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Abstract

L'obiettivo della tesi è quello di analizzare due principali temi di �nanza quantitativa, quali il
risk management e lo studio dei rendimenti composti. Tali tematiche sono di grande interesse
da parte di soggetti intermediari �nanziari, quali banche e assicurazioni perchè riguardano
principalmente il capitale da sottoporre a riserva e le previsione dei rendimenti futuri sulle
attività �nanziarie.

All'interno della tesi il �lo che lega questi due temi da un punto di vista statistico è l'utilizzo
delle funzioni di Copula come modello per la dipendenza tra le attività �nanziarie.

Più nello speci�co, nel capitolo 2 applichiamo la convoluzione di copula, nota come C-convoluzione,
al problema dell'aggregazione del Value-at-Risk (VaR) per i rischi con code pesanti. Come es-
empio rappresentativo di distribuzioni a code spesse, è stata considerata la classe delle α-stabili.
Con la C-convoluzione, confermiamo i risultati sulla super additività del VaR. Si mostra che
il VaR è non sub-additivo per le α-stabili con livelli del parametro α < 1. In questi casi
l'aggregazione di due rischi i.d. in portafoglio produrrà sempre una super-additività: il capitale
necessario per assicurare insieme i due rischi sarà sempre superiore alla somma del capitale per
i rischi marginali. Questo è vero per tutte le strutture di dipendenza, cioè le funzioni di copula
applicate nell'analisi (ellittiche e archimedee), e confermato sopratutto per livelli di dipendenza
positivi.

Nel Capitolo 3, si considera l'analisi su una proprietà delle funzioni di copula, la dipendenza
di coda. Quando il VaR è super-additivo, l'aumento di capitale dovuto all'aggregazione risulta
inferiore per le funzioni di copula con maggiore dipendenza dalla coda. Questo risultato sembra
controintuitivo, contradditorio, poiché ci si aspetta che la dipendenza di coda sia un fattore in
grado far accrescere la quantità di rischio associato, in altri termini la quantità di capitale a
riserva. Si mostra che questo "puzzle" sulla dipendenza di coda si presenta anche nei casi in cui
il VaR è sub-additivo. Quindi, tale puzzle persiste anche nei casi con rischi marginali α-stabili
con α > 1, ovvero t-Student con comportamento di coda simile, per i quali il rischio misurato
in termini di VaR aggregato è sub-additivo. In particolare, la funzione di copula t-Student con
una maggiore dipendenza di coda mostra una riduzione del requisito patrimoniale calcolato uti-
lizzando il framework del VaR, rispetto alle funzioni di copula, come la Gaussiana, per le quale,
come noto, i rischi nelle code sono asintoticamente indipendenti. Questo è chiaramente un
paradosso perché sarebbe naturale aspettarsi che maggiore probabilità condizionata di eventi
estremi, cioè una maggiore probabilità che due rischi estremi si materializzino insieme, debba
sempre tradursi in requisiti di capitale più elevati. Documentiamo che non è così. Osservi-
amo che il puzzle scompare quando i rischi marginali sono Gaussiani. Quindi, il puzzle della
dipendenza dalla coda è determinato in modo cruciale dalle code sul rischio marginale. Mentre
l'aggregazione del rischio con marginali a code "sottili" assume un costo del capitale maggiore,
se i rischi dipendono dalla coda, una dipendenza di coda accentuata consente di risparmiare
capitale se i rischi marginali hanno code su�cientemente "pesanti".

Nel Capitolo 4 a�rontiamo un argomento più classico nella teoria delle funzioni di copula,
ovvero la generalizzazione e la distorsione della funzione prodotto. È noto che se i fattori
del prodotto sono variabili casuali uniformi nell'intervallo unitario, questa procedura genera
la famiglia delle copule di Archimedee. Sfruttiamo la stessa idea per un'applicazione diversa.
Il prodotto è il nostro riferimento per la composizione geometrica utilizzata nella valutazione
delle attività. Si propone una distorsione di questo principio di composizione geometrica. La
logica economica della distorsione è fornita dal concetto di compounding generalizzato e basato
su modelli di cambio di tempo stocastico. L'idea è che se i rendimenti sono composti o scontati
a tempo discreto secondo un orologio stocastico, ciò determina una distorsione che può essere
rappresentata in termini della trasformata di Laplace. Quindi, con lo stesso strumento proposto
da Marshall and Olkin (1988) per le funzioni copula, viene esaminata una famiglia di copule
Archimedee per la attualizzazione e lo sconto dei rendimenti.
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Chapter 1

Introduction

1.1 Thesis purpose

Copula functions have mainly been known as probability tools for the analysis of multivariate distributions.

On one side in this thesis we show that many problems in the application to probability remain open, and

are problems that at �rst sight may look quite basic. On the other side, we show that copula functions as

mathematical objects can be applied to problems that are more general than probability theory.

We start with the key issue that links all the chapters of this thesis. Consider the following problem: assume X

and Y are random variables with assigned probability distributions F and G. We ask what is the distribution

of

Z ≡ X + Y

At �rst glance, the problem looks basic and easy to solve because we are used to think in terms of elliptical or

stable random variables. Indeed, recovering the distribution of Z in full generality is a formidable task.

If X and Y are independent, the solution is known as the convolution, that is written as

FZ(z) =

∫
F (z −G−1(ω))dω

This tool was generalised to the case in which the variables are dependent, with dependence represented by

copula function C.

De�nition 1.1.1 (Cherubini et al. (2011)). Lef F , G be two continuous c.d.f's and C a copula function. The

C-convolution of G and F is de�ned as the c.d.f.

F
C∗ G(z) =

∫ 1

0
D1C

(
ω, F (z −G−1(ω))

)
dω

Chapter 2 and 3 apply the concept of C-convolution to the aggregation of risks.
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If the distribution of a sum is an open problem of copula functions theory, the product is not solved as well. In

fact, the two problems are clearly linked:

logXY = logX + log Y

Of course, if one had a solution for one problem, he would have solved the other as well. Nevertheless, there is

another way to address the product. In fact, the product can also be written as

XY = exp
(
−[(− logX) + (− log Y )]

)
Notice that if we set ϕ(x) = − log x, this can be written

XY = ϕ−1
(
ϕ(X) + ϕ(Y )

)
This representation, for general functions with behaviour similar to ϕ(x) = − log x reminds of aggregation

operators called Archimedean. In the case in which X,Y ∈ [0, 1], the aggregation operator is a t-norm and the

function ϕ(x) is called the generator. Two pioneering papers by Schweizer and Sklar (1961) and Ling (1965)

proved that generators exist for all Archimedean t-norms. The case in which the generator is convex de�nes

the family of Archimedean copulas, that will be introduced later on. The case in in which X,Y is extended to

the domain [0,∞] was addressed by Sugeno and Murofushi (1987).

In the third paper of this thesis the Archimedean structure will be applied to the problem of compounding and

discounting. If one denotes Pk the one period discounting function, the corresponding n-period discounting is

de�ned as

P (n) = P1P2 . . . Pn−1Pn

This product function, that does not have almost anything to do with multivariate probability, can be addressed

with the same copula function tools that are applied to probability theory.

The rest of this Chapter will be devoted to provide a reference of the main concepts and tools used throughout

the thesis: copula functions, VaR and risk measures, and the basic principles behind time change models to

which we will refer in the �nal chapter.

1.2 Copula Functions

Copula functions are mostly known as statistical tools that allow to break joint distribution functions in marginal

distributions and a function representing dependence. More to the point, let F (x) = P [X ≤ x] and G(y) =

P [Y ≤ y] be two distribution functions related to the joint distribution H(x, y) = P [X ≤ x, Y ≤ y]. Since

6



by the probability integral transformation the variables can be transformed into uniform random variables, in

[0, 1], the joint distribution H(x, y) = P [X ≤ x, Y ≤ y] can be written in terms of uniforms. In statistics, this

joint distribution taking uniform marginals is called Copula function.

However, copula functions are mathematical objects before being statistical tools, and the representation of

joint distributions is only the main application. In this work, the same object will also be applied to a di�erent

concept, that is compounding and discounting. For this reason we �rst introduce the mathematics of copula

functions.

1.2.1 The Mathematics of Copula Functions

We start describing the main concepts and properties necessary for the de�nition of a copula function as a

mathematical object.

De�nition 1.2.1 (H-Volume). Let S1, S2 be two non-empty sets on R and assume a function H of two real

variables such that DomH = S1 × S2. Let B = [x1, x2]× [y1, y2] the rectangle in DomH. Then, the H-Volume

of B is given by

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1)

De�nition 1.2.2 (2-increasing). Let H be a two-place real function. H is 2-increasing if VH(B) ≥ 0 for each

rectangle B within DomH

Lemma 1.2.3. Let S1, S2 two non-empty subsets of R and let H be a 2-increasing function with domain S1×S2.

Given the points x1, x2 ∈ S1 and y1, y2 ∈ S2, then the function t→ H(t, y2)−H(t, y1) is not decreasing on S1

and t→ H(x2, t)−H(x1, t) is not decreasing on S2

From this lemma we can determine, adding a further hypothesis, that each function H, de�ned as above, is

non-decreasing on its arguments. Such hypothesis is groundedness.

De�nition 1.2.4 (grounded). Let H be a two-place real function on DomH = S1 × S2. Let a1 the minimum

of S1 and a2 the minimum of S2. THen H is grounded if H(x, a2) = H(a1, y) = 0 ∀ (x, y) ∈ (S1 × S2)

Lemma 1.2.5. Let S1, S2 two non-empty subsets of R and H a 2-increasing, grounded function on S1 × S2.

Then H is non increasing on each argument.

A useful property of copula that can be used in what follow is:

De�nition 1.2.6. Let S1, S2 be two non-empty subsets of R with greatest elements b1 and b2 respectively, and

H a function from S1 × S2 into R. We say that a function H has margins F,G if

DomF = S1 F (x) = H(x, b2) ∀x ∈ S1, b2 = max(S1)

DomG = S2 G(y) = H(b1, y) ∀y ∈ S2, b1 = max(S2)
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Lemma 1.2.7. Let S1, S2 two non-empty subsets of R and H a grounded 2-increasing on S1×S2. Let (x2, y2)

and (x1, y1) points on S1 × S2. It follows

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|

Proof in (Nelsen, 2006, Lemma 2.1.5) .

We approach now the de�nition of copula starting from a restriction on the marginals domain that is subcopula.

De�nition 1.2.8 (subcopula). A subcopula C
′
is a function with the following properties

1. DomC
′

= S1 × S2 where S1, S2 ⊆ I

2. C
′
is 2-increasing, grounded

3. ∀u ∈ S1 e v ∈ S2, C
′
(u, 1) = u e C

′
(1, v) = v

De�nition 1.2.9 (copula). A two-dimensional copula (2-copula) is a subcopula C de�ned on the domain

DomC = S1 × S2 = I2, such that

1. ∀ u, v ∈ I

C(u, 0) = C(0, v) = 0 (1.1)

C(u, 1) = u C(1, v) = v (1.2)

2. ∀ u1, u2, v1, v2 ∈ I tale che u1 ≤ u2 e v1 ≤ v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 (1.3)

Next theorem characterizes copulas functions, providing an upper and lower bound to the set of copulas.

Theorem 1.2.10. Let C
′
a subcopula. Then ∀(u, v) ∈ DomC ′

max(u+ v − 1, 0) ≤ C ′(u, v) ≤ min(u, v)

See (Nelsen, 2006, Theorem 2.2.3) .

Since the theorem is true for subcopulas, it remains true for copulas because each copula is a subcopula.

Furthermore, the upper and lower bounds showed in the previous result are themselves copulas. GivenM(u, v) =
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min(u, v) the maximum copula, W (u, v) = max(u+ v − 1, 0) the minimal copula, that refers to the upper and

lower bound or Fréchet-Hoe�ding bounds.

Then the previous theorem (1.2.10) can be extended to the copulas.

Theorem 1.2.11. Let C a copula. Then ∀(u, v) ∈ DomC, holds

W (u, v) ≤ C(u, v) ≤M(u, v) (1.4)

Figure 1.1: Copulas cdf
a) W(u,v) = max(u + v - 1, 0) b) M(u,v) = min(u,v) c)

∏
(u,v) = uv

1.2.2 Copula Functions and Joint Probability Distributions

We now apply the results above to the analysis of joint distributions.

De�nition 1.2.12. A distribution function is a function F with domain R such that

1. F is non-decreasing

2. F (−∞) = 0 and F (∞) = 1.

De�nition 1.2.13. A joint distribution function is a function F with domain R2
such that

1. H is 2-increasing

2. H(−∞, y) = H(x,−∞) = 0 and H(∞,∞) = 1.

9



We can then now state the main result of copula function application to probability theory.

Theorem 1.2.14 (Sklar, 1959). Let H the join distribution with margins F,G . Then exists a copula C such

that ∀ x, y ∈ R

H(x, y) = C
(
F (x), G(y)

)
(1.5)

If F and G are continuous, then C is unique: otherwise, it is uniquely determined on RanF X RanG. Conversely,

if C is a copula and F and G are distribution functions, then the function H de�ned in (1.5) is a joint distribution

function with margins F and G.

There is then a one to one relationship between copula functions with given margins and joint distributions. A

straigtforward way to extract a copula function from an assigned joint distribution is to use the inverse of the

margins. However, �rst we must introduce a general de�nition of inverse to allow for cases when marginals are

not strictly increasing.

De�nition 1.2.15 (quasi-inverse). Let F be a distribution function. Then the quasi-inverse of F is any function

F (−1) on I such that

1. if t ∈ DomF then F (−1) is any number ∈ R where

F (x) = t ∀t ∈ ImF, F (F (−1)(t)) = t

2. if t /∈ DomF then

F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}

Intuitively, F strictly increasing implies the quasi-inverse function is equal to the ordinary inverse F−1, while

when the distribution is �at it picks up the �rst point of the �at part. Now, one can express the copula by

means a quasi-inverse transformation on the marginals.

Lemma 1.2.16. Let H, F, G distributions as in Sklar's theorem (1.5). The sub-copula C' and marginal quasi-

inverse F (−1), G(−1) are given. Then for all (u, v) ∈ DomC ′,

C ′(u, v) = H(F (−1)(u), G(−1)(v))

Notice that by the probability integral transformation theorem, u and v are uniform random variables in [0, 1].

So, the above results allows to get a copula function from any joint distribution functions once that the marginal

distributions F and G are known.
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1.2.3 Conditional Probabilities

Copula functions allow to recover in full generality important results for conditional probability.

The �rst result will be useful later on to de�ne the tail dependence index.

Theorem 1.2.17. Assume H(x, y) = C(F (x), G(y)) ≡ C(u, v), then

P (X ≤ x|Y ≤ y) =
C(u, v)

v
(1.6)

Proof.

P (X ≤ x|Y ≤ y) =
H(x, y)

F (y)

=
C(F (x), G(y))

F (y)

=
C(u, v)

v

The second result has plenty of applications, including Markov processes and the concept of C-convolution,

used in this work.

Theorem 1.2.18. Assume H(x, y) = C(F (x), G(y)) ≡ C(u, v) where F,G are strictly continuous marginal

distributions. Then

P (X ≤ x|Y = y) =
∂

∂v
C(u, v) (1.7)

Proof.

P (X ≤ x|Y = y) = lim
h→0

P (X ≤ x|y ≤ Y ≤ y + h)

= lim
h→0

H(x, y + h)−H(x, y)

F (y + h)− F (y)

= lim
h→0

C(F (x), G(y + h))− C(F (x), G(y))

F (y + h)− F (y)

= lim
h→0

C(F (x), G(y) + ∆(h))− C(F (x), G(y))

∆(h)

= lim
h→0

C(u, v + ∆(h))− C(u, v)

∆(h)

=
∂

∂v
C(u, v)
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1.2.4 Non Parametric Dependence Measures

Copula functions are linked to non parametric association measures among random variables. These measures

�x the well known problems of the standard dependence measure, that is Pearson correlation. This measure is

limited by the following issues

1. It is a linear measure of dependence

2. It is a�ected by the shape of marginals

Linear correlation can model very well the case of elliptical models such as multivariate normal and Student's

t distributions. In fact, in these cases the distribution is fully described by a vector of means and a covariance

matrix. Instead, in the context of copulas in general we deal with non-linear transformations of random

variables. Except for the case of elliptical models, cited above, then, Pearson correlation does not preserve

invariance under non-linear transformations, and it is not appropriate to represent dependence among these

random variables. Measures built on non parametric transformations of the marginal distributions are instead

naturally related to copula functions.

Rank correlation measure We start recalling the de�nition of Pearson linear correlation

De�nition 1.2.19. Let (X,Y ) a random vector with �nite positive variance. Then linear correlation is de�ned

as

ρ(X,Y ) =
Cov(X,Y )√

V ar(X)
√
V ar(Y )

Rank correlation is the most straight way to overcome the shortcomings in linear correlation. It consists of

applying the Pearson correlation de�nition to the ranks of the variables rather than the variables themselves.

Ranks are de�ned as the empirical estimator of the marginal distributions of the random variables.

Non parametric measures based on copulas have the following properties

� they take values in [-1,1]

� they give value zero to independence,

� extreme values 1,−1 imply comonotonic and countermonotonic r.v.'s respectively.

To understand these measures, we introduce the concepts of concordance and discordance among r.v.'s. Intu-

itively, a couple of random vector (X,Y) are concordant whether large values of X are linked by big values Y

and the same can occurs for low values.

De�nition 1.2.20 (Concordance). Two couple of observations (x1, y1) and (x2, y2) of a random vector(X,Y )

are concordant if x1 < x2 and y1 < y2 or x1 > x2 and y1 > y2. Similarly (x1, y1) and (x2, y2) are discordant if
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x1 < x2 and y1 > y2 or x1 > x2 e y1 < y2. Equivalently, (x1, y1) and (x2, y2) are concordant if (x2−x1)(y2−y1) >

0 are discordant if (x2 − x1)(y2 − y1) < 0

Kendall's τ . Consider a random sample of n observation (x1, y1), . . . , (xn, yn) from a vector (X,Y) of r.v.'s.

There exist
(
n
2

)
distinct pairs from which to compute concordance: in general 'c' couple are concordant and 'd'

discordant, where d= n-c. Kendall's τ is de�ned as

τ =
c− d
c+ u

=
(c− d)(

n
2

)
Kendall's τ can be de�ned as the probability of concordance minus the probability of discordance.

τ = P [(X2 −X1)(Y2 − Y1) > 0]− P [(X2 −X1)(Y2 − Y1) < 0]

The link to copula functions can be recovered in the theorem below.

Theorem 1.2.21 (Nelsen (2006, 5.1.1)). Let (X1, Y1) and (X2, Y2) continuous random vectors with joint dis-

tributions H1, H2 respectively and same marginals F on (X1, X2) and G on (Y1, Y2). Let C1, C2 be the copula

functions linking (X1, Y1) and (X2, Y2) respectively, H1(x, y) = C1(F (x), G(y)) e H2(x, y) = C2(F (x), G(y)).

Let Q de�ned as above

Q = P [(X2 −X1)(Y2 − Y1) > 0]− P [(X2 −X1)(Y2 − Y1) < 0]

Then

Q = Q(C1, C2) = 4

∫∫
I2
C2(u, v) dC1(u, v)− 1

If the copula function is unique, C1 = C2 = C, then

Q = Q(C) = 4

∫∫
I2
C(u, v) dC(u, v)− 1 (1.8)

The result can be rewritten as the expectation of the copula function C(U, V ) with uniform r.v.'s:

τ(X,Y ) = 4E[C(U, V )]− 1

Spearman's ρ. We introduce the other main rank correlation measure of association.

De�nition 1.2.22. Let (X1, Y1), (X2, Y2), (X3, Y3) three independent random vectors, where (Xi, Yi) has com-

mon join distribution H and marginals F and G. and copula C. The rank correlation Spearman's ρ is a quantity

13



proportional to the di�erence between concordance and discordance probabilities on (X1, Y1) e (X2, Y3).

ρ(X,Y ) = P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]

Theorem 1.2.23. Let X,Y continuous r.v.'s with joint distribution H and copula C. Then the correlation

Spearman's ρ is given by

ρ(X,Y ) = 3Q(C,Π) = 12

∫∫
I2
C(u, v) dC(u, v)− 3

1.2.5 Main Copula Functions

Here we describe the main copula functions used in applications. For each copula the main properties are

described.

Gaussian copula The Gaussian copula is derived from the multivariate normal distribution. Let Φn and Φ−1

the multivariate standard normal distribution with Pearson correlation matrix Σ and the inverse of univariate

standard respectively. From Sklar's theorem, the multivariate Gaussian copula is given as

C(u1, u2, ..., un) = Φn(Φ−1(u1),Φ−1(u2), ...,Φ−1(un); Σ)

Figure 1.2: Simulation of the bivariate Gaussian copula for di�erent parameter θ con N= 2000, uniform marginals

It is easy to show that this copula is comprehensive, meaning that it includes the upper and lower Frechet-

Hoe�ding bounds as well as the independence copula

lim
θ→−1+

CGaθ (u, v) = W (u, v) CGa0 (u, v) = Π(u, v) lim
θ→1

CGaθ (u, v) = M(u, v)

t copula It is derived from the Student's-t distribution and, as in the univariate case, the degree of freedom

parameter ν represents departure from the Gaussian copula. In analogy with the Gaussian case, the t copula
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Figure 1.3: Simulation of bivariate t copula (ν = 1) for di�erent level of θ N= 2000, uniform marginals

is given by

C(u1, u2, ..., un) = tnν (t−1
ν (u1), t−1

ν (u2), ..., t−1
ν (un); Σ)

where ν is the degrees of freedom parameter. When ν is large the Student-t copula approaches the Gaussian

copula.

Archimedean copulas Copulas in the family of Archimedean copulas are completely described in analytical

form by the so called generator. This univariate continuous strictly decreasing function provides a way to de�ne

the relationship between the r.v.'s.

Archimedean structure implies that there exists λ(t) such that

λ(H(x, y)) = λ(F (x))λ((G(x)), λ(t) > 0, ∀t ∈ [0, 1]

Setting ϕ(t) = − lnλ(t), the bivariate joint distribution can be expressed as the sum of the marginals ϕ(H(x, y)) =

ϕ(F (x)) + ϕ(G(y)). By the probability integral transformation one gets

ϕ
(
C(u, v)

)
= ϕ(u) + ϕ(v)

The de�nition of generalised inverse of the generator is �nally needed to recover the formal de�nition of

Archimedean copulas.

De�nition 1.2.24. Let ϕ an continuous strictly decreasing function, ϕ : I → [0,∞] such that ϕ(1) = 0. The

pseudo-inverse of ϕ, expressed as ϕ[−1] : [0,∞]→ I is given by

ϕ[−1](t) =


ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞
(1.9)

Based on this de�nition, one assumes ϕ[−1] is continuous and non-increasing on [0,∞] and strictly decreasing
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on [0, ϕ(0)]

Noting that ϕ[−1](ϕ(u)) = u ∀u ∈ I, therefore

ϕ
(
ϕ[−1](t)

)
=


t, 0 ≤ t ≤ ϕ(0)

ϕ(0), ϕ(0) ≤ t ≤ ∞

= min(t, ϕ(0))

Lemma 1.2.25. Let ϕ a continuous strictly decreasing function, ϕ : I → [0,∞] such that ϕ(1) = 0. the

pseudo-inverse ϕ[−1] is given in (1.9). Let's de�ne C : I2 → I such that

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v))

Then C satis�es (1.1) and (1.2)

The 2-increasing property (1.3), condition is guaranteed by the following theorem.

Theorem 1.2.26. Let ϕ a continuous strictly decreasing function, ϕ : I → [0,∞] such that ϕ(1) = 0 and let

ϕ[−1] its pseudo-inverse, as above. Let's de�ne C : I2 → I. C is a copula function if and only if ϕ is a convex

function.

Archimedean copulas have the following properties

� given a generator ϕ ⇒ cϕ is a generator ∀c ∈ R. Furthermore, each convex combination of generators

becomes a generator, that is cϕ+ (1− c)ϕ ∀c ∈ I

� C is exchangeable, that is C(u, v) = C(v, u) ∀u, v ∈ [0, 1]

� C is associative, namely ∀u, v, w ∈ [0, 1]⇒ C(C(u, v), w) = C(u,C(v, w))

A feature of Archimedean copulas is the analytic expression of the rank correlation measure. Kendall's τ can

be computed as a function of the generator ϕ from

ρτ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt

Remark 1.2.5.1. It is worth noting that in modern research Archimedean copula functions are often denoted

with the notation

C(u, v) = ψ
(
ψ−1(u) + ψ−1(v)

)
(1.10)

with ψ(x) ≡ ϕ−1(x). Care must be taken in recognizing the di�erence, when needed.
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Figure 1.4: Simulation on bivariate Clayton copula for di�erent parameters θ and N= 2000, marginals uniform

Clayton copula

The Clayton generator is ϕ(t) = 1
θ (t−θ−1), where θ is the copula parameter on the domain [−1,∞]. Its explicit

representation is

Cθ(u, v) = max([u−θ + v−θ − 1]−
1
θ , 0)

This copula is also comprehensive, so that it can reach the whole dependence structure.

C−1(u, v) = W (u, v) lim
θ→0

Cθ(u, v) = Π(u, v) lim
θ→∞

Cθ(u, v) = M(u, v)

The Kendall's τ is ρτ = θ/(θ + 2).

Frank copula

Frank copula is de�ned by the generator ϕ(t) = − ln exp−θt−1
exp−θ −1

, con θ ∈ R\{0}. The corresponding bivariate

copula is

Cθ(u, v) = −1

θ
ln

(
1 +

(exp−θu−1)(exp−θv −1)

exp−θ −1

)

Gumbel copula

Gumbel copula is de�ned by the generator ϕ(t) = (− ln t)θ, con θ ≥ 1. The corresponding bivariate copula

holds

Cθ(u, v) = exp−[(− lnu)−θ+(− ln v)−θ]
1
θ

Kendall's τ is (ρτ = 1− 1/θ).
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Figure 1.5: Simulation on bivariate Frank copula for di�erent parameters θ and N= 2000, marginals uniform

Figure 1.6: Simulation on bivariate Gumbel copula for di�erent parameters θ and N= 2000, marginals uniform

Focusing on the range of dependence, one obtains

C1(u, v) = Π(u, v) lim
θ→∞

Cθ(u, v) = M(u, v)

Therefore Gumbel is not comprehensive because does not attain the countermonotonic case.

1.2.6 Tail dependence measure

Tail dependence measures the strength of pairwise dependence in the extreme tails of bivariate distribution

(X1, X2).

De�nition 1.2.27. Let X e Y be two continuous r.v's with marginals F and G. De�ne λU the upper-tail

dependence parameter as the limit, if it exists, as t approaches 1, of the conditional probability that Y assumes

values greater than 100-t-th percentile of G, given that X is greater than 100-t-th percentile of F .

λU = lim
t→1−

P
[
Y > G(−1)(t)

∣∣∣X > F (−1)(t)
]

(1.11)
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For 0 < λU < 1 one can state that there exists upper-tail dependence in the pair (X,Y ). On the contrary

λU = 0 means that r.v's are asymptotically independent on the upper-tail. In analogy, the lower-tail dependence

coe�cient λL can be represented as

λL = lim
t→0+

P
[
Y ≤ G(−1)(t)

∣∣∣X ≤ F (−1)(t)
]

(1.12)

If F ,G are the continuous distribution functions of the bivariate r.v's, then λU , λL can be expressed in terms of

the unique copula function. The link comes from the de�nition of conditional probability in Theorem (1.2.17).

From that, the result below shows how to express the upper and lower tail dependence coe�cients in terms of

the corresponding bivariate copula.

Theorem 1.2.28. Let X, Y, F, G, λU , λL de�ned as in (1.2.27) and let C the bivariate copula of (X,Y ). If

the limits (1.11) and (1.12) exist then the coe�cients of tail dependence can be formulated as

λU = 2− lim
t→1−

1− C(t, t)

1− t

λL = lim
t→0+

C(t, t)

t

Theorem (1.2.28) implies the following result for Archimedean copulas.

Corollary 1.2.29. Let C an Archimedean copula with generator ϕ(t). Then

λU = 2− lim
t→1−

1− ϕ[−1](2ϕ(t))

1− t
= lim

x→0+

1− ϕ[−1](2x)

1− ϕ[−1](x)

λL = 2− lim
t→0+

ϕ[−1](2ϕ(t))

t
= lim

x→∞

ϕ[−1](2x)

ϕ[−1](x)

Example 1.2.30 (Copulas and tail dependence).

� Gaussian copula Cρ(u1, u2) = Φn(Φ−1(u1),Φ−1(u2), ...,Φ−1(un), ρ) , λU = λL = 0, where Φn, Φ−1 are the

n-variate and inverse standard Gaussian cdf respectively.

� t-Student's copula Cνρ (u1, u2, ..., un) = tnν (t−1
ν (u1), t−1

ν (u2), ..., t−1
ν (un), ρ)

λU = λL = 2 tν+1

(
√
ν + 1

√
1− ρ√
1 + ρ

)

where tν , t
n
ν , t

−1
ν are the univariate, n-variate and inverse student's t-cdf with ν DoF respectively.

� Clayton copula Cθ(u, v) = [u−θ + v−θ − 1]−
1
θ

λL = lim
t→∞

ϕ−1(2t)

ϕ−1(t)
= lim

t→∞

(1 + 2tθ)−
1
θ

(1 + tθ)−
1
θ

= 2−
1
θ , λU = 0
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� Frank copula Cθ(u, v) = −1
θ ln

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
like the Gaussian

λU = λL = 0

� Cθ(u, v) = e−[(− lnu)−θ+(− ln v)−θ]
1
θ

λU = lim
t→0+

1− ϕ−1(2t)

1− ϕ−1(t)
= lim

t→0+

1− e−2t
1
θ

1− e−t
1
θ

= 2− 2
1
θ , λL = 0

1.3 Value-at-Risk and Risk Measures (VaR)

We introduce here Value-at-Risk, the main risk measure that has been used in the industry for the evaluation

of market and credit risk and for the de�nition of capital requirements. We will also introduce the main object

of discussion that has taken place among the industry, the academia and the regulators, on the failure of VaR

to meet the requirements of so called coherent measures.

De�nition 1.3.1. Given a probability space on a σ-algebra and a time horizon ∆, de�ne L0(Ω,F , P ) the set

of random variables on (Ω,F). Financial risks are de�ned as a subsetM⊂ L0(Ω,F , P ) of r.v's. Moreover, it is

assumed thatM be a convex cone, such that L1 ∈M and L2 ∈M imply (L1 +L2) ∈M e λL1 ∈M, ∀λ > 0.

De�nition 1.3.2. A risk measure % is a real valued function % :M→ R on the r.v. coneM.

Coherent Measures Artzner et al. (1999) proposed the following requirements to de�ne a proper risk mea-

sure. Risk measures satisfying these axioms are de�ned coherent.

Axiom 1.3.3 (Monotonicity).

For any L1, L2 ∈M t.c. L1 ≤ L2 we have, a.e.

%(L1) ≤ %(L2)

Axiom 1.3.4 (Positive homogeneity).

For any L ∈M and any λ > 0 we have

%(λL) = λ%(L)

Axiom 1.3.5 (Translation invariance).

For any L ∈M and any l ∈ R we have %(L+ l) = %(L)− l.

Axiom 1.3.6 (Subadditivity).

For all L1, L2 ∈M si ha

%(L1 + L2) ≤ %(L1) + %(L2)

Based on the properties above we can state the following:
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De�nition 1.3.7 (Coherent Risk Measures).

A risk measure % is de�ned coherent on the convex cone domainM if and only if the axioms (1.3.5 - 1.3.3) are

satis�ed.

Value at Risk Value at Risk (VaR) has been the measure massively used in �nancial risk management.

De�nition 1.3.8 (Value at Risk). Let consider a con�dence level α ∈ (0, 1), The VaR of a portfolio L at level

α is the smallest number l such that the portfolio loss probability exceeds the value l is not greater than (1−α).

Formally, if the portfolio distribution is denoted as FL(l) , one gets

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α} (1.13)

In terms of probability theory VaR is nothing but a quantile of the probability distribution of losses L that is

inf{l ∈ R : l ≥ F−1
L (α) }.

It is well known that the main criticism about VaR has to do with violation of the subadditivity axiom. The

following theorem shows an interesting characterisation of VaR with respect to subadditivity.

Theorem 1.3.9 (VaR subadditivity for elliptical risk factors).

Let X be a d-dimension vector of r.v.'s, X v Nd(µ,Σ, ρ), and de�ne a setM of losses as follows

M =
{
L : L = λ0 +

d∑
i=1

λiXi , λi ∈ R
}

Then, for any pair of distributions L1, L2 ∈M and for 0.5 ≤ α < 1

V aRα(L1 + L2) ≤ V aRα(L1) + V aRα(L2)

Another important result of VaR is comonotonic additivity.

Proposition 1.3.10. Let 0 < α < 1 and let L1, L2 be comonotonic r.v.'s. with distributions F1, F2 absolutely

continuous. Then,

V aRα(L1 + L2) = V aRα(L1) + V aRα(L2)

1.4 Stochastic Time Models

In the 1960s and 70s a line of research developed, according to which various kinds of stochastic processes can

be generated by an arithmetic Brownian motion and a sequence of stopping times. The seminal result for this

literature is known as Skorokhod embedding theorem.

21



Theorem 1.4.1. Skorokhod and Slobodenyuk (1965). Suppose that X1, X2, . . . , Xn are independently and iden-

tically distributed random variables with mean zero and �nite variance, and put Sn = X1 + . . .+Xn. There is a

non decreasing sequence of stopping times τ1, τ2. . . . such that the Wτn of a Wiener process have the same joint

distributions as the Sn and τ1, τ2 − τ1, τ3 − τ2, . . . are independent and identically distributed random variables

with E(τn − τn−1) = E(X2
1 ) and E[(τn − τn−1)2] ≤ 4E(X4

1 ).

About at the same time when this result was published, Dubins and Schwarz (1965) proved that the same result

holds for martingale processes.

Theorem 1.4.2. Dubins and Schwarz (1965). Let X be a continuous stochastic processes, almost all of whose

paths are nowhere constant. There exists a mapping Π such that the composition Π(Xt) is a Brownian motion.

Monroe (1978) proved the extension to local semimartingales. We collect here below his two theorems.

Theorem 1.4.3. Monroe (1978)

1. Let (Xt,Gt) be a local semimartingale and let XTs a time change of Xt. Let Fs be the family of σ-�elds

generated by XTv , v ≤ s. Then, (Xt,Fs) is a local semimartingale.

2. The local semimartingale Xs is equivalent to a time change of a Brownian motion

1.5 Outline of the main results

We summarize here the problems addressed and the main results obtained in the thesis.

Value-at-Risk on α-stable risk: limits to diversi�cation In Chapter 2 we apply the tool of C-convolution

to the problem of Value-at-Risk aggregation for risks with heavy fat tails. As a representative example of heavy

tail distributions we address α-stable risks. By C-convolution, we con�rm the results on VaR super-additivity

that have been obtained by Monte Carlo and we move forward to far percentiles of the distribution. We show

that VaR fails to be sub-additive for α-stable distributions with levels of the parameter α that are around or

lower than 1. These are the cases for which the tails are so heavy that not even the �rst moment, the mean,

is �nite. In these cases aggregating two i.i.d risks in an equally weighted portfolio will always produce super-

additivity: the capital required to provide insurance to the two risks together is always higher than the sum

of the capital for the marginal risks. This is true for all the dependence structures, that is copula functions,

applied in the analysis (elliptical and Archimedean), and across most of the dependence levels.

We also document a new unexpected result. When VaR is super-additive, the increase in capital due to

aggregation is lower for copula functions with higher tail dependence. This result appears counter-intuitive

since one would expect tail dependence to be a factor that should increase the amount of risk, and the amount

of capital to absorb it. Moreover, if we push the analysis further in the tail, that is for very low percentiles, it
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turns out that at some point in the tail the VaR becomes additive above some level of dependence, but this

critical dependence level is lower for copula function with lower tail dependence.

Value-at-Risk and the tail dependence puzzle In Chapter 3 we extend and focus the analysis on the tail

dependence puzzle that was retrieved in Chapter 2. Di�erently from what had been documented in that chapter,

we show that the tail dependence puzzle also shows up in cases in which the Value-at-Risk is sub-additive. So,

also in cases with α-stable marginal risks with α > 1 and Student-t with similar tail behaviour, for which the

aggregated VaR measure is subadditive, the tail dependence puzzle persists. Student-t copula functions with

higher tail dependence showcase a reduction of the capital requirement computed using VaR with respect to

copula functions, like the Gaussian, for which risks are asymptotically independent in the tails. This is clearly

a paradox and a puzzle because it would be natural to expect that higher conditional probability of extreme

events, that is higher probability that two extreme risks materialize together, should always result into higher

capital requirements. We document that this is not the case. We do observe that the puzzle disappears when

marginal risks are gaussian. So, the tail dependence puzzle is crucially determined by the tails of the marginal

risk. While the aggregation of thin tailed risk costs more capital if risks are tail dependent, tail dependence

allows to save capital if marginal risks are su�ciently heavy tailed.

Two main questions are worth being addressed: the �rst is which degree of marginal fat tails brings about the

puzzle; the second is under which conditions the puzzle showing up at percentile z persists for all tail levels lower

than z. The latter question is particularly relevant because it provides a su�cient condition for the paradox

to be extended to the Expected Shorfall risk measure as well, that is actually the integral of VaR measures on

the tail segment below z. These questions are not generally solvable entirely analytically, and in Chapter 3 we

collect �rst analytical and simulation results, trying to give �rst tentative answers to these issues.

Time change, generalised compounding and the term structure In Chapter 4 we address a more

classical topic in copula function theory, that is the generalisation and distortion of the product function. It is

well known that if the factors of the product are uniform random variables in the unit interval, this procedure

generates the family of Archimedean copulas. Here we exploit the same idea for a di�erent application. The

product is our reference for geometric compounding or discounting used in the valuation of assets. Here we

propose an Archimedean distortion of this geometric compounding principle. The economic rationale for the

distortion is provided by the concept of generalised compounding proposed by Carr and Cherubini (2020) and

based on time change models. The idea is that if the returns are compounded or discounted in discrete time

according to a stochastic clock, this brings about a distortion that can be represented in terms of Laplace

transforms. Then, the same technical tool proposed by Marshall and Olkin (1988) for copula function, we

design a family of Archimedean compounding/discounting functions.

From a technical point of view, compounding functions are isomorphic to copula functions. They are more
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general in the sense that the marginal variables are not necessarily uniform, and in general they are not. In

compounding functions the marginals represent one period return accrual or discount. In particular, we give

conditions for a class of compounding/discounting functions to have lognormal margins. We show that this

speci�cation can be usefully applied to the analysis of the risk free term structure in a model based on the

Stochastic Discount Factor.
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Chapter 2

Value-at-Risk on α-stable Risks: The Limits

of Diversi�cation

Abstract

We apply the concept of convolution copulas to the problem of risk aggregation of α-stable heavy tailed

dependent risks. While we con�rm results of Value-at-Risk (VaR) super-additivity for cases with α below

1 we focus on the role of tail dependence. We provide evidence of a new puzzle: α-stable risks, the VaR

at the common con�dence level (i.e. 1%) is lower for copulas with higher tail dependence, except for the

Gaussian case. The result is con�rmed as we move towards extreme points in the tail. We also show that

at some point in the tail the aggregated VaR becomes additive above some level of dependence, but this

critical dependence level is lower for copulas with lower tail dependence.
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2.1 Introduction

Starting with the seminal paper by Artzner et al. (1999), a long debate has developed concerning risk measures

and diversi�cation, with particular focus on the fact that Value-at-Risk (VaR) may fail to represent risk diver-

si�cation. Following this long debate, the trend of regulation has drifted in favour of alternative risk measures

ensuring sub-additivity. So, in market risk regulation a measure resembling Expected Shortfall (ES) is bound

to replace VaR in the new FRTB (Fundamental Review of the Trading Book). The trend has been much less

clear-cut in the insurance regulation, where the new Solvency II framework still relies on the VaR measure.

If one considers the nature of the ES measure and the tail behaviour of some actuarial risks, it is quite

straightforward to explain the di�erent trend in insurance. In fact, since ES is the expected loss in the tail, this

measure can only exist if the �rst moment of the loss distribution is well de�ned in the �rst place. Unfortunately,

existence of �rst moment is very often challenged in the world of actuarial risks. This is particularly true for

catastrophic risks, for which the fat tail phenomenon is so extreme to destroy the integrability requirement

for existence of the �rst moment. For these kinds of risk, a plausible shape that has been suggested for the

distribution of losses is the α-stable family. In particular, Ibragimov et al. (2008) [IJW] show that seismic risks

and other risk events typical of the catastrophe insurance market can be described by stable when α < 1, so

that the �rst moment is not de�ned. It is well known that stable distribution is a Pareto distribution�like

(power law) and vary regularly at in�nity. The same result is documented by Chavez-Demoulin et al. (2006)

for a number of operational risks.

Concerning diversi�cation, the IJW paper also shows that diversi�cation dramatically fails, even in the case of

independent risks, that is where diversi�cation should be highest. Beyond the discussion on the property of the

risk measures, this �nding points to a real relevant problem of the catastrophe insurance market, so that putting

catastrophic risks together dramatically increases the ruin probability of the reinsurance policy of such risks,

even if such risks are independent. This adds an important issue in the debate about the possibility of a private

reinsurance market for catastrophic risks versus insurance schemes based on public funds. This also raises the

question of how the results extend to the case in which catastrophic risks are dependent. This extension was

provided by Ibragimov and Prokhorov (2016) using Monte Carlo analysis applied to copula functions. Here we

investigate the problem with C-convolution copulas, proposed by Cherubini et al. (2011) with the purpose to

extend the analysis further in the tail and to explore the relevance of di�erent tail dependence indexes.

The contribution of this paper to this stream of research is the twofold. First, we want to explore the shape of

the relationship between a dependence measure of the risks and a sub-additivity measure of the VaR. Of course,

since it is well known that perfectly dependent risks are additive, the IJW result implies that this relationship

must be non monotone for heavy tailed α-stable risks. Second, we want to explore whether this diversi�cation

failure is made more severe by the tail-dependence feature of the risks.

The plan of the paper is as follows. In Section 2.2 we de�ne the convolution α-stable risks under general
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dependence structures represented by copulas. In Section 2.3 we present our results analysis addressing the two

issues described above. Section 2.4 concludes.

2.2 Preliminaries: Convolution of α-stable Risks

In this section, we review the main concepts that will be used in our numerical analysis. First, we describe

a pair of α-stable i.i.d. risks and we review the results on VaR aggregation (corresponding to the standard

concept of convolution). Second, we assume a general dependence structure represented by a copula function

with di�erent degrees of tail-dependence. Third, we review the concept of convolution of dependent risks, called

C-convolution.

2.2.1 Stable Distributions

Stable distributions are part of a wide class of probability distributions often used to represent heavy tailed

models, particularly when heavy tails are so extreme that even �rst and second moments may fail to be well-

de�ned. From a mathematical point of view, stable distribution is uniquely characterized by the property of

closure under sum of independent variables.

In insurance applications, this class of distributions is sometimes applied to catastrophic risks, including earth-

quakes, �oods, wind damage, etc... In these cases stable distributions are used to create loss distribution

functions to model rare events with huge losses. Here we recall de�nitions and basic useful properties of uni-

variate stable distributions, referring the reader to Samorodnitsky and Taqqu (1997) and Nolan (2012) for a

detailed treatment.

De�nition 2.2.1 (Stable). A random variable X is stable if for X1, X2, .., Xn independent copies of X and

S =
n∑
i=1

Xi, there exist a, b ∈ R such that S = aX + b holds. The random variable is called strictly stable if

b = 0.

The stable family is denoted by S(α, β, γ, δ). The four parameters α, β, γ, and δ determine the density function.

These parameters can be interpreted as follows:

(α) is the basic stability parameter, determining the weight in the tails: the lower the α value, the greater

the frequency and size of extreme events. Its range is (0 < α ≤ 2)

(β) It is the skewness distribution parameter and (−1 ≤ β ≤ 1), with a zero value indicating that the

distribution is symmetric. A negative / positive β implies that the distribution is skewed to the left or

right respectively

(γ) The parameter γ is positive and represents a measure of dispersion. It determines the width of the density.

The higher the γ the higher the dispersion around the δ parameter.
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(δ) The parameter δ determines the location of the distribution. It generalizes the concept of mean of the

distribution

Closed forms for α-stable distributions generally do not exist, except for speci�c cases of the parameters pair

(α, β). As showed below, when α = 2 the Stable distribution is a normal distribution (standard normal has

variance σ2 = 2γ2). When α = 1 and β = 0 the distribution becomes a Cauchy. Another case concerning

Lévy (α = 0.5 and β = 1), which is a totally asymmetric distribution. For these analytic distributions, (γ, δ)

parameters are set to (1, 0) respectively to achieve standard case.

Lévy: S(0.5, 1, γ, δ) f(x) =
√

γ
2π

1
(x−δ)3/2 exp

(
− γ

2(x−δ)

)
, δ ≤ x ≤ ∞

Cauchy: S(1, 0, γ, δ) f(x) = 1
π

γ
γ2+(x−δ)2 , −∞ ≤ x ≤ ∞

Gaussian: S(2, 0, γ = σ√
2
, δ) f(x) = 1√

2πσ
exp
(
− (x−δ)2

2σ2

)
, −∞ ≤ x ≤ ∞

The most direct way to describe all possible stable distributions is through the characteristic function.

De�nition 2.2.2 (Stable random variable). A r.v. X is stable if and only if it is expressed by the following

characteristic function ϕX(t)

ϕX(t) = E
[
eıtX

]
=


exp

{
ıδt− γα|t|α(1− ıβsign(t) tan(πα/2))

}
, α 6= 1

exp
{
ıδt− γ|t|(1 + ıβsign(t) 2

π ln |t|)
}
, α = 1

(2.1)

Proposition 2.2.3. The Family of stable distribution S(α, β, γ, δ) is described by the following properties

a) Let X ∈ S(α, β, γ, δ), ∀a 6= 0, b ∈ R

aX + b v


S(α, sign(a)β, |a|γ, aδ + b), α 6= 1

S(α, sign(a)β, |a|γ, aδ + b− 2
πβγa log |a|), α = 1

(2.2)

b) Let X ∈ S(α, β1, γ1, δ1) and Y ∈ S(α, β2, γ2, δ2) independent r.v.'s. Then, the sum X +Y v S(α, β, γ, δ)

where

β =
β1γ

α
1 + β2γ

α
2

γα1 + γα2
, γ = (γα1 + γα2 )1/α, δ = δ1 + δ2 (2.3)

c) For all values in 0 < α < 2, it follows the re�ection property of X

X v S(α, β, γ, 0)⇔ −X v S(α,−β, γ, 0)
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d) An important result involves p-order moments of a Stable r.v. Let X v S(α, β, γ, 0), 0 < α < 2. It holds

E|X|p <∞, ∀ 0 < p < α

E|X|p =∞, ∀ p ≥ α

It follows that the stable family does not admit �nite second moment for α < 2 and so variance does not

exist, and if α ≤ 1 the �rst moment does not exist either.

Linear combination

When Xi∼S(α, βi, γi, δi), are independent stable r.v.'s then for all arbitrary ci ∈ R, i = 1, ..., n

n∑
i=1

ciXiv S(α, β, γ, δ) where

β =

∑n
i=1 βi

(
sign(ci)

)
|ciγi|α

γα

γα =

n∑
i=1

|ciγi|α

δ =


∑n

i=1 ciδi, α 6= 1∑n
i=1 ciδi −

2

π

∑n
i=1 βi ci γi ln(ci), α = 1

This results can be obtained by induction on the property ( 2.3 ) applying the γ computed in the property

(2.2.3).

A special case is represented if βi = 0, γi = 1, δi = 0 ∀ i = 1, ..., n. In that case for all ci ≥ 0 such that∑n
i=1 ci 6= 0, one obtains

n∑
i=1

ciXi

/ n∑
i=1

cαi

1/α

d
= X1 v S(α, 0, 1, 0) (2.4)

This means that a linear combination of independent standard stable r.v.'s behaves like the same standard

stable r.v. X1 times a function of either the linear combination of coe�cient ci or the parameter α.

Samorodnitsky and Taqqu (1997) and Nolan (2012) further describe the Stable properties.

Tail behaviour. If α < 2 and −1 < β ≤ 1, then the density f(x) and cumulative distribution function F (x)

have an asymptotic power law: as x→∞

1− F (x) = P (X > x) v γαcα(1 + β)x−α

f(x|α, β, γ, δ) v αγαcα(1 + β)x−(α+1)

29



where cα = 1
π sin πα

2 Γ(α). Using the re�ection property, the lower tail properties are similar. When α < 2, the

variance is in�nite and the tails are asymptotically equivalent to a Pareto law, i.e. they exhibit a power-law

behaviour.

2.2.2 Convolution of independent variables

In the �nance literature there are many examples of stable variables applications, particularly at the crossroad

of insurance. As for speculative price dynamics, heavy-tailed distributions were �rst modelled with α-stable

processes by Mandelbroot and Fama in the 1960s (Fama (1965)). More recently, Chavez-Demoulin et al. (2006)

discuss that tail indices less than one are observed for empirical loss distributions of a number of operational

risks.

Since the parameter γ generalizes the concept of variance, it is natural to start from this as a risk measure.

This gives the �rst evidence that diversi�cation may increase the risk of the portfolio when the distribution of

the convolution shows heavy-tails. To see this, let us take into account the cases of stable distributions listed

above, looking at the parameter γ for a portfolio. For the Lévy distribution, the p.d.f. with location parameter

δ and dispersion γ is

f(x) =

√
γ

2π

1

(x− δ)3/2
exp
(
− γ

2(x− δ)

)
, δ ≤ x ≤ ∞

When the standard case is considered, i.e. γ = 1, δ = 0, then the homogeneous portfolio of k standard Levy

r.v.'s X1, ..., Xk each of weight
1

k
holds S =

∑k
i=1

1
kXi. Then, applying the linear portfolio property in (2.4),

one obtains

S =

k∑
i=1

1

k
Xi =d X1

 k∑
i=1

1√
k

2

= k X1 v S(α, 0, k, 0)

For general scale γ′s : γαS =

k∑
i=1

(γ
k

)α
=

k∑
i=1

(γ
k

) 1
2

= k
(γ
k

) 1
2

=⇒ γS = kγ

We conclude that the scaling factor is growing k times, proportional to the number of portfolio asset. To put

it in di�erent words, the riskiness of the equally-weighted portfolio is k times of the risk of a single asset.

In the Cauchy case, with α = 1, the p.d.f. is

f(x) =
1

π

γ

γ2 + (x− δ)2
, −∞ ≤ x ≤ ∞
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Now the property (2.4) allows to show that

S =
k∑
i=1

1

k
Xi =d X1

 k∑
i=1

1

k

 = X1 v S(α, 0, 1, 0)

For general scale γ′s : γαS =

k∑
i=1

(γ
k

)α
=

k∑
i=1

(γ
k

)
= k

(γ
k

)
=⇒ γS = γ

In this case portfolio riskiness neither increases nor reduces its magnitude since the γ parameter remains the

same of the marginal Cauchy variables.

Diversi�cation reduces the risk with gaussian marginal distributions, that is α = 2. The density is

f(x) =
1√
2πσ

exp
(
−(x− δ)2

2σ2

)
, −∞ ≤ x ≤ ∞ where σ =

γ

2

and it follows that

S =

k∑
i=1

1

k
Xi =d X1

 k∑
i=1

1

k2

 1
2

=
1√
k
X1 ∼ S(α, 0, 1√

k
, 0)

For general scale γ′s : γαS =
k∑
i=1

(γ
k

)α
=

k∑
i=1

(γ
k

)2
= k

(γ
k

)2
=⇒ γS =

γ2

k

The latter is the case of diversi�cation reduction because the γ parameter is scaled by an order factor k.

Ibragimov (2009) provides a rigorous analysis of the study of portfolio diversi�cation with heavy tails in the

Value-at-Risk (VaR) framework. He shows that closure under convolution of independent stable r.v.'s and

the positive homogeneity property of VaR allow to describe the relationship between portfolio weights with

Schur-convex/concave functions.

A vector a is said to be majorized by a ∈ Rn vector b ∈ Rn; written a ≺ b if

k∑
i=1

a[i] ≤
k∑
i=1

b[i], k = 1, ..., n− 1,

n∑
i=1

a[i] =

n∑
i=1

b[i]

where a[1], ..., a[n] and b[1], ..., b[n] denote the components of a and b in decreasing order.

The relation a ≺ b implies that the components of the vector a are less diverse than those of b. See Marshall

et al. (1979) for a full reference on the majorization theory.

A function φ : Rn
+ → R is called Schur-convex (resp. Schur-concave) if a ≺ b ⇒ (φ(a) ≤ φ(b)) (resp.

a ≺ b⇒ φ(a) ≥ φ(b)). If a is not a permutation of b the above de�nition holds strictly, that is (a1, a2, ...an) /∈

(bπ(1), bπ(2), ..., bπ(n)), for all permutations π set {1, 2, ..., n}.
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A typical example of Schur-convex function is given by the class φα(w1, ..., wn) =
∑n

i=1w
α
i , α ≥ 1. Conversely

if α ≤ 1 the class is Schur-concave.

Given weights w = (w1, w2, ..., wn), denote the return portfolio Zw of risks X1, X2, ..., Xn with weights belonging

to the set In : {w = (w1, w2, ..., wn) ∈ Rn
+,
∑n

i=1wi = 1, wi ≥ 0, ∀i = 1, ..., n}.

Denoting w =
(
1/n, ..., 1/n, 1/n

)
and w = (1, ..., 0, 0) =⇒ w, w ∈ In. it is natural to think of w as being more

diversi�ed that w because the latter consists of one risk only and it is the least diversi�ed portfolio in the class

of all portfolios w ∈ In. Then, let's consider V aRq(w) and V aRq(w) as the value-at-risk of the equal weights

and the undiversi�ed portfolios. Then, majorization theory can be used to assess the e�ects of diversi�cation

policies in the framework of i.i.d. stable risks.

In this framework, Ibragimov (2009) de�nes the class of convolution-stable log-concave distribution CSLC of

risks and proves

Theorem (4.1 in Ibragimov (2009)). Let q ∈ (0, 1/2) and let Xi, i = 1, ..., n be i.i.d. risk such that Xi ∼

CSLC, i = 1, ..., n Then

� V aRq(Zv) < V aRq(Zw) if v ≺ w and v is not a permutation of w, i.e. ψ(w, q) = V aRq(Zw) is strictly

Schur-Convex in w ∈ Rn
+

� Further, V aRq(Zw) < V aRq(Zw) < V aRq(Zw) for all q ∈ (0, 1/2) and all weights w ∈ In

While it may be shown that the class of risks for which the Theorem holds are characterized by α > 1, it is easy

to show that VaR diversi�cation fails in the Lévy distribution. Here the stable parameters are α = 1/2, β = 1.

Let us X1, X2, ..., Xn v S1/2(1, σ, 0) with density f(x) = (σ/(2π))1/2 exp(−σ/(2π))x−3/2. Considering equal

weights wi = 1/n, from the linear convolution property (2.4) one obtains Zw = (1/n)
∑n

i=1Xi =d nX1. By

positively homogeneity: V aRq(Zw) = nV aRq(X1) = nV aRq(Zw) > V aRq(Zw). It follows that the VaR for the

most diversi�ed portfolio w is higher than that w the least diversi�ed one.

Theorem (4.2 in Ibragimov (2009)). Let q ∈ (0, 1/2) and let Xi, i = 1, ..., n be i.i.d. convolution stable risks.

Then,

� V aRq(Zv) > V aRq(Zw) if v ≺ w and v is not a permutation of w, i.e. ψ(w, q) = V aRq(Zw) is strictly

Schur-Concave in w ∈ Rn
+

� Further, V aRq(Zw) > V aRq(Zw) > V aRq(Zw) for all q ∈ (0, 1/2) and all weights w ∈ In

Theorems 4.1 and 4.2 give an accurate bound to the given portfolio value at risk with the borderline case α = 1

which corresponds to i.i.d. risks X1, ..., Xn with a symmetric Cauchy distribution.

Starting from the results above in the independence framework, we now deal with the more realistic case of

dependence among risks, represented in full generality by a copula function.
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2.2.3 Copula Functions and Dependence

We here recall the basic theory and useful results on copula functions and the non parametric dependence

structure of random variables. A complete reference on copula functions is Nelsen (2006), while Frees and

Valdez (1998) describes copula simulation methods. A reference on copula methods applied in �nance is

Cherubini et al. (2004).

De�nition 2.2.4 (Copula). A n-dimensional Copula C is a function C : U1 × U2 · · · ×Un → I, Ui ∈ I the unit

space, I ∈ (0, 1), that satis�es these properties

1. ∀i = 1...n, C(1, 1, ..., Ui, ..., 1, 1) = Ui

2. ∀i = 1...n, C(U1, U2, ..., Ui = 0, ..., Un−1, Un) = 0

3. ∀ (u1, ..., un), (v1, ..., vn) ∈ [0, 1]n where ui ≤ vi, holds

2∑
i1=1
· · ·

2∑
in=1

(−1)i1,...,inC(s1,i1 , ..., sn,in) ≥ 0 where sj,1 = uj and sj,2 = vj

Copula functions allow to separate the marginal behaviour of individual random variables from their dependence

structure. Due to the integral probability transform, copula functions single out the dependence structure by

reducing the representation of dependence to a joint probability function taking uniform random variables as

arguments.

Theorem 2.2.5 (Sklar). Let F1, F2, ..., Fn be a set of n continuous univariate distribution functions of the

random variables (X1, X2, . . . , Xn). Then, H(X1, X2, . . . , Xn) is a joint distribution function if and only if

∀ (x1, x2, ..., xn) ∈ Rn

H(x1, x2, ..., xn) = C
(
F1(x1), F2(x2), ..., Fn(xn)

)
(2.5)

where C is a copula function.

It may be proved that copula functions are naturally linked to the concepts and measures of non parametric

association. The maximal copula is de�ned as M(u1, u2, ..., un) = min{u1, u2, ..., un}, and is known as upper

Fréchet bound. This is related to the concept of perfectly positive dependence, or co-monotonicity, that is

r.v.'s X1, ..., Xn such that exists strictly increasing functions linking each one to the other. As for perfect

negative dependence, the Fréchet bound is meaningful only in the bivariate dimension, and reads W(u1, u2) =

max
{
u1 +u2−1, 0

}
. Finally, it is well known that the independence case is embedded with the Product Copula

or independence copula:
∏

(u1, u2, ..un) =
n∏
i=1

ui

Copula functions are naturally linked to non parametric association measures such as Spearman's ρ and

Kendall's τ .
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Proposition 2.2.6. Suppose (X,Y) have continuous marginal distributions and unique copula C. Then the

Kendall's τ are given by

ρτ (X,Y ) = 4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1

and rank correlation measure Spearman's ρ is de�ned as

ρS(X,Y ) = 12

∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 3

Copula functions are also useful to represent the dependence structure of extreme events, that is measured by

the so called tail dependence coe�cients. These are linked to the concept of conditional distribution, and how

this can be written in terms of copula functions. We have the following de�nition.

De�nition 2.2.7. Let X,Y be two r.v.'s with corresponding continuous d.f.'s F, G. We de�ne the upper tail

dependence parameter λU as the limit,

λU = lim
t→1−

P
[
Y > G(−1)(t)

∣∣∣X > F (−1)(t)
]

(2.6)

Accordingly, the lower tail dependence coe�cient λL is de�ned as

λL = lim
t→0+

P
[
Y ≤ G(−1)(t)

∣∣∣X ≤ F (−1)(t)
]

(2.7)

Next theorem shows how tail dependence can be expressed in terms of copulas.

Theorem 2.2.8. Given X, Y, F, G, λU , λL de�ned as above in (2.2.7), let C be the bivariate copula of (X,Y ).

If the limits (2.6) and (2.7) exist, then tail dependence coe�cients can be expressed as follows

λU = 2− lim
t→1−

1− C(t, t)
1− t

λL = lim
t→0+

C(t, t)
t

Here below we show some tail dependence formulas for the most commonly used copulas: elliptical (Gaussian

and t-Student's) and Archimedean (Clayton, Frank and Gumbel). We note that t-Student's, Gumbel and

Clayton copula show tail dependence.

Example 2.2.9 (Copulas and corresponding tail dependencies).

� Gaussian copula Cρ(u1, u2, ..., un) = φn(φ−1(u1), φ−1(u2), ..., φ−1(un), ρ) λU = λL = 0

where φn, φ
−1 are the n-variate and inverse standard Gaussian cdf respectively.

� t-Student's copula Cνρ (u1, u2, ..., un) = tnν (t−1
ν (u1), t−1

ν (u2), ..., t−1
ν (un), ρ, ν) λU = λL = 2 tν+1

(√
ν + 1

√
1−ρ√
1+ρ

)
where tν , t

n
ν , t

−1
ν are the univariate, n-variate and inverse t-student's cdf with ν DoF respectively.
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� Clayton copula Cθ(u, v) = [u−θ + v−θ − 1]−
1
θ λL = lim

t→∞

ϕ−1(2t)

ϕ−1(t)
= lim

t→∞

(1 + 2tθ)−
1
θ

(1 + tθ)−
1
θ

= 2−
1
θ , λU = 0

� Frank copula Cθ(u, v) = −1
θ ln

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
like the Gaussian λU = λL = 0

� Gumbel copula Cθ(u, v) = e−[(− lnu)−θ+(− ln v)−θ]
1
θ λU = lim

t→0+

1− ϕ−1(2t)

1− ϕ−1(t)
= lim

t→0+

1− e−2t
1
θ

1− e−t
1
θ

= 2− 2
1
θ , λL = 0

2.2.4 Convolution of dependent variables

We now formally introduce the representation of the VaR aggregation problem for dependent variables. Under

the assumption of independence, the problem of computing the VaR of a sum of risks would merely leads to the

standard concept of convolution of random variables. Then, the natural extension of this concept to the case

of dependent variables is the de�nition of C-convolution proposed by Cherubini et al. (2011). The term C in

the de�nition reminds of the copula function representing a general relationship of a pair of variables X and Y .

The �nding was obtained as a by-product of a more general result for the characterization of the dependence

structure between the variables X and X + Y from the dependence between X and Y . We report here the

main proposition.

Proposition 2.2.10. Let X,Y be two real-valued random variables on the same probability space (Ω,F ,P) with

corresponding copula CX,Y and continuous marginals FX , FY . Then,

CX,X+Y (u, v) =

∫ u

0
D1CX,Y

(
ω, FY (F−1

X+Y (v)− F−1
X (ω))

)
dω (2.8)

FX+Y (t) =

∫ 1

0
D1CX,Y

(
ω, FY (t− F−1

X (ω))
)
dω (2.9)

where Ci,j(u, v) denotes the copula functions between the variables reported in the underscore, D1C(u, v)

represents the derivative with respect to u, Fi denotes the distribution function of the variable reported in the

underscore(X, Y and X+Y ). Notice that in this result we have implicitly de�ned te concept of C-convolution.

De�nition 2.2.11. Let F , H be two continuous c.d.f's and C a copula function. The C-convolution of H and

F is de�ned as the c.d.f.

H
C∗ F (t) =

∫ 1

0
D1C

(
ω, F (t−H−1(ω))

)
dω
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These results are related to the conditional copula and pretty derived

FX,X+Y (s, t) = P (X ≤ s,X + Y ≤ t)

=

∫ s

−∞
P
(
X + Y ≤ t|X = x

)
dFX(x)

=

∫ s

−∞
P
(
Y ≤ t− x|X = x

)
dFX(x)

=

∫ s

−∞
D1CX,Y

(
FX(x), FY (t− x)

)
dFX(x)

=

∫ FX(s)

0
D1CX,Y

(
ω, FY (t− F−1

X (ω))
)
dω where ω = FX(x) ∈ (0, 1)

When FX(s) approach to in�nity, one gets a de�nition of convolution generalised to arbitrary dependence

between X and Y

FX
C∗ FY (t) = FX+Y (t) = lim

s→∞
FX,X+Y (s, t) =

∫ 1

0
D1CX,Y

(
ω, FY (t− F−1

X (ω))
)
dω

Therefore, the copula linking (X,X + Y ) is

CX,X+Y (u, v) = FX,X+Y (F−1
X (u), F−1

X+Y (v))

This result provides a formal de�nition and an alternative computation approach to the convolution of dependent

variables, with respect to the standard Monte Carlo. In some cases an important property of the C-convolution

operator can be used to make the computation easier. In fact, it can be easily proved that the C-convolution

operator is closed with respect to mixture of copula functions. In other words, it can be shown that if for some

bivariate copula functions A and B we have

C(u, v) = λA(u, v) + (1− λ)B(u, v), ∀ λ ∈ [0, 1]

then, for all c.d.f's H, F it holds

H
C∗ F (t) = H

λA+(1−λ)B
∗ F = λH

A∗ F + (1− λ)H
B∗ F

Remark 2.2.4.1. Notice that the C-convolution can be formulated in terms of either the �rst or the second

derivative. The related choice depends on the conditioning random variable that we take into account. For this

reason, it is wise to select copula functions that are exchangeable. For these copulas, we have C(u, v) = C(v, u),

and are almost all the copula functions that are used in practice. This choice makes sure that, just like in the

standard convolution of independent risk, the order in which the risks are aggregated does not matter. For
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exchangeable copulas we have then

FX
C∗ FY (t) =

∫ 1

0
D1CX,Y

(
ω, FY (t− F−1

X (ω))
)
dω =

∫ 1

0
D2CX,Y

(
FX(t− F−1

Y (ω)), ω
)
dω

2.3 Application

In this section, we consider the problem of risk diversi�cation in a VaR framework with heavy-tailed α-stable

risks and arbitrary dependence captured by a copula function. As motivated in the introduction, VaR may be

the only available measure of risk in α-stable cases when the �rst moment is not de�ned, that is when α ≤ 1.

We also remind that we are interested in exploring two issues:

� the shape of the non-monotonic relationship between dependence and the degree of super-additivity

� the role played by tail-dependence in the degree of super-additivity.

We consider two identically distributed α-stable r.v.'s X,Y and their sum S = (X + Y ) with dependence

structure represented by copulas with di�erent tail-dependence. We use the Kendall ρτ concordance measure

to span a wide range of dependence levels. For each level, we compute a super-additivity index, as in Ibragimov

and Prokhorov (2016)

SR =
V aRq(X + Y )

V aRq(X) + V aRq(Y )

Super-additivity is detected whether SR ≥ 1, so that V aRq(X + Y ), the risk corresponding to the portfolio,

is greater than the sum of separated risks V aRq(X) + V aRq(Y ). When instead SR < 1, diversi�cation is at

work and the aggregation of risks reduces the probability of losing the capital allocated to support them.

2.3.1 Convolution through copulas

C-convolution computation provides a direct way the obtain the VaR of a bivariate portfolio S = X + Y with

dependence between the r.v.'s represented by their copula function. In what follows, we provide the analytical

formulas of the C-convolution on the copulas reported in (1.2.30) through the de�nition in (2.9), that is

FX
C∗ FY (t) =

∫ 1

0
D2CX,Y

(
FY (t− F−1

X (ω)), ω
)
dω

� Gaussian Convolution

Through the Leibniz's rule, the partial derivative of CGa(u1, u2; ρ) wrt u2 is computed to be

D2CGa (u1, u2; ρ) = Φ

(
Φ−1(u1)− ρΦ−1(u2)√

1− ρ2

)
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and the Gaussian C-convolution holds

FX
CGa∗ FY (t) =

∫ ∞

−∞

Φ

(
Φ−1

(
FX(t− y)

)
− ρΦ−1

(
FY (y)

)√
1− ρ2

)
dFY (y) =

∫
1

0

Φ

Φ−1
(
FX(t− F−1

Y (ω))
)
− ρΦ−1(ω)√

1− ρ2

 dω

� t-Student's Convolution

The bivariate Student's t copula is de�ned as

Cρ,νSt (u1, u2) = tρν(t−1
ν (u1), t−1

ν (u2)) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

Γ(ν+2
2 )

Γ(ν2 )πν
√

1− ρ2

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)−(ν+2)
2

dx1dx2

where Γ(·) is the Gamma function and tν is the bivariate Student's t distribution function with ν degree.

The partial derivative of Cρ,νSt (u1, u2) wrt u2 is

D2C (u1, u2; ρ, ν) = tν+1

 t−1
ν (u1)− ρ t−1

ν (u2)√
(ν+t−1

ν (u2)2)(1−ρ2)

ν+1

 (2.10)

and the Student's t C-convolution with ν degree is

FX
CνSt∗ FY (t) =

∫ ∞

−∞

tν+1

 t−1
ν

(
FX(t− y)

)
− ρ t−1

ν

(
FY (y)

)√
(ν+ y2)(1−ρ2)

ν+1

 dFY (y) =

∫
1

0

tν+1

 t
−1
ν

(
FX(t− F−1

Y (ω))
)
− ρ t−1

ν (ω)√
(ν+t−1

ν (ω)2)(1−ρ2)

ν+1

 dω

� Clayton Convolution

The Clayton copula is expressed by the formula below:

CCl(u1, u2; θ) = max

((
u−θ1 + u−θ2 − 1

)− 1
θ
, 0

)
with copula parameter θ ∈ (0,+∞)

The partial derivative w.r.t. u2 is

D2CCl (u1, u2; θ) = u
− 1+θ

θ
2

(
u−θ1 + u−θ2 − 1

)
Therefore, provided that u1 = FX(t− y) and u2 = FY (y) the C-convolution has the form

FX
CCl∗ FY (t) =

∫ ∞

−∞

(
FY (y)−

1+θ
θ

(
FX(t− y)−θ + FY (y)−θ − 1

))
dFY (y) =

∫
1

0

ω−
1+θ
θ

(
FX(t− F−1

Y (ω))−θ + ω−θ − 1
)
dω

� Frank Convolution
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The Frank copula has the following expression

Cfr(u1, u2; θ) = −1

θ
ln

(
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
with copula parameter θ ∈ (−∞,+∞)

The partial derivative w.r.t. u2 is

D2Cfr (u1, u2; θ) =
e−θu2(e−θu1 − 1)

e−θ − 1 + (e−θu1 − 1)(e−θu2 − 1)

Therefore, provided that u1 = FX(t− y) and u2 = FY (y) the C-convolution has the form

FX
Cfr∗ FY (t) =

∫ ∞

−∞

(
e−θFY (y)(e−θFX(t−y) − 1)

e−θ − 1 + (e−θFX(t−y) − 1)(e−θFY (y) − 1)

)
dFY (y) =

∫
1

0

e−θω(e−θFX(t−F−1
Y (ω)) − 1)

e−θ − 1 + (e−θFX(t−F−1
Y (ω)) − 1)(e−θω − 1)

dω
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� Gumbel Convolution

The Gumbel copula is

CGum(u1, u2; θ) = e−((− lnu1)−θ+(− lnu2)−θ)
1
θ

= e−(z1+z2)
1
θ where zi = (− lnui)

−θ i = 1, 2 and θ ∈ (1,+∞)

The partial derivative w.r.t. u2 is

D2CGum (u1, u2; θ) = ∂
∂u2

e−(z1+z2)
1
θ = −e−(z1+z2)

1
θ 1
θ (z1 + z2)

1−θ
θ

∂z2
∂u2

∂z2
∂u2

= ∂
∂u2

(− lnu2)−θ = ∂
∂u2

eln((− lnu2)−θ) = ∂
∂u2

e−θ ln(− lnu2) = z2
∂
∂u2

ln (− lnu2)

∂
∂u2

ln (− lnu2) =
−1/u2

− lnu2
=

1

u2 lnu2

The result for partial derivatives becomes

D2CGum (u1, u2; θ) = −e−(z1+z2)
1
θ 1
θ (z1 + z2)

1−θ
θ

z2

u2 lnu2

= −e−((− lnu1)−θ+(− lnu2)−θ)
1
θ 1
θ ((− lnu1)−θ + (− lnu2)−θ)

1−θ
θ

(− lnu2)−θ

u2 lnu2

The C-convolution for Gumbel copula gives

FX
CGum∗ FY (t) =

∫ ∞
−∞
−e−((− lnFX(t−y))−θ+(− lnFY (y))−θ)

1
θ 1
θ ((− lnFX(t− y))−θ + (− lnFY (y))−θ)

1−θ
θ

(− lnFY (y))−θ

FY (y) lnFY (y)
dFY (y)

=

∫ 1

0
−e−((− lnF−1

Y (ω)))
−θ

+(− lnω)−θ)
1
θ 1
θ

(
(− lnFX(t− F−1

Y (ω)))−θ + (− lnω)−θ
) 1−θ

θ (− lnω)−θ

ω lnω
dω

2.3.2 Convolution and general results

The C-convolution representations provides an alternative to the standard tool that has been applied to the

problem of risk aggregation, that is Monte Carlo simulation. It is in fact well known that Monte Carlo requires

intensive computational e�ort, and the problem is compounded in applications, like VaR analysis, in which

simulation should be focussed on the tails. While importance sampling techniques can be applied to ease this

�aw, the C-convolution approach provides a direct way to address the problem. So, C-convolution analysis

o�ers a better tool to investigate the aggregation analysis quite further in the tail.

Therefore, here we consider a portfolio of two assets X,Y drawn from heavy-tailed marginal distribution with

several tail indexes α ranging between 0 < α ≤ 2 and linked by a bivariate copula determining their dependence

structure. The general scheme for computing the super-additivity ratio for any given couple of identically
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distributed stable r.v.'s (X,Y ) with common c.d.f. F, follows the following three steps

1) We select a given the Copula function Cρτ = CρτX,Y and we assume a Kendall dependence ρτ such that

FX+Y (t) = F
Cρτ∗ F (t) =

∫ 1

0
D2Cρτ

(
F (t− F−1(ω)), ω

)
dω

2) For a given quantile level q, we look for the point t ∈ R : FX+Y (t) = q. Because of the increasing property

of the distribution of (X + Y ), the inverse convolution function t = F−1
X+Y (q) exists and we run a root-�nding

method, searching for the point t∗ = inf
t∈R

{
FX+Y (t)− q = 0

}
. To this aim, we chose the Brent-Dekker's method,

that realizes a mixed-search through Bisection, Secant and inverse quadratic interpolation with a zero-precision

level ε = 10−8. For a complete description of the method, see Press et al. (2007, p. 454) .

3) We compute the S-Ratio. The VaR of the portfolio X + Y with Kendall ρτ at level q is

V aRq(X + Y ) = inf
t∈R

{
FX+Y (t) = q

}
that is t = F−1

X+Y (q)

Since it is well known that VaR is comonotonic additive, the perfect dependence VaR of the portfolio is

V aRq(X) + V aRq(Y ) = 2V aRq(X) since X,Y are identically distributed r.v.'s

The ratio SRq(X + Y ) = V aRq(X + Y )
/

2 V aRq(X) provides a measure of super-additivity for ρS < 1.

The tables 1 to 5 report the results for di�erent α values of the marginal stable distributions and the main

families copula functions typically used, that is the elliptical (gaussian and Student-t) and the Archimedean

ones (Clayton, Gumbel and Frank). As it is well known, only the Gaussian and Frank copulas do not have

tail dependence, the Gumbel has only upper tail dependence, the Clayton has only lower tail dependence and

t-Student's has both upper and lower tail dependence.

All these results for the di�erent copulas seem to design a consistent picture. Some diversi�cation bene�ts

typically appear in the upper and right parts of the tables. At �rst sight, sub-additivity generally holds when

the value of the tail index α is higher than 1. In some cases, diversi�cation may also hold for α values lower

than 1 if there is negative association. This is particularly true for elliptical copulas.

As for super-additivity, the failure of diversi�cation is a general result for cases in which the �rst moment

does not exist. The results are instead mixed in the region in which the �rst moment is de�ned, where

diversi�cation may still fail for higher level of dependence. However, even in the positive dependence region in

which diversi�cation bene�ts materialize, their amount is of a limited order.
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Finally, a casual look at the comparison of di�erent dependence models suggests that the red super-additivity

region seems to be wider in the gaussian dependence than in the Student-t copula case. The same evidence

seems to appear from a comparison of the Frank copula with the Clayton one. The common feature of these

two comparisons is that super-additivity seems to be less extended in the cases in which the copula functions

has positive tail dependence. On the role of tail dependence we focus in the analysis that follows.

Table 2.1: C-convolution integration: Super-additivity Ratio, Gaussian copula

q=5% α 0.2 0.3 0.4 0.6 0.9 1 1.1 1.3 1.6 1.8 2

Param. θ Kendall-τ Gaussian copula

-1 -1 5.0e-06 3.5e-06 2.7e-06 1.9e-06 1.3e-06 1.2e-06 1.1e-06 9.8e-07 8.8e-07 8.4e-07 7.9e-07
-0.99 -0.9 0.5443 0.3593 0.2754 0.1929 0.1368 0.1241 0.1142 0.0980 0.0878 0.0835 0.0785
-0.89 -0.7 2.4852 1.2751 0.8931 0.5832 0.4034 0.3676 0.3378 0.2920 0.2608 0.2483 0.2334
-0.59 -0.4 8.7629 3.2337 1.9524 1.1392 0.7621 0.6946 0.6416 0.5661 0.5063 0.4794 0.4543
-0.45 -0.3 11.3880 3.9143 2.2594 1.2959 0.8598 0.7878 0.7324 0.6497 0.5813 0.5505 0.5225
-0.16 -0.1 15.3299 4.8540 2.7295 1.5192 1.0226 0.9452 0.8810 0.7938 0.7136 0.6786 0.6493
-0.02 -0.01 16.0090 5.0211 2.8224 1.5814 1.0740 0.9935 0.9344 0.8469 0.7656 0.7291 0.7015
0 0 15.8676 5.0450 2.8237 1.5858 1.0792 1.0009 0.9386 0.8522 0.7698 0.7350 0.7072

0.02 0.01 16.1089 5.0292 2.8408 1.5927 1.0840 1.0043 0.9430 0.8570 0.7765 0.7406 0.7127
0.16 0.1 15.6895 4.9868 2.8299 1.6148 1.1193 1.0417 0.9832 0.9015 0.8215 0.7865 0.7604
0.31 0.2 14.0857 4.7032 2.7219 1.5978 1.1398 1.0676 1.0132 0.9409 0.8661 0.8323 0.8088
0.45 0.3 11.9989 4.2562 2.5444 1.5526 1.1439 1.0826 1.0343 0.9672 0.9032 0.8724 0.8528
0.59 0.4 9.5069 3.6756 2.3091 1.4737 1.1361 1.0804 1.0418 0.9869 0.9332 0.9070 0.8909
0.89 0.7 3.2120 1.8769 1.4633 1.1810 1.0556 1.0358 1.0230 1.0053 0.9870 0.9773 0.9725
0.99 0.9 1.2798 1.1202 1.0652 1.0234 1.0072 1.0047 1.0038 1.0011 0.9990 0.9973 0.9969
1 1 1 1.0000 1.0000 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1

Table 2.2: C-convolution integration: Super-additivity Ratio, Student-t(ν = 5) copula

q=5% α 0.2 0.3 0.4 0.6 0.9 1 1.1 1.3 1.6 1.8 2

Param. θ Kendall-τ Student-t copula (ν = 5)

-1 -1 4.2e-06 2.9e-06 2.3e-06 1.7e-06 1.2e-06 1.1e-06 1e-06 9.3e-07 8.6e-07 8.2e-07 7.7e-07
-0.99 -0.9 0.4496 0.3004 0.2311 0.1658 0.1198 0.1104 0.1027 0.0927 0.0858 0.0816 0.0769
-0.89 -0.7 1.8897 1.0421 0.7376 0.4997 0.3557 0.3281 0.3061 0.2763 0.2550 0.2429 0.2294
-0.59 -0.4 6.1498 2.5362 1.6017 0.9842 0.6844 0.6331 0.5929 0.5358 0.4920 0.4700 0.4484
-0.45 -0.3 7.9169 3.0426 1.8669 1.1213 0.7806 0.7217 0.6767 0.6141 0.5638 0.5401 0.5172
-0.16 -0.1 10.5219 3.7700 2.2448 1.3357 0.9367 0.8715 0.8222 0.7521 0.6935 0.6670 0.6446
-0.02 -0.01 10.9465 3.8993 2.3270 1.3924 0.9894 0.9217 0.8736 0.8050 0.7456 0.7187 0.6970
0.00 0 11.0378 3.9264 2.3414 1.3982 0.9942 0.9271 0.8787 0.8102 0.7511 0.7241 0.7028
0.02 0.01 11.0536 3.9473 2.3387 1.4050 0.9961 0.9327 0.8839 0.8157 0.7561 0.7296 0.7088
0.16 0.1 10.6819 3.9086 2.3511 1.4276 1.0338 0.9721 0.9250 0.8599 0.8015 0.7760 0.7572
0.31 0.2 9.9593 3.7179 2.2905 1.4310 1.0600 1.0041 0.9607 0.9005 0.8466 0.8225 0.8059
0.45 0.3 8.5283 3.3891 2.1585 1.3972 1.0739 1.0241 0.9848 0.9332 0.8860 0.8641 0.8503
0.59 0.4 6.8569 2.9793 1.9817 1.3481 1.0743 1.0328 1.0005 0.9585 0.9195 0.9002 0.8894
0.89 0.7 2.6423 1.6706 1.3521 1.1307 1.0340 1.0180 1.0087 0.9957 0.9820 0.9752 0.9717
0.99 0.9 1.2236 1.0999 1.0502 1.0177 1.0045 1.0028 1.0018 0.9997 0.9982 0.9972 0.9968
1 1 1.0000 1 1.0000 1 1 1.0000 1 1.0000 1.0000 1.0000 1.0000
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Table 2.3: C-convolution integration: Super-additivity Ratio, Frank copula

q=5% α 0.2 0.3 0.4 0.6 0.9 1 1.1 1.3 1.6 1.8 2

Param. θ Kendall-τ Frank copula

-709 -1 0.0698 0.0483 0.0376 0.0261 0.0181 0.0163 0.0147 0.0120 0.0088 0.0074 0.0065
-38.28 -0.9 2.3807 1.1773 0.7939 0.4945 0.3189 0.2846 0.2555 0.2065 0.1507 0.1257 0.1088
-11.41 -0.7 8.4532 3.1117 1.8384 1.0425 0.6610 0.5911 0.5312 0.4402 0.3435 0.3029 0.2727
-4.16 -0.4 13.5038 4.4572 2.4888 1.3722 0.8904 0.8077 0.7394 0.6404 0.5492 0.5088 0.4756
-2.92 -0.3 14.7779 4.6550 2.6111 1.4407 0.9428 0.8596 0.7968 0.6990 0.6102 0.5701 0.5383
-0.91 -0.1 15.8484 4.9234 2.7937 1.5473 1.0357 0.9593 0.8947 0.8046 0.7215 0.6845 0.6553
-0.09 -0.01 15.9420 5.0413 2.8390 1.5899 1.0759 0.9937 0.9357 0.8467 0.7656 0.7316 0.7014
0 0 16.0998 5.0095 2.8282 1.5900 1.0811 0.9993 0.9373 0.8514 0.7709 0.7347 0.7071

0.09 0.01 15.9468 5.0584 2.8299 1.5919 1.0835 1.0070 0.9424 0.8582 0.7769 0.7392 0.7113
0.91 0.1 15.8797 5.0614 2.8471 1.6093 1.1162 1.0421 0.9804 0.8948 0.8162 0.7812 0.7546
1.86 0.2 15.7188 5.0186 2.8649 1.6352 1.1483 1.0732 1.0178 0.9373 0.8604 0.8240 0.7987
2.92 0.3 15.0588 4.9029 2.8181 1.6495 1.1761 1.1040 1.0505 0.9729 0.8979 0.8626 0.8370
4.16 0.4 14.2756 4.7217 2.7806 1.6555 1.1998 1.1306 1.0806 1.0088 0.9337 0.8970 0.8730
11.41 0.7 9.9142 3.8242 2.4189 1.5835 1.2305 1.1763 1.1376 1.0810 1.0153 0.9836 0.9625
38.28 0.9 3.4557 2.0352 1.5906 1.2843 1.1380 1.1143 1.0941 1.0657 1.0322 1.0162 1.0067

709 1 1.0122 1.0054 1.0036 1.0006 1.0005 1.0007 1.0003 1.0004 1.0001 1.0002 1.0001

Table 2.4: C-convolution integration: Super-additivity Ratio, Clayton copula

q=5% α 0.2 0.3 0.4 0.6 0.9 1 1.1 1.3 1.6 1.8 2

Param. θ Kendall-τ Clayton copula

-1 -1 5.8e-06 4.2e-06 3.3e-06 2.4e-06 1.8e-06 1.7e-06 1.6e-06 1.4e-06 1.3e-06 1.2e-06 1.1e-06
-0.95 -0.9 0.9751 0.5325 0.3778 0.2560 0.1832 0.1681 0.1562 0.1387 0.1223 0.1149 0.1083
-0.82 -0.7 3.0610 1.4229 0.9407 0.5954 0.4177 0.3842 0.3590 0.3208 0.2916 0.2801 0.2703
-0.57 -0.4 6.7280 2.6453 1.6368 0.9999 0.6877 0.6338 0.5909 0.5353 0.4923 0.4763 0.4625
-0.46 -0.3 8.5693 3.2123 1.9400 1.1556 0.7896 0.7265 0.6812 0.6152 0.5638 0.5416 0.5240
-0.18 -0.1 13.8704 4.5987 2.6015 1.4699 0.9976 0.9247 0.8652 0.7817 0.7071 0.6741 0.6479
-0.02 -0.01 15.7198 4.9752 2.8251 1.5697 1.0741 0.9948 0.9318 0.8455 0.7651 0.7291 0.7016
0.00 0 16.0693 4.9913 2.8240 1.5876 1.0786 0.9981 0.9422 0.8518 0.7711 0.7348 0.7072
0.02 0.01 15.6811 4.9562 2.7989 1.5823 1.0837 1.0037 0.9454 0.8576 0.7779 0.7424 0.7150
0.22 0.1 12.3384 4.2727 2.5377 1.5152 1.0929 1.0222 0.9694 0.9004 0.8354 0.8054 0.7848
0.50 0.2 7.9749 3.2764 2.1102 1.3780 1.0620 1.0143 0.9801 0.9312 0.8860 0.8654 0.8544
0.86 0.3 4.9692 2.4106 1.7135 1.2439 1.0379 1.0030 0.9806 0.9532 0.9263 0.9154 0.9102
1.33 0.4 3.2074 1.8440 1.4295 1.1446 1.0178 0.9989 0.9865 0.9716 0.9582 0.9512 0.9490
4.67 0.7 1.3079 1.1236 1.0621 1.0201 1.0018 1.0000 0.9984 0.9966 0.9952 0.9945 0.9941
18 0.9 1.0255 1.0099 1.0057 1.0016 0.9998 1.0001 0.9999 0.9997 0.9998 0.9995 0.9997

2e06 1 1 1 1 1 1.0000 1 1 1 1.0000 1 1

Table 2.5: C-convolution integration: Super-additivity Ratio, Gumbel copula

q=5% α 0.2 0.3 0.4 0.6 0.9 1 1.1 1.3 1.6 1.8 2

Param. θ Kendall-τ Clayton copula

1.00 0 16.0952 5.0635 2.8016 1.5854 1.0807 0.9984 0.9403 0.8519 0.7711 0.7349 0.7077
1.01 0.01 16.0678 5.0694 2.8456 1.5901 1.0820 1.0034 0.9438 0.8545 0.7738 0.7386 0.7112
1.11 0.1 15.9600 5.0510 2.8431 1.6124 1.1137 1.0306 0.9742 0.8887 0.8084 0.7738 0.7459
1.25 0.2 15.2526 4.9554 2.8090 1.6174 1.1346 1.0620 1.0070 0.9236 0.8465 0.8094 0.7845
1.43 0.3 14.0699 4.6658 2.7374 1.6078 1.1502 1.0810 1.0275 0.9535 0.8804 0.8460 0.8232
1.67 0.4 12.4740 4.2964 2.5933 1.5756 1.1609 1.0940 1.0461 0.9807 0.9125 0.8800 0.8596
2 0.5 10.1809 3.8287 2.3758 1.5114 1.1523 1.0994 1.0567 0.9995 0.9416 0.9122 0.8946

3.33 0.7 5.1980 2.5551 1.8028 1.3201 1.1080 1.0779 1.0533 1.0180 0.9833 0.9662 0.9556
5 0.8 3.1194 1.8558 1.4688 1.1913 1.0671 1.0495 1.0356 1.0163 0.9950 0.9842 0.9787
10 0.9 1.6575 1.2853 1.1554 1.0637 1.0233 1.0195 1.0127 1.0060 0.9996 0.9964 0.9941
100 0.99 1.0086 1.0043 1.0017 1.0009 1.0004 1.0002 1.0002 1.0003 1.0001 1.0000 0.9999

1e06 1 1.0000 1 1 1.0000 1.0000 1 1.0000 1.0000 1.0000 1 1

2.3.3 Diversi�cation failure and tail dependence

In this section we explore the impact of tail dependence on the limits to diversi�cation. The intuitive idea seems

to be that higher tail dependence should worsen the scope for diversi�cation. Surprisingly, our results point

out exactly the opposite. In Figure 2.1 we report the graph of the relationship between the dependence and the
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super-additivity indexes for two di�erent levels of α, both in the region in which the �rst moment does not exist.

The relationship is drawn for several copulas of the elliptical class with di�erent tail-dependence indexes, that is

the Gaussian copula (t-Student's with ν =∞), for which the tail dependence is zero, and t-Student's, for which

the tail dependence increases for lower degrees of freedom. The highest tail dependence is then represented by

the Student-t copula with 1 degree of freedom. We notice that for the case α = 0.2 the relationship is non

monotone for all copulas, and the maximum of super-additivity is reached around the independence case. The

interesting �nding, that is new to the best of our knowledge, is that super-additivity is uniformly lower for

copulas with higher tail dependence. The evidence is con�rmed in the case α = 0.8, in which for the copula

with highest tail dependence VaR is even sub-additive across the whole range of dependence.

So, there seems to be a puzzle in the result that higher tail dependence appears to ease the limits to diver-

si�cation, rather than making them more binding. A very high degree of tail dependence may even destroy

the non-monotonic nature of relationship between dependence and super-additivity, and so create a space for

diversi�cation.

The �rst conjecture that comes to mind to explain this result is that there could be a point in the tail where the

expected ranking is established. The conjecture is suggested by what happens for gaussian risks, as documented

in Figure 2.2. In this case, the relationship between dependence and diversi�cation shows the same ranking as

that in the previous cases if we consider the 10% percentile, while the order is completely reversed at the 1%

percentile.
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Figure 2.1: Risk structure on di�erent Stable marginals (α = 0.2, α = 0.8), elliptical copulas
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Figure 2.2: Risk structure on di�erent quantile, Gaussian marginals, elliptical copulas

Our conjecture is not con�rmed if we perform the same analysis for Cauchy marginals (α = 1). Figure 2.3

depicts the ranking of the elliptical copulas with di�erent tail dependence for quantiles further in the tails.

We verify that the unexpected ranking persists. Dependence structures with higher tail dependence allow to

save VaR capital. Moreover, a comparison of the di�erent tails reveals another facet of this tail dependence

paradox. Not only the schedule of the relationship between dependence and diversi�cation is uniformly lower

for copulas with increasing tail dependence. It also emerges that beyond some point in the tail the relationship

is monotone. In other words, at some point in the tail a high degree of tail dependence creates diversi�cation

bene�ts. Even though the �gure shows that, far in the tail, numerical integration error blurs the schedule of

the relationship, the general path emerges quite clear. Deep in the tails, all the relationships become weakly

monotonic, with an upper ceiling given by the comonotonic bound, SR = 1, beyond a critical dependence level.

Moreover, this additivity ceiling is reached for lower levels of dependence, the lower the tail dependence value
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of the copula function.
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Figure 2.3: Risk structure on di�erent quantile, Cauchy marginals, elliptical copulas

2.4 Conclusions

Heavy tailed α-stable risks have been largely used in the representation of actuarial risks, particularly in the

�eld of catastrophe insurance, and operational risk, which is the kind of �nancial risk which is closest to the

kinds of risk that are typical of insurance. Since the 60s, the α-stable distribution has also been proposed as a

possible model to represent the dynamics of speculative prices. In this paper, we provide numerical analysis to
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study the aggregate behavior of losses for α-stable risks, with reference to a super-additivity index.

We contribute to the literature on this kind of risk in two directions. First, we con�rm the results of super-

additivity for stable risks with α lower than 1, that can only be mitigated with negative dependence. For

what concerns the insurance market, where these kinds of risk are often found, our results support evidence

concerning the impossibility of re-insurance policies. In fact, any reinsurance policy of α-stable risks would call

for more capital than that needed to shield the losses on individual risks. Moreover, the super-additivity curse

mainly hits cases in which the α parameter is lower than 1 and the mean is not de�ned. This implies that

in this case coherent risk measures like the Expected Shortfall are not available and the Value-at-Risk is the

obliged choice.

As for the analysis of diversi�cation in the tail of the distribution, our simulations provide evidence that in our

view represents a new puzzle. If we rank the dependence structures according to their tail dependence indexes,

we �nd that structures with higher tail dependence provide more space for diversi�cation. In particular, we

�nd that: i) the super-additivity ratio for every level of dependence is lower for dependence structures with

higher tail dependence; ii) for extreme points in the tail the aggregate VaR of risks becomes additive beyond a

critical dependence level, and this critical level is lower for copula functions with lower tail dependence.

Concerning the latter point, our semi-analytic approach based on numerical integration opens a new research

path that applies analysis to explore the very extreme tail behaviour of aggregated risks, parallel to a stream

of literature that instead has studied the asymptotic tail behaviour of aggregated VaR from an analytical point

of view (see for example Embrechts et al. (2009)). A more extensive empirical investigation of the actual

convergence of the aggregated VaR to this limit is left as a topic for future research. The analytical study of the

behaviour of VaR aggregation in model with tail dependence remains the other main avenue for future research.
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Chapter 3

Value-at-Risk and the Tail Dependence

Puzzle

Abstract

We document a new paradox in VaR aggregation. When marginal distribution have su�ciently heavy tails

an increase in the tail dependence index may reduce the aggregated Value-at-Risk. We address by simulation

conditions under which this result may persist for all �nite percentiles in the tail. When this is case, the tail

dependence puzzle is also extended to other law invariant measures, such as Expected Shortfall.

Keywords

risks aggregation, risk measures, copula functions, tail dependence structure.
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3.1 Introduction

Consider a portfolio of two risks identically distributed and dependent. Assume the dependence structure is a

Gaussian copula and you compute a 5536 $ risk capital requirement using Value-at-Risk. Say you are worried

how this capital charge could change if the true dependence structure would actually exhibit tail dependence,

such as with a Student-t copula with same correlation but 1 degree of freedom. You would think that tail

dependence is bad and would cost you more capital, wouldn't you? Well, it may happen that the new capital

charge would be now 4826 $ and heavy tail dependence would save you money. We call this the tail dependence

puzzle. This paper is devoted to investigate this puzzle using both analytical and simulation means.

One could argue that we are putting together di�erent concepts. On one side we computed 5536 $ risk capital

without tail dependence against 4826 $ with heavy tail dependence on a �nite quantile. On the other side tail

dependence is an asymptotic concept, de�ned as a limit of a conditional distribution:

λL = lim
z→0

C(z, z)

z

where λL denotes the tail index of the lower tail and C(u, v) is a copula function of the two risks in the portfolio.

This contrast between �nite and asymptotic does not provide an answer the paradox, but it even makes it even

more evident. How could an asymptotic measure of risk provide a saving of risk capital at the standard �nite

percentiles? Is is then good and safer to seek tail dependent risks? Or are �nite measures simply misleading

and we should design capital requirement on asymptotic measures?

As soon as capital requirements will be computed on �nite points of the distribution tail, the puzzle that we

point out would survive. In Table 3.1 we give a more detailed account of the instance of the puzzle. The table

reports the shape of the two identically distributed risks, X1, X2. We assume two cases of marginal distributions:

α-stable symmetric distribution with α = 1.5 and Student-t distribution with 1.86 degrees of freedom. The

two tail indexes of the marginal distributions were chosen to ensure the same marginal VaR measure, equal to

3094 $. Let us notice that the two marginal distributions used in the experiment share the common feature of

being moderately heavy-tailed. However, the tails are not heavy enough to violate subadditivity. We see this

comparing the marginal VaR and the VaR of the portfolio of the two risks, Z = X1 + X2. In all cases, we

assume elliptical copulas with the same correlation parameter, equal to 0.25. En passant, we notice that that

the aggregation of α-stable risks costs more capital than Student-t risks. However, as we claimed above, we see

that the capital charge is decreasing with lower degrees of freedom of the copulas, from a level of 25 that makes

the copula indistinguishable from the Gaussian one, down to 1. This raises the paradox. One presumes that

large joint negative outcomes are much more probable when tail-dependence is higher. In the Student-t copula

framework, the lower the degrees of freedom parameter ν, the higher this probability, but in spite of this the

risk capital computed is lower.

50



Table 3.1: Tail dependence and VaR: heavy tails marginals

marginals degrees VaR1%(X1) Copula DOF Corr.ρ VaR1%(Z)

Stable α = 1.5 3094 $ 1 0.25 4826 $

Stable α = 1.5 3094 $ 3 0.25 5151 $

Stable α = 1.5 3094 $ 25 0.25 5336 $

t-Student β = 1.86 3094 $ 1 0.25 4780 $

t-Student β = 1.86 3094 $ 3 0.25 4971 $

t-Student β = 1.86 3094 $ 25 0.25 5069 $

One may wonder whether this is the exception or the rule. Table 3.2 shows that there is a standard case in

which one obtains what he expects, that is higher capital requirements for higher tail dependence. This happens

when marginal risks are Gaussian, as it is the case in the Table. Now the aggregate VaR �gure increases from

2121 $ to 2370 $ as the degrees of freedom of the Student-t copula decrease from 25 down to 1.

Table 3.2: Tail dependence and VaR: Gaussian marginals

marginals degrees VaR1%(X1) Copula DoF Corr.ρ VaR1%(Z)

Stable α = 2 1328 $ 1 0.25 2370 $

Stable α = 2 1328 $ 3 0.25 2243 $

Stable α = 2 1328 $ 25 0.25 2121 $

From the two examples above it emerges that a critical condition for the tail dependence paradox to show up

is the tail behaviour of the marginals. On one hand, if marginal tails are thick enough, the aggregated risk is

higher for weaker tail-dependence (with maximum obtained when the case of zero tail dependence is reached,

that is the Gaussian copula). On the other hand, thin marginals allow for "regular" behaviour of the capital

requirement, meaning that stronger dependence on the tails induces higher Value-at-Risk.

The relevance of marginal tails for aggregate VaR emerges clearly from the de�nition of C-convolution, that is

the concept of convolution extended to dependent variable. This was �rst proposed in (Cherubini et al., 2011)

and reads

FX1+X2(z) =

∫ 1

0
D1C

(
ω, F (z − F−1(ω))

)
dω

where C(., .) is the copula function linking X1 and X2, D1 denotes partial derivative with respect to the �rst

argument and F (x) is the probability distribution that is common to the (identically distributed)risks X1 and

X2.

The z-level aggregated VaR of X1 and X2 crucially depends on both copula function C(., .) and the marginal

distribution F , and we have seen in the examples before that tail dependence may play opposite roles for di�erent

tail shapes of F . For thin marginal tails, tail dependence increases the risk and the capital requirement, For

heavier tails, at some point the paradoxical behaviour arise, and tail dependence sort of moderates risk and the

capital required to absorb it.

The puzzle raises a further question. Say that the tail index paradox shows up at the z-percentile. Will it persist

51



for lower percentiles as well? The question, that may seem only theoretical, has an important practical fallout,

particularly in the current period in which VaR is being substituted in many applications and regulatory

provisions by the alternative Expected Shortfall, ES measure (see for example the forthcoming market risk

regulation for �nancial intermediaries called Fundamental Review of the Trading Book, FRTB). It is in fact

well known that ES can be written as the integral of VaR measures

ES(X1 +X2) = −1

z

∫ z

0
F−1
X1+X2

(u) du

It is then clear that if the tail dependence reduces the risk for all VaR measures in the (0, z] tail, the ES

measure is also decreased. The condition is only su�cient because it may happen that the tail dependence

paradox disappears at some percentile in the (0, z] region, but this is not enough to compensate for the e�ect

of the paradox in the rest of the region.

The plan of the paper is as follows. Section 3.2 introduces the C−convolution and then focus to the case

of t-copula. In Section 3.3 we give the analysis on the tail dependence and provide the main results on the

Value-at-Risk ranking condition. To con�rm the result, Section 3.4 provides a real application on stock �nancial

market. Section 3.5 concludes.

3.2 Preliminaries: Convolution

3.2.1 Copula functions and Dependence

We here recall the basic theory and useful results on copula functions and the non parametric dependence

structure of random variables. In what follows we introduce the bivariate case, that we use in this analysis.

A complete reference on copula functions is Nelsen (2006), while Frees and Valdez (1998) describes copula

simulation methods. A reference on copula methods applied in �nance is Cherubini et al. (2004).

De�nition 3.2.1 (Copula). A 2-dimensional Copula C is a function C : I × I → I , with I = [0, 1] the unit

space, that satis�es these properties

1. C(u1, 1) = u2, C(1, u2) = u1

2. C(u1, 0) = C(0, u2) = 0

3. for u1 ≥ u2 and v1 ≥ v2,

C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2) ≥ 0

Copula functions allow to separate the marginal behaviour of the individual random variables from their depen-

dence structure. Due to the integral probability transform, copula functions single out the dependence structure
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by reducing the representation of dependence to a joint probability function taking uniform random variables

as arguments.

Theorem 3.2.2 (Sklar). Let F1, F2 be the continuous univariate distribution functions of the random variables

(X1, X2). Then, H(x1, x2) is a joint distribution function if and only if ∀ (x1, x2) ∈ R2

H(x1, x2) = C
(
F1(x1), F2(x2)

)
(3.1)

where C is a copula function.

It may be proved that copula functions are naturally linked to the concepts and measures of non parametric

association. The maximal copula is de�ned asM(u1, u2) = min{u1, u2}, and is known as upper Fréchet bound.

This is related to the concept of perfectly positive dependence, or co-monotonicity, that is r.v.'sX1, X2 such that

there exists a strictly increasing function linking one variable to the other. As for perfect negative dependence,

the Fréchet bound readsW(u1, u2) = max
{
u1 +u2−1, 0

}
and it is meaningful only in the bivariate dimension.

Finally, it is well known that the independence case is represented by the Product Copula: u1u2

Copula functions are naturally linked to non parametric association measures such as Spearman's ρ and

Kendall's τ .

Proposition 3.2.3. Suppose (X,Y) have continuous marginal distributions and unique copula C. Then the

Kendall's τ are given by

ρτ (X,Y ) = 4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1

and rank correlation measure Spearman's ρ is de�ned as

ρS(X,Y ) = 12

∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 3

Copula functions are particularly well suited to represent the dependence structure of extreme events, that is

measured by the so called tail dependence coe�cients, and are the main object of our analysis. The tail index

coe�cient is linked to the concept of conditional distribution, and can be easily written in terms of copula

functions. We have the following de�nition.

De�nition 3.2.4. Let X,Y be two r.v.'s with corresponding continuous d.f.'s F, G. We de�ne the upper tail

dependence parameter λU as the limit,

λU = lim
t→1−

P
[
Y > G(−1)(t)

∣∣∣X > F (−1)(t)
]

(3.2)
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Accordingly, the lower tail dependence coe�cient λL is de�ned as

λL = lim
t→0+

P
[
Y ≤ G(−1)(t)

∣∣∣X ≤ F (−1)(t)
]

(3.3)

Next theorem shows how tail dependence can be expressed in terms of copulas.

Theorem 3.2.5. Given X, Y, F, G, λU , λL de�ned as above in (3.2.4), let C be the bivariate copula of (X,Y ).

If the limits (3.2) and (3.3) exist, then tail dependence coe�cients can be expressed as follows

λU = 2− lim
t→1−

1− C(t, t)
1− t

λL = lim
t→0+

C(t, t)
t

Here below we show the tail dependence formulas for the copulas used in this paper: elliptical (Gaussian and

Student's).

Example 3.2.6 (Copulas and corresponding tail dependencies).

� Gaussian copula Cρ(u1, u2) = Φ2(φ−1(u1),Φ−1(u2), ρ) λU = λL = 0

where Φ2 and Φ are the bivariate and univariate standard Gaussian cdf respectively.

� Student's t-copula Cνρ (u1, u2) = tν(t−1
ν (u1), t−1

ν (u2), ρ, ν) λU = λL = 2 tν+1

(
√
ν + 1

√
1− ρ√
1 + ρ

)
where tν and tν are the bivariate and univariate Student's t-cdf respectively.

3.2.2 Convolution of dependent variables

We now formally introduce the representation of the VaR aggregation problem for dependent variables. Under

the assumption of independence, the problem of computing the VaR of a sum of risks would merely leads to the

standard concept of convolution of random variables. Then, the natural extension of this concept to the case

of dependent variables is the de�nition of C-convolution proposed by Cherubini et al. (2011). The term C in

the de�nition reminds of the copula function representing a general relationship of a pair of variables X and Y .

The �nding was obtained as a by-product of a more general result for the characterization of the dependence

structure between the variables X and X + Y from the dependence between X and Y . We report here the

main proposition.

Proposition 3.2.7. Let X,Y be two real-valued random variables on the same probability space (Ω,F ,P) with
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corresponding copula CX,Y and continuous marginals FX , FY . Then,

CX,X+Y (u, v) =

∫ u

0
D1CX,Y

(
ω, FY (F−1

X+Y (v)− F−1
X (ω))

)
dω (3.4)

FX+Y (t) =

∫ 1

0
D1CX,Y

(
ω, FY (t− F−1

X (ω))
)

dω (3.5)

where Ci,j(u, v) denotes the copula functions between the variables reported in the underscore, D1C(u, v) rep-

resents the derivative with respect to u, Fi denotes the distribution function of the variable reported in the

underscore(X, Y and X + Y ).

Notice that in this result we have implicit de�ned te concept of C -convolution

De�nition 3.2.8 (C -convolution). Lef F , H be two continuous c.d.f's and C a copula function. The C -

convolution of H and F is de�ned as the c.d.f.

H
C∗ F (t) =

∫ 1

0
D1C

(
ω, F (t−H−1(ω))

)
dω

This result provides a formal de�nition and an alternative computation approach to the convolution of dependent

variables, with respect to the standard Monte Carlo. In some cases, moreover, an important property of the

C-convolution operator can be used to make the computation easier. In fact, it can be easily proved that the

C-convolution operator is closed with respect to mixture of copula functions. In other words, it can be shown

that if for some bivariate copula functions A and B we have

C(u, v) = λA(u, v) + (1− λ)B(u, v), ∀ λ ∈ [0, 1]

then, for all c.d.f's H, F it holds

H
C∗ F (t) = H

λA+(1−λ)B
∗ F = λH

A∗ F + (1− λ)H
B∗ F

Remark 3.2.2.1. Notice that the C -convolution can be formulated in terms of either the �rst or the second

derivative.

FX+Y (t) =

∫ 1

0
D1CX,Y

(
ω, FY (t− F−1

X (ω))
)

dω =

∫ 1

0
D2CX,Y

(
FX(t− F−1

Y (ω)), ω
)

dω (3.6)

The related choice depends of the conditioning random variable that we take into account. The C-convolution

gives the same result if the joint distribution is exchangeable. Notice that in our case the de�nition of exchange-

ability involves both the copula function and the marginal distributions, that is C(u, v) = C(v, u),∀u, v and

FX = FY = F . This is the case of our analysis.
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Example 3.2.9. Gaussian C -convolution

Recall the Gaussian Copula as

CGa(u1, u2; ρ) = Φ2(Φ−1(u1),Φ−1(u2); ρ) =
1

2π
√

1− ρ2

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
exp

(
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

)
dx1 dx2

where x1 ∼ FX1 , x2 ∼ FX2 are r.v.'s such that ui = Φ(xi), i = 1, 2 and Φ2(·, ·, ρ) is the cdf of two standard

normally distributed random variables with correlation ρ ∈ (−1, 1),Φ is the cdf of N (0, 1) (standard normal)

and Φ−1 is the quantile function.

The partial derivative of CGa(u1, u2; ρ) wrt u2 is

D2C (u1, u2; ρ) = Φ

(
Φ−1(u1)− ρΦ−1(u2)√

1− ρ2

)

under the result in (3.6) and a change of variable ω = FX2(x2), the Gaussian C -convolution gives

FX1

CGa∗ FX2(t) =

∫ ∞

−∞

Φ

(
Φ−1

(
FX1(t− x2)

)
− ρΦ−1

(
FX2(x2)

)√
1− ρ2

)
dFX2(x2)

=

∫
1

0

Φ

Φ−1
(
FX1(t− F−1

X2
(ω))

)
− ρΦ−1(ω)√

1− ρ2

 dω (3.7)

Example 3.2.10. Student's t C -convolution

The bivariate Student's t copula is de�ned as

CSt(u1, u2; ρ, ν) =tν(t−1
ν (u1), t−1

ν (u2), ρ)

=

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

Γ(ν+2
2 )

Γ(ν2 )πν
√

1− ρ2

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)−ν+2
2

dx1 dx2 (3.8)

where Γ(·) is the Gamma function, Γ
(
ν+2

2

)
/ Γ

(
ν
2

)
= ν

2 and tν is the bivariate Student's t distribution with ν

degrees.

The partial derivative of CSt(u1, u2; ρ, ν) wrt u2 is obtained applying the Leibniz's rule, as

D2CSt (u1, u2; ρ, ν) = tν+1

 t−1
ν (u1)− ρ t−1

ν (u2)√
(ν+t−1

ν (u2)2)(1−ρ2)

ν+1

 (3.9)
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as above, applying (3.6) the Student's t C -convolution with ν degree holds

FX1

CνSt∗ FX2(t) =

∫ ∞

−∞

tν+1

 t−1
ν

(
FX1(t− x2)

)
− ρ t−1

ν

(
FX2(x2)

)√
(ν+x22)(1−ρ2)

ν+1

 dFX2(x2)

=

∫
1

0

tν+1

 t
−1
ν

(
FX1(t− F−1

X2
(ω))

)
− ρ t−1

ν (ω)√
(ν+t−1

ν (ω)2)(1−ρ2)

ν+1

 dω (3.10)

3.2.3 Student's t representation

We start studying the sign of the derivative of the Student's t-distribution with respect to the degrees of freedom.

According to Abramowitz and Stegun (1992) we write the univariate student's t-cumulative distribution in terms

of the regularized beta function I

tν(x) =


1− 1

2I ν
ν+x2

(ν2 ,
1
2) x > 0

1
2I ν

ν+x2
(ν2 ,

1
2) x ≤ 0

(3.11)

By de�nition the regularized beta function holds

I ν
ν+x2

(
ν

2
,
1

2

)
=
β ν
ν+x2

(
ν
2 ,

1
2

)
β
(
ν
2 ,

1
2

) =

∫ ν
ν+x2

0 t
ν
2
−1(1− t)−

1
2 dt

β
(
ν
2 ,

1
2

)

where β (a, b) =

∫ 1

0
ta−1(1− t)b−1 dt

βy (a, b) =

∫ y

0
ta−1(1− t)b−1 dt

are integral representations of the beta and incomplete beta functions respectively.

Following the approach of Dakovic and Czado (2009), the partial derivative of the Student's t-distribution in

(3.11) wrt the degree-of-freedom ν can be expressed as follows

∂

∂ν
tν(x) = −1

2

∂

∂ν
I ν
ν+x2

(
ν

2
,
1

2

)
= sgn(x)

β ν
ν+x2

(
ν
2 ,

1
2

)
∂
∂ν β

(
ν
2 ,

1
2

)
2β
(
ν
2 ,

1
2

)2 −
∂
∂ν β ν

ν+x2

(
ν
2 ,

1
2

)
2β
(
ν
2 ,

1
2

)
 , ∀ x ∈ R

It follows

∂

∂ν
tν(x) = sgn(x)

(
1

2
I ν
ν+x2

(
ν
2 ,

1
2

) ∂
∂ν β

(
ν
2 ,

1
2

)
β
(
ν
2 ,

1
2

) −
∂
∂ν β ν

ν+x2

(
ν
2 ,

1
2

)
2 β
(
ν
2 ,

1
2

) )
, ∀ x ∈ R where sgn(x) =


1, if x > 0
0, if x = 0
−1, if x < 0
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After few manipulations and the β's property such that ∂
∂ν β

(
ν
2 ,

1
2

)
= 1

2β
(
ν
2 ,

1
2

)(
Ψ
(
ν
2

)
−Ψ

(
ν+1

2

))
, it results

∂

∂ν
tν(x) = sgn(x)

(
1

4
I ν
ν+x2

(
ν
2 ,

1
2

)(
Ψ
(
ν
2

)
−Ψ

(
ν+1

2

))
− 1

2β(ν2 ,
1
2)

[
|x|
(

1

x2 + ν

)ν+1
2

ν
ν
2
−1 +

1

2

∫ ν
ν+x2

0
t
ν
2
−1(1− t)−

1
2 ln(t) dt

])
, ∀ x ∈ R

(3.12)

Note that, by properties of equation (3.12) there exists a unique point (x = 0) where the derivative function on

ν changes its sign. Therefore the function is negative (positive) when x
(>)
< 0.

The Student's t-inverse derivative function on ν is involved in a relationship between the derivative of the t-

distribution ∂
∂ν tν(x) and the density function ϕν(x). Given x = t−1

ν (u), by absolute continuity of the Student's

t-distribution, one can consider the equality tν(t−1
ν (u)) = u, ∀ u ∈ (0, 1). This equation allows to compute the

total derivative wrt ν.

d
dν

(
tν(t−1

ν (u))
)

= ∂
∂ν tν(t−1

ν (u)) + ϕν(t−1
ν (u)) ∂

∂ν t
−1
ν (u) = 0⇒ ∂

∂ν tν(x) + ϕν(x) ∂
∂ν t
−1
ν (u) = 0

⇒ ∂
∂ν t
−1
ν (u) = −

∂
∂ν tν(x)

ϕν(x)
∀ u ∈ (0, 1), given x = t−1

ν (u) (3.13)

It is easy to check that the derivatives w.r.t. ν of the student's t-inverse cdf is positive for all u < 1
2 and negative

for the opposite sign. On the other side, as con�rmed in the above formula, the t-cdf derivatives is positive for

z > 0 and negative for z < 0. As consequence when z < 0, the higher the degrees of freedom the lower the

t-cdf, implying t-cdf never crosses others curves. This is illustrated in Figure 3.1.

Figure 3.1: Comparison between t-cdf and inverse t-cdf for di�erent degrees of freedom ν = 0.5, 1, 2, 25. The left side shows the idea of
the partial derivative w.r.t. ν. Fixing a point z < 0, the smaller the DoF the higher the value assumed by t-cdf. The reverse happens
when z > 0 is considered. On the right side, the t-quantile function is drawn. The derivative of the inverse t-cdf is positive(negative)

for q
(>)
< 1

2
and increasing (decreasing) as DOF grows up (fall down).
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Figure 3.2: Graphics of the t-cdf and inverse t-cdf partial derivatives w.r.t. ν for di�erent degrees of freedom ν = 4, 5, 6. The left side
shows the idea of the partial derivative w.r.t. ν. The derivative is negative (positive) for negative (positive) arguments. Furthermore,
for z < 0 the smaller the DoF the higher the value assumed. The reverse happens when z > 0 is considered. The right side takes into
account the derivative of the quantile function. The framework show higher value for lower degrees of freedom provided ω < 1
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3.3 Tail-dependence analysis through C -convolution

3.3.1 t-copula convolution distribution

The Gaussian and Student's t convolutions with identically distributed marginals FX1 , FX2 ∼ F allow to write

F
CGa∗ F (z) =

∫ 1

0
Φ

(
Φ−1

(
Fα(z − F−1

ν (ω))
)
− ρΦ−1 (ω)√

1− ρ2

)
dω (3.14)

F
CνSt∗ F (z) =

∫
1

0

tν+1

 t−1
ν

(
Fα(z − F−1

ν (ω))
)
− ρt−1

ν (ω)√
(ν+t−1

ν (ω)2)(1−ρ2)

ν+1

 dω (3.15)

The special case of no-correlation, i.e. ρ = 0 can be considered. After a change of variable one gets

F
CGa∗ F (z) =

∫ 1

0
F (z − F−1(ω)) dω =

∫ +∞

−∞
F (z − x) dF (x) (3.16)

F
CνSt∗ F (z) =

∫
1

0

tν+1


t−1
ν

(
F
(
z − F−1(ω)

))
(
ν+t−1

ν (ω)2

ν+1

) 1
2

dω =

∫
+∞

−∞

tν+1

 t−1
ν

(
F (z − x)

)(
ν+t−1

ν (F (x))2

ν+1

) 1
2

 dF (x) (3.17)

The above formulas con�rm that Gaussian C -convolution behaves like standard convolution, that is the case

of convolution of independent variables, di�erently from the Student's t-copula for which the DoF ν preserves
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asymptotic dependence in the tails. Hence, even in the case of zero-correlation, the t-copula can not be expressed

by product copula. For the rest, it is straightforward to show that t-copula convolution converges to the Gaussian

case as ν →∞.

From now on, we assume student's t-marginals, with α, governs the depth of the tail. Then, we compare t-

copula convolutions of two identically distributed student's r.v.'s, that with the same tail-index, that we denote

α (the same tail index notation that is used for stable distributions), in order to distinguish marginal tails from

the degrees of freedom of copulas, that we denote ν. Moreover, since we focus on C-convolutions of i.d. risks

linked by Student-t copula, we will often use the term t-convolution.

Figure 3.3 compares two kind of t-marginals, namely α = 1,∞ corresponding to the Cauchy and Gaussian

respectively. In the upper panel, notice the structure of the t-convolution: given unimodal, symmetric marginals

around zero, the convolution gets perfect symmetry around zero but in opposite DoF order if compared with

the univariate Student's t-case shown in Figure 3.1. In this case higher degrees of freedom are associated to

lower quantile values.

Let's examine the case α =∞ (bottom-right), where marginals are Gaussian and tails are thin. Here, exists a

point where the t-convolution with higher ν parameter crosses any curve with lower ν. Therefore, as the quantile

z is su�ciently negative, the picture yields the "expected" quantile ranking induced by tail dependence: the

higher the copula degrees of freedom, the lower the quantile values. More to the point, when t-convolution

F ν1,ρX+Y (z) crosses the curve of F ν2,ρX+Y (z) the corresponding quantile qν1 level becomes lower than qν2 , for all

ν1 < ν2. As a consequence, we may conclude that t-convolution of thin-tailed marginals are linked into higher

negative quantile values by higher tail-dependence.

Now, look at t-convolution with degree α = 1 (bottom-left) corresponding to the thick-tailed marginals case.

Here, it is easy to see that the above order inversion point does not exist any longer. Then, the counter-intuitive

case in which lower tail dependence dominates higher tail dependence persists down to the far end of the tail. In

this case, t-convolution of thick-tailed marginals gives higher lower tail quantile values for lower tail-dependence.

3.3.2 t-copula convolution derivatives

In what follows, we try an analytical inspection of the tail dependence puzzle investigating the t-copula con-

volution derivative with respect to ν of two identically distributed r.v.'s with rank correlation ρ. We seek to

explain when the DoF t-copula parameter delivers an anomalous quantile order when the marginal distributions

have heavy tails. Using univariate Student's t-derivatives (3.13) we can compute the corresponding t-copula

convolution derivative w.r.t. ν.

Lemma 3.3.1. Given the Student's t-copula with ν DoF and univariate t-margins with α DoF, its partial
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Figure 3.3: Comparison between t-convolution distribution with t-marginal at di�erent degrees of freedom ν = 0.5, 1, 2, 25. On left
part, it is showed the structure of the t-convolution with heavy tailed marginals (α = 1). Fixing a point z < 0, the smaller the DoF
the higher the cdf value. The inverted framework applies when positive z is considered. On the right side, when gaussian marginals
are given, (α = ∞), for a su�cient negative z, the structure is reversed and the higher the DoF, the larger the cdf. Bottom �gures
highlights this structure for negative values.
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derivative with respect to ν is given by

∂

∂ν

∫
1

0

D2C
ρ,ν
St (u1, u2) dω =

∫
1

0

∂

∂ν
tν+1

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1

+ ϕν+1

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1



×

 ∂x1
∂ν − ρ

∂x2
∂ν√

(ν+x22)(1−ρ2)
ν+1

− 1

2

x1 − ρx2(
(ν+x22)(1−ρ2)

ν+1

) 3
2

(1− ρ2)

[
1 + 2x2

∂x2
∂ν

ν + 1
− ν + x2

2

(ν + 1)2

]dω

where xi = t−1
ν (ui), i = 1, 2

Proof. See Appendix 3.6.1.

Figure 3.3 describes the relationship between the speed at which the t-convolution decreases and the degrees

of freedom. More to the point, given copula DoF ν1 < ν2 if t-convolution F ν1,ρX+Y (z) decreases faster than

F ν2,ρX+Y (z), then the latter dominates the former in distribution and provides higher quantile values. The speed

at which a distribution function decreases is given by �rst derivative, and corresponds to the probability density

function. Thus, considering z < 0, the higher the density, the faster the decreasing rate.

The C -convolution density function is given by

fX+Y (z) =
∂

∂z
F
C∗F (z) =

∫ 1

0
cX,Y

(
FX(z−F−1

Y (ω), ω)
)
fX

(
z − F−1

Y (ω)
)

dω where cνX,Y (u1, u2) =
∂2CX,Y (u1, u2)

∂u1∂u2

In our setting, we compute the t-copula convolution density as

f
cνSt
X+Y (z) =

∫ 1

0
cνX,Y

(
tα(z − t−1

α (ω)), ω
)
fα(z − t−1

α (ω)) dω (3.18)

with the t-copula density de�ned as

cνX,Y (u1, u2) =
1

2π
√

1− ρ2

A−
ν+2
2

ϕν (x1)ϕν (x2)
xi = t−1

ν (ui), i = 1, 2, A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)
(3.19)

Figure 3.4 compares the densities of univariate Student-t with di�erent DoF with the densities of the t-

convolution. We notice that the ranking of the t-convolution density with respect to the degrees of freedom is

opposite with respect to that one of the univariate.

62



Figure 3.4: Comparison between t-convolution density with student's t-marginal and univariate t-density. In the upper panel, we
consider either di�erent marginals degrees α = 1, 25 and t-copula degrees of freedom ν = 0.5, 1, 2, 25. In left part, the structure of
the density assuming heavy-tailed marginals (α = 1). Noting that, above a negative cut-o� point z < 0, the structure shows higher
density for higher t-convolution DoF. On the other side, with thin marginals (α = 25), the density changes the tendency looking for a
second cut-o� point, where the structure is reversed. According the standard t-density function (lower panel) the structure on degrees
ν is reversed.
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3.3.3 Conditions for the inversion of the risk ranking

In this session we investigate the conditions under which the risk ranking that we call tail dependence puzzle

shows up and remains veri�ed down to the end of the tail. In other words, we want to know under which

conditions if the tail dependence puzzle is observed at the point z in the tail, it is also veri�ed for any z < u < 0.

We start from a formal de�nition of the tail dependence puzzle.

De�nition 3.3.2 (Odd Ranking Condition).

Given a Student-t copula, we de�ne the Odd Ranking Condition (ORC) as the state under which the portfolio

riskiness grows-up as t-copula DoF increases, or equivalently, when tail-dependence reduces.

The ORC denotes the inverted risk structure, meaning that higher conditional probability in the tails does not

correspond to higher portfolio risk but the converse. In terms of parameter of the t-copula convolution model,

it can be stated that ORC exists if F ν1,ρX+Y (z) < F ν2,ρX+Y (z), ∀ ν1 < ν2.

The next statement guarantees the existence of ORC at su�ciently high percentiles.
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Lemma 3.3.3 (Odd Ranking Condition existence). Assume a t-copula convolution. Then, when z approach

zero from below, ORC holds.

Proof. In Appendix 3.7.3 it is showed that the t-density convolution derivative w.r.t. ν is negative when

evaluating at z = 0. This suggests near to zero, the speed of decreasing is higher for lower t-convolution DoF

ν. Therefore

F νl,ρX+Y (z) < F ν,ρX+Y (z), ∀ νl < ν, when z → 0−

We now analyse whether the ORC persists further in the tail or is reversed. It clearly all depends on the

derivative of the t-convolution with respect to the degrees of freedom. We start observing that this can behave

in two possible ways:

1.
∂

∂ν
F ν,ρX+Y (z) becomes negative and converges to the end tail from 0−

2.
∂

∂ν
F ν,ρX+Y (z) remains positive and converges to end tail from 0+

It is obvious that this makes the di�erence for the inversion of the risk ranking: in the �rst case the derivative

remains negative and for any low value ν1 such that with ν1 < ν2 it is possible to �nd a value z∗ν1 such that the

corresponding convolution value is higher than the one with parameter ν, that is

F ν1,ρX+Y (z∗ν1) < F ν2,ρX+Y (z∗ν2), ∀ ν1 < ν2

In the second case, instead, the risk ranking will remain inverted associating higher quantile values to lower tail

dependence.

We then have to prove that the derivative of the t-copula with respect to ν may become negative.

We �rst recall the partial derivative w.r.t. ν of the t-convolution and show that it can be decomposed into the

following sum of integrals

∂

∂ν
F ν,ρX+Y (z) =

∫
1

0

∂tν+1

∂ν

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1

 dω (3.20)

+

∫
1

0

ϕν+1

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1

× [ ∂x1
∂ν − ρ

∂x2
∂ν√

(ν+x22)(1−ρ2)
ν+1

− 1− ρ2

2

x1 − ρx2(
(ν+x22)(1−ρ2)

ν+1

) 3
2

(
1 + 2x2

∂x2
∂ν

ν + 1
− ν + x2

2

(ν + 1)2

)]
dω

where x1 = t−1
ν (tα(z − t−1

α (ω))), x2 = t−1
ν (ω).

Now, let's consider the case where the derivative may become negative, corresponding to the risk inversion. To

see this, we study the mixed partial derivatives. Consider �rst a framework in which equation (3.20) starts
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at zero, then takes positive value and, going down on z < 0, becomes and remains negative approaching zero

from below. In this case the mixed derivative
∂2

∂z∂ν
F ν,ρX+Y (z) initially is positive as long as the minimum is

reached, then it assumes negative values as far as z →∞. On the other side, when (3.20) assumes only positive

values, it approaches zero from above and the derivative of
∂

∂ν
F ν,ρX+Y (z) is positive for all z < 0, corresponding

to
∂2

∂z∂ν
F ν,ρX+Y (z) always positive.

In can be easily noted that the derivative of (3.20) w.r.t. z corresponds to the t-density derivative on ν.

∂

∂z

(
∂

∂ν
F ν,ρX+Y (z)

)
=

∂

∂ν

(
∂

∂z
F ν,ρX+Y (z)

)
=

∂

∂ν

(
∂

∂z

∫ 1

0
D2C

ν,ρ
St

(
tα(z − t−1

α (ω)), ω
)

dω

)
=

∂

∂ν
f
cνSt
X+Y (z)

Furthermore, based on the result in Appendix 3.7.2, the t-convolution density partial derivative w.r.t. ν is

stated as follows

∂

∂ν
f
cνSt
X+Y (z) = −

∫ 1

0
cνX,Y

(
tα(z − t−1

α (ω)), ω
) ∂

∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂
∂νA

A

) fα(z − t−1
α (ω)) dω

= −
∫ 1

0
cνX,Y

(
tα(z − t−1

α (ω)), ω
)
G
(
tα(z − t−1

α (ω)), ω
)
fα(z − t−1

α (ω)) dω (3.21)

where x1 = t−1
ν (tα(z − t−1

α (ω))), x2 = t−1
ν (ω), A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)

Thus, the function G is given by

G(u1, u2) =
∂
∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
(3.22)

As consequence, negative values on the partial derivatives on ν of the t-convolution density contradicts ORC

and so the expected risk structure is obtained, that is, risk is positivity related to the tail dependence. We then

now look for conditions that ensure ORC, that is a parametric set that allow positive values only.

Lemma 3.3.4. Let's assume the t-copula framework. As G(u1, u2) < 0⇒ ORC is satis�ed

Proof. The t-convolution density partial derivative w.r.t. ν (3.21) is made up by 3 parts: the �rst and the

third are the bivariate t-copula density cνX,Y (u1, u2) with ν DoF and the univariate t-density ϕα(z) with α DoF,

respectively. Then, they are both positive and the sign of the equation (3.21) is only related to the sign of the

G(u1, u2) function.

According to this result, then, it all boils down to study when the function G(u1, u2). If we give conditions for

negative values, we ensure positiveness of (3.21) and consequently we have that ORC holds.

Since we look for condition on the marginals DoF one can argue that for su�ciently small values on α, i.e.

thick-tailed marginals, the risk framework is reversed, so the higher the tail dependence, the lower the Value-
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at-Risk. Therefore one investigate the sign of G(tα(z − t−1
α (ω)), ω) checking whether small enough marginal

α-DoFs allow the function G to take negative values.

Remark 3.3.3.1.

Because we evaluate the function G(tα(z − t−1
α (ω)), ω) outside the integral, one have to deal with the average

value of ω that is ω̄ = ω(z, α, ν, ρ). This implies that ω̄ is no longer an independent variable but a function

of all the variables of the t-copula framework. Since the integral in (3.20) cannot be solved analytically, ω̄ has

not an analytical closed form. It follows one can only compute it by means a numerical procedure inverting the

integral equation. In any case, since we are in the lower tail we may safely assume ω̄ < 1
2 . Thus, we look at the

behaviour of α to examine the change in t−1
α (ω̄). By result, as α decreases, ω increases.

Following the remark, we compute a couple of results of interest on ω̄, that is

∂ω̄

∂z
> 0 and

∂ω̄

∂α
< 0 (3.23)

Based on this, we can �rst prove the existence of ORC in the simplest case ρ = 0 and then look at positive

correlation ρ that leads to positive G.

Lemma 3.3.5. Given the t-convolution partial derivative de�ned in (3.21) and assume ρ = 0. Then for

su�ciently negative z, G
(
tα(z − t−1

α (ω)), ω
)
becomes positive as α→ 0.

Proof. See Appendix 3.7.7

The above Lemma implies that, for su�ciently negative z, the decrease of α causes the G function to decreases

as well, suggesting that t-convolution density partial derivative rises-up. Because that derivative is not bounded,

it exists an α-level such that the derivative assumes only positive values.

Lemma 3.3.6. Given G de�ned in (3.22) and assume ρ positive. Then for su�ciently negative z and for α

small enough G
(
tα(z − t−1

α (ω)), ω
)
rises up as ρ increases.

Proof. See Appendix 3.7.8

We consider the relationship among the r.v's up to the case of comonotonicity. In fact, we know that if risks

are comonotonic, the additivity property of the quantiles reduces the problem to a univariate distribution, and

the ORC cannot be reached. The meaning of the Lemma 3.3.6 here is that the G-function increases its value

and becomes positive for ρ su�cient large. Furthermore, the e�ect of the correlation ρ increases the value of α

at which G becomes positive, therefore it is su�cient deal with thinner marginal to reject ORC.
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At this purpose, in Figure 3.6 we report the behaviour of function G for di�erent levels of correlation and in

Figure 3.5 it is showed the derivative on ν of the t-density convolution that contains G and move on on the

opposite side: it becomes negative when ORC is denied.

Figure 3.5: t-convolutions derivative w.r.t. ν as function of marginal α-level for di�erent ρ curves. Left side shows the case of ν = 1.
Noting that all the curves grows-up constantly up to a maximum. On the right, we deal with ν = 25. The tendency of that curves is
slightly decreasing to negative values as α→ 0.
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Figure 3.6: G(u1, u2) as function of marginal α-level for di�erent ρ curves. As can be seen the function becomes positive as α→ 0
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In the below tables, we examine t-convolution formula in (3.15). Given two positive real number ν1, ν2 corre-

sponding to the DoFs of two t-convolutions on the r.v.'s. X1, X2 v tα with common tail-index α, we look at
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the zero of the function, that is the point z∗ such that

F ν1,ρX+Y (z)− F ν2,ρX+Y (z) =

=

∫
1

0

tν1+1

(
t−1
ν1

(
tα(z − t−1

α (ω))
)
− ρtν1 (ω)√

ν1+t−1
ν1

(ω)2(1−ρ2)

ν1+1

)
− tν2+1

(
tν2
(
tα(z − t−1

α (ω))
)
− ρtν2 (ω)√

ν2+t−1
ν2

(ω)2(1−ρ2)

ν2+1

)
dω = 0 (3.24)

Let's consider a negative value close to zero. In that case the ORC is veri�ed as stated above, so it results

F ν1,ρX+Y (z) < F ν2,ρX+Y (z). To reject the condition, we decrease the variable z down to a su�cient negative value

obtaining, if exists, a value z∗ such that either convolutions with higher ν2 and lower ν1 DoFs evaluated at

that point get the same value. As consequence at z∗ we have the same VaR for both the convolution and

F ν2,ρX+Y (z) < F ν1,ρX+Y (z) for all z < z∗. Therefore one obtains the higher VaR for lower t-convolution DoF and so

the ORC is denied because lower DOF are related to higher tail dependence.

In what follows, we show the application of the (3.24) setting various parameters. Results below con�rm what

we stated. First we observe a clear trend on optimal points. The lower the α, the more negative the z∗ and

this relationship is valid on the whole space parameters. We focus on Table 3.3 where we look at the inversion

of the ORC, considering the couple of t-convolutions with DoFs ν1 = 1 and ν2 = 50. So in this setting, the

parameter space that denies ORC allows to invert the risk structure on the tail-index interval (1, 50) in which

the ORC will not hold. More to the point, we observe when α decreases z decreases as well and this issue is

true for all the dependence ρ.

Now, we give a counterexample. Let consider α = 1. In that case the optimal is not accomplished so we did not

�nd a z∗ that keeps equal the cdf of the two above convolutions. The side e�ect is that VaR remains higher for

lower tail dependence. Since that issue needs a investigation with marginal DoF lower than 1, we fail to reach

to the result related to the Lemma 3.3.5 because numerical instability.

Now, we focus on the positive dependence ρ. First one note the role of ρ extends the value of z∗, so the optimal

point is farther in the tail. As a matter of fact, one can study the case of α = 1.5, ρ = 0, where we haven't found

the z∗. But regards higher correlation level we are able to get that optimal point: at ρ = 0.5 ⇒ z = −326.37

and for ρ = 0.9⇒ z = −120.76. Therefore, as highlighted in the Lemma 3.3.6, the positive dependence allows

to �nd an optimal point with reduced value as ρ increases. As evidence of this issue Figure 3.5 shows the

gradual reduction of the t-convolution density derivative on ν when ρ→ 1.
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Table 3.3: Optimal z∗-search, for various parameters, ν1 = 1, ν2 = 50

ν1 ν2 ρ α z∗

1 50 0 25 -2.35

1 50 0 15 -2.46

1 50 0 5 -3.22

1 50 0 3 -4.89

1 50 0 2 -784.00

1 50 0 1.5 N.A.

1 50 0 1 N.A.

ν1 ν2 ρ α z∗

1 50 0.5 25 -2.9

1 50 0.5 15 -3.04

1 50 0.5 5 -4.05

1 50 0.5 3 -6.32

1 50 0.5 2 -17.83

1 50 0.5 1.5 -326.37

1 50 0.5 1 N.A.

ν1 ν2 ρ α z∗

1 50 0.9 25 -3.64

1 50 0.9 25 -3.83

1 50 0.9 25 -5.23

1 50 0.9 25 -8.38

1 50 0.9 25 -21.44

1 50 0.9 1.5 -120.76

1 50 0.9 1 N.A.

3.4 A Real World Example

Here we give a concrete example of the VaR of a portfolio of two of assets that turned out to be among the

riskiest during the 2008 �nancial crisis. The two stocks are AIG and Freddie Mac. We decompose the change in

VaR at the time of the crisis in the marginal risk component and the dependence structure component, splitting

the e�ect of dependence and tail dependence.

Table 3.4 reports the estimates of the marginal distributions of the two stocks and their dependence structure

before the crisis (2003-2006) and during the crisis (2007-2009). Both the marginal distributions and the copula

functions are Student-t. Concerning dependence, we observe a sizeable increase of of the correlation parameter

of the copula function that almost doubles from 0.369 to 0.622. As for tails, we notice a sharp decrease of the

degrees of freedom both of the marginals and the copula function. Even though the marginal distributions were

showing fat tails already before the crisis, we observe a massive increase of that feature in the crisis period and

the degrees of freedom of both the stocks tumble down to values between 1 and 1.5. The same happens for the

tail dependence that rises from 0.075 to 0,468 as the joint e�ect of the increase in correlation and the decrease

in the tail index (form above 7 to slightly below 2.

Table 3.4: Marginal distribution and copula estimates

Period Marginals Mean St. Dev. DoF Corr.ρ

2003-2006 AIG 2.32e-05 9.22e-03 3.219

FMCC 3.29e-04 0.01 5.134

Copula 7.0429 0.369

2007-2009 AIG 1.71e-02 1.99e-02 1.138

FMCC -8.31e-04 0.03103 1.449

Copula 1.9608 0.622

Table 3.5 reports the change of VaR in the two periods of an equally weighted portfolio of the two stocks. As

it was expected, the VaR rises by more than 10 times, from 600 $ to over 7 500 $. In both periods the VaR

remains sub-additive, with a ratio of diversi�ed to undiversi�ed VaR that however increases from 0.82 to 0.92.

The decomposition of the change in VaR in the changes in the marginal components and in the dependence
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structure shows a huge relevance of the former. The VaR would have risen to 7 481 $ instead of 7 507 $ if the

dependence structure had remained the same. However, a further decomposition of the dependence structure

in correlation and degree of freedom shows that the impact of the change in the copula function is the net e�ect

of the increase in correlation, that would raise the VaR by 308 $, and the decrease in the degrees of freedom,

that instead decreased VaR by 282 $. So, the tail dependence e�ect goes in opposite direction with respect to

the increase in correlation and is almost as big as that. The curse of dependence increase in bad times is then

eased by the strange blessing of the tail dependence increase.

Table 3.5: VaR Decomposition

Period AIG FMCC ρ ν ∆-VaR VaR

2003-2006 396.80 3463 0.369 7.0429 604.16

4307.12 3811.01 0.369 7.0429 6877.10 7481.26

4307.12 3811.01 0.622 7.0429 307.72 7788.98

2007-2009 4307.12 3811.01 0.622 1.9608 -282.06 7506.92

Figure 3.7 draws the dependence structure among the two stocks on the early period (upper) and on the crisis

(lower). One can easily recognize the transition of the t-copula relationship from lower to higher positive

dependence. The graphical representation con�rms also the increasing of tail-dependence on lower-left corner.

One can highlighted on the drawback of the t-copula model concerning the symmetric tail-dependence. Indeed

as can be seen, the model provides also higher dependence in the right-upper corner and tiny association in the

countermonotonic cases (upper-left and lower-right corners).

3.5 Conclusions

We documented and explored a new paradox in VaR aggregation. When marginal distribution have su�ciently

heavy tails an increase in the tail dependence index may reduce the aggregated Value-at-Risk. This is coun-

terintuitive since one would naturally expect that the increase of the joint probability of extreme events should

require more capital. While the paradox is well documented, it is di�cult to prove whether it may persist for

all �nite percentiles in the tail. Here we give the �rst conditions, obtained by numerical integration to ensure

that this may happen.
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Figure 3.7: t-copula dependence structure in the period (2003-2006) and (2007-2009)
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3.6 Appendix A

3.6.1 The derivative of the t-copula convolution w.r.t. ν

Lemma 3.3.1. Given the Student's t-copula with ν DoF and univariate t-margins with α DoF, its partial

derivative with respect to ν is given by

∂

∂ν

∫
1

0

D2C
ρ,ν
St (u1, u2) dω =

∫
1

0

∂

∂ν
tν+1

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1

+ ϕν+1

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1



×

 ∂x1
∂ν − ρ

∂x2
∂ν√

(ν+x22)(1−ρ2)
ν+1

− 1

2

x1 − ρx2(
(ν+x22)(1−ρ2)

ν+1

) 3
2

(1− ρ2)

[
1 + 2x2

∂x2
∂ν

ν + 1
− ν + x2

2

(ν + 1)2

]dω

where xi = t−1
ν (ui), i = 1, 2

Proof

Let's denote kν(u2) =
(ν+x22)(1−ρ2)

ν+1 , y = y(u1, u2, ν) = t−1
ν (u1)−ρt−1

ν (u2)

kν(u2)
1
2

Recall the r.v. xi depends either by the degree-of-freedom and ui, that is, xi = t−1
ν (ui), i = 1, 2
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The total derivative of the h-function of the t-copula depends on the r.v.'s (ν, y). Therefore

∂

∂ν
D2C

ρ,ν
St (u1, u2) =

∂

∂ν

(
tν+1(y)

)
=
∂tν+1(y)

∂ν
+
∂tν+1(y)

∂y

∂y

∂ν

Let's derive y = y(u1, u2, ν) and apply the transformation on xi = t−1
ν (ui), i = 1, 2.

∂y

∂ν
=

∂

∂ν

(
t−1
ν (u1)− ρt−1

ν (u2)

kν(u2)
1
2

)
=

∂
∂ν x1 − ρ ∂

∂ν x2

kν(u2)
1
2

−
(x1 − ρx2) ∂

∂ν kν(u2)
1
2

kν(u2)

∂
∂ν kν(u2)

1
2 = 1

2kν(u2)−
1
2 (1− ρ2)

(
1 + 2x2

∂x2
∂ν

ν + 1
− ν + x2

2

(ν + 1)2

)

Substituting the latter expression into the former

∂y

∂ν
=

∂
∂ν x1 − ρ ∂

∂ν x2

kν(u2)
1
2

− 1

2

x1 − ρx2

kν(u2)
3
2

(1− ρ2)

(
1 + 2x2

∂x2
∂ν

ν + 1
− ν + x2

2

(ν + 1)2

)

Finally, summing-up all the parties

d

dν
tν+1 (y) =

∂tν+1(y)

∂ν
+ ϕν+1(y)

∂y

∂ν
=
∂tν+1

∂ν

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1

+ ϕν+1

 x1 − ρx2√
(ν+x22)(1−ρ2)

ν+1



×

 ∂x1
∂ν − ρ

∂x2
∂ν√

(ν+x22)(1−ρ2)
ν+1

− 1

2

x1 − ρx2(
(ν+x22)(1−ρ2)

ν+1

) 3
2

(1− ρ2)

(
1 + 2x2

∂x2
∂ν

ν + 1
− ν + x2

2

(ν + 1)2

)

3.6.2 Partial Derivative ∂x1
∂z

x1 = t−1
ν

(
tα(z − t−1

α (ω))
)

Given x1 = t−1
ν

(
tα(z − t−1

α (ω))
)
, with ω = ω(z), its partial with respect z is

∂x1

∂z
=

∂

∂z
t−1
ν

(
tα(z − t−1

α (ω))
)

=
∂
∂z

(
tα(z − t−1

α (ω))
)

ϕν

(
t−1
ν (tα(z − t−1

α (ω)))
)

= −
ϕα
(
z − t−1

α (ω)
)
∂
∂z

(
z − t−1

α (ω)
)

ϕν

(
t−1
ν (tα(z − t−1

α (ω)))
)

It follows ∂
∂z

(
z − t−1

α (ω)
)

= 1−
∂ω
∂z

ϕα(t−1
α (ω))

=


> 0, ∂ω

∂z < ϕα(t−1
α (ω))

< 0, ∂ω
∂z > ϕα(t−1

α (ω))

Since densities are always positive, one obtains
∂x1

∂z
=


> 0, ∂ω

∂z > ϕα(t−1
α (ω))

< 0, ∂ω
∂z < ϕα(t−1

α (ω))
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3.6.3 Partial Derivative ∂x1
∂α

x1 = t−1
ν

(
tα(z − t−1

α (ω))
)

Given x1 = t−1
ν

(
tα(z − t−1

α (ω))
)
, its partial with respect α is

∂x1

∂α
=

∂

∂α
t−1
ν

(
tα(z − t−1

α (ω))
)

=
∂
∂α

(
tα(z − t−1

α (ω))
)

ϕα

(
t−1
ν (tα(z − t−1

α (ω)))
)

The numerator is ∂
∂α

(
tα(z − t−1

α (ω))
)

= d
dα

(
tα(z − t−1

α (ω))
)

= ∂
∂α tα(z − t−1

α (ω)) + ϕα
(
z − t−1

α (ω)
)
∂
∂α (z −

t−1
α (ω))

By Result in (3.13) one obtains

∂

∂α

(
z − t−1

α (ω)
)

= − ∂

∂α
t−1
α (ω) =

∂
∂α tα

(
t−1
α (ω)

)
ϕα

(
t−1
α (ω)

)
Rearranging, the expression becomes

∂x1

∂α
=

∂
∂α tα(z − t−1

α (ω)) + ϕα
(
z − t−1

α (ω)
)
∂
∂α (z − t−1

α (ω))

ϕν

(
t−1
ν (tα(z − t−1

α (ω)))
) =

<0 ⇔ z<t−1
α (ω)

∂
∂α tα(z − t−1

α (ω)) +ϕα
(
z − t−1

α (ω)
)

<0 ⇔ω<1/2

∂
∂α tα

(
t−1
α (ω)

)
ϕα(t−1

α (ω))

ϕν

(
t−1
ν (tα(z − t−1

α (ω)))
)

Under the hypothesis ω ≤ 1
2 =⇒ t−1

α (ω) < 0 =⇒ ∂
∂α tα

(
t−1
α (ω)

)
< 0 and ∂

∂α tα(z − t−1
α (ω)) < 0⇐⇒ z < t−1

α (ω).

Finally, we can assert that if a su�cient conditions z < t−1
α (ω) holds, it follows ∂x1

∂α < 0.

3.6.4 Derivative of ∂x1
∂ν

w.r.t. α

Let x1 = t−1
ν

(
tα(z − t−1

α (ω))
)
. Recall the previous result for the partial derivative w.r.t. α, that is

∂x1

∂α
=

∂
∂α tα(z − t−1

α (ω)) + ϕα
(
z − t−1

α (ω)
) ∂
∂α tα(t−1

α (ω))
ϕα(t−1

α (ω))

ϕν (x1)

Therefore, one could compute ∂
∂α

(
∂x1
∂ν

)
inverting the order of the derivatives as ∂

∂ν

(
∂x1
∂α

)
. It can be easily

seen that the numerator of the above equation does not depend on ν so it can be consider as a constant.

Furthermore, when z < t−1
α (ω) the numerator becomes negative. So under this assumption, and denoting the

numerator as K, one gets

∂

∂ν

(
∂x1
∂α

)
=

∂

∂ν

(
K

ϕν (x1)

)
= −

K ∂
∂ν

(
ϕν (x1)

)
ϕν (x1)2 = − ∂x1

∂α

∂
∂ν

(
ϕν (x1)

)
ϕν (x1)

where ∂
∂ν

(
ϕν (x1)

)
= d

dν ϕν (x1) = ∂
∂ν ϕν (x1)+ϕ′ν(x1)∂x1∂ν

>0

. Recall that the derivative of the density ∂
∂ν ϕν (x1) is
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positive up to a given point z∗ν < 0 and then becomes negative with second derivative ∂2

∂ν2
ϕν (x1) < 0, meaning

convergence to zero. Finally, we can assert that su�cient condition to obtain ∂
∂α

(
∂x1
∂ν

)
< 0 is ∂

∂ν

(
ϕν (x1)

)
< 0

and therefore ∂
∂ν ϕν (x1) < −ϕ′ν(x1)∂x1∂ν

3.7 Appendix B

3.7.1 Mixed derivative of the t-distribution w.r.t. (ν, α)

∂

∂ν

∂

∂α
F ν,ρX+Y =

∂

∂ν

∫ 1

0
c
(
ω, tα(z − t−1

α (ω))
) ϕα(z − t−1

α (ω))

ϕα(t−1
α (ω))

dω

where tα, ϕα are t-distribution and t-density respectively. The expression of the bivariate Student's t-copula

density cνX,Y (u, v) evaluated at point u = ω, v = tα(z − t−1
α (ω)) is given by

cνX,Y (u, v) =
1

2π
√

1− ρ2

1

ϕν (x1)

1

ϕν (x2)
A−

ν+2
2

where we have de�ned x1 = t−1
ν (u), x2 = t−1

ν (v) and A =
(

1 +
x21+x22−2ρx1x2

ν(1−ρ2)

)
. Recall the univariate t-density

ϕν (x) =
Γ(ν+1

2 )

Γ(ν2 )
√
πν

(
1 +

x2

ν

)− ν+1
2

where Γ(x) =

∫ +∞

0
tx−1e−t dt

Since the term
ϕα(z − t−1

α (ω))

ϕα(t−1
α (ω))

does not depend on ν, we focus on the derivative of the bivariate t-copula

density on ν
∂

∂ν
cνX,Y (u, v) =

1

2π
√

1− ρ2

∂

∂ν

[
1

ϕν (x1)

1

ϕν (x2)
A−

ν+2
2

]
To perform the above derivative, we follow two steps

1. The derivative of the reciprocal t-density is
∂

∂ν

1

ϕν (xi)
= −

∂
∂ν ϕν (xi)

ϕν (xi)
2 , i = 1, 2

The term ∂
∂ν ϕν (xi) , i = 1, 2, it is computed as the total derivative w.r.t. (ν, xi)

∂

∂ν

(
ϕν (xi)

)
=

dϕ(ν, xi)

dν
=

∂

∂ν
ϕν (xi) + ϕ′ν(xi)

∂xi
∂ν

i = 1, 2

2. The derivative ofA−
ν+2
2 is given by ∂

∂νA
− ν+2

2 = −1
2A
− ν+2

2
∂
∂ν

(
(ν + 2) logA

)
= −1

2A
− ν+2

2

(
logA+ (ν + 2)

∂
∂ν A

A

)
where

∂

∂ν
A =

2
(
x1

∂x1
∂ν + x2

∂x2
∂ν − ρ(x2

∂x1
∂ν + x1

∂x2
∂ν )

)
ν(1− ρ2)

− x2
1 + x2

2 − 2ρx1x2

ν2(1− ρ2)

> 0 ∀ x1,x2

(3.25)
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Remark 1. Noting that xi∂νxi < 0, i = 1, 2. Further, the expression

[
x1∂νx1 + x2∂νx2 − ρ(x2∂νx1 + x1∂νx2)

]
can be restated as

[
(x1 − ρx2)∂νx1 + (x2 − ρx1)∂νx2

]
.

Under the hypothesis x1 = t−1
ν (u1) < 0 and ∀ρ ≥ 0, one can consider two cases for x2 = t−1

ν (u2)

1. x2 > 0⇒
[
(x1 − ρx2)∂νx1 + (x2 − ρx1)∂νx2

]
< 0

2. x2 < 0⇒
[
(x1 − ρx2) ∂νx1

>0

+(x2 − ρx1) ∂νx2

>0

]
< 0⇔ 0 ≤ ρ < min

{
x2

x1
,
x1

x2

}
By the derivative product rule, the whole derivative w.r.t. ν holds

∂

∂ν
cνX,Y (u, v) =

1

2π
√

1− ρ2

 −
∂
∂ν (ϕν (x1))

ϕν (x1)2

∂
∂ν

1
ϕν(x1)

A−
ν+2
2

ϕν (x2)
−

∂
∂ν (ϕν (x2))

ϕν (x2)2

∂
∂ν

1
ϕν(x2)

A−
ν+2
2

ϕν (x1)
−

∂
∂ν A

− ν+2
2

1

2
A−

ν+2
2

(
logA+ (ν + 2)

∂νA

A

)
ϕν (x1)ϕν (x2)


Rearranging, one obtains

∂
∂ν c

ν
X,Y (u, v) = − 1

2π
√

1− ρ2

A−
ν+2
2

ϕν (x1)ϕν (x2)

[
∂
∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂νA

A

)]

= −cνX,Y (u, v)

[
∂
∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂νA

A

)]

Finally the partial derivative of the mixed derivative on (α, ν) holds

∂

∂α∂ν
F ν,ρX+Y =

∫ 1

0

∂
∂ν c

ν
X,Y

(
ω, tα(z − t−1

α (ω))
) ϕα(z − t−1

α (ω))

ϕα(t−1
α (ω))

dω

= −
∫ 1

0
cνX,Y

(
ω, tα(z − t−1

α (ω))
)[ ∂

∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂νA

A

)]
ϕα(z − t−1

α (ω))

ϕα(t−1
α (ω))

dω

where x1 = t−1
ν (tα(z − t−1

α (ω))), x2 = t−1
ν (ω), A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)

3.7.2 Derivative of the t-convolution density w.r.t. ν

∂

∂ν
f
cνSt
X+Y (z) =

∂

∂ν

∫ 1

0
c
(
ω, tα(z − t−1

α (ω))
)
fα(z − t−1

α (ω)) dω

where F, f are distribution and density functions respectively. The expression of the bivariate Student's t-copula
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density cνX,Y (u, v) evaluated at point u = ω, v = tα(z − t−1
α (ω)) is given by

cνX,Y (u, v) =
1

2π
√

1− ρ2

1

ϕν (x1)

1

ϕν (x2)
A−

ν+2
2

where we have de�ned x1 = t−1
ν (u), x2 = t−1

ν (v) and A =
(

1 +
x21+x22−2ρx1x2

ν(1−ρ2)

)
. Recall the univariate t-density

ϕν (x) =
Γ(ν+1

2 )

Γ(ν2 )
√
πν

(
1 +

x2

ν

)− ν+1
2

where Γ(x) =

∫ +∞

0
tx−1e−t dt

Since the term fα(z− t−1
α (ω)) does not depend on ν, we focus on the derivative of the bivariate t-copula density

w.r.t. ν
∂

∂ν
cνX,Y (u, v) =

1

2π
√

1− ρ2

∂

∂ν

(
1

ϕν (x1)

1

ϕν (x2)
A−

ν+2
2

)
To perform the above derivative, we follow two steps

1. The derivative of the reciprocal t-density is
∂

∂ν

1

ϕν (xi)
= −

∂
∂ν ϕν (xi)

ϕν (xi)
2 , i = 1, 2

The term ∂
∂ν ϕν (xi) , i = 1, 2, it is computed as the total derivative w.r.t. (ν, xi)

∂

∂ν

(
ϕν (xi)

)
=

dϕ(ν, xi)

dν
=

∂

∂ν
ϕν (xi) + ϕ′ν(xi)

∂xi
∂ν

i = 1, 2 (3.26)

2. The derivative ofA−
ν+2
2 is given by ∂

∂νA
− ν+2

2 = −1
2A
− ν+2

2
∂
∂ν

(
(ν + 2) logA

)
= −1

2A
− ν+2

2

(
logA+ (ν + 2) ∂νA

A

)
where

∂

∂ν
A =

2
(
x1

∂
∂ν x1 + x2

∂
∂ν x2 − ρ(x2

∂
∂ν x1 + x1

∂
∂ν x2)

)
ν(1− ρ2)

− x2
1 + x2

2 − 2ρx1x2

ν2(1− ρ2)

> 0 ∀ x1,x2

(3.27)

Remark 2. Noting that xi∂νxi < 0, i = 1, 2. Further, the expression

[
x1∂νx1 + x2∂νx2 − ρ(x2∂νx1 + x1∂νx2)

]
can be restated as

[
(x1 − ρx2)∂νx1 + (x2 − ρx1)∂νx2

]
.

Under the hypothesis x1 = t−1
ν (u1) < 0 and ∀ρ ≥ 0, one can consider two cases for x2 = t−1

ν (u2)

1. x2 > 0⇒
[
(x1 − ρx2)∂νx1 + (x2 − ρx1)∂νx2

]
< 0

2. x2 < 0⇒
[
(x1 − ρx2) ∂νx1

>0

+(x2 − ρx1) ∂νx2

>0

]
< 0⇔ 0 ≤ ρ < min

{
x2

x1
,
x1

x2

}

76



By the derivative product rule, the whole derivative w.r.t. ν holds

∂

∂ν
cνX,Y (u, v) =

1

2π
√

1− ρ2

 −
∂
∂ν (ϕν (x1))

ϕν (x1)2

∂
∂ν

1
ϕν(x1)

A−
ν+2
2

ϕν (x2)
−

∂
∂ν (ϕν (x2))

ϕν (x2)2

∂
∂ν

1
ϕν(x2)

A−
ν+2
2

ϕν (x1)
−

∂
∂ν A

− ν+2
2

1

2
A−

ν+2
2

(
logA+ (ν + 2)

∂νA

A

)
ϕν (x1)ϕν (x2)


Rearranging, one obtains

∂
∂ν c

ν
X,Y (u, v) = − 1

2π
√

1− ρ2

A−
ν+2
2

ϕν (x1)ϕν (x2)

[
∂
∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂νA

A

)]

= −cνX,Y (u, v)

[
∂
∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂νA

A

)]

Finally the partial derivative of the t-convolution density holds

∂

∂ν
f
cνSt
X+Y (z) =

∫ 1

0

∂
∂ν c

ν
X,Y

(
ω, tα(z − t−1

α (ω))
)
fα(z − t−1

α (ω)) dω

= −
∫ 1

0
cνX,Y

(
ω, tα(z − t−1

α (ω))
)[ ∂

∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂νA

A

)]
fα(z − t−1

α (ω)) dω

where x1 = t−1
ν (tα(z − t−1

α (ω))), x2 = t−1
ν (ω), A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)

3.7.3 Derivative of the t-convolution w.r.t. ν at z=0 is negative

Recall the derivative of the t-convolution w.r.t. ν as

∂

∂ν
f
cνSt
X+Y (z) =

∫ 1

0

(
∂
∂ν cX,Y

)(
tα(z − t−1

α (ω)), ω
)
ϕα(z − t−1

α (ω)) dω

As already showed the bivariate t-copula derivative is given by

∂

∂ν
cX,Y (u, v) = − 1

2π
√

1− ρ2

A−
ν+2
2

ϕν (x1)ϕν (x2)

 ∂
∂ν ϕν (x1)

ϕν (x1)
+

∂
∂ν ϕν (x2)

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
where x1 = t−1

ν (tα(z − t−1
α (ω))), x2 = t−1

ν (ω) and A =
(

1 +
x21+x22−2ρx1x2

ν(1−ρ2)

)
.

We consider the expression of the bivariate t-copula density at z = 0 and evaluated at u = ω, v = tα(−t−1
α (ω)).
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When the case of zero-symmetric and unimodal distribution functions are considered, it holds v = tα(−t−1
α (ω)) =

(1 − ω) ∀ ω ∈ (0, 1). This implies x2 = −x1 and follows A = 1 +
2x22

ν(1−ρ) and ∂
∂νA =

4x2
∂x2
∂ν

ν(1−ρ) −
2x22

ν2(1−ρ)
=

4νx2
∂
∂ν x2−2x22
ν2(1−ρ)

.

Noting that the expression (logA + ν+2
A

∂
∂νA) can be negative. More to the point, A > 1 ⇒ logA > 0,

therefore the term ∂
∂νA = 2x2

(
2ν
∂x2
∂ν −x2

ν2(1−ρ)

)
is the only one assuming a negative value. To get evidence of

the issue, let's consider ω ∈ (0, 1) and determine the sgn(x2) where x2 = t−1
ν (ω). It is easy to check that

∀ ω ∈ (0, 1
2)⇒ t−1

ν (ω) < 0⇒ ∂
∂ν t
−1
ν (ω) > 0 and the reverse signs hold ∀ ω ∈ (1

2 , 1). Therefore this implies

sgn
(
∂
∂νA

)
=


ω > 1

2 ⇒ x2 > 0⇒ ∂
∂ν x2 < 0⇒ (2ν ∂

∂ν x2 − x2) < 0⇒ 2x2

(
2ν

∂
∂ν x2−x2
ν2(1−ρ)

)
< 0⇒ −1

ω < 1
2 ⇒ x2 < 0⇒ ∂

∂ν x2 > 0⇒ (2ν ∂
∂ν x2 − x2) > 0⇒ 2x2

(
2ν

∂
∂ν x2−x2
ν2(1−ρ)

)
< 0⇒ −1

By unimodal and symmetric density properties, when z = 0, one gets ∂
∂ν ϕν (x2) = ∂

∂ν ϕν (x2). Thus, the whole

expression of the derivative w.r.t. ν can be restated as

∂

∂ν
cX,Y (ω, tα(−t−1

α (ω))) = − 1

2π
√

1− ρ2

A−
ν+2
2

ϕν (x2)2

2 ∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
and if the integrand is positive the partial derivative will be negative. Then, we have to show that the following

inequality holds

2 ∂
∂ν (ϕν (x2))

ϕν (x2)

I PART

> − 1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
II PART

(3.28)

Then, the expression ∂
∂ν (ϕν (x2)) = ∂

∂ν ϕν (x2) + ϕ′ν(x2)∂x2∂ν in (3.28) is a total derivative computed as

By (3.33) ∂
∂ν ϕν (x2) =

ϕν (x2)

2

Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν
+

(ν + 1)x2
2

ν(ν + x2
2)
− log

(
1 +

x2
2

ν

)
By (3.34) ϕ′ν(x2) = −x2

ν + 1

ν + x2
2

ϕν (x2)
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Rearranging we have

2
∂
∂ν (ϕν (x2))

ϕν (x2)
=

Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν

>0

+
(ν + 1)x2

2

ν(ν + x2
2)
− log

(
1 +

x2
2

ν

)− x2(ν + 1)

ν + x2
2

∂x2

∂ν

= Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν

>0

− log

(
1 +

x2
2

ν

)
+
x2(ν + 1)

(ν + x2
2)ν

(
x2 − 2ν

∂x2

∂ν

)
since x2<0 =⇒ >0

(3.29)

For what concerns the second part in (3.28) and since x2 < 0, A = 1 +
2x22

ν(1−ρ) ,
∂
∂νA = 2x2

(
2ν
∂x2
∂ν −x2

ν2(1−ρ)

)
, we

compute the ratio

∂A

∂ν

/
A = 2

x2

ν

(
2ν ∂x2∂ν − x2

ν(1− ρ) + 2x2
2

)
< 0 (3.30)

Therefore one obtains

1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
=

1

2
log

(
1 +

2x2
2

ν(1− ρ)

)
+
ν + 2

ν

(
2νx2

∂x2
∂ν − x

2
2

ν(1− ρ) + 2x2
2

)
(3.31)

The whole expression is the sum of (3.29) and (3.31). We stated the sum is always positive regardless the values

of ν, ρ.

Now, summing the two log terms in (3.29) and (3.31), we have log
((

2x22
ν(1−ρ)

) 1
2 ν
ν+x22

)
= log

((
2x22
1−ρ

) 1
2
√
ν

ν+x22

)
and summing the following

ν + 1

ν

(
x2

2 − 2νx2
∂x2
∂ν

ν + x2
2

)
+
ν + 2

ν

(
2νx2

∂x2
∂ν − x

2
2

ν(1− ρ) + 2x2
2

)
=
ν + 1

ν

(
x2

2 − 2νx2
∂x2
∂ν

ν + x2
2

)
−
(
ν + 1

ν
+

1

ν

)(
x2

2 − 2νx2
∂x2
∂ν

ν(1− ρ) + 2x2
2

)
(3.32)

One can easily note that (3.32) is positive for all the cases where ν(1 − ρ) + 2x2
2 > ν + x2

2 ⇒ ρν < x2
2 holds.

All other cases happen when either |ρ| and ν are su�cient large to denied the previous inequality. On the

other side, relating to the expression log

((
2x22
1−ρ

) 1
2
√
ν

ν+x22

)
, we obtain an opposite e�ect, since x2 = t−1

ν (ω) for ν

increasing, x2
2 decreases and for |ρ| large enough the log expression becomes positive.

Further recall the the term Ψ
(
ν+1

2

)
−Ψ

(
ν
2

)
− 1

ν > 0 where Ψ(x) = Γ′(x)
Γ(x) increases faster when x is smaller.

In conclusion, the negative outcome provided by (3.32) is compensated with the opposite sign by either the log

expression of the Digamma function Ψ that produce a positive value for the whole derivative (3.28).

79



3.7.4 Derivative of the t-density function w.r.t. ν

Recall the univariate t-density function as

ϕν (x) =
Γ(ν+1

2 )

Γ(ν2 )
√
πν

(
1 +

x2

ν

)− ν+1
2

where Γ(x) =

∫ +∞

0
tx−1e−t dt

The partial derivative w.r.t. ν is given by the sum of the following three expressions

∂

∂ν
ϕν (x) =

∂

∂ν

(
Γ(ν+1

2 )

Γ(ν2 )

)
1√
πν

(
1 +

x2

ν

)− ν+1
2

+
∂

∂ν

(
1√
πν

)
Γ(ν+1

2 )

Γ(ν2 )

(
1 +

x2

ν

)− ν+1
2

+
∂

∂ν

(
1 +

x2

ν

)− ν+1
2 1√

πν

Γ(ν+1
2 )

Γ(ν2 )

1.

∂

∂ν

(
Γ(ν+1

2 )

Γ(ν2 )

)
=

1

2

(
Γ′(ν+1

2 )

Γ(ν2 )
−

Γ(ν+1
2 )Γ′(ν2 )

Γ(ν2 )2

)
=

1

2

(
Γ′(ν+1

2 )Γ(ν+1
2 )

Γ(ν+1
2 )Γ(ν2 )

−
Γ(ν+1

2 )Γ′(ν2 )

Γ(ν2 )Γ(ν2 )

)

=
1

2

Γ(ν+1
2 )

Γ(ν2 )

[
Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)]
where Ψ(x) =

Γ′(x)

Γ(x)
is the Digamma function

2.
∂

∂ν

1√
πν

=
∂

∂ν
(πν)−

1
2 = −1

2(πν)−
3
2π = −1

2(πν)−
1
2 (πν)−1π = − 1

2ν

1√
πν

3.
∂

∂ν

(
1 + x2

ν

)− ν+1
2

= −
(

1 + x2

ν

)− ν+1
2 1

2

log(1 + x2

ν ) + (ν + 1)
−x2

ν2

1 + x2

ν

 = −1

2

(
log(1 + x2

ν )− (ν+1)x2

ν(ν+x2)

)(
1 + x2

ν

)− ν+1
2

Summing all the three derivative expressions

∂

∂ν
ϕν (x) =

1

2

[
Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
︸ ︷︷ ︸

>0

](
1 +

x2

ν

)− ν+1
2 1√

πν

Γ(ν+1
2 )

Γ(ν2 )︸ ︷︷ ︸
ϕν(x)

− 1

2ν

(
1 +

x2

ν

)− ν+1
2 1√

πν

Γ(ν+1
2 )

Γ(ν2 )︸ ︷︷ ︸
ϕν(x)

− 1

2

log

(
1 +

x2

ν

)
− (ν + 1)x2

ν(ν + x2)

(1 +
x2

ν

)− ν+1
2 1√

πν

Γ(ν+1
2 )

Γ(ν2 )︸ ︷︷ ︸
ϕν(x)

=
ϕν (x)

2

Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν
+

(ν + 1)x2

ν(ν + x2)
− log

(
1 +

x2

ν

) (3.33)

Noting that Ψ
(
ν+1

2

)
−Ψ

(
ν
2

)
− 1

ν > 0
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3.7.5 First derivative of the t-density function

Recall the univariate t-density function as

ϕν (z) =
Γ(ν+1

2 )

Γ(ν2 )
√
πν

(
1 +

z2

ν

)− ν+1
2

where Γ(x) =

∫ +∞

0
tx−1e−t dt

The partial derivative w.r.t. z
∂

∂z
ϕν (z) is given by the following expression

ϕ′ν(z) = −ν + 1

2

(
1 +

z2

ν

)− ν+3
2 2z

ν

Γ(ν+1
2 )

Γ(ν2 )

1√
πν

= −z ν + 1

ν
√
πν

Γ(ν+1
2 )

Γ(ν2 )

(
1 +

z2

ν

)− ν+3
2

︸ ︷︷ ︸
>0

= −z ν + 1(
ν + z2

)ϕν(z)

(3.34)

As expected, it results that the derivative is positive when z < 0, equal to zero at z = 0 and negative otherwise.

3.7.6 Mixed derivative of the t-density function w.r.t. (z, ν)

The partial derivative of the t-density function w.r.t. ν is given by

∂

∂ν
ϕν (z) =

ϕν (z)

2

Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν
+

(ν + 1)z2

ν(ν + z2)
− log

(
1 +

z2

ν

)
81



We compute the derivative of the above expression w.r.t. z, namely the partial derivative of the student's t

�rst derivative

∂
∂ν ϕ

′
ν(z) = ∂

∂z
∂
∂ν ϕν (z) =

∂

∂z

ϕν (z)

2

Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν
+

(ν + 1)z2

ν(ν + z2)
− log

(
1 +

z2

ν

)


=
ϕ′ν(z)

2

Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν
+

(ν + 1)z2

ν(ν + z2)
− log

(
1 +

z2

ν

)
+
ϕν (z)

2

 ∂
∂z

(
(ν + 1)z2

ν(ν + z2)

)
− ∂

∂z log

(
1 +

z2

ν

)
∂
∂z

(
(ν + 1)z2

ν(ν + z2)

)
=

(ν + 1)2z

ν(ν + z2)
− ν(ν + 1)2z3

ν2(ν + z2)2

=
2z(ν + 1)(ν + z2)− 2z3(ν + 1)

ν(ν + z2)2
=

2zν(ν + 1)

ν(ν + z2)2
=

2z(ν + 1)

(ν + z2)2

∂
∂z log

(
1 +

z2

ν

)
=

2z

ν + z2

∂
∂z

 (ν + 1)z2

ν(ν + z2)
− log

(
1 +

z2

ν

) =
2z(ν + 1)

(ν + z2)2
− 2z

ν + z2
=

2z(ν + 1)− 2z(ν + z2)

(ν + z2)2
=

2z(1− z2)

(ν + z2)2

substituting the expression for the �rst derivative and the above di�erence, it holds

|∂∂ν ϕ
′
ν(z) = −ϕν (z)

2

z(ν + 1)(
ν + z2

)
Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν
+

(ν + 1)z2

ν(ν + z2)
− log

(
1 +

z2

ν

)+ ϕν (z)
z(1− z2)

(ν + z2)2

(3.35)

= z
ϕν (z)

ν + z2


1− z2

ν + z2

I TERM

−ν + 1

2

Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)
− 1

ν

II TERM > 0

+
(ν + 1)z2

ν(ν + z2)
− log

(
1 +

z2

ν

)
III TERM


 (3.36)

The �rst term in square bracket has derivative ∂
∂z ( 1−z2

ν+z2
) = −z 2(ν+1)

(1+z2)2
> 0, ∀z < 0. We compare this result

with the corresponding derivative of the term provided by (3.35) adjusted by a negative factor −ν+1
2 × z

2(z2−1)
(ν+z2)2

that reverse the sign. It easy to check that the �rst term has a decreasing order of o(z3) higher than the third

one o(z), therefore, for su�ciently negative z, it decreases faster that the other one, so the combined e�ect

brings to a positive value for the whole bracket expression. Finally, taking into account that the second term is

a positive constant w.r.t. z, one obtains that for a su�cient negative z, the mixed derivative ∂
∂ν ϕ

′
ν(z) becomes

and remains negative.
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3.7.7 The sign of G(tα(z − t−1
α (ω)), ω) for α→ 0, not correlated case ρ = 0

In what follows, we compute the sign of the function G through the evaluation of the t-convolution density

derivative wrt ν in (3.21) given by

∂

∂ν
f
cνSt
X+Y (z) = −

∫ 1

0
cνX,Y

(
tα(z − t−1

α (ω)), ω
) ∂

∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)
+

1

2

(
logA+ (ν + 2)

∂
∂νA

A

) fα(z − t−1
α (ω)) dω

= −
∫ 1

0
cνX,Y

(
tα(z − t−1

α (ω)), ω
)
G
(
tα(z − t−1

α (ω)), ω
)
fα(z − t−1

α (ω)) dω (3.37)

where x1 = t−1
ν (tα(z − t−1

α (ω))), x2 = t−1
ν (ω), A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)

where the expression of G(tα(z − t−1
α (ω)), ω) is given in (3.22) as

G(u1, u2) =
∂
∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)

PART I

+
1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
PART II

(3.38)

We look at the sensitivity of (3.37) with respect to α, especially when α is small, close to zero.

Let's consider the upper bound of α by the limit

lim
α→0

∂

∂ν
f
cνSt
X+Y (z) = −

∫ 1

0
lim
α→0

cνX,Y

(
tα(z − t−1

α (ω)), ω
)
G
(
tα(z − t−1

α (ω)), ω
)
fα(z − t−1

α (ω)) dω (3.39)

To solve the limit, we focus on the third term. It is useful to know that fα(z− t−1
α (ω)) approaches to the Dirac

Delta function as the marginal tail index goes to zero.

Therefore approaching α→ 0 (3.37) becomes

lim
α→0

∂

∂ν
f
cνSt
X+Y (z) = −

∫ 1

0
cνX,Y

(
tα(z − t−1

α (ω)), ω
)
G
(
tα(z − t−1

α (ω)), ω
)
δ(z − t−1

α (ω)) dω (3.40)

where δ(x) is the Dirac Delta function. First we set a change of variable y = t−1
α (ω) on equation (3.40),

obtaining

lim
α→0

∂

∂ν
f
cνSt
X+Y (z) = −

∫ ∞
−∞

cνX,Y
(
tα(z − y), tα(y)

)
G
(
tα(z − y), tα(y)

)
δ(z − y) dy (3.41)

Then, we apply the Sifting property of the Delta Dirac, meaning that, for any function f(x) continuous at x0,

we have
∫∞
−∞ f(x)δ(x−x0) dx = f(x0), see Mack (2008). Therefore, by Symmetry and Sifting properties of the
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Delta Dirac function, one obtains

lim
α→0

∂

∂ν
f
cνSt
X+Y (z) = −

∫ ∞
−∞

cνX,Y
(
tα(z − y), tα(y)

)
G
(
tα(z − y), tα(y)

)
δ(y − z) dy

= −cνX,Y
(
tα(0), tα(z)

)
G
(
tα(0), tα(z)

)
= −cνX,Y

(
1
2 ,

1
2

)
G
(

1
2 ,

1
2

)
(3.42)

where the last identity is true because the univariate Student's t-cdf tα(x) approaches 1
2 as α→ 0 for any �nite

value x.

Recall the t-copula density is positive for all values, so cνX,Y

(
1
2 ,

1
2

)
> 0. Concerning the G-function, we have

u1 = u2 = 1
2 and therefore (3.38) changes into

G
(

1
2 ,

1
2

)
=

2∑
i=1

∂
∂ν (ϕν (xi))

ϕν (xi)
+

1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
, xi = t−1

α (1
2), i = 1, 2

= 2
∂
∂ν (ϕν (0))

ϕν (0)
(3.43)

Because x1 = x2 = t−1
α (1

2) = 0, it follows

A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)
= 1 and

∂
∂νA =

2
(
x1

∂x1
∂ν + x2

∂x2
∂ν − ρ(x2

∂x1
∂ν + x1

∂x2
∂ν )

)
ν(1− ρ2)

− x2
1 + x2

2 − 2ρx1x2

ν2(1− ρ2)
= 0.

Since ∂
∂ν (ϕν (0)) = ∂

∂ν ϕν (0) > 0, it results that G-function assumes positive values for all ν > 0.

3.7.8 The sign of G(tα(z − t−1
α (ω)), ω) for α→ 0, correlated case ρ > 0

Recall the expression of G(tα(z − t−1
α (ω)), ω) in (3.22) is given by

G(u1, u2) =
∂
∂ν (ϕν (x1))

ϕν (x1)
+

∂
∂ν (ϕν (x2))

ϕν (x2)

PART I

+
1

2

(
logA+ (ν + 2)

∂
∂νA

A

)
PART II

(3.44)

where x1 = t−1
ν (tα(z − t−1

α (ω))), x2 = t−1
ν (ω), A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)

We look at the sensitivity of (3.44) with respect to α close to zero, when the correlation ρ → 1. In that case,

the value of the correlation involves the second part of the expression (3.44) related to the term A.
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Therefore we consider 1
2

(
logA+ (ν + 2)

∂
∂ν A

A

)
and the expression of A and its derivative on ν

A =

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)
=
ν(1− ρ2) + x2

1 + x2
2 − 2ρx1x2

ν(1− ρ2)

∂
∂νA =

2
(
x1

∂x1
∂ν + x2

∂x2
∂ν − ρ(x2

∂x1
∂ν + x1

∂x2
∂ν )

)
ν(1− ρ2)

− x2
1 + x2

2 − 2ρx1x2

ν2(1− ρ2)

> 0 ∀ x1,x2

(3.45)

We have already clari�ed as α reduces the values of |x1| and |x2| decrease as well. As consequence of that

diminishing the value of ρ becomes meaningful. The way to describe that issue takes into account the numerator

and the denominator of A. Basically, both decreases as ρ increases but ν(1− ρ2) provides an increments of A.

For a given �xed ν, A becomes a ρ's parametrized function of x1 and x2. One can prove that higher values of

|x1| and |x2| the e�ect of ρ on A is limited: larger values of |x1| and |x2| enlarge the spread between the sum

x2
1 + x2

2 and the value of 2ρx1x2, thus ρ does not lead to a large changing (in absolute terms) with respect to

A. The opposite is true when both |x1| and |x2| are smaller and the numerator of A decreases as well. Now

evaluate ∂
∂νA in (3.45). Noting that is decreasing on ρ with the same rules of A, that is, decreases in absolute

value as ρ > 0 grows up. The noteworthy di�erence relies in terms ∂xi
∂ν . It can be easily evaluated that for

not-extreme negative xi, i = 1, 2 the value of ∂xi
∂ν decreases faster that |xi| as |xi| → 0, i = 1, 2 . Under this

condition, one can compute the ratio

∂
∂νA

A
=

2(x1
∂x1
∂ν + x2

∂x2
∂ν )− 2ρ(x1

∂x2
∂ν + x2

∂x1
∂ν )

x2
1 + x2

2 − 2ρx1x2 + ν2(1− ρ2)
−

(
x2

1 + x2
2 − 2ρx1x2

x2
1 + x2

2 − 2ρx1x2 + ν2(1− ρ2)

)
1

ν
(3.46)

it is worth noting that in the �rst part of (3.46), the numerator decreases faster than denominator because

2|xi| ∂xi∂ν < x2
i i = 1, 2 and 2ρx1x2 < 2ρ

(
|x1| ∂x2∂ν +|x2| ∂x1∂ν

)

The second part of (3.46) is positive and bounded by 1
ν and clearly reduces the expression.

This entails
∂
∂νA

A
reduces its value.

In conclusion as α su�ciently small the increasing in ρ increases the value of G.

At the limit case ρ→ 1, we obtain

lim
ρ→1

∂
∂νA

A
=

2(x1
∂x1
∂ν + x2

∂x2
∂ν )− 2(x1

∂x2
∂ν + x2

∂x1
∂ν )

x2
1 + x2

2 − 2x1x2
− 1

ν

= 2
x1(∂x1∂ν −

∂x2
∂ν ) + x2(∂x2∂ν −

∂x1
∂ν )

x2
1 + x2

2 − 2x1x2
− 1

ν
= 2

x1(∂x1∂ν −
∂x2
∂ν )− x2(∂x1∂ν −

∂x2
∂ν )

(x1 − x2)2
− 1

ν

=
2(x1 − x2)(∂x1∂ν −

∂x2
∂ν )

(x1 − x2)2
− 1

ν
=

2(∂x1∂ν −
∂x2
∂ν )

x1 − x2
− 1

ν
(3.47)
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that for what we said, as |x1| ,|x2| → 0, if follows (3.47) reaches to the maximum of the expression (3.46) and

the G function rises up.

As consequence of ρ increasing and by result in (3.7.7), the value of G becomes positive early.
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Chapter 4

Time change, Generalized Compounding and

the Term Structure

Abstract

We apply the concept of "generalised compounding" proposed in Carr and Cherubini (2020) to the Stochastic

Discount Factor dynamics and term structure models. We propose a class of time change models that preserve

the lognormal distribution of one period SDFs while changing the compounding structure. These models

decompose the SDF into lognormal marginal SDFs and a compounding function, that takes the shape of an

Archimedean copula function. We show that stochastic clocks generally leads to a decrease of the yields,

particularly pronounced on long term maturities. Preliminary evidence on US swap rates shows mild evidence

in favour of the time changed model.

Keywords

Time change models, Generalized Compounding, Stochastic Discount Factor, Term structure, Copula functions
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4.1 Introduction

A�ne econometric models of the term structure are generally based on two main ingredients: lognormal stochas-

tic discount factors (SDF) and geometric compounding. The main reference for the econometric parametrization

of the a�ne model based on SDF is Ang and Piazzesi (2003) (see also Cochrane and Piazzesi (2005, 2008)) .

A similar approach have been applied to the estimation of the term structures of risky assets, and particularly

the equity market (see Giglio et al. (2020), and the literature review therein). In a recent paper, Carr and

Cherubini (2020) show that models with time change may destroy the geometric compounding rule in discrete

time. Aim of this paper is to investigate the impact of non-geometric compounding rules arising in time change

models on the dynamics of the SDF.

For more clarity, de�ne S1 the one-period SDF from time t = 0 to time 1 and call MN the compounded SDF

for time N . Under the standard geometric compounding rule we have

MN = S0S1S2 . . . SN−1SN

with S0 = 1. Clearly, if the one-period SDF Si is modelled as

Si = exp(−Xi)

with Xi normal random variables for all i, then both the Si and the Mi SDF's are lognormal. The straightfor-

ward argument from which we draw our research question is that Mi are lognormal due to both the conditions

above. In a time change model, the length of the time period, that in the standard model is set equal to 1, is

assumed to be a stochastic variable, positive and possibly with mean equal to 1. So, the unit period SDF is

modelled as

Si = exp(−XiZi) (4.1)

where Zi is the positive random variable that we call stochastic clock.

The idea of time change in mathematics and probability theory is rooted in early work in the 60s and 70s of

last century, when Dubins and Schwarz (1965), Dambis (1965), Follmer et al. (1973),Monroe (1978) proved that

general stochastic processes, in general all semimartingales, can be generally obtained by applying a stopping

time, that is a stochastic clock process, to a Brownian motion. Time change models have a long history in

�nance, starting from Clark (1973), who suggested a subordinated process for the dynamics of asset prices

where the subordinator, i.e. the stochastic clock, was represented by the trading volume, an argument updated

by Ané and Geman (2000) that instead identi�ed the number of transactions per period as the relevant clock.

Finally, many contributions can be found in mathematical �nance and option pricing (Madan et al. (1998),

Carr et al. (2003), Carr and Wu (2004), Madan and Yor (2008)). It is much less frequent to �nd applications of
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time change models in econometrics and macro-�nance, with the exception of Stock (1988) (with application to

GDP) and Shaliastovich and Tauchen (2005) (with application to the business cycle index and asset pricing).

It must be remarked that most, if not all, the applications of time change models have been in continuous time.

Carr and Cherubini (2020) showed that in a discrete time setting the compounding process with time changed

can be written as in equation (4.1), that is as a Laplace transform (or a moment generating function, depending

on the sign of the conditioning factor Xi). Here we apply this same idea to the SDF model.

Obviously the subordinated model in equation (4.1) implies that in general Si is no longer lognormal and

compounding is not geometric. Since we want to focus on compounding, it would be helpful to focus on a

model that preserves lognormality. We will show that in a wide set of models (i.e. for many distributions of

Zi) we may �nd a function f(y) such that Si in

St+i = exp(f(Xi)Zi) (4.2)

is lognormal. In particular, we will show two very simple cases in which this result obtains. In the �rst f(y) is

quadratic and Zi is Inverse Gaussian (IG) distributed (one of the two models proposed in Carr and Cherubini

(2020)). So, if the stochastic clock is IG-distributed and Si is required to be lognormal, f(y) must be quadratic

(with a speci�c parametric form that will depend on the variance of the stochastic clock). In the second model

the clock is assumed to be α-stable, with α ≤ 1. In this case one must have f(y) = exp(−yα).

We can then turn our attention to the compounding/discounting rule, that is our main goal. Here assume

that that the Zi's are identically distributed and comonotonic. To put it in plain words, the stochastic clock is

actually a single variable and we may set: Zi = Z. Intuitively, this means that even if Xt+i are independent

for all i, the dependence of all of them on the common variable Z will ensure that all of them are dependent.

The SDF process will then be non-ergodic.

The intuition of dependence can be proved, and actually provides a link to a stream of literature quite well

known in statistics, that addresses dependence by means of copula functions theory. Loosely speaking, copula

functions are tools used to represent join distributions in terms of uniform marginal distributions (see Nelsen

(2006) for an introduction and Cherubini et al. (2004) for �nancial applications). Here a speci�c family of

these functions is found to represent the compounding structure linking one period SDFs. The family is called

Archimedean copula and may be obtained using one of the most well known representation theorems, due

to Marshall and Olkin (1988). In fact, that theorem uses multivariate Laplace transforms with respect to a

common random variable (that in our case is Z).

The fact that we derive copula functions to represent compounding instead of dependence brings a notable

innovation to the way we use copula functions here. The marginal are not uniformly distributed in the unit

hypercube, but they are simply i.i.d. (assuming that the f(Xi) elements are independent). In the cases that will

be addressed, the one period SDFs will be lognormal. This will also be an original contribution to the copula

89



functions literature, since this speci�c kind of Archimedean copula is novel, to the best of our knowledge.

To summarize our research program, we will model the SDF in a time change model, breaking down the

speci�cation of one periods SDFs and their compounded value. Both the distribution of one periods SDFs and

their compounding structure will be a�ected by the distribution of the stochastic clock. The compounding

structure is represented by an Archimedean copula function. By Archimedean structure, the SDF process is

non ergodic, and can be also shown to be non Markovian. It may be said that this persistence obtained with the

common stochastic clock substitutes for the martingale component used in the modelling of the SDF dynamics

to represent long term returns (Hansen and Scheinkman (2009), Qin and Linetsky (2017).

The plan of the paper is as follows. In section 4.2 we lay out a Stochastic Discount Factor Model (SDF) with

time change. In section 4.3 and 4.4 we give conditions for the time changed model to preserve the lognormal

distribution of marginal one period SDFs. In section 4.5 we extract term structure from the model. Section 4.6

described the empirical implications and preliminary estimates on US data.

4.2 A SDF Model with Time Change

SDF is a stochastic process that is used to price �nancial products and contingent claims. Pricing is carried

out under the physical measure so that SDF takes into account both expectations of future cash �ows and the

risk premium. Loosely speaking, the SDF is de�ned as a sequence of positive random variables Mt initialised

at M0 = 1. The price of each payo� Gn is obtained by

Gt = Et

(
Mn

Mt
Gn

)

so that MtGt is a martingale under the physical measure P. In this paper we focus on the risk free term

structure, that is the set of zero coupon bonds paying Gn = 1. Denoting Pt(n) the price of the zero coupon

bond expiring at time t+ n we have

Pt(n) = Et(Mn) (4.3)

and the interest rate is de�ned as

rt(t+ n) = − logPt(n)

n− t
= − 1

n− t
logEt(Mn) (4.4)

One period forward rates can be de�ned from the logarithm of the expectation of the one period SDF, that we

denote Sn

ft(n) = − logEt(Sn) (4.5)
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In a�ne term structure models the SDFs are modelled as lognormal random variables, that is

St = exp(−Xt) (4.6)

where Xt is a normal random variable, possibly including a factor structure.

Example 4.2.1. A famous and typical example of lognormal speci�cation is the Ang and Piazzesi (2003).

In their parametrization

Xt+1 = δ0 + δ′1Ft +
1

2
λ′Rλ+ λ′νt+1

where δ0 is the intercept and δ1 a vector of slope parameters of factors Ft, and νt+1 is a vector of standard

normal disturbances with correlation matrix R. The vector λ denotes volatilities (that in their model are also

considered conditionally heteroskedastic). We then have that the short term interest rate is a�ne in the factors

rt(1) = δ0 + δ′1Ft

and so are the rates for all maturities.

We now introduce time deformation into the picture. Let us observe that the model on which we are working

is speci�ed at equally spaced intervals of time. In fact, we have in mind a speci�c frequency of observation

∆t that we implicitly set equal to 1. Let us assume now that such time frequency is substituted by a positive

random variable Z, with mean equal to 1, that is not observed and is meant to represent the degree of activity

of the economy. The e�ect of this assumption is that the SDF is now modelled as

St = exp(XtZ) (4.7)

and, if we maintain the assumption that Xt is normally distributed, the �rst e�ect is that St is no longer

lognormal.

Before we go on, it is necessary to restrict the choice of our variable Z, with distribution FZ . In fact, since it

must be such that

EZ(e−sZ) =

∫ ∞
0

e−sZdFZ ≡ ψ(s)

is well de�ned for s positive and negative. We can now de�ne the building block of our model

St = EZ(e−XtZ) = ψ(Xt)

We can now introduce our version of Marshall and Olkin (1988) theorem.

Theorem 4.2.2. Assume Si, i = 1, 2, . . . , n are i.i.d. positive random variables representing one-period SDFs,
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and a stochastic clock Z with Laplace transform ψ(s). Then,

EZ(Mn) = EZ(S1S2 . . . Sn−1Sn) = ψ(ψ−1(S1) + ψ−1(S2) . . .+ ψ−1(Sn−1) + ψ−1(Sn)) (4.8)

Proof. We �rst de�ne the Laplace transform

Sk = EZ(−XkZ) = ψ(Xk)

Since the Sk are independent we have

EZ(Mn) = EZ(S1S2 . . . Sn−1Sn)

= EZ

(
e−(X1+X2+...+Xn−1+Xn)Z

)
= ψ(X1 +X2 + . . .+Xn−1 +Xn)

= ψ(ψ−1(S1) + ψ−1(S2) . . .+ ψ−1(Sn−1) + ψ−1(Sn))

where the last line follows because the Laplace transform is invertible, so that Xk = ψ−1(Sk).

Notice that the geometric compounding, which would obtain conditional on any value of the stochastic clock,

is actually destroyed once that we conditioned out the clock. The compounding structure that is obtained is

fully determined by the generator ψ(s).

It is easy to verify that the compounding formula is actually the one obtained in copula functions theory, for

the family of copula functions called Archimedean. In fact in the actual Marshall-Olkin theorem the variables

Xk are assumed to be exponentially distributed with intensity parameter equal to 1 the variables Sk turn out

to be uniformly distributed in the unit interval and we obtain standard Archimedean copulas. Here Xk have

other distributions and one must be careful to handle the copula function. Moreover, in the compounding

application one would be interested in preserving the lognormal distribution for Sk, that is typically assumed

in a�ne models. We are going to show that this could be done, even though not always, of course at the cost

of dropping the normality assumption on Xk. This will be shown in the next paragraph.

4.3 A Lognormal SDF Model Quadratic in Risk Factors

Since we saw that stochastic clocks destroy the geometric compounding structure, one would like to choose a

model in which the lognormal distribution is preserved, at least, for the one period SDFs Sk. This way, one

could compare two di�erent term structures with same one period SDF focussing on the impact of the new

compounding rule.

Here we show that this can be done keeping the model very simple, and as close as possible to the standard
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literature. We �rst introduce the Inverse Gaussian distribution, and its Laplace transform

De�nition 4.3.1. The Inverse Gaussian distribution IG(µ, γ) has density

g(z;µ, γ) =

√
γ

2πz3
exp

(
−γ(z − µ)2

2µ2z

)

with µ, γ > 0. The �rst two moments of the distribution are E(Z) = µ and V AR(Z) = µ3/γ. The Laplace

transform is

EZ

(
e−sZ

)
= exp

γ
µ

1−

√
1 +

2µ2s

γ


 (4.9)

We now assume that the stochastic clock Z is Inverse Gaussian distributed and prove the following theorem.

Theorem 4.3.2. Assume

Sk = EZ

(
exp

(
−Xk +

1

2
V X2

k

)
Z

)
(4.10)

with Xk v N(m,σ2) and Z a positive random variable. Then, Sk is LogNormal(m,σ2) if and only if Z v

IG(1, 1/V ).

Proof. Assume Z v IG(1, 1/V ). Using equation (4.9),

Sk = EZ

(
exp

(
−Xk +

1

2
V X2

k

)
Z

)

= exp

 1

V

1−

√
1 + 2V

(
−Xk +

1

2
V X2

k

)


= exp

[
1

V

(
1−

√
1− 2V Xk + V 2X2

k

)]
= exp(Xk)

Assume Sk is lognormal

Sk = EZ

(
exp

(
−Xk +

1

2
V X2

k

)
Z

)

= ψ

(
−Xk +

1

2
V X2

k

)

Since ψ(y) is invertible

ψ−1(Sk) = −Xk +
1

2
V X2

k
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Since Sk is Lognormal(m,σ
2) and Xk v N(m,σ2) the only possible shape of ψ−1(x) is

ψ−1(Sk) = − log(Sk) +
1

2
V (logSk)

2 = −Xk +
1

2
V X2

k

and it may be veri�ed that ψ(s) is the Laplace transform of a variable IG(1, 1/V ).

To make clear what we have did, we introduced a non linear function f(Xk) to adjust or absorb the departure

from lognormality induced by the stochastic clock Z. In this case, the shape of non linearity is the simplest

one, since we only added a squared term multiplied by a parameter equal to half of the variance of the clock.

So, in this model lognormality is preserved even though the compounding structure is changed to

EZ(Mn) = ψ(ψ−1(S1) + ψ−1(S2) . . .+ ψ−1(Sn−1) + ψ−1(Sn))

that is more general than geometric compounding. When the variance of the clock V is set to 0 the function

f(Xk) returns linear and the compounding rule is geometric. One interesting question is the generality of this

approach, that we address here below.

4.4 Generalisations

A question that is worth addressing is whether the IG clock model described above is the only model that

accomplish the task of separating a multiperiod SDF into lognormal marginal one period SDFs and in case the

answer is positive if it can always be done. An �rst sight the answer seems to be yes to the former question

and no to the latter.

In fact, if we try to generalise the result above, it turns out that the model should work whenever the Laplace

transform with respect to Z could be written as

EZ

(
e−sZ

)
= ψ(s) = exp(φ(s)) (4.11)

In this case one can de�ne f(Xk) = φ−1(Xk) to obtain

EZ

(
e−f(Xk)Z

)
= exp(φ(f(Xk))) = eXk

and setting Xk normal accomplishes the task.

Now it is quite easy to �nd examples of Laplace transforms for which condition (4.11) holds. The �rst case

that comes to mind is if one assumes that Sk be restricted in the unit interval. This assumption is not strange

since in the term structure applications one would use E(Sk) which is the forward price of a zero coupon bond,

and then is bounded between 0 and 1. However, we will provide below the conditions for the model to be well
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behaved even for cases in which Sk > 1. The model is based on the assumption that Z be endowed with a

positive stable distribution, for which the Laplace transform is

EZ

(
e−sZ

)
= ψ(s) = exp

(
−s1/θ

)
(4.12)

with θ ≥ 1. Notice that we stick to the parametrisation used by Marshall and Olkin (1988) and popular in the

copula function literature. A more rigorous parametrisation would use α ≡ 1/θ, denoting the tail index of the

stochastic clock. Obviously, the requirement θ > 1 turns into α ∈ (0, 1], so that the distribution of the clock is

such that neither �rst nor any higher order moments exist.

Now, if we de�ne f(Xk) = −Xθ
k with Xk normal we clearly obtain that Sk is lognormal for all k and all values

θ. As for compounding, it is clear that the case θ = 1 would generate geometric compounding. The general

compounding rule instead generates a compounding function that is very well known to any scholar in copula

function theory

EZ(Mn) = exp

(
−
[
(− logS1)θ + (− logS2)θ + . . .+ (− logSn−1)θ + (− logSn)θ

]1/θ
)

(4.13)

This is the well known Gumbel-Hougaard family, in the case in which Sk are in the unit interval. To extend

the case to Sk > 1 we need a regularization. This is needed not only to give generality to the compounding

function, but also because even in term structure applications as of today it is frequent to �nd Et(Sk) > 1 due

to negative interest rates.

Regularisation has to do with the terms − log(Sk) which are exponentiated to power θ. Allowing for Sk > 1

and − log(Sk) negative would do no harm if θ = 1 but it would a�ect the symmetry property of the function

− log(y) with θ > 1. To see this, consider the very di�erent cases that one would encounter with θ = 2 and

θ = 3. Then we intervene de�ning the power function of − log(Sk) ≥ 0 and �ipping the function for negative

values. Formally, we de�ne a power function (y[θ] as

y[θ] =

 yθ, y ≥ 0

−
(
|y|θ
)
, y < 0

(4.14)

Notice that this de�nition also takes care of another problem that we may run into when the argument of the

sum of exponentiated − log(Sk) terms is negative and has to be exponentiated to 1/θ < 1.

We now introduce a de�nition that would helps us to simplify notation:

De�nition 4.4.1. The operator ⊕θ, denoted pseudo-sum is de�ned as

y1 ⊕θ y2 ⊕θ . . .⊕θ yn−1 ⊕θ yn =
(
y

[θ]
1 + y

[θ]
2 + . . .+ y

[θ]
n−1 + y[θ]

n

)[1/θ]
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We can then summarize these results in the following

Theorem 4.4.2. Assume

Sk = EZ

(
−X [θ]

k Z
)

(4.15)

with Xk v N(m,σ2) and Z a positive random variable. Then, Sk is Lognormal(m,σ2) if and only if positive

stable with parameter α = 1/θ ∈ (0, 1]. Moreover, the compounding function is

logEZ(Mn) = −((− logS1)⊕θ (− logS2)⊕θ . . .⊕θ (− logSn−1)⊕θ (− logSn)) (4.16)

We have then shown another example of SDF model with lognormal marginal (one period) SDF. We are tempted

to check the other famous Archimedean copula function: the Clayton copula that would arise using a Gamma

distribution for Z. Indeed, the procedure works also in this case, by a straightforward manipulation of the

Laplace transform, as we show below.

Example 4.4.3. Consider a Gamma distributed clock. The Laplace transform is

Sk = EZ

(
e−XkZ

)
= ψ(Xk) = (1 + θXk)

−1/θ

We can rewrite the Laplace transform as

Sk = ψ(Xk) = exp(φ(Xk)) = exp
(

log(1 + θXk)
−1/θ

)
and we can compute

f(Xk) = φ−1(Xk) =
e−θXk − 1

θ

Now it is easy to verify that if θ > 0

Sk =ψ

(
eθXk − 1

θ

)

=

(
1 + θ

e−θXk − 1

θ

)−1/θ

=eXk

If instead θ → 0 we have

lim
θ→0

f(Xk) = lim
θ→0

e−θXk − 1

θ
= Xk

and

lim
θ→0

(1 + θf(Xk))
−1/θ = eXk
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4.5 Term Structure

We now apply the models described above to a generalisation of term structure models beyond the a�ne class.

This will also show the utility of preserving lognormal marginal SDFs in order to maintain the model tractable,

or at least only slightly more complex than a�ne models.

We start again from the basic case of geometric compounding remind that under the physical measure P we

have P0(n) = E0(Mn) and P f0 (k) = E0(Sk), where P
f
0 (k) is the forward price established at time 0 to be paid

at time k − 1 for 1 dollar to be received at time k.

Since we aim to partition the zero coupon bond term structure in the product of forward prices, we switch

measure from the physical measure P to the forward martingale measure (FMM) Q(k). We remind that under

such measure we have

P0(k) = E0(Mk) = E0(Mk−1Sk) = P0(k − 1)EQ(k−1(1) = P0(k − 1)P f0 (k)

Going back recursively, we have

P0(k) = E0(Mk) = P0(1)P f0 (2) . . . P f0 (k − 1)P f0 (k)

We now introduce the stochastic clock Z. In order to maintain marginal lognormal we assume we may write

the Laplace transform ψ(s) = exp(−φ(s)). The minus sign is immaterial. Notice that ψ−1(y) = φ−1(− log y).

Equipped with this we can write the same Marshall-Olkin style result.

EZ
(
E(Mn)

)
=EZ

(
E(Mn)|Z = z

)
=EZ

(
P0(1)P f0 (2) . . . P f0 (k − 1)P f0 (k))|Z = z

)
=ψ

(
ψ−1

(
P0(1)

)
+ ψ−1

(
P f0 (2)

)
+ . . .+ ψ−1

(
P f0 (n− 1)

)
+ ψ−1

(
P f0 (n)

))
= exp

[
−φ
(
φ−1

(
− logP0(1)

)
+ φ−1

(
− logP f0 (2)

)
+ . . .+ φ−1

(
− logP f0 (n)

)
+ φ−1

(
− logP f0 (n)

))]

If we now remind that

r0(n) ≡ − 1

n
logPn0 f0(k) = − logP f0 (k)

we recover the term structure

r0(n) =
1

n
φ
(
φ−1(r0(1)) + φ−1(f0(2)) + . . .+ φ−1(f0(n− 1)) + φ−1(f0(n))

)
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The short term rate r0(1) is observed on the market. As for the forward rates, they can be estimated by

exploiting their lognormality:

− logE0(Sk) = f0(k) = mk +
1

2
σ2
k

where mk is the mean of the Gaussian factor Xk and σ
2
k is its variance.

We now give the speci�c formulas for the models discussed in the previous sections.

Quadratic model. Remember that in the quadratic model the marginal SDFs are lognormal IFF the stochastic

clock Z is IG(1, 1/V ). In this case the function φ(s) is

φ(s) =
1

V

(
1−
√

1 + 2V s
)

and is

φ−1(log(y)) = − log(y) +
1

2V
(log(y))2

We then have

r0(n) =
1

nV


√√√√1 + 2V

n∑
k=1

(
f0(k) +

1

2V
f0(k)2

)
− 1


=

1

nV


√√√√1 +

n∑
k=1

(
2V f0(k) + f0(k)2

)
− 1

 (4.17)

Pseudo-sum model. We remind that in this model the stochastic clock Z has positive stable distribution

with α = 1/θ ≤ 1. We have φ(s) = s−1/θ and ψ−1(log(y)) = (− log(y))θ. It is then easy to obtain:

r0(n) =
1

n
((f0(1))⊕θ (f0(2))⊕θ . . .⊕θ (f0(n− 1))⊕θ (f0(n))) (4.18)

where we remind the de�nition of pseudo-sum

a⊕θ b =
(
aθ + bθ

)1/θ

for a, b ≥ 0 (ad exponentiation is de�ned symmetrically for negative values).

Figure 4.1, Figure 4.2 reports the impact of stochastic clocks with considered on a �at forward term structure

at 2% with increasing parameters. Figure 4.3 compares the two clocks assuming that they give the same rate

for the 30 year maturity. We see that in all cases the stochastic clock reduces the interest rates, particularly on

long term maturities. The main di�erence between the two models is that in the Pseudo-sum model the term

structure seems to stabilize in the long run, in the quadratic model it is downward sloping along all the very

long maturity horizon that was considered, that stretches up to 200 years.
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Figure 4.1: Quadratic model. One period forward rate �at at 2%.
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Figure 4.2: Quadratic model. One period forward rate �at at 2%.
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Figure 4.3: Term structure models: quadratic vs pseudo-sum. One period forward rate �at at 2%.

4.6 Empirical Analysis

We present here some preliminary results of an analysis of the evidence of the presence of a stochastic clock

recovered from the term structure. The dataset used refers to the swap rate term structure in the US market.

The data spans a period running from March 2005 to April 2021. The market and the period was selected

because it includes quotes on the 50 year interest rate.

The model used is particularly simple. We assume a mean reverting risk factor. The model is calibrated using

mk = (1− bk−1)X̄ + bk−1X0

where X̄ is estimated and X0 is set equal to the 3-month rate. The variance is estimated as

σ2
k =

1− b2(k−1)

1− b2

We selected the Pseudo-Sum model as the workhorse for the analysis. Table 4.1 reports the estimates of the

model with geometric (θ = 1) and Pseudo-Sum compounding. The results are mildly in favour of the time

changed model, particularly in the periods before the �nancial crisis and during the crisis. The evidence does

not seem to be clear also on the estimate on the whole sample. Here the stochastic clock parameter is very

small and the MSE is slightly worse, but the θ parameter is statistically signi�cant. Of course, further research

and evidence will be needed to corroborate the results.
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Table 4.1: Geometric (θ = 1) and Pseudo-sum models estimation over di�erent periods

Period X̄ b σε θ MSE

03/01/2005 - 12/31/2007 0.0143 0.9454 0.01 1 6.0609

03/01/2005 - 12/31/2007 0.0169 0.9449 0.0029 1.387 6.0300

01/01/2008 - 12/31/2010 0.0262 0.8297 0.0949 1 55.750

01/01/2008 - 12/31/2010 0.0717 0.9713 1e-07 1.810 55.430

03/01/2005 - 04/10/2021 0.0114 0.9700 1e-07 1 1047.95

03/01/2005 - 04/10/2021 0.0115 0.9697 0.0267 1.002 1049.00

4.7 Conclusions

In this paper we have proposed an Archimedean distortion of the geometric compounding and discounting

principle. The economic rationale for the distortion is provided by the concept of generalised compounding

proposed by Carr and Cherubini (2020) and based on time change models. The idea is that if the returns are

compounded or discounted in discrete time according to a stochastic clock, this brings about a distortion that

can be modelled in terms of Laplace transforms. Then, the same technical tool proposed by Marshall and Olkin

(1988) for copula functions allow to design a family of Archimedean compounding/discounting functions.

From a technical point of view, compounding functions are isomorphic to copula functions. They are more

general in the sense that the marginal variables are not necessarily uniform, and in general they are not.

In compounding functions the marginals represent one period return accrual or discount. In particular, we

give conditions for a class of compounding/discounting functions to have lognormal margins. We propose two

examples: an Inverse Gaussian clock, for which a quadratic factor allows to preserve lognormal margins; a

positive stable clock that generates a Gumbel-like compounding/discounting function, and a term structure

model that is speci�ed in terms of a pseudo-sum.

We show that stochastic clocks generally a�ect the term structures by causing a decrease of the yields, par-

ticularly pronounced on long term maturities. Preliminary evidence on the US swap rates market shows mild

evidence in favour of time changed models.

We show that this speci�cation can be usefully applied to the analysis of the risk free term structure in a model

based on the Stochastic Discount Factor.

101



102



Bibliography

Abramowitz, M. and Stegun, A. (1992). Handbook of mathematical functions (re-print of the 1972 edition).

Ané, T. and Geman, H. (2000). Order �ow, transaction clock, and normality of asset returns. The Journal of

Finance, 55(5):2259�2284.

Ang, A. and Piazzesi, M. (2003). A no-arbitrage vector autoregression of term structure dynamics with macroe-

conomic and latent variables. Journal of Monetary economics, 50(4):745�787.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk. Mathematical �nance,

9(3):203�228.

Carr, P. and Cherubini, U. (2020). Generalized compounding and growth optimal portfolios: Reconciling kelly

and samuelson. Available at SSRN 3529729.

Carr, P., Geman, H., Madan, D. B., and Yor, M. (2003). Stochastic volatility for lévy processes. Mathematical

�nance, 13(3):345�382.

Carr, P. and Wu, L. (2004). Time-changed lévy processes and option pricing. Journal of Financial economics,

71(1):113�141.

Chavez-Demoulin, V., Embrechts, P., and Ne²lehová, J. (2006). Quantitative models for operational risk:

extremes, dependence and aggregation. Journal of Banking & Finance, 30(10):2635�2658.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula methods in �nance. John Wiley & Sons.

Cherubini, U., Mulinacci, S., Gobbi, F., and Romagnoli, S. (2011). Dynamic Copula methods in �nance, volume

625. John Wiley & Sons.

Clark, P. K. (1973). A subordinated stochastic process model with �nite variance for speculative prices. Econo-

metrica: journal of the Econometric Society, pages 135�155.

Cochrane, J. H. and Piazzesi, M. (2005). Bond risk premia. American economic review, 95(1):138�160.

Cochrane, J. H. and Piazzesi, M. (2008). Decomposing the yield curve.

103



Dakovic, R. and Czado, C. (2009). Comparing point and interval estimates in the bivariate t-copula model

with application to �nancial data. Statistical Papers, 52(3):709�731.

Dambis, K. E. (1965). On the decomposition of continuous submartingales. Theory of Probability & Its

Applications, 10(3):401�410.

Dubins, L. E. and Schwarz, G. (1965). On continuous martingales. Proceedings of the National Academy of

Sciences of the United States of America, 53(5):913.

Embrechts, P., Ne²lehová, J., and Wüthrich, M. V. (2009). Additivity properties for value-at-risk under

archimedean dependence and heavy-tailedness. Insurance: Mathematics and Economics, 44(2):164�169.

Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business, 38(1):34�105.

Follmer, H. et al. (1973). On the representation of semimartingales. the Annals of Probability, 1(4):580�589.

Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas. North American actuarial

journal, 2(1):1�25.

Giglio, S., Maggiori, M., Stroebel, J., and Utkus, S. (2020). Inside the mind of a stock market crash. Technical

report, National Bureau of Economic Research.

Hansen, L. P. and Scheinkman, J. A. (2009). Long-term risk: An operator approach. Econometrica, 77(1):177�

234.

Ibragimov, R. (2009). Portfolio diversi�cation and value at risk under thick-tailedness. Quantitative Finance,

9(5):565�580.

Ibragimov, R., Ja�ee, D. M., and Walden, J. (2008). Insurance equilibrium with monoline and multiline insurers.

Fisher Center for Real Estate & Urban Economics.

Ibragimov, R. and Prokhorov, A. (2016). Heavy tails and copulas: Limits of diversi�cation revisited. Economics

Letters, 149:102�107.

Ling, C.-H. (1965). Representation of associative functions. Publ. Math. Debrecent, 12:189�212.

Mack, C. (2008). Appendix c: The dirac delta function. https://onlinelibrary.wiley.com/doi/pdf/10.

1002/9780470723876.app3.

Madan, D. B., Carr, P. P., and Chang, E. C. (1998). The variance gamma process and option pricing. Review

of Finance, 2(1):79�105.

Madan, D. B. and Yor, M. (2008). Representing the cgmy and meixner lévy processes as time changed brownian

motions. Journal of Computational Finance, 12(1):27.

104

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470723876.app3
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470723876.app3


Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. Journal of the American statistical

association, 83(403):834�841.

Marshall, A. W., Olkin, I., and Arnold, B. C. (1979). Inequalities: theory of majorization and its applications,

volume 143. Springer.

Monroe, I. (1978). Processes that can be embedded in brownian motion. The Annals of Probability, pages

42�56.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer Science & Business Media.

Nolan, J. P. (2012). Stable distributions, volume 1177108605. ISBN.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical recipes 3rd edition:

The art of scienti�c computing. Cambridge university press.

Qin, L. and Linetsky, V. (2017). Long-term risk: A martingale approach. Econometrica, 85(1):299�312.

Samorodnitsky, G. and Taqqu, M. S. (1997). Stable non-gaussian random processes. Econometric Theory,

13:133�142.

Schweizer, B. and Sklar, A. (1961). The algebra of functions. ii. mathematical annals, 143(5):440�447.

Shaliastovich, I. and Tauchen, G. (2005). Pricing implications of stochastic volatility, business cycle time change

and non-gaussianity. Duke University.

Skorokhod, A. V. and Slobodenyuk, N. (1965). Limit theorems for random walks, i. Theory of Probability &

Its Applications, 10(4):596�606.

Stock, J. H. (1988). Estimating continuous-time processes subject to time deformation: an application to

postwar us gnp. Journal of the American Statistical Association, 83(401):77�85.

Sugeno, M. and Murofushi, T. (1987). Pseudo-additive measures and integrals. Journal of Mathematical

Analysis and Applications, 122(1):197�222.

105


	Introduction
	Thesis purpose
	Copula Functions
	The Mathematics of Copula Functions
	Copula Functions and Joint Probability Distributions
	Conditional Probabilities
	Non Parametric Dependence Measures
	Main Copula Functions
	Tail dependence measure

	Value-at-Risk and Risk Measures (VaR)
	Stochastic Time Models
	Outline of the main results

	Value-at-Risk on  -stable Risks: The Limits of Diversification
	Introduction
	Preliminaries: Convolution of  -stable Risks
	Stable Distributions
	Convolution of independent variables
	Copula Functions and Dependence
	Convolution of dependent variables

	Application
	Convolution through copulas
	Convolution and general results
	Diversification failure and tail dependence

	Conclusions

	Value-at-Risk and the Tail Dependence Puzzle
	Introduction
	Preliminaries: Convolution
	Copula functions and Dependence
	Convolution of dependent variables
	Student's t representation

	Tail-dependence analysis through C-convolution 
	t-copula convolution distribution
	t-copula convolution derivatives
	Conditions for the inversion of the risk ranking

	A Real World Example
	Conclusions
	Appendix A
	The derivative of the t-copula convolution w.r.t.  
	Partial Derivative  x1z  x1= t-1(  t( z - t-1() ) ) 
	Partial Derivative  x1  x1= t-1(  t( z - t-1() ) ) 
	Derivative of  x1  w.r.t.  

	Appendix B
	Mixed derivative of the t-distribution w.r.t.  (, )
	Derivative of the t-convolution density w.r.t.  
	Derivative of the t-convolution w.r.t.   at z=0 is negative
	Derivative of the t-density function w.r.t.  
	First derivative of the t-density function
	Mixed derivative of the t-density function w.r.t.  (z, ) 
	The sign of  G( t( z - t-1() ) , )  for  0 , not correlated case  = 0  
	The sign of  G( t( z - t-1() ) , )  for  0 , correlated case  > 0  


	 Time change, Generalized Compounding and the Term Structure
	Introduction
	A SDF Model with Time Change
	A Lognormal SDF Model Quadratic in Risk Factors
	Generalisations
	Term Structure
	Empirical Analysis
	Conclusions


