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Abstract. In this paper we study a nonlinear di↵erential equation related
to a non-homogeneous Airy equation. The linear equation has two families of
solutions. We apply a procedure of resolution of points of indeterminacy to
a system of first order di↵erential equations equivalent to the nonlinear equa-
tion and study how the corresponding families of solutions are transformed.

Keywords: the Airy equation, the Painlevé test, nonlinear di↵erential
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1. Introduction

The non-homogeneous Airy equation is given by

(1.1)
d
2
y(z)

dz2
= zy(z) + c,

where c 2 C is a constant. In [13] some observations on the distribution of
zeros of solutions of the non-homogeneous Airy equation were presented. The
existence of a principal family of solutions, with simple zeros, and particular
solutions, characterized by a double zero at a given position of the complex plane,
was shown. In addition, a recursion describing the distribution of the zeros was
introduced. These results generalise previous results on the distribution of zeros
of solutions of the corresponding homogeneous equation [14, 15]. As shown in
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[13], a simple extension to the non-homogeneous case (by adding a constant term
to the homogeneous equation) considerably changes the distribution of the zeros.

Equation (1.1) possesses entire solutions with order of growth equal to 3/2.
Since this number is not an integer, all solutions of (1.1) possess an infinite number
of zeros [12]. These zeros are movable, in the sense that if the initial conditions
change, the positions of the zeros change.

Entire solutions of a linear second order non-homogeneous di↵erential equation
with entire coe�cients may have double zeros. Indeed, for any p 2 C, equation
(1.1) possesses always a solution with a double zero in p. More precisely (see [13]),
given p 2 C, equation (1.1) possesses just one solution ⌧d(z, p), proportional to c,
with a double zero in z = p. This solution is defined by the series
(1.2)

⌧d(z, p) = c

X

n=2

en(z � p)n, e2 =
1

2
, e3 = 0, e4 =

p

24
, en+2 =

pen + en�1

(n+ 1)(n+ 2)
.

The set of functions ⌧d(z, p) then represents a family of particular solutions of
equation (1.1). Besides the family ⌧d(z, p), equation (1.1) possesses a principal
family of solutions. Indeed, following [13] one has the following statement. Given
q 2 C, equation (1.1) possesses a solution ⌧(z, q,↵) with a simple zero in z = q.
This solution is defined by the series
(1.3)

⌧(z, q,↵) =
X

n=1

fn(z � q)n, f1 = ↵, f2 =
c

2
, f3 =

q↵

6
, fn+2 =

qfn + fn�1

(n+ 1)(n+ 2)
.

Here q and ↵ are arbitrary parameters and so the series (1.3), that converges
everywhere in the complex plane, can be considered as the general solution of
equation (1.1).

2. Main results

The main objective of this paper is to study the nonlinear di↵erential equation
obtained from the non-homogeneous Airy equation using the logarithmic deriva-
tive of y(z), i.e., by taking

u(z) =
y
0(z)

y(z)
.

The function u solves the following di↵erential equation

(2.1)
d
2
u(z)

dz2
+ 3u(z)

du(z)

dz
+ u(z)3 = 1 + zu(z).

Equation (2.1) is a coupled Riccati equation in disguise, that is, it can be written
as w = u

0 + u
2 � z, where w

0 + uw = 0. Therefore, it possesses a one parameter
family of Riccati solutions when w = 0. Clearly, any entire solution y of (1.1) gives
a meromorphic solution u of (2.1). There is the so-called Painlevé property, which
demands that all movable singularities of the equation be poles. The Painlevé
test is a useful criterion of integrability. Inserting a formal Laurent series into
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the equation, after determining the leading order of a possible solution, one can
recursively compute the coe�cients of the series. If there is no obstruction in
computing the coe�cients and a su�cient number of such formal Laurent series
solutions exist, the equation is said to pass the test (see e.g. [1, 4]). Applying
the Painlevé test to equation (2.1) it is not di�cult to see [13] that the dominant
balances give singularities of the type c0(z � p)�1, but, seeking the resonances,
one finds that there are two families of solutions. One family is characterized by
c0 = 1 and with a resonance polynomial given by (r� 1)(r+1). The other one is
characterized by c0 = 2 and with a resonance polynomial given by (r+ 1)(r+ 2).
The resonance r = �1 corresponds to the arbitrariness of the position of the
pole for u(z), i.e. the arbitrariness of the position of the zero z = p for y(z).
The coe�cients of the Laurent expansion of the logarithmic derivative of y(z)
are explicitly connected with the zeros of y(z). In particular, in the first family,
c0 = 1 implies that the zero in z = p of y(z) is simple, whereas the resonance
r = 1 indicates that the constant term in the Laurent expansion of u(z) is the
other arbitrary constant describing the solutions of the second order equation
(2.1). This is the principal family of solutions [1]. In the second family, c0 = 2
implies that the zero in z = p of y(z) is double, whereas the resonance r = �2 is
negative: this indicates that the second family is a particular solution of equation
(2.1) [1].

As mentioned in [13], the non-homogeneous Airy equation has several applica-
tions in mathematical physics [8]. For example, it is related to the second member
of the Burger’s hierarchy [7]:

(2.2)  t + ( xx +  
3 + 3  x)x = 0.

Under the self-similarity transformation

(2.3)  =
1

⌘(3t)1/3
f(z), z

.
=

x

⌘(3t)1/3
� b

⌘3
, ⌘

3 = a

equation (2.2) becomes

(2.4)
d
3
f

dz3
+ 3

✓
df

dz

◆2

+ 3f
d
2
f

dz2
+ 3f2

df

dz
= (az + b)

df

dz
+ af.

Integrating once one gets

(2.5)
d
2
f

dz2
+ 3

df

dz
f + f

3 = k + (az + b)f(z),

where k is the integration constant. Some of the solutions of (2.5) have been
considered in [7] for the description of liquids with gas bubbles. Equation (2.1) is
a particular case of (2.5) with k = a = 1, b = 0. In general, in case a = k we can
scale solutions of (2.5) by taking f(z) = a

1/3
u(a1/3z + b/a

2/3) and get equation
(2.1).

Solutions of a given non-linear second-order ordinary di↵erential equation in
general have infinitely many singularities in the complex plane, the location of
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which, apart from a finite number of fixed singularities of the equation, depends
on the initial data of the equation. These singularities are therefore called mov-
able. The method of blowing up points of indeterminacy of certain systems of
two ordinary di↵erential equations was applied to obtain information about the
singularity structure of the solutions of the corresponding nonlinear di↵erential
equations in [2, 6].

Equation (2.1) is similar to the Painlevé-Ince equation

(2.6) u
00 + 3uu0 + u

3 = 0

considered in [2]. When the usual Painlevé analysis is applied, the Painlevé-Ince
equation also possesses both positive and negative resonances. This equation can
also be solved explicitely. The general solution is given by u = 1/(z�a)+1/(z�b)
with a and b constants [1]. All solutions are rational functions and, therefore,
equation (2.6) possesses the Painlevé property. In [2] three equivalent to equation
(2.6) systems were studied. It was shown that for all of them there is an infinite
sequence of blow-ups for one of the base points and another one that terminates,
which further gives a Laurent expansion of the solution around a movable pole.
The aim of this paper is to study equation (2.1) in a similar way.

A blow-up is a construction originating in algebraic geometry to de-singularise
an algebraic curve [10]. It can be adapted to the setting of di↵erential equations
where it serves to regularise a system of equations at points of indeterminacy of the
equations. Okamoto studied all six Painlevé equations in their Hamiltonian form
from a geometric point of view in [9], where he introduced the notion of a space of
initial conditions, obtained by blowing up the phase space at a finite sequence of
points. Points of indeterminacy also known as base points of the system are the
points where the vector field is ill-defined. Geometrically the blow-up procedure
separates lines through base points according to their slopes and, hence, adds
a projective line, which is called an exceptional divisor. The blow-up at a point
(x, y) = (a, b), where a = a(z) and b = b(z) can in general be rational functions in
z, is defined by the following construction. One introduces new coordinate charts,
x = a + u = a + UV and y = b + uv = b + V and re-writes the system in new
coordinates (u, v) and (U, V ). The exceptional line then corresponds to u = 0
or V = 0. For more information and examples of application to the Painlevé
equations see [5].

Let us consider the following system equivalent to equation (2.1):

(2.7) u
0 = v � 3/2u2, v

0 = �(u3 � 1� zu).

Following the procedure described in [2], we extend the system to study it on
P1⇥P1 and find points of indeterminacy of the vector field. Let us rename u = q,
v = p not to confuse the notation. Since we have a polynomial vector field, there
are no points of indeterminacy in the coordinate chart (q, p) (where both the
numerator and the denominator on the right hand sides of equations vanish). In
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the chart (Q, p) = (1/q, p) the system is

Q
0 =

3� 2pQ2

2
, p

0 =
Q

3 + zQ
2 � 1

Q3
.

We see that there are no points of indeterminancy of the vector field. In the chart
(q, P ) = (q, 1/p) we have

q
0 =

2� 3Pq
2

2P
, P

0 = �P
2(1 + zq � q

3).

Here we also see that there are no points of indeterminancy of the vector field. In
the chart (Q, P ) = (1/q, 1/p) the system is

Q
0 =

3P � 2Q2

2P
, P

0 = �P
2(Q3 + zQ

2 � 1)

Q3
.

We see that when Q = P = 0 we have a point of indeterminacy.
To regularise the system (2.7), we need to resolve the base point at (P, Q) =

(0, 0). If the regularisation is successful (i.e., if the base point can be resolved
in a finite number of blow-ups), then one can fully describe singularities of solu-
tions of the di↵erential equation [6, 2]. However, in some di↵erential equations
it might happen that one or more cascades of base points do not terminate after
a reasonable (small) finite number of steps, in such case we call the cascade in-
finite. The calculations which we did for the case of system (2.7) show that the
cascade splits into one finite and one infinite cascade. In particular, in the first
step we see that by resolving the first point of indeterminacy (Q, P ) = (0, 0), that
is, by taking Q = u1, P = u1v1, we can find the second point of indeterminacy
(u1, v1) = (0, 0). The corresponding system is

u
0
1 =

3

2
� u1

v1
, v

0
1 = 1� 3v1

2u1
� zv

2

1 +
v
2
1

u2
1

� u1v
2

1.

Then the cascade splits. We have new coordinates u1 = u2, v1 = u2v2 and new
points of indeterminacy (u2, v2) = (0, 1) and (u2, v2) = (0, 2). The corresponding
system is

u
0
2 =

3

2
� 1

v2
, v

0
2 =

2 + v2(v2 � 3� u
2(z + u2)v2)

u2
.

The first cascade is then infinite in the sense that it does not resolve in a reasonable
number of steps. For the second one the system becomes regular after one more
blow up. By taking u2 = u3, v2 = 2 + u3v3 one finds the system for u3 and
v3 which has no more points of indeterminacy of the vector field. So one of the
cascades of points of indeterminacy is resolved. We have the following statement.

Theorem 2.1. The transformation

u =
1

u3
, v =

1

u2
3
(2 + u3v3)

.
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transforms system (2.7) into

(2.8) u
0
3 =

4 + 3u3v3
2(2 + u3v3)

, v
0
3 = � f(u3, v3)

2(2 + u3v3)
,

where

f(u3, v3) = 16(z+u3)+24u3(z+u3)v3+3(4u23(z+u3)�1)v23+2u3(u
2

3(z+u3)�1)v33,

which has no more points of indeterminacy of the vector field.

Theorem 2.2. The principal family (1.3) corresponds to the following expansion
for the function u:

u(z) =
1

z � q
+

c

2↵
+

(4q↵2 � 3c2)(z � q)

12↵2
+O((z � q)2).

The function v then has expansion

v(z) =
1

2(z � q)2
+

3c

2↵(z � q)
+

32q↵2 � 15c2

24↵2
+O((z � q)).

Expansions of the functions u3 and v3 are, respectively,

u3(z) = (z � q)� c(z � q)2

2↵
+

✓
c
2

2↵2
� q

3

◆
(z � q)3 +O((z � q)4),

v3(z) = �4c

↵
� 4(q↵2 � 3c2)(z � q)

↵2
+O((z � q)2).

On the other hand, if we use system (2.8) and search for its solutions in the
form of the Taylor series with conditions u3(q) = 0, v3(q) = �4c/↵, then we
recover this solution. Moreover, from the general theorems of regular systems we
can find the radius of convergence of such series, so regularising the system is very
important in undertanding the behaviour of solutions.

Theorem 2.3. The second family (1.2) corresponds to

u(z) =
2

z � p
+

1

6
p(z � p) +O((z � p)2),

v(z) =
4

(z � p)2
+

7p

6
+O((z � p)).

We further find that

u3(z) =
(z � p)

2
� 1

24
p(z � p)3 +O((z � p)3),

v3(z) = � 2

z � p
� 5

12
p(z � p) +O((z � p)2),

so v3 has a pole at p.
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To reproduce this expansion from system (2.8) we take one further transforma-
tion v3 = 1/V3, so

V3(z) = �z � p

2
+

5

48
p(z � p)3 +O((z � p)4),

and from the system for u3 and V3 we can reproduce this expansion by searching
for a solution with u3(p) = 0, v3(p) = 0 and u

0
3
(p) = 1/2, which also gives

v
0
3
(p) = �1/2.
However, the system for u3 and V3 has further points of indeterminacy. This is

refleced in the fact that we had an infinite cascade for the original system and we
cannot regularise the system completely. We would also like to remark that we
can find other equivalent systems to equation (2.1) and the cascades of points of
indeterminacy will be di↵erent but still infinite. The computations are essentially
the same but cumbersome so we omit them.

Since equation (2.1) has meromorphic solutions, it would be interesting to un-
derstand how to regularise the system completely and thus construct a space of
initial conditions in the sense of Okamoto [9] for it. As it is well known, for the
Painlevé equations, the method of blowing up the space of dependent variables at
points of indeterminacy leads to the space of initial conditions. In certain proofs
for the Painlevé property of the Painlevé equations (e.g. [3] and [11]) a main part
is played by a system of equations in transformed coordinates where the system
becomes regular at points where the original variables tend to infinity. As men-
tioned before, from the relation to the non-homogeneous Airy equation, equation
(2.1) has meromorphic solutions. However, the regularisation by blow-ups, in
comparison with the Painlevé equations, does not work properly in the sense that
one of the cascades of points of indeterminacy seems to be infinite and so a similar
formal proof of the Painlevé property using the regularising system is not possible.
It would be interesting to understand further the question of connection between
regularisation of the system of equations and the Painlevé property of the related
nonlinear di↵erential equation. This deserves further study. Other open problems
include understanding the distribution of poles of nonlinear equations. In this
case the dynamics of the zeros of the non-homogeneous Airy equation (1.1) may
help understand the behavior of poles of the related nonlinear equation (2.1).
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