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Abstract: The paper develops a general scheme for viscoelastic materials, where the constitutive
properties are described by means of measures of strain, stress, heat flux, and their time derivatives.
The constitutive functions are required to be consistent with the second law of thermodynamics.
Indeed, a new view is associated with the second law: the non-negative expression of the entropy
production is set equal to a further constitutive function. The introduction of the entropy production
as a constitutive function allows for a much wider range of models. Within this range, a scheme to
obtain nonlinear models of thermo-viscoelastic materials subject to large deformations is established.
Notably, the Kelvin–Voigt, Maxwell, Burgers, and Oldroyd-B viscoelastic models, along with the
Maxwell–Cattaneo heat conduction, are obtained as special cases. The scheme allows also for
modelling the visco-plastic materials, such as the Prandtl–Reuss work-hardening function and the
Bingham–Norton fluid.

Keywords: viscoelastic materials; viscoplastic materials; materials of stress-rate type; large-strain
rate-dependent theories, thermodynamics
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1. Introduction

Viscoelasticity, especially the model of linear viscoelastic solids, traces back to Boltz-
mann [1], who, in essence, considered an elastic material with memory. The model elabo-
rated by Boltzmann was based on the following assumptions.

At any point of the body, the stress at any time t depends upon the strain at all
preceding times. If the strain up to time t is in the same direction, then the effect is to
reduce the corresponding stress. The influence of a previous strain on the stress depends on
the time elapsed since that strain occurred and is weaker for strains that occurred long ago.
In addition, a superposition of the influence of previous strains holds, which means that
the stress–strain relation is linear. Consequently, in the linear (infinitesimal) approximation,
the Cauchy stress T is given by the infinitesimal strain ε in the form

T(t) = K0ε(t) +
∫ ∞

0
K(s)ε(t− s)ds,

where K0 and K(s) take values in the space of fourth-order tensors for any s ≥ 0 while
T,K0,K, and ε are considered at fixed points of the body. The function K on [0, ∞) is called
the Boltzmann function. To adhere to the standard notation, let G on [0, ∞) be defined by

G(s) = G0 +
∫ s

0
K(ξ)dξ, G0 = K0, G∞ = lim

s→∞
G(s);
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G is called the relaxation function, G0 is the instantaneous elastic modulus, and G∞ is the
equilibrium elastic modulus. We can then write [2,3]

T(t) = G0 ε(t) +
∫ ∞

0
G′(s)ε(t− s)ds, (1)

It is assumed that, for solids, both G0 and G∞ and their difference G0 −G∞ are positive
definite [2,4].

Rather than by memory functionals, viscoelastic properties can be modeled by rate
(differential) equations [5,6]. For definiteness, let

G(s) = G0 exp(−s/τ).

Hence time differentiation – denoted by a superposed dot – of (1) yields

Ṫ = G0ε̇ +
1
τ
G0

∫ ∞

0
exp(− s

τ )
dε(t− s)

ds
ds

= G0ε̇− 1
τ
G0ε +

1
τ2G0

∫ ∞

0
exp(− s

τ )ε(t− s)ds,

whence we have the Maxwell model

Ṫ +
1
τ

T = G0ε̇. (2)

The purpose of this paper is to establish thermodynamically consistent models of
viscoelastic materials characterized by rate (or differential) equations for stress and strain.
The approach is quite general in that the constitutive equations are nonlinear and three-
dimensional and involve finite deformations. Furthermore, the thermodynamic restrictions
are determined so that coupling effects are allowed between stress rate, strain rate, and en-
tropy production; formally, this is realized through a novel representation formula.

The memory effects of viscoelasticity are modeled jointly with thermal properties.
In this respect, we observe that dissipative properties are ascribed to the materials models;
there are approaches or models where dissipative effects are associated with external
damping or boundary conditions [7].

Our approach is inherently thermodynamic. We derive constitutive vector- and tensor-
valued rate equations consistent with thermodynamics in that they obey the second law
(or Clausius–Duhem) inequality. This is the way we distinguish physically admissible
models from purely mathematical ones, as is standard in rational thermodynamics. The
pertinent variables of the constitutive equations comprise stress, strain, heat flux, and their
time derivative.

It is a key point of our approach that the entropy production enters as a non-negative
constitutive function. This in turn improves the generality of the materials models (see,
for instance, [8]). Depending on the type of model, we proceed in the referential (La-
grangian) description or in the spatial (Eulerian) description. By arguing in the referential
configuration, we obtain objective descriptions in the corresponding Eulerian descrip-
tion [9]. The main advantage of the present approach is the possibility of establishing
nonlinear, thermodynamically consistent, objective rate-type relations describing memory
and dissipative effects.

It is worth mentioning References [10,11], where viscoelastic models are developed
in the relativistic Landau–Lifshitz frame on the basis of Onsager’s linear non-equilibrium
thermodynamics. The models are based on the energy momentum tensor; the particle-
number current; and where appropriate, the rheology equations. The constitutive equations
are required to be consistent with the maximum property of the entropy functional in the
process of linear regression. The maximum property of the entropy seems to be the analog
of our requirement of non-negative entropy production. Instead, our scheme involves
properties and processes such as nonlinearities and hysteretic effects [8,12,13].
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2. Balance Laws and Entropy Inequality

We consider a body occupying the time-dependent region Ω ⊂ E 3. The motion is
described by means of the function χ(X, t), providing the position vector x ∈ Ω in terms
of the position X, in a reference configuration R, and the time t, so that Ω = χ(R, t). The
symbols ∇,∇R denote the gradient operator with respect to x ∈ Ω, X ∈ R. The function χ
is assumed to be differentiable; hence, we can define the deformation gradient as F = ∇R χ
or, in suffix notation, FiK = ∂XK χi. The invertibility of X 7→ x = χ(X, t) is guaranteed
by letting J := det F > 0. Let v(x, t) be the velocity field, on Ω×R+. A superposed dot
denotes time differentiation following the motion of the body, and hence, for any function
f (x, t), we have ḟ = ∂t f + v · ∇ f . We denote by L the velocity gradient, Lij = ∂xj vi and
recall that

Ḟ = LF.

Moreover D denotes the stretching tensor, D = SymL, and W the spin tensor W =
SkewL. In terms of F, the (right) Cauchy–Green tensor C and the Green–Saint Venant
deformation tensor E are defined by

C := FTF, E := 1
2 (C− 1).

Let ε be the internal energy density (per unit mass), T be the symmetric Cauchy stress,
q be the heat flux vector, ρ be the mass density, r be the (external) heat supply, and b be the
mechanical body force per unit mass. The balance equations for mass, linear momentum,
and energy are taken in the form

ρ̇ + ρ∇ · v = 0, ρv̇ = ∇ · T + ρb, ρε̇ = T ·D−∇ · q + ρr. (3)

Let η be the entropy density and θ the absolute temperature. According the second
law of thermodynamics, we take it that the inequality

ρη̇ +∇ · (q/θ)− ρr/θ = σ ≥ 0 (4)

holds for any process compatible with the balance equations; σ is said to be the entropy
production (per unit volume) [14]. Consequently, admissible constitutive equations are
required to satisfy inequality (4).

Multiplying by the absolute temperature θ and substituting∇ · q− ρr from the energy
Equation (3)3, we have

ρθη̇ − ρε̇ + T ·D− 1
θ

q · ∇θ = θσ ≥ 0.

Letting ψ = ε− θη (Helmholtz free energy density), we can write this inequality in
the form

− ρ(ψ̇ + ηθ̇) + T ·D− 1
θ

q · ∇θ = θσ ≥ 0. (5)

Within the isothermal setting, the term θσ is usually referred to as the rate of (me-
chanical) dissipation[15]. Hence, non-dissipative models are characterized by σ = 0,
the vanishing of the entropy production.

The modelling of the constitutive properties is made simpler by using referential,
Euclidean invariant quantities. Let

TRR := JF−1TF−T , qR := JF−1q;

TRR is called the second Piola–Kirchhoff stress. Both TRR and qR are Euclidean invariant.
Under any change of frame with rotation matrix Q,

x → x∗, x∗ = c(t) + Q(t)x, det Q = 1,
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we have

F∗ = QF, T∗RR = J(QF)−1QTQT(QF)−T = JF−1TF−T , q∗R = J(QF)−1Qq = JF−1q.

The tensors C and E are invariant too in that

C∗ = (QF)T(QF) = FTF = C.

Moreover, the rate Ė is related to the stretching D by

Ė = FTDF. (6)

Now, we multiply inequality (5) by J (J > 0); observe that Jρ is the mass density ρR in
the reference configuration. Accordingly, we let σR = Jσ and find the second-law inequality
in the form

− ρR(ψ̇ + ηθ̇) + TRR · Ė−
1
θ

qR · ∇Rθ = θσR ≥ 0. (7)

If, instead, we consider the Gibbs free energy density

φ = ψ− 1
ρR

E · TRR , (8)

then inequality (7) takes the form

− ρR(φ̇ + ηθ̇)− E · ṪRR −
1
θ

qR · ∇R θ = θσR ≥ 0. (9)

In terms of the Eulerian Almansi strain,

EEE = F−TE F−1

the Gibbs free energy density can be expressed as

φ = ψ− 1
ρ
EEE · T.

A direct calculation shows that

ṪRR = JF−1 T F−T , (10)

where T= Ṫ + (∇ · v)T− LT− TLT is the Truesdell rate of T [8,9]. Accordingly, in the
spatial description, inequality (9) becomes

− ρ(φ̇ + ηθ̇)−EEE · T −1
θ

q · ∇θ = θσ ≥ 0. (11)

For later use, we observe that time differentiation of E = FTEEEF yields

Ė = FT(ĖEE + LTEEE + EEEL)F = FT
4
EEE F (12)

where
4
EEE denotes the Cotter–Rivlin rate [9] of EEE . In view of (6), it follows that

4
EEE = D. (13)

The following property [8] allows for a more general set of constitutive equations consistent
with the second law; the symbol III denotes the fourth-order identity tensor.
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Lemma 1. Given a second-order tensor A, let N = A/|A|, |A| =
√

A ·A. If Z is a second-order
tensor such that only Z ·N is known, then

Z = (Z ·N)N + (III−N⊗N)G (14)

for any second-order tensor G. A representation formula such as (14) also holds when A, Z and G
are vectors, provided that III is replaced by 1, the second-order identity tensor.

Proof. If Z is a tensor such that Z‖ is given while Z⊥ is undetermined, then the representa-
tion of Z allows for any tensor Z⊥ subject to Z⊥ ·N = 0. Now, since [(III−N⊗N)G] ·N = 0
for any second-order tensor G, then [(III−N⊗N)G] is any possible value of Z⊥. Hence the
relation Z = Z‖ + Z⊥ results in the representation (14).

3. Constitutive Relations

To describe thermo-viscoelastic effects, we let

ΞR := (θ, E, TRR, qR, Ė, ṪRR, q̇R,∇R θ)

be the set of variables; in light of the model under consideration, the single variables Ė, ṪRR,
q̇R, ∇R θ need not be mutually independent. Hence, we let ψ, η depend on ΞR. In addition,
we assume that η is continuous while ψ is continuously differentiable.

Upon evaluation of ψ̇ and substitution in (7), we obtain

ρR(∂θψ + η)θ̇ + (ρR∂Eψ− TRR) · Ė + ρR∂TRR ψ · ṪRR + ρR∂qR ψ · q̇R

+ρR∂Ėψ · Ë + ρR∂ṪRR
ψ · T̈RR + ρR∂q̇R ψ · q̈R + ρR∂∇R θψ · ∇R θ̇ +

1
θ

qR · ∇R θ = −θσR.

The linearity and arbitrariness of θ̇, ∇R θ̇, Ë, T̈RR, q̈R imply that ψ is independent of
∇R θ, Ė, ṪRR, q̇R and hence

ψ = ψ(θ, E, TRR, qR), η = −∂θψ,

so that the entropy inequality reduces to

(ρR∂Eψ− TRR) · Ė + ρR∂TRR ψ · ṪRR + ρR∂qR ψ · q̇R +
qR

θ
· ∇R θ = −θσR ≤ 0. (15)

Further restrictions depend on the arbitrariness or possible constraints on Ė, ṪRR, q̇R,
∇R θ. In particular, since ψ is independent of ∇R θ, if Ė and ṪRR are related to each other
but independent of q̇R,∇R θ, then letting q̇R = ∇R θ = 0 we write (15) in the form

(ρR∂Eψ− TRR) · Ė + ρR∂TRR ψ · ṪRR = −θσET
R ≤ 0, (16)

where σET
R is the entropy production density σR when q̇R = ∇R θ = 0. In terms of the Gibbs

free energy density, inequality (16) becomes

ρR ∂Eφ · Ė + (ρR∂TRR φ + E) · ṪRR = −θσET
R ≤ 0. (17)

Likewise, if, as is usually the case, q̇R, qR and ∇R θ are independent of Ė, ṪRR, then

ρR∂qR ψ · q̇R +
qR

θ
· ∇R θ = −θσQ

R ≤ 0. (18)

Apparently, σR = σET
R + σQ

R . Hereafter, the entropy productions σET
R and σQ

R are as-
sumed to be non-negative constitutive functions of ΞR to be determined according to the
constitutive model.

Remark 1. Inequality (18) is common to many approaches where both qR and∇R θ are independent
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variables [16–18]. Since it is framed in the referential description then inequality (16) has the
advantage that the material time derivative is objective [9,19,20]. Moreover, it makes consistency
with thermodynamics much easier than it happens with histories [21] or summed histories [22].

If Ė, ṪRR and q̇R are independent of each other, then we have the following:

∂TRR ψ = ∂qR ψ = 0, TRR = ρR∂Eψ, qR · ∇R θ = −θ2σR ≤ 0,

Accordingly, ψ depends only on θ, E. In addition, TRR is no longer an independent
variable but equals ρR∂Eψ, which can be viewed as the constitutive relation for TRR, as it
happens with thermo-hyperelastic materials.

It is of interest to look for the corresponding Eulerian descriptions. To this purpose,
we observe that T (see (12)) and likewise q satisfy

T= J−1FṪRRFT , q := q̇ + (∇ · v)q− Lq = J−1Fq̇R,

with q being the Truesdell rate of q.
Since ψ = ψ(θ, E, TRR, qR), then we consider the dependence on EEE , T, q through

E, TRR, qR. The definitions of EEE , TRR, and qR allow us to write

ψ = ψ(θ, E, TRR, qR) = ψ(θ, E(EEE , F), TRR(T, F), qR(q, F)) =: ψ̃(θ,EEE , T, q, F).

Hence, in view of (12), we have

∂EEE ψ̃ = ∂Eψ∂EEEE, ∂Eψ = F−1∂EEE ψ̃F−T , ∂Eψ · Ė = ∂EEE ψ̃·
4
EEE , TRR · Ė = JT·

4
EEE

and, in view of (10),

∂TRR ψ = FT∂Tψ̃F, ∂TRR ψ · ṪRR = ∂Tψ̃· T .

Likewise, we evaluate q̇R, ∂qR ψ and qR · ∇R θ. Consequently, inequalities (16) and (18)
can be written in the Eulerian form

ρ∂Tψ̃· T +(ρ∂EEE ψ̃− T)·
4
EEE = −θσET ≤ 0, ρ∂qψ̃ · q +

q
θ
· ∇θ = −θσQ ≤ 0. (19)

where σET and σQ are non-negative constitutive functions of Ξ and σET + σQ = σ.
In terms of the Gibbs free energy φ = φ̃(θ,EEE , T, q), inequality (17) can be given the

form

ρ∂EEE φ̃ ·
4
EEE +(ρ∂Tφ̃ + EEE) · T = −θσET ≤ 0. (20)

It is worth remarking that the application of (5) in connection with ψ̃(θ,EEE , T, q, F)
would result in inequalities different from (19) though the entropy production is invariant,
namely

Jσ = σET
R + σQ

R .

4. Hypo-Thermoelastic Solids

Assume that σET
R = 0, σQ

R = 0 and

∂TRR ψ 6= 0, ∂qR ψ 6= 0.

Hence, Equations (16) and (18) become

ρR ∂TRR ψ · ṪRR = (TRR − ρR ∂Eψ) · Ė, (21)

ρR∂qR ψ · q̇R = −1
θ

qR · ∇R θ. (22)
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Equations (21) and (22) are said to describe hypo-thermoelastic solids; owing to the
condition σR = 0, such models are viewed as non-dissipative. More explicit relations for
ṪRR and q̇R follow by appealing to Lemma 1.

First, let N = ∂TRR ψ/|∂TRR ψ| and Z = ṪRR. The representation formula (14) is
applicable in that Z ·N is known,

Z ·N =
(TRR − ρR ∂Eψ) · Ė

ρR|∂TRR ψ| .

Accordingly, we select G = JJJRRĖ, where JJJRR is an arbitrary fourth-order tensor, and let
JJJRR depend on θ, E, TRR, qR. It follows from (21) that

ṪRR =
[ (TRR − ρR∂Eψ) · Ė

ρR|∂TRR ψ|2
]
∂TRR ψ + (I−N⊗N)JJJRRĖ.

This equation can be written in a compact form by letting

CRR =
1

ρR |∂TRR ψ|N⊗ (TRR − ρR ∂Eψ) + (I−N⊗N)JJJRR

= JJJRR +
1

ρR |∂TRR ψ|2 ∂TRR ψ⊗ (TRR − ρR ∂Eψ− ρRJJJ
T
RR∂TRR ψ).

(23)

We can then write (21) in the form

ṪRR = CRR(θ, E, TRR, qR)Ė. (24)

Likewise, we can also apply (14) with the vectors N = ∂qR ψ/|∂qR ψ| , Z = q̇R and
G = JR∇R θ, where JR is is an arbitrary second-order tensor. Using (22), we have

Z ·N = − qR · ∇R θ

ρRθ|∂qR ψ| .

and then

q̇R = −
[

qR · ∇R θ

ρRθ|∂qR ψ|2

]
∂qR ψ + (1−N⊗N)JR∇R θ,

where JR = JR(θ, E, TRR, qR). Hence, letting

KR =
1

ρR θ|∂qR ψ|N⊗ qR − (1−N⊗N)JR

= JR +
1

ρR |∂qR ψ|2 ∂qR ψ⊗ (qR/θ + ρR JT
R ∂qR ψ),

(25)

we can write (22) in the compact form,

q̇R = −KR(θ, E, TRR, qR)∇R θ. (26)

Relations (24) and (26) describe the constitutive properties of hypo-thermoelastic
solids andCCCRR and KR are referred to as hypo-elastic and hypo-thermal tensors, respectively.
By the arbitrariness of JJJRR and JR, it follows that there are infinitely many tensors CCCRR and
KR compatible with a given free energy ψ. Moreover, CCCRR and KR need not be positive
definite and this is a remarkable difference from the positive definiteness of the elastic
tensor and the conductivity tensor.

Remark 2. Relative to rigid heat conductors, if we assume ε = cvθ + ε0, cv > 0, the balance of
internal energy takes the form,

ρRcv θ̇ = −∇R · qR + ρRr



Materials 2021, 1, 0 8 of 23

and hence, it follows from (26) that

ρRcv θ̈ = ∇R · (KR∇R θ) + ρR ṙ.

This equation is the same as that resulting from Green and Naghdi’s type II theory (see [23–26]). It
is hyperbolic if KR is positive-definite, but this is not implied by thermodynamics.

Otherwise, if hypo-thermoelastic constitutive relations are given in advance, for in-
stance

ṪRR = ĈCCRRĖ, q̇R = K̂R∇R θ, (27)

then from (21) and (22), we obtain

ρR ∂TRR ψ · ĈCCRRĖ = (TRR − ρR ∂Eψ) · Ė,

ρR∂qR ψ · K̂R∇R θ = −qR

θ
· ∇R θ.

and the arbitrariness of Ė and ∇R θ implies

TRR − ρR ∂Eψ = ρRĈCC
T
RR∂TRR ψ, qR = −ρRθK̂T

R
∂qR ψ. (28)

In [27], the existence of a thermodynamic potential ψ satisfying (21) or(22) is investigated
by exploiting the overdetermined systems (28) with assigned tensors ĈCCRR and K̂R.

Proposition 1. If we replace (28) into (23) and (25), we obtain

CRR = JJJRR +
1

|∂TRR ψ|2 ∂TRR ψ⊗ [(Ĉ
T
RR − JJJT

RR)∂TRR ψ],

KR = JR +
1

|∂qR ψ|2 ∂qR ψ⊗ [(K̂T
R
− JT

R )∂qR ψ].

Hence, by properly choosing the arbitrary terms (namely, if we let JJJRR = ĈRR and JR = K̂R ), we
obtain the expected identities CRR = ĈRR and KR = K̂R .

A similar approach can be developed if the Gibbs free energy φ is given instead of ψ.
From (17) with σET

R = 0, we have

ρR ∂Eφ · Ė +
(
ρR ∂TRR φ + E

)
· ṪRR = 0, (29)

and assuming ∂Eφ 6= 0, it follows

Ė = −
[ (E + ρR∂TRR ψ) · ṪRR

ρR|∂Eφ|2
]
∂Eφ.

Hence, by paralleling previous arguments, we obtain

Ė = HRRṪRR, (30)

where
HRR = XRR −

1
ρR |∂Eφ|2 ∂Eφ⊗ (E + ρR ∂TRR φ + ρRX

T
RR∂Eφ). (31)

with XRR being an arbitrary (possibly vanishing) fourth-order tensor. Two further examples
are now given by starting with the potential, φ or ψ.
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Example 1. Let φ be the Gibbs free energy defined by (8), and let

ρR ψ(θ, TRR) = ρRψ0(θ) +
1
2 ν(θ)|TRR|2 + 1

2

∫ |TRR |2

0
uβ(θ, u) du,

with α and β being real-valued functions. Consequently,

ρR∂TRR φ =
[
ν(θ) + |TRR|2β(θ, |TRR|2)

]
TRR − E, ρR∂Eφ = −TR R,

whence
E + ρR∂TRR φ = −[ν(θ) + |TRR|2β(θ, |TRR|2)]ρR∂Eφ.

Let XRR = µI. From (31), we have the following:

HRR(θ, E) = µI+ β(θ, |TRR|2)TRR ⊗ TRR + (ν− µ)
TRR

|TRR|
⊗ TRR

|TRR|
.

Apparently, HRR enjoys the major symmetry. Choosing µ = α, we obtain

HRR(θ, E) = ν(θ)I+ β(θ, |TRR|2)TRR ⊗ TRR.

The resulting constitutive equation in the form (30) is generated by the well known Prandtl–Reuss
work hardening plasticity theory provided that E and TRR are replaced by their deviatoric parts (see
[4] Sect.C).

Example 2. Let M be a non-singular, fully symmetric, fourth-order tensor; M be a non-singular,
symmetric, second-order tensor; and GGG be a smooth function from Sym to Sym. Consider the free
energy ψ defined by

ρR ψ = ρR ψ0(θ)+
∫ E

0
GGG(u) · du+ 1

2 [TRR−GGG(E)] ·M(θ)[TRR−GGG(E)]+
1
2

qR ·M(θ)qR, (32)

where u ∈ Sym. Observe that ρR∂qR ψ = M(θ)qR and

ρR∂TRR ψ = M(θ)[TRR −GGG(E)], ρR∂Eψ = GGG(E)− [GGG ′(E)]TM(θ)[TRR −GGG(E)].

As a consequence, we infer that (28) holds with

Ĉ
T
RR = M−1(θ) + [GGG ′(E)]T , K̂T

R = −1
θ

M−1(θ)

Then, in light of Remark 3, we let JJJRR = ĈRR and JR = K̂R into (23) and (25) to obtain

ṪRR = [GGG ′(E) +M−1(θ)]Ė, q̇R = −1
θ

M−1(θ)∇R θ. (33)

In the linear case, GGG(E) = LE, L being a (not necessarily symmetrical) fourth-order tensor, we have
the following:

ṪRR = CRR Ė, CRR := L+M−1.

5. Hypo-Elastic Models with Thermal Dissipation

Unlike hypo-thermoelastic models, which exhibit no entropy production, Maxwell–
Cattaneo and Fourier-like hypoelastic models allow for a non-negative value of σR. A quite
general class of hypo-elastic models with thermal dissipation is characterized by σET

R = 0
but σR ≡ σQ

R ≥ 0, so that (21) still holds along with (18). As in the previous section,
the assumption ∂TRR ψ 6= 0 leads to (24), whereas (18) can be satisfied in two different ways,
depending on whether it is ∂qR ψ = 0 or ∂qR ψ 6= 0.
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5.1. Fourier-Like Models

Assuming ∂qR ψ = 0, it follows that ψ = ψ(θ, E, TRR) and (18) reduces to the well-
known Fourier inequality

qR · ∇R θ = −θ2σQ
R ≤ 0. (34)

This condition is satisfied, for example, by letting qR be given by Fourier’s law,
qR = −κ∇R θ, where κ is a positive-definite second-order tensor. In that case, we have
θ2σQ

R = ∇R θ · κ∇R θ.
The same result follows also by using the representation formula (14). Let A be any

symmetric, non-singular, second-order tensor, possibly parameterized by the temperature θ.
Assuming A∇R θ 6= 0 and applying (14) with N = A∇R θ/|A∇R θ|, Z = A−1qR, and G = 0,
it follows from (34) that

qR = −θ2σQ
R A2∇R θ/|A∇R θ|2.

Hence, letting κ = A2 and σQ
R = ∇R θ · κ∇R θ/θ2, we recover Fourier’s law qR = −κ∇R θ.

5.2. Maxwell–Cattaneo-like Models

Assume ∂qR ψ 6= 0. Equation (18) can then be written in the form

∂qR ψ

|∂qR ψ| · q̇R = − 1
ρR |∂qR ψ|

(qR

θ
· ∇R θ + θσQ

R

)
.

Applying (14) with N = ∂qR ψ/|∂qR ψ| , Z = q̇R and G = JR∇R θ, we obtain

q̇R = −KR∇R θ − σQ
R QR, (35)

where KR = KR(θ, E, TRR, qR) is given by (25) and

QR =
θ ∂qR ψ

ρR |∂qR ψ|2 .

For definiteness, we now show that a class of models for heat conduction, of the
Maxwell–Cattaneo type [28], follows from (35). Let ψ depend on qR via ξ = |qR|n, n ≥ 2.
Hence,

∂qR ψ = n ∂ξψ |qR|n−2 qR, ∂ξ ψ 6= 0

and inequality (18) becomes(
nρR∂ξ ψ|qR|n−2q̇R +

1
θ
∇R θ

)
· qR = −θσQ

R ≤ 0.

Let σQ
R = |qR|2/θκ, where κ is a positive-valued function. In view of (35), we have the

following:

nρR∂ξ ψ|qR|n−2q̇R +
1
θ
∇R θ = −1

κ
qR. (36)

Consequently,
κnρRθ∂ξ ψ|qR|n−2q̇R + qR = −κ∇R θ

can be viewed as a Maxwell–Cattaneo equation with

τ = κnρRθ∂ξ ψ|qR|n−2

playing the role of relaxation time and κ representing the heat conductivity. If n = 2, then

τ = 2κρRθ∂ξ ψ.

In this case, τ reduces to a function of the temperature alone when κ = κ(θ) and ψ is a
quadratic function of qR.
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6. Thermo-Viscoelastic and Viscoplastic Models

Models of thermo-viscoelastic materials are characterized by non-negative entropy
productions σET

R and σQ
R independent of Ė, ṪRR, q̇R and∇R θ. In general, both the free energy

and the entropy productions are functions of (θ, E, TRR, qR). We recognize two different
classes of models.

Assuming ∂TRR ψ, ∂qR ψ 6= 0 and applying the representation formula (14), we can
rewrite (16) and (18) in the form

ṪRR = CRRĖ− PRR + (I−N⊗N)GRR, q̇R = −KR∇R θ −QR + (I− n⊗ n)gR, (37)

where

N =
∂TRR ψ

|∂TRR ψ| , CRR = N⊗ TRR − ρR∂Eψ

ρR|∂TRR ψ| , PRR =
θσET

R N
ρR|∂TRR ψ| ,

n =
∂qR ψ

|∂qR ψ| , KR = n⊗ qR

ρRθ|∂qR ψ| , QR =
θσQ

R n
ρR|∂qR ψ| ,

GRR and gR being respectively an arbitrary tensor and an arbitrary vector.
In terms of the free enthalpy φ, Equation (37)1 takes the form

Ė = HRRṪRR − SRR + (I−U⊗U)GRR, (38)

where

U =
∂Eφ

|∂Eφ| , HRR = −U⊗
E + ρR ∂TRR φ

ρR |∂Eφ| , SRR =
θσET

R U
ρR |∂Eφ| .

Incremental relations of this type describe a thermo-viscoelastic behaviour when σET
R

is smooth. If instead σET
R is only piecewise smooth and vanishes in a suitable open region

then a rate-dependent thermo-viscoplastic behaviour is concerned; for the one-dimensional
isothermal case, see for instance [8,29,30].

Otherwise, when ∂TRR ψ = ∂qR ψ = 0 relations (16) and (18) reduce to

(TRR − ρR∂Eψ) · Ė = θσET
R , qR · ∇R θ = −θ2σQ

R .

The latter equation has been scrutinized in Section 5.1. Concerning TRR, let M be
any symmetric, non-singular fourth-order tensor, possibly parameterized by θ. Assuming
MĖ 6= 0 and applying (14) with N = MĖ/|MĖ|, Z = M−1[TRR − ρR∂Eψ] and G = 0, we
can express TRR in the form

TRR = ρR∂Eψ +
θσET

R

|MĖ|2
M2Ė. (39)

We now describe some simple examples of (37)–(39) via special choices of the free
energy and the non-negative functions σET

R and σQ
R .

6.1. Thermo-Viscoelastic Behaviour

Let M be a fully symmetric, positive-definite, fourth-order tensor; M be a symmetric,
positive-definite, second-order tensor; GGG be a smooth function from Sym to Sym; and ψ be
given by (32) as in Example 2. Then, we have

ρR∂TRR ψ = M[TRR −GGG(E)], ρR∂Eψ = GGG(E) + [GGG ′(E)]TM[TRR −GGG(E)], ρR∂qR ψ = MqR,

and we can apply (37), where

N =
M[TRR −GGG(E)]
|M[TRR −GGG(E)]|

, n =
MqR

|MqR|
.
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Since [X⊗ Y]Z = (Y · Z)X for tensors or vectors X, Y, Z, we have

CRRĖ =
[
N⊗

(
M−1 + [GGG ′(E)]T

)
N
]
Ė =

[
N ·
(
M−1 +GGG ′(E)

)
Ė
]
N,

KR∇R θ =
1
θ
[n⊗M−1n]∇R θ =

1
θ

(
n ·M−1∇R θ

)
n

Now, letting

σET
R =

1
θτT

[TRR −GGG(E)] ·M[TRR −GGG(E)], σQ
R =

1
θτq

qR ·MqR, τT, τq > 0,

from (37), we have the following:

ṪRR =
[
N ·
(
[M−1 +GGG ′(E)

]
Ė− 1

τT
[TRR −GGG(E)]

)]
N + (I−N⊗N)GRR,

q̇R = −
[
n ·
( 1

θ M−1∇R θ + 1
τq

qR

)]
n + (1− n⊗ n)gR,

Finally, we obtain

ṪRR = [M−1 +GGG ′(E)]Ė− 1
τT
[TRR −GGG(E)], q̇R = −1

θ
M−1∇R θ − 1

τq
qR, (40)

simply by choosing GRR and gR equal to the right-hand members of the equalities in (40).
When GGG is linear, namely GGG(E) = G∞E, from (40), we recover the standard linear solid

(or Zener) model with Mawell–Cattaneo heat conduction,

ṪRR +
1
τT
(TRR −G∞E) = G0Ė, q̇R +

1
τq

qR = −κ∇R θ (41)

where G0 = G∞ +M−1 and κ = M−1/θ. Here, G0 and G∞ stand for the usual elastic and
relaxation moduli, respectively, whereas κ stands for the conductivity tensor. The corre-
sponding free energy is

ρRψ = ρRψ0(θ) +
1
2

E ·G∞E +
1
2
[TRR −G∞E] · (G0 −G∞)−1[TRR −G∞E] +

1
2θ

qR · κ−1qR.

For solids, G∞ > 0. In the special case G∞ = 0, we obtain the Maxwell model for
fluids.

ṪRR +
1
τT

TRR = G0Ė, q̇R +
1
τq

qR = −κ∇R θ.

It is worth looking for the possible relation between (41)1 and the classical linear
equation in Equation (1). Under the small strain assumption, we observe that

E ' ε, TRR ' T,

the approximation being motivated by linearity. Hence, we might replace (1) with

TRR(t) = G0E(t) +
∫ ∞

0
G′(s)E(t− s)ds.

As an example, let

G(s) := G∞ + (G0 −G∞) exp(−s/τ), τ > 0.

Hence, upon time differentiation, we find

ṪRR(t) = G0Ė(t)− 1
τ
(G0 −G∞)

∫ ∞

0
exp(−s/τ)Ė(t− s)ds,
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whence (41)1 follows.

6.2. The Bingham–Norton Model

This model describes the behaviour of an elastic-perfectly viscoplastic solid. In our
setting, it can be derived by assuming ∂Eψ = ∂qR ψ = 0. Accordingly, ρR∂Eφ = −TRR, and
then from (38), we obtain

Ė = HRRṪRR + σET
R θ

TRR

|TRR|2
, (42)

where (for simplicity, we let GRR = 0)

HRR(θ, TRR) =
ρR

|TRR|2
TRR ⊗ ∂TRR ψ.

Choosing λ, Sy > 0 and letting

σET
R =

{
0 if |TRR| ≤ Sy,

1
θλn |TRR|n

(
|TRR| − Sy

)
otherwise,

, (43)

we recover the Bingham–Norton model [31] for n > 1. If, instead, n = 1 and Sy = 0, the
model reduces to

Ė = HRRṪRR +
1
λ

TRR,

which may be viewed as a generalized Maxwell–Wiechert model. In any case, the free
energy is a generic function ψ = ψ(θ, TRR).

The Bingham–Norton model (42) and (43) allows for a special decomposition of the
deformation rate, Ė = Ėe + Ėvp. The elastic strain rate is represented by

Ėe = HRRṪRR,

whereas the rate of visco-plastic strain is only a function of the stress and depends on the
initial yield stress Sy (there is no influence of hardening)

Ėvp =

{
0 if |TRR| ≤ Sy,
1

λn |TRR|n−2(|TRR| − Sy
)
TRR otherwise.

This happens by letting

σET
R =

1
θ

|TRR|n
λn (|TRR| − Sy)H(Sy − |TRR|),

where H denotes the Heaviside step function.

6.3. The Kelvin–Voigt Model

Let ρRψ = ρRψ0(θ) +
1
2G0E · E and σET

R = θ−1|MĖ|2. Then, (39) becomes

TRR = G0E +M2Ė. (44)

When large deformations are involved, this is the three-dimensional continuum-
mechanics version of the well-known rheological model realized by a spring and a dashpot
in parallel, where the stress is the sum of terms proportional to the strain and the strain rate.
Under the small strain assumption, the linear constitutive equation (44) is approximated
by replacing E and Ė with ε and ε̇, respectively.

7. Thermo-Viscoelastic and Viscoplastic Models in the Spatial Description

The difficulty in formulating incremental, or rate-type, models in the spatial de-
scription of finite deformations is related to the appropriate selection of objective time
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derivatives. This difficulty is overcome here by translating the visco-thermoelastic models
previously formulated by means of (19) in the spatial description.

Taking into account that
4
EEE = D, Equations (19) are written in the form

ρ∂Tψ̃· T +(ρ∂EEE ψ̃− T) ·D = −θσET, ρ∂qψ̃ · q +
q
θ
· ∇θ = −θσQ. (45)

where both the free energy and the non-negative entropy productions are functions of
(θ,EEE , T, q). Assuming ∂Tψ, ∂qψ 6= 0 are nonzero and applying the same arguments of the
previous sections, we can rewrite (45) in the form

T = CĖ− P + (I−N⊗N)G, q = −K∇θ −Q + (I− n⊗ n)g, (46)

where

N =
∂Tψ

|∂Tψ| , C = N⊗ T− ρ∂EEEψ

ρ|∂Tψ| , P =
θσETN
ρ|∂Tψ| ,

n =
∂qψ

|∂qψ| , K = n⊗ q
ρθ|∂qψ| , Q =

θσQn
ρ|∂qψ| ,

with G and g being, respectively, an arbitrary tensor and an arbitrary vector.
In terms of the free enthalpy φ, Equation (38) takes the form

D = HT− S + (I−U⊗U)G, (47)

where

U =
∂EEEφ

|∂EEEφ| , H = −U⊗ EEE + ρ∂Tφ

ρ|∂EEEφ| , S =
θσETU
ρ|∂EEEφ| .

G being an arbitrary second-order tensor.

7.1. Thermo-Viscoelastic Behaviour

Let A be a fully symmetric, positive-definite, fourth-order tensor and A be a symmetric,
positive-definite, second-order tensor. Optionally, both A and A are parameterized by θ.
Moreover, letFFF be a monotone function from Sym to Sym. Given

σET =
1

θτT
[T−FFF (EEE)] ·A[T−FFF (EEE)], σQ =

1
θτq

q ·Aq, τT, τq > 0.

both are non-negative, and from (45), we have the following:

[ρ∂EEEψ− T] ·D + ρ∂Tψ · T = − 1
τT
(T−FFF (EEE)) ·A(T−FFF (EEE)),

ρ∂qψ̃ · q +
q
θ
· ∇θ = − 1

τq
q ·Aq.

(48)

Now, letting ψ such that

ρ∂Tψ = A[T−FFF (EEE)], ρ∂EEEψ = FFF (EEE)− [FFF ′(EEE)]TA[T−FFF (EEE)], ρ∂qψ = Aq,

we obtain

A[T−FFF (EEE)] ·
[
T−

(
A−1 +FFF ′(EEE)

)
D
]
= − 1

τT
[T−FFF (EEE)] ·A[T−FFF (EEE)],

Aq · q +
q
θ
· ∇θ = − 1

τq
q ·Aq.
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These equations are certainly satisfied if

T −
[
A−1 +FFF ′(EEE)

]
D +

1
τT
(T−FFF (EEE)) = 0, q +

1
θ

A−1∇θ +
q
τq

= 0. (49)

WhenFFF is linear, for instanceFFF (EEE) = F∞ EEE , we obtain

τTT = τTF0D− (T− F∞EEE), τq q = −τqκ∇θ − q, (50)

where F0 = F∞ +A−1, κ = A−1/θ.

7.2. Upper Convected Maxwell Model

When F∞ = 0 (FFF ≡ 0) from (50)1, we obtain

T + τT T = τTA
−1D,

and assuming τTA
−1 = λ1⊗ 1 + 2µI (isotropy), we have the following:

T + τT T = λ(tr D)1 + 2µD.

In the special case ∇ · v = 0 (incompressibility) we recover the upper-convected
Maxwell model:

T + τT

5
T = 2µD.

The corresponding free energy density is given by ρψ = ρψ0(θ) +
τT
4µ |T|2.

7.3. Kelvin–Voigt Model in the Spatial Description

When ∂Tψ, ∂qψ = 0, relations (46) reduce to

(T− ρ∂EEEψ) ·D = θσET, q · ∇θ = −θ2σQ.

The latter equation can be handled as in Section 5.1. Applying the procedure exhibited
in Section 6.3, the former relation yields

T = ρ∂EEEψ +
θσET

|AD|2A
2D, (51)

where A is a symmetric, non-singular fourth-order tensor, possibly parameterized by θ. Let
ρ∂EEEψ = ρψ0(θ) +

1
2F0EEE · EEE and σET = θ−1|AD|2. Then, (51) becomes

T = F0EEE +A2D.

In the isotropic case, F0 = λ01⊗ 1 + 2µ0I, A2 = λ1⊗ 1 + 2µI, we obtain

tr T = (3λ0 + 2µ0)trEEE + (3λ + 2µ)tr D, dev T = 2µ0 devEEE + 2µ dev D,

7.4. Bingham–Norton Visco-Plastic Fluid

Assuming ∂EEEψ = ∂qψ = 0 and X = 0 from (47), we have the following:

D = HT + σETθ
T
|T|2 , H(θ, T) =

ρ

|T|2 T⊗ ∂Tψ.

Choosing λ, τy > 0, n ∈ N∪ {0} and

σET =

{
0 if |T| ≤ τy,

1
θλn |T|n

(
|T| − τy

)
otherwise,
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we recover the Bingham–Norton model in the spatial description. The free energy is given
by a generic function ψ = ψ(θ, T). In particular, when

ρψ = ρψ0(θ) +
1
2

α(θ)|T|2,

we have the following:

H(θ, T) =
α(θ)

|T|2 T⊗ T,

so that H enjoys both the minor and major symmetries. The special case α ≡ 0 leads to the
well-known model of a Bingham plastic fluid:

D =

{
0 if |T| ≤ τy,
1
µ

(
1− τy

|T|
)
T otherwise,

where
µ =

λn

|T|n−1

is referred to as Norton–Hoff nonlinear viscosity; it reduces to a constant value, µ = λ,
when n = 1.

8. Higher-Order Rate Models

Non-Newtonian phenomena exhibited, e.g., by asphalt and some biomaterials show
properties that can be associated to different relaxation times or rather to higher-order
differential equations. This view is often described by having recourse to the Burgers
model [32] or the best known Oldroyd-B fluid model [33].

8.1. Burgers Material

While sometimes the model is motivated by rheological analogs [34] and framed
within a scheme with intermediate reference configurations [35], here, the model is investi-
gated within the thermodynamic approach developed so far.

Let
T = −p1 + S.

The stress S in the Burgers model describes an incompressible fluid and is given by
the second-order rate equation

S + λ
5
S +β

55
S = 2µD + ν

5
D; (52)

we expect that, for a compressible fluid, the same equation should hold with the Oldroyd

derivative
5
S replaced with the Truesdell derivative S. The thermodynamic consistency

of (52) can be proven by having recourse to the counterpart of (52) in the reference configu-
ration.

Let SRR = JF−1SF−T be the corresponding stress in the reference configuration. We let

SRR + λṠRR + βS̈RR = 2µĖ + νË (53)

be the analog of the Burgers model in the referential version. To investigate the thermody-
namic consistency of (53), we assume the pressure p, the entropy η, and the free energy ψ
as functions of the set of variables

ΞR = (θ, E, SRR, θ̇, Ė, ṠRR, θ̈, Ë, S̈RR).
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The Clausius–Duhem inequality becomes

−ρR(∂θψ + η)θ̇ + (SRR − JpC−1 − ρR∂Eψ) · Ė− ρR∂SRR ψ · ṠRR − ρR∂θ̇ψ · θ̈
−ρR∂Ėψ · Ë− ρR∂ṠRR

ψ · S̈RR − ρR∂θ̈ψ ·
...
θ − ρR∂Ëψ ·

...
E − ρR∂S̈RR

ψ ·
...
SRR = Jθσ ≥ 0.

The linearity and arbitrariness of
...
θ ,

...
E,

...
SRR imply that

∂θ̈ψ = 0, ∂Ëψ = 0, ∂S̈RR
ψ = 0.

Assume that p and η are independent of θ̈ and θ̇. Hence, the linearity and arbitrariness
of θ̈, and next of θ̇, imply

∂θ̇ψ = 0, η = −∂θψ.

Consequently, the inequality simplifies to

(SRR − JpC−1 − ρR∂Eψ) · Ė− ρR∂SRR ψ · ṠRR − ρR∂Ėψ · Ë− ρR∂ṠRR
ψ · S̈RR = Jθσ ≥ 0. (54)

Further restrictions follow depending on the degrees of arbitrariness. The compress-
ibility of the fluid is described by letting ψ depend on E through J = [det(1 + 2E)]1/2.
Since J = ρR/ρ, the classical relation p = ρ2∂ρψ becomes

p = −ρR∂Jψ.

Now, if ψ depends on E through J then

∂Eψ = ∂Jψ∂E J = 2∂Jψ∂C J = J∂JψC−1,

whence
JpC−1 = −ρR∂Eψ, p = − 1

3J
ρRtr (∂EψC).

Consequently, (54) becomes

SRR · Ė− ρR∂SRR ψ · ṠRR − ρR∂Ėψ · Ë− ρR∂ṠRR
ψ · S̈RR = Jθσ ≥ 0. (55)

We now investigate the consistency of the Burgers-like evolution equation (53) with
the reduced inequality (55), where the free energy ψ has the form

ψ = ψ(θ, J, SRR, Ė, ṠRR).

For definiteness, we let β 6= 0 and consider S̈RR as a function of SRR, ṠRR, Ė, Ë. Upon
substitution of S̈RR from (53) into (55), we have(

SRR −
2µρR

β
∂ṠRR

ψ
)
· Ė + ρR

(λ

β
∂ṠRR

ψ− ∂SRR ψ
)
· ṠRR

−ρR

(
∂Ėψ +

ν

β
∂ṠRR

ψ
)
· Ë +

ρR

β
∂ṠRR

ψ · SRR = Jθσ ≥ 0.

The linearity and arbitrariness of Ë imply

∂Ėψ = − ν

β
∂ṠRR

ψ, (56)

and then(
SRR −

2µρR

β
∂ṠRR

ψ
)
· Ė + ρR

(λ

β
∂ṠRR

ψ− ∂SRR ψ
)
· ṠRR +

ρR

β
∂ṠRR

ψ · SRR = Jθσ ≥ 0. (57)
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Now we select the free energy ψ in a quadratic form,

ρRψ = ρRψ0(θ, J) +
α1

2
|SRR|2 +

α2

2
|ṠRR|2 +

α3

2
|Ė|2 + γ1ṠRR · SRR + γ2SRR · Ė + γ3ṠRR · Ė,

whence

ρR∂SRR ψ = α1SRR + γ1ṠRR + γ2Ė, ρR∂ṠRR
ψ = γ1SRR + α2ṠRR + γ3Ė,

ρR∂Ėψ = γ2SRR + γ3ṠRR + α3Ė.

Upon substitution into (56) and (57) we obtain

γ2SRR + γ3ṠRR + α3Ė = − ν

β
[γ1SRR + α2ṠRR + γ3Ė], (58)

A|SRR|2 + B|ṠRR|2 + C|Ė|2 +DṠRR · SRR + ESRR · Ė +F ṠRR · Ė = Jθσ ≥ 0, (59)

where

A =
1
β

γ1, B =
λ

β
α2 − γ1, C = −2µ

β
γ3,

D =
λ

β
γ1 +

1
β

α2 − α1, E = 1 +
1
β

γ3 −
2µ

β
γ1, F =

λ

β
γ3 − γ2 −

2µ

β
α2.

To satisfy inequality (59) for all values of SRR, Ė and ṠRR we assume A,B, C ≥ 0 and

λ

β
γ1 +

1
β

α2 − α1 = 0, 1 +
1
β

γ3 −
2µ

β
γ1 = 0,

λ

β
γ3 − γ2 −

2µ

β
α2 = 0;

moreover, from (58) it follows

γ2 = − ν

β
γ1, γ3 = − ν

β
α2, α3 = − ν

β
γ3.

So overall there are 6 equations involving 6 unknowns (α1, α2, α3, γ1, γ2, γ3) and 4 real
parameters (β, λ, µ, ν). The unique solution is

γ1 =
β(λν + 2µβ)

ν2 + 2νµλ + 4µ2β
, γ2 = − ν(λν + 2µβ)

ν2 + 2νµλ + 4µ2β
, γ3 = − βν2

ν2 + 2νµλ + 4µ2β
,

α1 =
νλ2 + νβ + 2µλβ

ν2 + 2νµλ + 4µ2β
, α2 =

νβ2

ν2 + 2νµλ + 4µ2β
, α3 =

ν3

ν2 + 2νµλ + 4µ2β
.

Accordingly

A =
1
β

γ1, B = −2µ

ν
α2 = − 2µβ2

ν2 + 2νµλ + 4µ2β
, C = 2µν2

ν2 + 2νµλ + 4µ2β

We stress that B and C cannot be positive at the same time, whatever the sign of µ is.
Therefore we are led to considering only two particular cases: ν = 0 and µ = 0.

If ν = 0 then it follows γ2 = γ3 = α3 = 0. As a consequence, we have α2 = 0,

γ1 =
β

2µ
, α1 =

λ

2µ
;

since A = 1/2µ > 0, C = 0 and B = −β/2µ, this case is admissible only if µ > 0, β < 0.
If µ = 0 then we obtain C = B = 0 and A = λ/ν. This case is admissible if either

λ ≥ 0, ν > 0 or λ ≤ 0, ν < 0.
Since β 6= 0, then this analysis proves the thermodynamic consistency of Burgers’

model provided that either ν = 0, β < 0, µ > 0 or µ = 0 and λ/ν ≥ 0.
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It is worth contrasting the restrictions obtained with what arises from an application
of the Lemma 1 about a second-order tensor Z,

Z = (Z ·N)N + (III−N⊗N)G, (60)

with G being an arbitrary second-order tensor. Here, we observe that, in view of (55),
equation

S̈RR · ρR∂ṠRR
ψ = SRR · Ė− ρR∂SRR ψ · ṠRR − ρR∂Ėψ · Ë− Jθσ (61)

is consistent with thermodynamics if it holds for any pair of functions ψ, σ of θ, Ė, SRR, ṠRR

subject to σ ≥ 0. The selection Z = S̈RR and N = ∂ṠRR
ψ/|∂ṠRR

ψ| into (60) together with the
exploitation of (61) provide

S̈RR = [SRR · Ė− ρR∂SRR ψ · ṠRR − ρR∂Ėψ · Ë− Jθσ]
∂ṠRR

ψ

ρR|∂ṠRR
ψ|2 + (III−N⊗N)G. (62)

For definiteness we consider the case ν = 0, and then we let

ρRψ = ρRψ0(θ, J) +
λ

4µ
|SRR|2 +

β

2µ
ṠRR · SRR, Jθσ =

1
2µ
|SRR|2 −

β

2µ
|ṠRR|2, µ > 0, β < 0.

Accordingly,

N :=
∂ṠRR

ψ

|∂ṠRR
ψ| =

SRR

|SRR|
=: Ŝ,

∂ṠRR
ψ

ρR|∂ṠRR
ψ|2 =

2µ

β

Ŝ
|SRR|

,

so that (62) becomes

S̈RR =
[
2µĖ · SRR − λṠRR · SRR − β|ṠRR|2 − |SRR|2 + β|ṠRR|2

] 1
β

Ŝ
|SRR|

+ (III− Ŝ⊗ Ŝ)G.

and then
βS̈RR = (Ŝ⊗ Ŝ)[2µĖ− λṠRR]− SRR + β(I− Ŝ⊗ Ŝ)G.

Letting βG = 2µĖ− λṠRR, we obtain exactly Equation (53) with ν = 0.
It is of interest to determine the Eulerian version of the rate-type Equation (53). We

know that
ṠRR = JF−1 S F−T .

To evaluate S̈RR, we observe that

S̈RR = (JF−1 S F−T )̇ = J̇F−1 S F−T + J ˙F−1 S F−T + JF−1(S)̇F−T + JF−1 S ˙F−T

= JF−1[(S)̇− L S − S LT +∇ · v S] = JF−1
��

S F−T .

Moreover, since Ė = FTDF, then

Ë = (FTDF)̇ = FT(Ḋ + LTD + DL)F = FT
4
D F,

with
4
D being the Cotter–Rivlin derivative. Substituting ṠRR, S̈RR, Ė, Ë in (53), we obtain

S + λ S +β
��

S = J−1B(2µD + ν
4
D)B, (63)

where B = FFT is the Finger strain tensor. Alternatively, in light of (13),

S + λ S +β
��

S = J−1B(2µ
4
EEE +ν

44
EEE )B.



Materials 2021, 1, 0 20 of 23

If the fluid is incompressible, then

0 = tr D = C−1 · Ė, ptr D = pC−1 · Ė = 0;

the power of the pressure vanishes. Consistently, we let ∂Eψ = 0. The results (56) and (57)
hold unchanged while (63) changes to

S + λ
5
S +β

55
S = J−1B(2µD + ν

4
D)B, tr D = 0.

Hence, in the linear approximation (J ' 1, B ' 1,
5
D'

4
D'

◦
D), the Burgers model (52)

is recovered.

8.2. Oldroyd-B Model

This model, often used to describe the flow of viscoelastic fluids, can be regarded as an
extension of the upper-convected Maxwell model and represents an incompressible fluid
filled with elastic bead and spring dumbbells. In this model, named after J. G. Oldroyd [33],
the stress is given by the second-order rate equation

T + λ
5
T= 2µD + ν

5
D, tr D = 0. (64)

Letting λ = λp, µ = µs +µp, ν = 2µsλp, we can split (64) into a polymeric (viscoelastic)
part separately from the solvent (viscous) part,

T = 2µsD + Y, Y + λp
5
Y= 2µpD, tr D = 0,

where µs and µp denote the viscosity coefficients of the solvent and of the solute, respec-
tively. To prove the thermodynamic consistency of (64), we start from its counterpart in the
reference configuration:

TRR + λṪRR = 2µĖ + νË, (65)

where TRR = JF−1TF−T , and assume the entropy η and the free energy ψ as functions of
the set of variables

ΞR = (θ, E, TRR, θ̇, Ė, Ë).

The Clausius–Duhem inequality becomes

−ρR(∂θψ + η)θ̇ + (TRR − ρR∂Eψ) · Ė− ρR∂TRR ψ · ṪRR

−ρR∂θ̇ψ · θ̈ − ρR∂Ėψ · Ë− ρR∂Ëψ ·
...
E = Jθσ ≥ 0.

Assume that η is independent of θ̇. Hence, the linearity and arbitrariness of Ë, θ̈, and
next of θ̇, imply

∂Ëψ = 0, ∂θ̇ψ = 0, η = −∂θψ.

For definiteness, we also let the free energy ψ be independent of E. Consequently, the
thermodynamic inequality simplifies to

ṪRR · ρR∂TRR ψ = TRR · Ė− ρR∂Ėψ · Ë− Jθσ, (66)

that holds for any pair of functions ψ and σ of the variables θ, Ė, TRR subject to σ ≥ 0. The
selection Z = ṪRR and N = ∂TRR ψ/|∂TRR ψ| into the representation formula (60) together
with the exploitation of (66) provide

ṪRR = [TRR · Ė− ρR∂Ėψ · Ë− Jθσ]
∂TRR ψ

ρR|∂TRR ψ|2 + (III−N⊗N)G. (67)
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Let

ρRψ = ρRψ0(θ) +
1

2(ν + 2µλ)
|λTRR − νĖ|2, Jθσ =

λ

ν + 2µλ
|TRR|2 +

2µν

ν + 2µλ
|Ė|2,

where µ > 0 and λν > 0, so that we have σ ≥ 0. Since N = (λTRR − νĖ)/|λTRR − νĖ|,
then Equation (67) becomes

λṪRR = (N⊗N)[2µĖ + νË− TRR] + λ(I−N⊗N)G,

and letting λG = 2µĖ + νË− TRR we obtain exactly the whole Equation (65).
To determine the Eulerian version of the rate-type Equation (65), we follow the same

procedure as in the previous subsection, and taking into account the incompressibility
condition, we obtain

T + λ
5
T= J−1B(2µD + ν

4
D)B, tr D = 0. (68)

In the linear approximation (J ' 1, B ' 1,
5
D'

4
D'

◦
D), Equations (64) and (68) coin-

cide. This proves the thermodynamic consistency of Oldroyd-B model provided only that
λν > 0, µ > 0.

9. Conclusions

Thermodynamically consistent viscoelastic models are established on the basis of the
following points. The constitutive equations are essentially represented in the Lagrangian
description in terms of the Piola–Kirchhoff stress TRR and the Green–St.Venant strain E.
For first-order rate type models, the second-law inequality is then stated in the form

(ρR∂Eψ− TRR) · Ė + ρR∂TRR ψ · ṪRR = −θσR ≤ 0. (69)

The entropy production σR = Jσ is taken as a constitutive function of the chosen
independent variables; a similar treatment is developed for the heat conduction effects.
The corresponding second-law inequality in the Eulerian description is found to be

(ρ∂EEE ψ̃− T) ·D + ρ∂Tψ̃· T= −θσ ≤ 0,

with EEE being the Eulerian Almansi tensor. This formulation proves profitable in the analysis
of the thermodynamic consistency of rate-type equations in the Eulerian description. A
more complex second law expression than (69) is involved for higher-order rate type
models such as Burgers and Oldroyd-B (see § 8).

We now comment on the main novelty of our approach. If Ė and ṪRR are assumed to
be independent, then one finds that

∂TRR ψ = 0, TRR = ρR∂Eψ, σR = 0.

If instead Ė and ṪRR are not independent, then we determine the mathematical conse-
quence via Lemma 1. For instance, the selection

N = ∂TRR ψ/|∂TRR ψ|

yields a class of rate-type constitutive equations for the stress in the form

ṪRR =
(TRR − ρR∂Eψ) · Ė

ρR|∂TRR ψ| N− θσ

ρR|∂TRR ψ|N + (I−N⊗N)G (70)

where G is an arbitrary second-order tensor. Equation (70) shows that first-order rate
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equations, consistent with thermodynamics, are determined by a pair of the free energy ψ
and the entropy production σ. As a familiar example, the Maxwell model (2),

ṪRR +
1
τ

TRR = G0Ė, τ > 0,

follows by letting

ρRψ = ρRψ0(θ) +
1
2

TRR ·G−1
0 TRR, σ =

1
θτ

TRR ·G−1
0 TRR,

where G0 is a fully symmetric, positive-definite, fourth-order tensor. Indeed, after replacing
σ and ∂TRR ψ in (70), we obtain

ṪRR =
G−1

0 TRR · (G0Ė− 1
τ TRR)

|G−1
0 TRR|2

G−1
0 TRR +

(
I−

G−1
0 TRR ⊗G−1

0 TRR

|G−1
0 TRR|2

)
G

Let G = G0Ė− 1
τ TRR. The first and last fractional terms cancel each other out, and we have

ṪRR = G0Ė− 1
τ

TRR.

Throughout this paper, by a proper selection of the independent variables, we de-
termined constitutive equations in the rate-type form, possibly of higher order than the
first. To our mind, this has the technical advantage that the recourse to histories is avoided.
Moreover, the role of the entropy production as a constitutive quantity allows for the
modelling of further dissipation effects as is the case in hysteretic phenomena [8].

Following the lines developed in this paper, future work will be devoted to phase
transitions and hysteresis in shape memory alloys.
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