 7126	0.7002	0.4011	1 1/16	-0.6071	-11 2672	-9 9221	0.1373	0.1430	0.7031
		t 1	T2	-10 4803	-14 3580	-9.0552	0.7284	0.2740	1.1410	-9.0971	-11.2072	-8.0231	0.2770	0.1420	0.0040
		pq	T2	10 6162	15 2576	-0.3332 0.400	0.0034	0.3383	1.5015	0.0622	12 0021	-0.3332 0.400	0.3230	0.2007	0.0477
	æ	Rc	13	10.0105	-13.3370	-0.9490	0.7101	0.3003	1.0230	-9.9023	-12.0651	-0.9490	0.3302	0.2220	0.7360
43	2_f		14 T1	-10.3100	-14.0403	-6.9499	0.0338	0.3740	1.3043	-9.0730	-11.1014	-6.9499	0.2404	0.1744	0.3905
	5	12	11	-0.1075	-10.5555	-5.2910	0.9947	0.4692	1.1577	-5.0709	-0.4102	-5.2910	0.2125	0.1596	0.3105
		,oq	12	-0.1320	-10.2077	-5.2795	0.9449	0.4595	1.0030	-5./101	-0.2347	-5.2795	0.1810	0.1095	0.2509
		Rc	13	-0.1705	-10.5565	-5.4209	0.9452	0.4604	1.0660	-5.7701	-0.2/5/	-5.4209	0.1504	0.1259	0.2010
			14	-0.0895	-9.8019	-5.3519	0.8315	0.4416	0.9834	-5.6919	-0.1/51	-5.3519	0.1538	0.1136	0.2597
		H	11	1.4784	1.2686	1.8237	0.3044	0.2002	0.1299	1.4001	1.3451	1.6880	0.2032	0.1359	0.0897
		bot	12	1.5797	1.3083	2.0470	0.3315	0.2732	0.1838	1.5014	1.3683	1.7346	0.2111	0.1625	0.0844
	t,	Ro	13	1.6061	1.3665	2.1908	0.3762	0.3497	0.2059	1.5249	1.3665	1.8496	0.2611	0.2297	0.1144
44	_f		14	1.5535	1.3821	2.0783	0.3350	0.3190	0.1896	1.4/1/	1.3821	1.6430	0.1588	0.1385	0.0786
	ſ	7	11	1.0364	0.9338	1.4933	0.3/4/	0.3555	0.1188	0.9919	0.9338	1.0757	0.1319	0.1054	0.0387
		bot	T2	1.0498	0.9456	1.4407	0.3437	0.3173	0.1056	1.0074	0.9456	1.0545	0.1033	0.0646	0.0303
		Ro	T3	1.0613	0.9719	1.5045	0.3540	0.3464	0.1119	1.0207	0.9719	1.0707	0.0923	0.0598	0.0297
			T4	1.0444	0.9494	1.3821	0.3131	0.2903	0.0946	1.0061	0.9494	1.0676	0.1107	0.0603	0.0332
		t 1	T1	2.1145	2.0392	2.2308	0.0859	0.0180	0.0451	2.1116	2.0401	2.1760	0.0625	0.0189	0.0374
		bot	T2	2.1232	2.0454	2.2649	0.0969	0.0159	0.0552	2.1057	2.0454	2.1871	0.0648	0.0208	0.0351
		Rol	Т3	2.0724	1.9963	2.1751	0.0822	0.0132	0.0474	2.0547	1.9963	2.0964	0.0477	0.0107	0.0260
45	17		Т4	2.0988	1.9172	2.2143	0.1342	0.0902	0.0562	2.0961	2.0172	2.1565	0.0646	0.0207	0.0342
	J3	2	T1	1.7262	1.6539	1.7961	0.0792	0.0212	0.0352	1.7192	1.6539	1.7961	0.0792	0.0232	0.0342
		ot	T2	1.7230	1.6540	1.8108	0.0866	0.0166	0.0346	1.7129	1.6540	1.7514	0.0556	0.0438	0.0264
		Rob	Т3	1.7236	1.6475	1.7971	0.0832	0.0116	0.0307	1.7219	1.6855	1.7682	0.0468	0.0250	0.0216
			T4	1.7352	1.6827	1.8001	0.0652	0.0045	0.0347	1.7280	1.6827	1.7871	0.0584	0.0216	0.0320
		-	T1	9.5846	8.5427	14.9641	0.4291	0.4082	1.2850	9.1910	8.5427	10.2102	0.1633	0.1213	0.4515
		oot	T2	9.2719	8.3731	12.4306	0.3264	0.2844	1.1461	8.7381	8.3731	9.5710	0.1252	0.0357	0.3657
		Rol	Т3	9.3387	8.3266	12.4082	0.3289	0.3089	1.1366	8.8342	8.3266	9.9845	0.1660	0.1412	0.4805
46	_f2		T4	9.3230	8.3562	12.2787	0.3195	0.2460	1.0304	8.8778	8.3562	9.8645	0.1529	0.0615	0.4143
	Εſ	2	T1	7.4997	6.6433	11.4874	0.4217	0.4158	1.1609	7.0056	6.6433	7.6866	0.1357	0.1270	0.3386
		bot	12	7.4259	6.5463	11.3863	0.4251	0.4242	1.1636	6.9419	6.5463	7.9151	0.1729	0.1717	0.4149
		Ro	T3	7.3708	6.5089	11.2586	0.4219	0.4207	1.1731	6.8620	6.5089	7.7313	0.1581	0.1564	0.3604
			T4	7.2037	6.3410	10.9153	0.4191	0.4039	1.1030	6.7402	6.3410	7.6884	0.1753	0.1537	0.3688
		-	۲ <u>1</u>	-3.3402	-4.6477	-3.0481	0.5248	0.3186	0.3271	-3.2499	-3.6255	-3.0481	0.1894	0.0962	0.1542
		bot	T2	-3.2275	-3.9549	-2.9239	0.3527	0.1545	0.3118	-3.0804	-3.3107	-2.9239	0.1323	0.0156	0.1093
	~	Ro	- 13	-3.2415	-3.9927	-2.9759	0.3417	0.1796	0.2945	-3.1119	-3.4263	-2.9759	0.1514	0.1129	0.1425
47	E.	L	T4	-3.2473	-3.9687	-2.9757	0.3337	0.0671	0.2449	-3.1492	-3.4008	-2.9757	0.1429	0.0047	0.1297
	Э3	2	T1	-2.3027	-2.8665	-2.0953	0.3681	0.2658	0.2409	-2.1941	-2.4026	-2.0953	0.1467	0.0845	0.0894
		oot	T2	-2.2867	-2.8465	-2.0222	0.4076	0.2720	0.2411	-2.1838	-2.4385	-2.0222	0.2059	0.1493	0.1215
1		Rol	T3	-2.2721	-2.8624	-2.0522	0.3948	0.2753	0.2570	-2.1531	-2.3374	-2.0522	0.1390	0.1218	0.0917
			T4	-2.1974	-2.7472	-1.9638	0.3989	0.2360	0.2276	-2.0999	-2.3529	-1.9638	0.1982	0.1323	0.1076
		-	T1	0.4505	0.4051	0.5597	0.2763	0.2323	0.0326	0.4434	0.4051	0.5000	0.1899	0.0893	0.0229
		oot	T2	0.4324	0.3827	0.5298	0.2776	0.0346	0.0375	0.4164	0.3827	0.4415	0.1330	0.0302	0.0165
		Rot	Т3	0.4328	0.3943	0.5282	0.2535	0.0543	0.0353	0.4203	0.3943	0.4643	0.1508	0.1260	0.0228
48	_f4	L	T4	0.4363	0.3943	0.5312	0.2576	0.1331	0.0296	0.4285	0.3943	0.4776	0.1744	0.0557	0.0210
	Л3	2	T1	0.3079	0.2814	0.3750	0.2497	0.1258	0.0264	0.2968	0.2814	0.3240	0.1316	0.0826	0.0118
		ot	T2	0.3059	0.2678	0.3744	0.2847	0.1179	0.0260	0.2961	0.2678	0.3310	0.1909	0.1419	0.0164
1		Rot	Т3	0.3044	0.2764	0.3802	0.2730	0.1282	0.0290	0.2918	0.2764	0.3162	0.1259	0.1013	0.0119
<u> </u>			T4	0.2932	0.2622	0.3643	0.2801	0.0738	0.0259	0.2835	0.2622	0.3142	0.1653	0.1208	0.0150
		-	T1	5.2542	4.4232	5.5014	0.1960	0.2242	0.2150	5.3157	5.1005	5.5014	0.0729	0.0616	0.1184
		oot	T2	5.4184	4.6835	5.6552	0.1718	0.2075	0.2264	5.4835	5.2253	5.6552	0.0760	0.0721	0.1530
		Rot	Т3	5.4345	4.3913	5.6493	0.2227	0.2291	0.2546	5.5115	5.3590	5.6493	0.0514	0.0067	0.0967
49	f_{1}		T4	5.3567	4.4368	5.6700	0.2175	0.2580	0.2574	5.4362	5.0412	5.6700	0.1109	0.1071	0.1598
49	<u>4</u>	2	T1	5.4409	4.8874	5.7353	0.1478	0.1185	0.2369	5.5328	5.2314	5.7353	0.0879	0.0552	0.1281
		ot	T2	5.5515	4.7909	5.8337	0.1788	0.2140	0.2452	5.6493	5.2960	5.8337	0.0922	0.0982	0.1237
		Rob	Т3	5.5144	4.7734	5.8767	0.1877	0.1938	0.2517	5.6150	5.3249	5.8767	0.0939	0.0409	0.1427
		_	T4	5.4416	4.5923	5.7388	0.1998	0.2265	0.2628	5.5495	5.3426	5.7388	0.0690	0.0543	0.1019

Table H.6: The statistics data of the identification results (6/8)

						All Cyc	cles				The c	ycles withou	ut 1st 5 cycle	es	
				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
		_	T1	12.2622	9.8810	25.1033	0.6064	0.5756	3.1294	11.0966	9.8810	12.8918	0.2335	0.1736	0.7456
50		t 1	T2	12,2509	10,1337	24.0739	0.5791	0.5631	3.0016	11.1077	10.1337	13,1834	0.2313	0.2023	0.8114
		bbc	T3	11,9620	10,2057	23,2804	0.5616	0.5413	2 7443	10,9405	10.2057	12 6649	0.1942	0.1569	0.6219
	2	æ	T4	12.0514	10.0466	24 0300	0.5819	0.5798	2,9697	10,9246	10.0466	12 7972	0 2149	0.2110	0.6902
50	4		T1	10 0282	8 5044	18 0151	0.5015	0.5790	2.0051	9 2108	8 5044	10 5897	0.2145	0.1653	0.5413
	_	t 2	T2	0.0202	0.3044	10.0101	0.5275	0.5034	2.0951	0.0602	0.3044	10.5657	0.1909	0.1033	0.5413
		,oq	12	9.8772	0.4562	10.1031	0.5345	0.5320	2.1110	9.0602	0.4562	10.5170	0.1958	0.1928	0.5274
		ßo	13	9.8828	8.4542	18.0467	0.5315	0.5206	2.0975	9.0560	8.4542	10.1830	0.1698	0.1503	0.5221
			14	9.6556	8.3692	17.8030	0.5299	0.5222	2.0386	8.8820	8.3692	9.9119	0.1556	0.1418	0.4050
		Ч	11	-3.2445	-6.0470	-2./110	1.2306	0.5158	0.6751	-2.9951	-3.3293	-2./110	0.2281	0.1206	0.1483
		oot	T2	-3.2432	-5.8711	-2.7163	1.1614	0.5146	0.6622	-2.9975	-3.4012	-2.7163	0.2522	0.1621	0.1841
		Rol	Т3	-3.1642	-5.4980	-2.7192	1.0219	0.4607	0.5695	-2.9511	-3.2611	-2.7192	0.1993	0.0907	0.1212
51	£		T4	-3.2044	-5.7707	-2.7234	1.1189	0.5067	0.6388	-2.9617	-3.4351	-2.7234	0.2613	0.1713	0.1647
51	4	5	T1	-2.6719	-4.5602	-2.2929	0.9889	0.4612	0.4825	-2.4918	-2.7938	-2.2929	0.2185	0.1205	0.1188
		ot	T2	-2.6378	-4.6625	-2.3020	1.0254	0.5027	0.4936	-2.4569	-2.8007	-2.3020	0.2166	0.1720	0.1180
		go	Т3	-2.6619	-4.6295	-2.3309	0.9861	0.4790	0.4856	-2.4763	-2.6847	-2.3309	0.1518	0.0989	0.1064
			T4	-2.6100	-4.6087	-2.3025	1.0016	0.4864	0.4786	-2.4421	-2.6232	-2.3025	0.1393	0.0977	0.0816
			T1	0.3492	0.3022	0.5780	0.4771	0.4439	0.0558	0.3284	0.3022	0.3543	0.1470	0.0928	0.0131
		ot 1	T2	0.3493	0.2988	0.5694	0.4752	0.4543	0.0571	0.3281	0.2988	0.3574	0.1638	0.1306	0.0177
		qq	Т3	0.3421	0 2989	0.5366	0 4430	0.3911	0.0492	0 3232	0 2989	0 3425	0.1274	0.0461	0.0106
	4	Å	Τ4	0 3453	0 2984	0 5630	0.4699	0.4382	0.0558	0 3237	0 2984	0 3707	0 1949	0 1468	0.0165
52	4 1		T1	0.3435	0.2304	0.3030	0.4055	0.4302	0.0330	0.3237	0.2304	0.3707	0.1/90	0.1400	0.0105
1	, Ś	ť 2	11 T2	0.2000	0.2490	0.4400	0.4423	0.3972	0.0411	0.2009	0.2490	0.2923	0.1469	0.0/9/	0.0099
		,oq	12	0.2000	0.2525	0.4560	0.4498	0.4474	0.0421	0.2002	0.2525	0.2957	0.1409	0.1432	0.0100
1	1	Ro	13	0.2839	0.2562	0.4559	0.4380	0.41/3	0.0414	0.2685	0.2562	0.2862	0.1050	0.0507	0.0079
┣—		-	T4	0.2793	0.2516	0.4559	0.4481	0.4312	0.0414	0.2658	0.2516	0.2776	0.0934	0.0655	0.0072
		÷	T1	1.2245	1.1243	1.3287	0.1539	0.0842	0.0592	1.2195	1.1243	1.3287	0.1539	0.0433	0.0613
		ot	T2	1.1514	1.0858	1.3365	0.1876	0.1249	0.0538	1.1356	1.0858	1.1933	0.0901	0.0097	0.0350
		Rot	T3	1.2146	1.1391	1.2956	0.1208	0.1128	0.0408	1.2010	1.1391	1.2813	0.1110	0.0551	0.0330
53	f		T4	1.2814	1.2000	1.4766	0.1873	0.0776	0.0639	1.2834	1.2000	1.4766	0.1873	0.1385	0.0664
55	Ŀ,	~	T1	0.7985	0.7502	0.9876	0.2404	0.1886	0.0460	0.7884	0.7503	0.8193	0.0842	0.0204	0.0192
		of ,	T2	0.8096	0.7560	1.0133	0.2540	0.2050	0.0491	0.8003	0.7560	0.8367	0.0964	0.0528	0.0258
		qo	Т3	0.8191	0.7532	0.9921	0.2408	0.1678	0.0427	0.8094	0.7532	0.8364	0.0994	0.0335	0.0210
		æ	T4	0.8010	0.7518	0.9360	0.1968	0.1200	0.0384	0.7921	0.7518	0.8468	0.1122	0.0623	0.0263
		1	T1	5.8674	4.9047	9.4510	0.4810	0.4361	0.9432	5.5853	4.9047	6.2241	0.2120	0.0124	0.4772
		ot 1	T2	5 4020	4,5356	8,9148	0 4912	0.4003	0.8290	5 1830	4 5356	5,9302	0.2352	0.0348	0.3565
		bbc	T3	6 3917	5 2795	10 7096	0 5070	0.5070	1 0775	6.0386	5 2795	6 8209	0.2260	0 15/15	0.3/8/
	2	Å	T4	6 7537	5 4351	11 1974	0.5070	0.3957	1.0761	6 4835	5 4351	7 5789	0.2200	0.0134	0.5404
54	5		T1	/ 2813	2 919/	6 7004	0.3140	0.3337	0.60/8	2 0821	2 919/	1 4000	0.2023	0.0134	0.3043
		t 2	T2	4.1769	2 6910	6 5749	0.4301	0.4275	0.0040	2 2020	2 6910	4.2177	0.1322	0.1230	0.1074
		Robot	12	4.1708	3.0810	0.3748	0.4401	0.4255	0.0035	3.8960	3.0610	4.31/7	0.1473	0.1222	0.1501
			13	4.1620	3./16/	0.5360	0.4313	0.4312	0.6530	3.8891	3./16/	4.2347	0.1223	0.1222	0.1525
			14	4.1408	3.6720	6.2776	0.4151	0.4150	0.6112	3.8877	3.6720	4.1895	0.1235	0.1234	0.1568
		1	11	-1./199	-2.6989	-1.3799	0.9559	0.41//	0.2959	-1.6550	-1.9616	-1.3799	0.4216	0.0563	0.21/8
		oot	T2	-1.5382	-2.7493	-1.2733	1.1592	0.4572	0.2852	-1.4658	-1.7314	-1.2733	0.3598	0.0426	0.1266
		Rol	Т3	-1.8022	-3.3649	-1.3893	1.4220	0.5871	0.3916	-1.6735	-2.0220	-1.3893	0.4553	0.1940	0.1476
55	Ξ ⁻		T4	-1.9258	-3.3654	-1.5336	1.1944	0.3803	0.3569	-1.8780	-2.2278	-1.5336	0.4527	0.2223	0.1929
	J5	5	T1	-1.2413	-1.8874	-1.1182	0.6879	0.3970	0.1810	-1.1637	-1.2609	-1.1182	0.1276	0.0850	0.0372
		ъ	T2	-1.2138	-1.8976	-1.0717	0.7707	0.4094	0.1898	-1.1335	-1.2494	-1.0717	0.1658	0.1030	0.0407
		Sob	Т3	-1.2090	-1.8722	-1.0862	0.7236	0.4176	0.1820	-1.1321	-1.2182	-1.0862	0.1215	0.1050	0.0372
			T4	-1.2064	-1.7869	-1.0680	0.6731	0.3970	0.1687	-1.1367	-1.1818	-1.0680	0.1066	0.0883	0.0357
			T1	0.1778	0.1419	0.2631	0.4606	0.3788	0.0290	0.1728	0.1419	0.2067	0.3134	0.0659	0.0244
1	1	ot 1	T2	0.1586	0.1305	0.2758	0.5267	0.4509	0.0277	0.1518	0.1305	0.1778	0.2659	0.0489	0.0126
1	1	qo	Т3	0.1844	0.1428	0.3425	0.5832	0.5832	0.0393	0.1714	0.1428	0.2084	0.3149	0.1843	0.0154
	f4	ч	T4	0.1980	0.1591	0.3240	0.5089	0.3082	0.0348	0.1959	0.1603	0.2421	0.3379	0.3360	0.0227
56	5		T1	0.1312	0.1185	0.1928	0.3853	0.3700	0.0173	0.1236	0.1185	0.1314	0.0977	0.0753	0.0034
1	1	ot 2	T2	0.1286	0.1144	0.1971	0.4196	0.3925	0.0192	0.1204	0.1144	0.1333	0.1419	0.1018	0.0042
		opc	Τ3	0.1282	0.1154	0.1939	0 4050	0.3990	0.0182	0.1204	0.1154	0.1291	0.1061	0.0971	0.0037
		æ	Τ/	0.1280	0 1137	0 1847	0 3844	0 3772	0.0169	0 1209	0 1137	0.1254	0.0929	0.0751	0.0035
			T1	1 2502	1 0022	1 2175	0.3044	0.3772	0.0105	1 2790	1 2227	1 2175	0.0323	0.0766	0.0055
		ť 1	T2	1.2392	1.0922	1 2014	0.1710	0.2003	0.0500	1.2765	1.2237	1 2014	0.0712	0.0700	0.0232
		po	12	1.2556	1.0425	1.3014	0.1991	0.2343	0.0309	1.2730	1.2273	1.3014	0.0307	0.0433	0.0212
	_	Ro	13	1.2515	1.1595	1.2969	0.1060	0.0896	0.0318	1.2646	1.2351	1.2969	0.0477	0.0229	0.0168
57	Ę.	<u> </u>	14	1.2456	1.1152	1.2926	0.13/2	0.1457	0.0372	1.2581	1.2227	1.2926	0.0540	0.0417	0.0215
	ЭС	2	T1	1.5536	1.5169	1.6003	0.0521	0.0169	0.0206	1.5480	1.5169	1.6003	0.0521	0.0436	0.0182
1	1	ot	T2	1.5501	1.4851	1.6133	0.0795	0.0222	0.0333	1.5416	1.5168	1.5838	0.0423	0.0415	0.0198
1	1	Rot	Т3	1.5398	1.5152	1.5980	0.0518	0.0016	0.0243	1.5327	1.5152	1.5689	0.0342	0.0080	0.0162
			T4	1.5641	1.4804	1.6123	0.0818	0.0553	0.0289	1.5608	1.5317	1.6042	0.0452	0.0261	0.0189
	1	-	T1	0.9079	0.7290	1.9226	0.6208	0.6208	0.2660	0.7996	0.7290	0.9352	0.2206	0.2206	0.0519
1	1	ot	T2	0.8915	0.7229	1.9138	0.6223	0.6189	0.2697	0.7849	0.7229	0.9185	0.2130	0.2058	0.0581
1	1	do:	Т3	0.8799	0.7491	1.6929	0.5575	0.5281	0.2144	0.7958	0.7491	0.8901	0.1584	0.1025	0.0406
	f2	R	T4	0.8869	0.7558	1.7300	0.5631	0.5533	0.2151	0.8032	0.7558	0.8804	0.1415	0.1221	0.0367
58	9		T1	1.6567	1.5416	2.4514	0.3711	0.3502	0.1899	1.5874	1.5416	1.6331	0.0560	0.0227	0.0288
1	,	it 2	T2	1.6723	1.5320	2,6144	0.4140	0.4033	0.2326	1.5857	1.5320	1.7212	0,1099	0.0937	0.0505
1	1	oqc	Т٦	1 6537	1 5387	2 4090	0 3613	0.3591	0 1886	1 5837	1 5387	1 6790	0 0835	0.0804	0.0383
		Ř	T4	1 7615	1 6212	2.7035	0 4003	0 4003	0 2261	1 6774	1 6212	1 7477	0 0724	0 0724	0.0350

Table H.7: The statistics data of the identification results (7/8)

						All Cy	cles				The c	ycles withou	ut 1st 5 cycle	S	
				Mean	MIN	MAX	D/MM	D/SE	Sdv	Mean	MIN	MAX	D/MM	D/SE	Sdv
		_	T1	-0.1973	-0.3329	-0.1671	0.9922	0.4980	0.0396	-0.1801	-0.2020	-0.1671	0.2088	0.1728	0.0082
		ot 1	T2	-0.2000	-0.3445	-0.1740	0.9794	0.4872	0.0407	-0.1837	-0.2047	-0.1740	0.1762	0.1083	0.0083
		tob	Т3	-0.2045	-0.3015	-0.1840	0.6384	0.3339	0.0272	-0.1938	-0.2048	-0.1840	0.1132	0.0035	0.0059
FO	f3	œ	T4	-0.2087	-0.3209	-0.1872	0.7143	0.3952	0.0286	-0.1983	-0.2088	-0.1872	0.1155	0.0704	0.0063
29	J6_	~	T1	-0.3879	-0.5036	-0.3656	0.3776	0.2361	0.0264	-0.3796	-0.3906	-0.3656	0.0686	0.0182	0.0063
		ot	T2	-0.3928	-0.5367	-0.3717	0.4439	0.2877	0.0333	-0.3824	-0.4034	-0.3717	0.0852	0.0524	0.0087
		tob	T3	-0.3895	-0.4881	-0.3717	0.3132	0.2286	0.0235	-0.3823	-0.3947	-0.3717	0.0618	0.0460	0.0066
		æ	T4	-0.4049	-0.5447	-0.3837	0.4195	0.2955	0.0322	-0.3940	-0.4027	-0.3837	0.0495	0.0326	0.0051
		_	T1	0.0170	0.0149	0.0247	0.3953	0.3933	0.0026	0.0159	0.0149	0.0170	0.1200	0.1170	0.0005
		ot 1	T2	0.0167	0.0150	0.0253	0.4061	0.3967	0.0026	0.0156	0.0150	0.0169	0.1122	0.0524	0.0005
		qo	T3	0.0172	0.0160	0.0227	0.2926	0.2249	0.0015	0.0167	0.0160	0.0176	0.0874	0.0547	0.0004
60	f4	æ	T4	0.0177	0.0162	0.0244	0.3346	0.3094	0.0016	0.0171	0.0162	0.0178	0.0867	0.0436	0.0004
60	_ J6_	~	T1	0.0320	0.0305	0.0384	0.2066	0.1630	0.0015	0.0317	0.0305	0.0325	0.0614	0.0260	0.0005
		ot	T2	0.0325	0.0311	0.0411	0.2416	0.2190	0.0020	0.0319	0.0311	0.0334	0.0676	0.0398	0.0006
		tob	Т3	0.0322	0.0309	0.0372	0.1706	0.1498	0.0012	0.0319	0.0311	0.0326	0.0457	0.0298	0.0005
		æ	T4	0.0335	0.0322	0.0414	0.2215	0.2215	0.0018	0.0330	0.0322	0.0336	0.0413	0.0208	0.0004
		_	T1	-7.8609	-15.7940	-3.1690	3.9839	0.5848	2.9861	-6.8420	-10.7323	-3.1690	2.3866	0.3890	1.8424
		ot 1	T2	-9.2062	-13.9417	-4.0425	2.4488	0.3325	2.0577	-8.7736	-11.4755	-4.0425	1.8387	0.0472	1.8688
		qo	T3	-10.0566	-14.0571	-6.7298	1.0888	0.2388	2.3782	-9.6529	-14.0571	-6.7298	1.0888	0.3792	2.4951
61	<u> </u>	Ľ.	T4	-10.1510	-13.6053	-6.3521	1.1418	0.2293	2.0288	-9.5243	-12.6824	-6.3521	0.9966	0.3324	1.6861
01	J3		T1	-20.5611	-21.9182	-18.5651	0.1806	0.0200	0.8747	-20.4395	-21.9182	-18.5651	0.1806	0.0263	0.8926
		ot	T2	-20.7796	-24.2454	-18.4781	0.3121	0.1431	1.2501	-20.5462	-22.0870	-18.4781	0.1953	0.0576	0.9301
		qo	T3	-20.3222	-23.7068	-18.5229	0.2799	0.1684	1.0068	-19.9882	-20.8542	-18.5229	0.1259	0.0326	0.6037
		Ľ.	T4	-20.6358	-22.4407	-18.9138	0.1865	0.0714	0.9398	-20.3673	-22.2088	-18.9138	0.1742	0.0470	0.7568
		L	T1	27.8146	12.8065	30.3894	0.5786	1.2158	3.3088	28.4081	26.9266	30.3894	0.1139	0.0662	0.9010
		ot :	T2	27.1838	16.2208	30.6505	0.4708	0.6315	2.6933	27.3126	25.2677	29.7500	0.1507	0.1104	1.1386
		qoy	T3	26.5195	13.5007	29.4464	0.5415	1.0169	3.0884	27.1569	25.3306	28.9860	0.1261	0.0533	0.9708
62	<u> </u>		T4	27.4281	19.2291	29.7607	0.3539	0.3578	2.1003	27.7255	25.8745	29.7607	0.1306	0.0141	1.2003
02	4	2	T1	30.2372	20.0550	32.2549	0.3782	0.6083	2.7629	31.3051	29.7517	32.2549	0.0776	0.0815	0.7405
		ot	T2	30.6933	20.4440	32.7177	0.3751	0.5499	2.6523	31.7007	29.3429	32.7177	0.1031	0.0798	0.7794
		Sob	Т3	30.8018	21.5308	32.5722	0.3390	0.4525	2.4039	31.7108	30.6541	32.5722	0.0589	0.0202	0.5506
		-	T4	30.9637	21.0762	32.9276	0.3599	0.5351	2.6578	32.0137	30.9007	32.9276	0.0616	0.0470	0.5824
		ч	T1	11.2152	5.5336	14.0131	0.6051	0.9780	1.6833	11.8028	10.5018	14.0131	0.2506	0.0280	0.8132
		ot	T2	11.8581	7.5398	13.9995	0.4614	0.5937	1.3399	11.8753	10.7906	13.6686	0.2106	0.0931	0.8219
		Rob	Т3	11.0004	7.2167	13.2908	0.4570	0.1060	1.3411	11.1676	9.2722	13.2908	0.3024	0.1899	1.0663
63	<u> </u>	_	T4	10.2974	4.6306	14.5905	0.6826	2.0394	2.3224	11.0215	8.2571	14.5905	0.4341	0.7045	1.8396
00	J5	7	T1	11.7700	10.8976	12.1890	0.1059	0.0134	0.3521	11.8843	11.4449	12.1890	0.0610	0.0316	0.2279
		ot	T2	11.8877	11.1607	12.4209	0.1015	0.0269	0.2878	11.8911	11.4577	12.1723	0.0587	0.0125	0.2047
		Rob	Т3	11.6051	11.0807	12.1474	0.0878	0.0275	0.2877	11.6199	11.0807	11.9973	0.0764	0.0556	0.2715
		_	T4	12.0172	11.3429	12.4359	0.0879	0.0190	0.2451	11.9778	11.3429	12.3586	0.0822	0.0533	0.2501
		H	T1	-0.1453	-0.8784	0.2907	4.0221	3.3149	0.3410	-0.0267	-0.4772	0.2907	2.6418	1.4094	0.2328
		ot	T2	-0.0608	-1.0841	0.4948	3.1909	1.7115	0.4904	0.1051	-0.6018	0.4948	2.2162	1.7327	0.3379
		Sob	Т3	0.3170	-0.9567	0.7304	2.3098	2.0807	0.4587	0.5131	0.0826	0.7304	0.8869	7.3622	0.1874
64	<u>۳</u>	-	T4	0.2229	-0.8760	0.7889	2.1105	2.4990	0.5012	0.4403	-0.1070	0.7889	1.1356	61.5745	0.2691
1 24	J6	5	T1	-0.3479	-0.7330	-0.0823	7.9071	0.5143	0.2105	-0.2844	-0.6184	-0.0823	6.5141	0.7622	0.1718
		ot	T2	-0.3964	-1.1171	-0.0973	10.4803	0.8795	0.2662	-0.2796	-0.5128	-0.0973	4.2698	0.7831	0.1249
		Rot	Т3	-0.2824	-1.0786	-0.0335	31.1848	0.7649	0.2565	-0.1730	-0.3730	-0.0335	10.1308	0.3718	0.0844
		_	T4	-0.5361	-1.2236	-0.3146	2.8899	0.5989	0.2180	-0.4453	-0.5890	-0.3146	0.8723	0.3217	0.0858

Table H.8: The statistics data of the identification results (8/8)

Appendix I

The Identification Results Of Excitation Trajectory Of Robot 1

The figures shown in this appendix represent the dynamic parameter identification results of Robot LEFT, which are mentioned in Section 5.1.5.2. Also the identified results of the selected cycles are shown here. The left sub-figures are the plots with the y-axis labelled automatically, and the right sub-figures are the plots with y-axis labelled multiplied by 0.5. It should be pointed that the identified friction coefficients are not presented due to the non-physical parameters. Additionally, it should be noticed that some parameters have the same plots between two sub-figures because the original y-axis range of the right sub-figure meet the requirements of multiple 0.5.

Figure I.1: I_{zz} of Joint 1 of the Robot LEFT with the identified results of selected cycles

Figure I.2: mP_x of Joint 2 of the Robot LEFT with the identified results of selected cycles

Figure I.3: mP_y of Joint 2 of the Robot LEFT with the identified results of selected cycles

Figure I.4: I_{xx} of Joint 2 of the Robot LEFT with the identified results of selected cycles

Figure I.5: I_{xy} of Joint 2 of the Robot LEFT with the identified results of selected cycles

Figure I.6: I_{xz} of Joint 2 of the Robot LEFT with the identified results of selected cycles

Figure I.7: I_{yz} of Joint 2 of the Robot LEFT with the identified results of selected cycles

Figure I.8: I_{zz} of Joint 2 of the Robot LEFT with the identified results of selected cycles

Figure I.9: mP_x of Joint 3 of the Robot LEFT with the identified results of selected cycles

Figure I.10: mP_y of Joint 3 of the Robot LEFT with the identified results of selected cycles

Figure I.11: I_{xx} of Joint 3 of the Robot LEFT with the identified results of selected cycles

Figure I.12: I_{xy} of Joint 3 of the Robot LEFT with the identified results of selected cycles

Figure I.13: I_{xz} of Joint 3 of the Robot LEFT with the identified results of selected cycles

Figure I.14: I_{yz} of Joint 3 of the Robot LEFT with the identified results of selected cycles

Figure I.15: I_{zz} of Joint 3 of the Robot LEFT with the identified results of selected cycles

Figure I.16: mP_x of Joint 4 of the Robot LEFT with the identified results of selected cycles

Figure I.17: mP_y of Joint 4 of the Robot LEFT with the identified results of selected cycles

Figure I.18: I_{xx} of Joint 4 of the Robot LEFT with the identified results of selected cycles

Figure I.19: I_{xy} of Joint 4 of the Robot LEFT with the identified results of selected cycles

Figure I.20: I_{xz} of Joint 4 of the Robot LEFT with the identified results of selected cycles

Figure I.21: I_{yz} of Joint 4 of the Robot LEFT with the identified results of selected cycles

Figure I.22: I_{zz} of Joint 4 of the Robot LEFT with the identified results of selected cycles

Figure I.23: mP_x of Joint 5 of the Robot LEFT with the identified results of selected cycles

Figure I.24: mP_y of Joint 5 of the Robot LEFT with the identified results of selected cycles

Figure I.25: I_{xx} of Joint 5 of the Robot LEFT with the identified results of selected cycles

Figure I.26: I_{xy} of Joint 5 of the Robot LEFT with the identified results of selected cycles

Figure I.27: I_{xz} of Joint 5 of the Robot LEFT with the identified results of selected cycles

Figure I.28: I_{yz} of Joint 5 of the Robot LEFT with the identified results of selected cycles

Figure I.29: I_{zz} of Joint 5 of the Robot LEFT with the identified results of selected cycles

Figure I.30: mP_x of Joint 6 of the Robot LEFT with the identified results of selected cycles

Figure I.31: mP_y of Joint 6 of the Robot LEFT with the identified results of selected cycles

Figure I.32: I_{xx} of Joint 6 of the Robot LEFT with the identified results of selected cycles

Figure I.33: I_{xy} of Joint 6 of the Robot LEFT with the identified results of selected cycles

Figure I.34: I_{xz} of Joint 6 of the Robot LEFT with the identified results of selected cycles

Figure I.35: I_{yz} of Joint 6 of the Robot LEFT with the identified results of selected cycles

Figure I.36: I_{zz} of Joint 6 of the Robot LEFT with the identified results of selected cycles

Figure I.37: I_m of Joint 3 of the LEFT Robot with the identified results of selected cycles

Figure I.38: I_m of Joint 4 of the LEFT Robot with the identified results of selected cycles

Figure I.39: I_m of Joint 5 of the LEFT Robot with the identified results of selected cycles

Figure I.40: I_m of Joint 6 of the LEFT Robot with the identified results of selected cycles

Appendix J

The Identification Results Of Excitation Trajectory Of Robot 2

The figures shown in this appendix represent the dynamic parameter identification results of Robot RIGHT, which are mentioned in Section 5.1.5.2. Also the identified results of the selected cycles are shown here. The left sub-figures are the plots with the y-axis labelled automatically, and the right sub-figures are the plots with y-axis labelled multiplied by 0.5. It should be pointed that the identified friction coefficients are not presented due to the non-physical parameters. Additionally, it should be noticed that some parameters have the same plots between two sub-figures because the original y-axis range of the right sub-figure meet the requirements of multiple 0.5.

Figure J.1: I_{zz} of Joint 1 of the Robot RIGHT with the identified results of selected cycles

Figure J.2: mP_x of Joint 2 of the Robot RIGHT with the identified results of selected cycles

Figure J.3: mP_y of Joint 2 of the Robot RIGHT with the identified results of selected cycles

Figure J.4: I_{xx} of Joint 2 of the Robot RIGHT with the identified results of selected cycles

Figure J.5: I_{xy} of Joint 2 of the Robot RIGHT with the identified results of selected cycles

Figure J.6: I_{xz} of Joint 2 of the Robot RIGHT with the identified results of selected cycles

Figure J.7: I_{yz} of Joint 2 of the Robot RIGHT with the identified results of selected cycles

Figure J.8: I_{zz} of Joint 2 of the Robot RIGHT with the identified results of selected cycles

Figure J.9: mP_x of Joint 3 of the Robot RIGHT with the identified results of selected cycles

Figure J.10: mP_y of Joint 3 of the Robot RIGHT with the identified results of selected cycles

Figure J.11: I_{xx} of Joint 3 of the Robot RIGHT with the identified results of selected cycles

Figure J.12: I_{xy} of Joint 3 of the Robot RIGHT with the identified results of selected cycles

Figure J.13: I_{xz} of Joint 3 of the Robot RIGHT with the identified results of selected cycles

Figure J.14: I_{yz} of Joint 3 of the Robot RIGHT with the identified results of selected cycles

Figure J.15: I_{zz} of Joint 3 of the Robot RIGHT with the identified results of selected cycles

Figure J.16: mP_x of Joint 4 of the Robot RIGHT with the identified results of selected cycles

Figure J.17: mP_y of Joint 4 of the Robot RIGHT with the identified results of selected cycles

Figure J.18: I_{xx} of Joint 4 of the Robot RIGHT with the identified results of selected cycles

Figure J.19: I_{xy} of Joint 4 of the Robot RIGHT with the identified results of selected cycles

Figure J.20: I_{xz} of Joint 4 of the Robot RIGHT with the identified results of selected cycles

Figure J.21: I_{yz} of Joint 4 of the Robot RIGHT with the identified results of selected cycles

Figure J.22: I_{zz} of Joint 4 of the Robot RIGHT with the identified results of selected cycles

Figure J.23: mP_x of Joint 5 of the Robot RIGHT with the identified results of selected cycles

Figure J.24: mP_y of Joint 5 of the Robot RIGHT with the identified results of selected cycles

Figure J.25: I_{xx} of Joint 5 of the Robot RIGHT with the identified results of selected cycles

Figure J.26: I_{xy} of Joint 5 of the Robot RIGHT with the identified results of selected cycles

Figure J.27: I_{xz} of Joint 5 of the Robot RIGHT with the identified results of selected cycles

Figure J.28: I_{yz} of Joint 5 of the Robot RIGHT with the identified results of selected cycles

Figure J.29: I_{zz} of Joint 5 of the Robot RIGHT with the identified results of selected cycles

Figure J.30: mP_x of Joint 6 of the Robot RIGHT with the identified results of selected cycles

Figure J.31: mP_y of Joint 6 of the Robot RIGHT with the identified results of selected cycles

Figure J.32: I_{xx} of Joint 6 of the Robot RIGHT with the identified results of selected cycles

Figure J.33: I_{xy} of Joint 6 of the Robot RIGHT with the identified results of selected cycles

Figure J.34: I_{xz} of Joint 6 of the Robot RIGHT with the identified results of selected cycles

Figure J.35: I_{yz} of Joint 6 of the Robot RIGHT with the identified results of selected cycles

Figure J.36: I_{zz} of Joint 6 of the Robot RIGHT with the identified results of selected cycles

Figure J.37: I_m of Joint 3 of the RIGHT Robot with the identified results of selected cycles

Figure J.38: I_m of Joint 4 of the RIGHT Robot with the identified results of selected cycles

Figure J.39: I_m of Joint 5 of the RIGHT Robot with the identified results of selected cycles

Figure J.40: I_m of Joint 6 of the RIGHT Robot with the identified results of selected cycles

Appendix K

The Verification Results Of The Excitation Trajectory

The figures in this appendix indicate the identification results of the excitation trajectory of all joints from one test of the Robot RIGHT, which are used in Section 5.1.1 and 5.1.2. They are shown with the measured torque and the estimated torque, marked with blue curve and red curve respectively. The green curve is the scaled velocity corresponded to the torque output. These figures are demonstrated cycle by cycle.

Figure K.8: The identification results of the excitation trajectory stage in the 8th cycle of Robot 2

Figure K.10: The identification results of the excitation trajectory stage in the 10th cycle of Robot 2

Figure K.19: The identification results of the excitation trajectory stage in the 19th cycle of Robot 2

Figure K.22: The identification results of the excitation trajectory stage in the 22^{nd} cycle of Robot 2

Appendix L

The Verification Results Of One Cycle In The Test Trajectory

The figures in this appendix indicate the identification results of all joints in one cycle from a test of the Robot RIGHT, which are used in Section 5.1.1 and 5.1.2. They are shown with the measured torque and the estimated torque, marked with blue curve and red curve respectively. The green curve is the scaled velocity corresponded to the torque output. These figures are demonstrated cycle by cycle.

2

Figure L.2: The identification results of the all trajectory stage in the 2^{nd} cycle of Robot

3_paraDYN_trajALL, Right_20200127_0847_Col25_3min_cycle24, Cycle=2

170

Appendix M

The Friction Measurement

In this appendix, the figures represent the plots of friction measurement of all tests. It should be pointed that all plots come from the data obtain with the velocity of 60%, and the plots of Joint 2 and 3 are shown without the gravity effect. The related discussions are presented in Section 5.2.2.

Figure M.1: The friction measurement results of the Test 1 of the Robot 1

Figure M.2: The friction measurement results of the Test 2 of the Robot 1

Figure M.3: The friction measurement results of the Test 3 of the Robot 1

Figure M.4: The friction measurement results of the Test 4 of the Robot 1

Figure M.5: The friction measurement results of the Test 1 of the Robot 2

Figure M.6: The friction measurement results of the Test 2 of the Robot 2

Figure M.7: The friction measurement results of the Test 3 of the Robot 2

Figure M.8: The friction measurement results of the Test 4 of the Robot 2 $\,$
Appendix N

The Curve Fitting Results Of Fiction Measurement

This appendix shows the figures and tables of the curve fitting results of all tests. They are listed and separated based on the robot used. It should be pointed that all figures and tables in this appendix come from the data obtain with the velocity of 60%. Moreover, the curve fitting results of the mixed data are provided. The related discussions are presented in Section 5.2.4.

Figure N.1: The curve fitting results of Robot 1, the curve fitting results of the mixed data are included

Figure N.2: The friction measure results of Robot 1, the curve fitting results of the mixed data are included

Figure N.3: The curve fitting results of Robot 2, the curve fitting results of the mixed data are included

Figure N.4: The friction measure results of Robot 2, the curve fitting results of the mixed data are included

						0			P	0,000	
				Robot 1					Robot 2		
		в	q	t_1	c	t_2	в	q	t_1	ల	t_2
	Test 1	19.77026	9.73214	0.03265	11.67983	0.26982	16.60894	4.87445	0.02442	8.56154	0.34612
	Test 2	18.27142	5.74287	0.03330	16.97301	1.91256	16.43789	4.23503	0.01983	7.13872	0.30589
JI	Test 3	22.28989	10.40884	0.41645	0.00075	0.62944	16.73945	4.91514	0.02848	6.72405	0.58940
	Test 4	0.00010	25.90156	0.00063	19.41412	0.23147	16.74283	5.34110	0.03470	6.11869	0.49903
	Mix	21.78051	7.69488	0.09112	8.58167	0.44921	16.66632	4.76634	0.02673	7.04924	0.38493
	Test 1	0.00061	41.22656	0.00171	91.01516	3.15342	20.25689	6.46293	0.01768	11.05555	0.13452
	Test 2	32.79851	22.73072	0.03497	0.02162	0.03537	1.22552	22.78061	0.00109	12.10573	0.07892
J2	Test 3	1.38558	32.43925	0.00000	22.95347	0.04728	11.58601	12.10697	0.00188	12.18326	0.07421
	Test 4	32.57238	22.17582	0.03723	0.59863	21.84848	22.23717	12.31519	0.05791	15.24718	3.74801
	Mix	33.28272	0.63420	0.00000	20.26215	0.03546	21.49307	7.59125	0.03352	7.37318	0.12803
	Test 1	11.20058	2.72219	0.02342	5.89466	0.35741	10.01373	6.35484	0.04344	8.42142	1.85479
	Test 2	10.36020	5.60232	0.03338	2.53509	4.12087	9.73987	6.28627	0.04018	8.05008	1.75232
J3	Test 3	9.79920	5.71317	0.02393	4.23101	3.12396	9.73268	6.16768	0.04148	2.08807	0.58102
	Test 4	10.62322	5.26603	0.04107	1.33444	7.31144	9.61073	6.09544	0.04280	2.10070	0.59052
	Mix	10.68824	5.26739	0.03766	3.15259	2.56492	9.77537	6.23555	0.04202	2.92480	0.82751
	Test 1	21.19655	11.06320	0.03591	16.84452	0.37939	19.10495	7.17766	0.03863	7.98374	0.26564
	Test 2	21.83026	12.48219	0.04392	9.99550	0.29249	18.96849	7.21557	0.03879	8.13319	0.27017
J4	Test 3	21.47913	12.67422	0.04701	128.49383	2.24793	18.90628	7.82414	0.04458	7.87270	0.33366
-	Test 4	20.49632	10.61168	0.02832	15.25196	0.28822	18.50941	7.93419	0.04381	7.39567	0.35792
-	Mix	21.32332	11.72613	0.03905	14.66988	0.39107	18.87610	7.54541	0.04150	7.79821	0.30128
	Test 1	5.45197	4.93189	0.00444	3.51922	0.16437	5.89756	3.85085	0.04930	19.59727	2.13811
	Test 2	9.42068	3.12297	0.39177	4.89889	4.33250	5.84252	3.11477	0.04363	17.04609	1.99486
J5	Test 3	10.24828	0.05854	-0.01534	2.73915	0.06943	5.84192	3.25441	0.04718	1.72386	0.49068
-	Test 4	10.57930	0.66012	0.01167	-0.02900	0.02265	5.79326	3.07698	0.04302	14.80664	2.04065
	Mix	9.65410	2.19311	0.03346	2.20435	0.67999	5.84707	3.34512	0.04628	6.96687	1.45718
	Test 1	2.84830	2.47387	0.09353	8.47239	7.29263	4.14913	1.92346	0.07792	33.80185	3.22148
	Test 2	2.49551	0.80493	0.02117	1.97865	0.18930	3.99559	1.16797	0.03625	1.32515	0.12231
$\mathbf{J6}$	Test 3	2.56731	0.69286	0.04451	1.66920	0.16200	3.98294	1.27476	0.03925	1.23148	0.29293
	Test 4	2.52090	0.59806	0.03237	1.62864	0.15007	4.38703	1.55022	0.05083	1.08628	0.33498
	Mix	2.62189	0.81188	0.03963	1.69208	0.17465	4.09768	0.82804	0.03083	1.51205	0.12662

Table N.1: The coefficient values of curve fitting results based the data of velocity 60%

Appendix O

The Fiction And Velocities

This appendix shows the figures of friction versus velocities in different cycles of all tests, which is discussed in Section 5.2.3. In these plots, the sequence of curves from the 1st cycle to the end cycle is marked with an arrow from the "cold" to "hot" state.

Figure O.1: The friction versus velocities in diffident cycles of all joints of Test 1 of Robot 1

Figure O.2: The friction versus velocities in diffident cycles of all joints of Test 2 of Robot 1

Figure O.3: The friction versus velocities in diffident cycles of all joints of Test 3 of Robot 1

Figure O.4: The friction versus velocities in diffident cycles of all joints of Test 4 of Robot 1

Figure O.5: The friction versus velocities in diffident cycles of all joints of Test 1 of Robot 2

Figure O.6: The friction versus velocities in diffident cycles of all joints of Test 2 of Robot 2

Figure O.7: The friction versus velocities in diffident cycles of all joints of Test 3 of Robot 2

Figure O.8: The friction versus velocities in diffident cycles of all joints of Test 4 of Robot 2