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Sommario

I cambiamenti climatici e la qualità dell’aria sono fenomeni con diverse esten-

sioni spaziali e risoluzioni temporali, nonostante ciò sono altamente connessi poiché

gran parte dei fattori che li causano derivano dalle stesse attività, ovvero quelle

antropiche. Le politiche economiche e ambientali che ambiscono a studiare uno dei

due fenomeni devono tenere in considerazione gli impatti che si possono avere sul-

l’altro, in una prospettiva definita come “win-win”, dove entrambi vengono mitigati.

I modelli di valutazione integrata (Integrated Assessment Models) possono essere

dei validi strumenti per valutare sia le emissioni di gas serra, causa del cambiamento

climatico, che la qualità dell’aria, e quindi descrivere gli impatti sulla salute umana,

gli ecosistemi e sul sistema socio-economico.

Questo lavoro di tesi propone la formalizzazione e implementazione di due nuovi

problemi decisionali:

1. un’ottimizzazione multiobiettivo dove le concentrazioni di PM2.5 e il costo

della politica vengono minimizzati. La variabile di decisione è il tasso di ap-

plicazione delle misure di abbattimento delle emissioni, che includono misure

di efficienza energetica, misure tecniche (end of pipe) e misure di sostituzione

dei combustibili. Il problema è risolto con il metodo dei vincoli.

2. Un problema decisionale per la definizione di politiche a basso impatto emis-

sivo, il quale permette di definire un mix efficiente di produzione di energia
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elettrica da sorgenti rinnovabili e fonti fossili, cosı̀ da poter alimentare l’elet-

trificazione del parco veicoli leggeri. Vista la complessità del problema e il

numero di obiettivi (due indici di qualità dell’aria, emissioni di gas serra e

costi), il problema è risolto con un approccio enumerativo, discretizzando le

variabili di decisione nell’insieme di ammissibilità e selezionando le soluzioni

non dominate.

Il primo problema è stato applicato e risolto su un dominio francese, l’Île-de-

France, con lo scopo di analizzare l’efficienza di misure tecniche ed energetiche

nella riduzione dell’esposizione della popolazione alle concentrazioni di PM2.5 e

quindi nel diminuire gli impatti sulla salute umana dovuti all’inquinamento atmos-

ferico. L’inclusione delle misure di efficienza energetica e delle misure di tipo

comportamentale nel problema permette di raggiungere anche importanti riduzioni

di gas serra. Questo studio è stato possibile grazie alla collaborazione con l’Is-

tituto Nazionale Francese per la Riduzione del Rischio Ambientale e Industriale

(INERIS), che ha fornito gli inventari emissivi francesi e le simulazioni del mod-

ello deterministico di qualità dell’aria necessarie ad identificare i modelli sorgente-

recettore.

Il secondo problema è implementato e risolto su un dominio in Lombardia. Sono

stati studiati e descritti diversi mix di produzione di energia elettrica per rispondere

all’incremento di domanda causato da futuri scenari di mobilità a basso impatto

emissivo (mobilità elettrica e utilizzo del biometano), per valutare come si possano

massimizzare gli impatti sulla riduzione di gas serra, l’inquinamento atmosferico e

i costi di implementazione.



Abstract

Even if climate change and air pollution have different spatial and temporal ex-

tents, they are highly interconnected because most of their drivers are the same,

meaning human activities. Policies that target one aspect must consider the other, in

a win-win perspective, aiming at mitigating both. Integrated assessment modeling

is a valuable tool to comprehensive analyze both air quality and greenhouse gases

emissions.

The present study aims at designing new decision problems formalized and

solved using different methodologies implemented through the integrated assess-

ment modeling system MAQ, proposing a tool able to perform a comprehensive as-

sessment of air quality, energy demand, GHG emission and health, socio-economics

and ecosystems impacts.

This study proposes the formalization and implementation of two decision prob-

lems:

1. an air quality multiobjective optimization where PM2.5 and policy implemen-

tation cost are minimized. The decision variables are the application rates

of the emission abatement measures and the problem is solved using the ε-

constraint approach.

2. a low emission energy policy problem where an efficient mix of renewable

and non-renewable electricity production is found to power the light vehicles
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fleet electrification. Due to the complexity of the problem and the number of

objectives (two air quality indexes, greenhouse gases emissions and the cost)

the problem is solved applying an enumeration algorithm aimed at discretizing

the decision variables in the feasible set and selecting non dominated solutions.

The first decision problem is applied to a case study on Île-de-France, analyzing

the effectiveness of end of pipe and energy efficiency measures in reducing PM2.5

exposure, therefore premature mortality caused by air pollution. The implemen-

tation of energy and behavioral measures allows also to reach important green-

house gases reductions. This study was possible thanks to the collaboration with

the French national institute for industrial environment and risks (INERIS), that

supplied French emission inventories and the air quality chemical transport model

simulations needed to train the source receptor models.

The second decision problem is applied to a case study on Lombardy. Different

sources electricity mixes are studied to supply a low emission road transport policy

and understand how to maximize impacts on GHG emission, policy costs and air

pollution.
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Introduction

Among the environmental problems that our society has been facing in the last

decades, air pollution reduction and climate change control are the most discussed.

These two phenomena have different temporal and spatial scales, therefore in many

political and scientific areas these environmental issues are dealt with by different

policy departments and scientific communities, whereas, they are highly connected.

In fact, climate change impacts on local air quality and, on the other way around,

air pollution has consequences on climate [1, 2].

Greenhouse gases (GHGs) emissions and air pollution have the same drivers,

meaning the human activities whose emissions alter the composition of atmosphere.

For example, livestock activities emit ammonia (NH3) and methane (CH4): ammo-

nia is a precursor of secondary particulate matter (PM) and methane is a high poten-

tial global warming greenhouse gas. Energy production and transport sectors emit

both CO2 and various pollutants (mainly nitrogen oxides, sulphure dioxides, volatile

organic compounds and primary particulate matter), PM concentrations precursors.

Impacts on human health of these two phenomena are well known. Air pollu-

tion is the main environmental cause of premature mortality worldwide. In 2018,

the 74% of the urban European population was exposed to PM2.5 concentration

exceeding the WHO guidelines values (EEA, 2020) and the premature deaths at-

tributed to PM2.5 , NO2 and O3 exposure were respectively 379000, 54000 and
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19400. Climate change has disruptive impacts on physical, biological and ecolog-

ical systems, affecting human health with injuries and premature deaths related to

extreme weather events, changes in the prevalence and geographical distribution of

food and water related illnesses and other infectious diseases [3].

In the past 25 years several Air Quality and Climate Change Integrated As-

sessment Models (IAM) have been established to help decision makers in plan-

ning energy, environmental and air quality policies: IAMs can be classified in (1)

policy-evaluation models, that take a small set of policies and the consequences

of these policies are evaluated in a ”what-if” exercise. Consequences are assessed

with a set of environmental, economic, health impact, social indicators. (2) Policy-

optimization models, that identify key policy control variables optimizing policy

goals (environmental, economic, health impact, social targets). IAMs can be a valu-

able instrument in the definition of air quality-climate change win-win policies.

This study focuses on the formalization and solution of decision problems, aim-

ing at defining win-win policies, targeting both air pollutants and GHG emissions.

Two multiobjective problems are formalized, decision variables are treated differ-

ently: in the first case they are continuous, in the second one they are discretized

in the feasible set. The Multi-dimensional Air Quality (MAQ) system is a tool that

allows to implement and solve domain specific non-linear decision problems. The

problems formalized in the methodology are implemented and solved for two dif-

ferent case studies.

The first one is a multiobjective optimization over the Île-de-France region: ob-

jective of this study is analyzing efficient policies for the reduction of population

exposure to PM2.5 . For this case study, emission databases, emission abatement

measures databases and surrogate air quality models are implemented in the MAQ

system, with the collaboration of collegues from the French national institute for

industrial environment and risks (INERIS, France). A multiobjective problem,

with non-linear objectives (PM2.5 population weighted annual average concentra-

tions and policy implementation costs) and non-linear constraints, is formalized and

solved using the ε-constraint approach. The decision variables are the application
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rates of the emission abatement measures.

Particulate matter in Île-de-France and specifically in the Paris metropolitan area

has diverse sources: about 60% of its budget is considered to be emitted locally,

mainly from residential heating, vehicle exhaust, and non-exhaust traffic emissions

[4, 5], while the remaining fraction is attributed to transport from other French

and European regions [6, 7]. The Paris area experiences recurrent PM2.5 pollution

episodes, furthermore the European Commission recently decides to refer France to

the European Court of Justice because of a ”systematic failure” to meet EU ambient

air quality limits of particulate matter in the areas of Paris and Martinique [8].

The second study, based on the work published in IEEE Transactions on Au-

tomation Science and Engineering Special Issue ”Advances in automation and op-

timization for sustainable transportation and energy systems” [9], aims at defining

the efficient electricity sources mix to power an electric light vehicle fleet. A de-

cision problem, where PM2.5 concentrations, NO2 concentrations, GHG emissions

and total cost are minimized, is formalized and solved [9]. Due to the number of

objectives and the complexity of the problem, an enumeration approach is used to

generate a finite set of feasible scenarios. The decision variables are discretized dis-

tributing the electricity production on different sources, according to domain spe-

cific constraints related to production feasibility and legislation. Non-dominated

solutions in all the objective spaces are selected among the feasible scenarios. The

study is implemented and solved for the Lombardy region, an area often under

study because of high pollution levels (PM, NO2 and O3), due to high population

and emission density and unfavorable meteorologic conditions [10, 11].

The case study focuses on road transport sector because, although the last decades

are characterized by a gradual decrease of global CO2 emissions in most sectors,

road transport is still an exception: in 2016, European traffic GHGs emissions were

26.1% higher compared to 1990 levels [12]. Furthermore, the European road trans-

port sector accounted in 2017 for the 39% of total NOx emission, a precursor of

both NO2 and PM. Technological improvements in internal combustion engines (to

reach the stricter European emission standard) and on vehicle weight [13] have been
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applied lately to reduce the traffic environmental impacts. Also, the implementation

of behavioral measures, such as lowering speed limits or soft mobility policies [14],

for the reduction of fuel consumption or kilometers driven, has been studied in liter-

ature. But the need for further improvements in air quality and to massively reduce

transport CO2 emission lead to study new solutions where electric vehicles (EV)

can play a significant role. One drawback of a massive EV penetration is the con-

sequent rise in the electric energy demand. Vehicle fleet electrification can have a

large potential for GHGs and pollutants emissions reduction, but it is strongly re-

lated to the energy mix used to produce electricity. This case study works towards

responding to this problem defining efficient electricity production mixes and defin-

ing a methodology useful to support the energy transition road map.

Both studies are aimed to highlight that the need to reduce the human activity

(energy consumption, distance traveled, fuel use) is becoming a key element both

in low carbon transition policies and air quality planning, where the only use of end

of pipe technologies to abate emissions showed to be insufficient [15, 16]. In this

context, the integrated assessment of energy and environmental systems, consider-

ing costs and impacts on human health and ecosystems, is becoming more relevant

[17, 18].

The thesis work is structured as follows:

• Chapter 1 presents the state of art of Integrated Assessment Modeling.

• Chapter 2 formalizes the decision problems describing objective functions,

decision variables and constraints. The first part focuses on the formalization

of a multiobjective air quality optimization. The second part describes a low

emission energy decision problem. The third part summarizes the method-

ology used to compute health impacts in terms of mortality, morbidity and

external costs.

• Chapter 3 describes all the models and databases that compose the Multi-

dimensional Air Quality system (MAQ).

• Chapter 4 presents the Île-de-France case study, it includes a description of
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the case study set up, surrogate models identification Design of Experiment

and the results of a multiobjective optimization tackling PM2.5 population ex-

posure.

• Chapter 5 presents the Lombardy region case study on low emission road

transport scenarios. It describes the case study set up in terms of energy pro-

duction data and projection for Italy and Lombardy and results are reported

describing air quality, GHG emission reductions, policy costs, energy savings

and human health benefits.

• Chapter 6 presents the conclusions of the current work and possible future

developments.
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CHAPTER 1

Integrated assessment of air quality and low carbon
win-win policies

In this chapter the integrated assessment approach is introduced, describing the

interaction between energy and air quality modeling. A brief description of widely

used models and tools available in literature is proposed.

1.1 The DPSIR framework

The European Environmental agency (EEA) defined the DPSIR scheme (Drivers

Pressures State Impact Response) to describe the interaction between environment

and society [19], as shown in Figure 1.1. This scheme explains also the aim of

Integrated Assessment Modeling (IAM), that combines knowledge from various

disciplines (science, engineering, sociology, economics) to derive policy-relevant

insights. Each component of the DPSIR scheme is implemented in the Integrated

Assessment Modeling approach by a different model, methodology and database,

including both physical and social sciences models, considering demographic, po-

litical, and economic variables [17].

IAMs aim at identify the responses that mitigate (or prevent) changes in the en-

vironment state, acting on the pressures, the drivers (meaning the human activities)

7
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or directly on the environment state. Changes in the environment state have impacts

on human health, ecosystem and socioeconomic aspects.

Figure 1.1: DPSIR framework adapted from EEA [19]

1.2 Integrated Assessment modeling: state-of-the-art

Integrated Assessment tools bring together data on:

• human activity levels (energy production, fuel consumption, land use);

• pollutant sources (air pollutants and greenhouse gases emission inventories);

• emission contribution to atmospheric concentrations and human exposure;

• information on potential emission reduction technologies, behavioral mea-

sures and energy efficiency interventions;

• measures implementation costs.

At the European scale, IAMs have been developed in order to provide a techni-

cal base for intergovernmental negotiations, such as the RAINS/GAINS model de-

veloped by the International Institute for Applied System Analysis (IIASA) [20].

GAINS (Greenhouse gas - Air pollution Interactions and Synergies) has been exten-

sively used by the European Commission for the EU Thematic Strategy on Air Pol-

lution to determine cost-efficient policies aimed at reducing emissions and analysing
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policies under the Convention on Long-range Transboundary Air Pollution (CLR-

TAP). GAINS can be coupled with energy simulation and energy optimization mod-

els. It has been used with MESSAGE (now in the last version MESSAGEix), a

dynamic system optimization modeling framework [21]. MESSAGEix can be also

linked to macroeconomic models, climate models and land use models. The sys-

tem was used to develop one of the four Representative Concentration Pathways

scenarios of 2014 IPCC [22].

At national scale the MESSAGEix and GAINS were applied in China to analyze

energy consumption and emissions at the refining process level. The study intro-

duce energy efficiency measures in the refining industry processes, studying energy,

materials and water consumption and the air pollutant emissions [23].

GAINS model has been also used with PRIMES (Price-Induced Market Equilib-

rium System). PRIMES has been successfully applied to analyze the energy poli-

cies for Member States or at EU level [24, 25, 26]. It is composed of sub-models, as

many as the number of investigated agents, and it determines the equilibrium energy

price solving an equilibrium problem with equilibrium constraints (EPEC). EPEC

is a mathematical approach that aims at modeling the energy market considering

the behaviors of suppliers and consumers [27], providing forecasts on how the en-

ergy systems may evolve in future. PRIMES model has been coupled with GAINS

model to integrate the air quality problem in the analysis, including non-CO2 gases

and particulate emissions, and assessing the impacts in terms of air pollutant con-

centrations and air quality policy implementation costs [20].

GAINS model has been also adapted at country scale, for example in Italy [16],

Netherlands [28], Belgium [29], Finland [30] and UK [31].

In Italy GAINS was also used with the TIMES model to define the Italian air

pollution control plan (PNCIA, [32]). The final energy consumption was estimated

for the energy and climate integrated national plan (PNIEC, Piano Nazionale Inte-

grato Energia e Clima, [33]) using TIMES, then air pollutants emission reductions

expected were computed. Air quality impacts were assessed through the Chem-

ical Transport Model FARM (Flexible Air quality Regional Model [34]). TIAM
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is one of the most known energy system models (TIMES Integrated Assessment

Model), developed by the Energy Technology Systems Analysis Program of the In-

ternational Energy Agency [35]. It represents the possible evolution of the energy

system at national/global scale over decades. The output scenarios are the result of

the minimization of the discounted total system cost [36].

Integrated Assessment modeling tools have been developed also at regional scale.

RIAT+, Regional Integrated Assessment Tool, has been developed in the framework

of EU OPERA (LIFE09 ENV/IT/092) and tested on different European regions

(Lombardy, Porto area, Brussels) [37, 38, 39]. AT+ methodology was further de-

veloped to include also energy efficiency and behavioral measures. This new system

is the Multi-dimensional Air Quality system (MAQ), and have been tested over the

Lombardy region [15].

1.3 Air Quality Integrated Assessment Modeling approaches

Air quality IAMs can have two main approaches: scenario analysis and op-

timization [17]. In scenario analysis an IAM computes the impacts of a set of

emission reduction measures chosen a-priori by experts or defined using source

apportionment techniques, aiming to identify the emission sources that contribute

to air pollution and, therefore, find intervention priorities. The link between emis-

sions and pollutants concentration can be described by deterministic models, such

as Chemical Transport Models, or by computationally faster surrogate models.

In the optimization approach, the IAM defines a set of efficient measures through

cost-effectiveness or multiobjective optimization. In the multiobjective optimiza-

tion approach two or more conflicting indexes are minimized, for example an air

quality index and the policy implementation cost. The cost-effectiveness optimiza-

tion is a particular case of the multiobjective problem, were the cost is fixed, and the

problem becomes a single objective minimization. In the optimization approaches

the relationship between emissions and concentrations cannot be performed by

CTMs because the approach requires an high number of iterations, therefore CTMs

are computationally not adequate. Surrogate models are used instead, they are data-
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driven models aimed at mimicking the links between emissions and concentrations

in a faster way.

1.4 Recent research and approaches

Scientific literature on environmental and energy systems analysis is focusing

on the road transport sector at different spatial scales, traffic fleet management and

technological improvement can have an important impact on air pollution, GHG

emissions and the socio-economic sphere.

Recently, a tool targeting the road traffic sector in urban areas has been developed

by the Joint Research Center. SHERPA City implements vehicle fleet data, traffic

sector measures and atmospheric dispersion kernels to convert traffic emissions into

contributions to the annual average NO2 concentration, in a scenario approach [40].

The impacts of the implementation of low emission zones in urban areas are inves-

tigated also in [41], where authors proposed an approach using a CTM and a local

meteorology module. In this case only NOx emission and NO2 concentrations are

under study. Future low emission road transport scenarios are studied in [42], in-

vestigating climate, energy and air quality impacts of electric vehicles deployment

scenarios and analyzing the the future prospects in Europe integrating environmen-

tal and economic aspects.

In [43] authors investigate the impacts on concentrations and emissions of EU

countries’ electric car deployment plans using the PRIMES model, already cited in

section 1.2, with the sub-module TREMOVE that is an energy economic model for

the transport sector. The modeling approach includes also DIONE, for the assess-

ment of transport and energy policy options, and SHERPA for the air quality impact

assessment.

These studies are mainly based on scenarios, meaning that the evaluation of

the impacts is computed, using both CTM and surrogate models, after an a-priori

definition of the policy and cost-efficiency is not included.

The multiobjective approach has been recently used in environmental system

analysis, mainly focusing on climate change and environmental impacts interac-
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tion in the water resources management, building stock renovation, and agricultural

systems. The problem of designing the control policy of a multipurpose water sys-

tem was solved using a machine learning approach, including many objectives in

the problem [44]. In [45] authors integrate multiobjective optimization and feed-

back control in the DICE model (Dynamic Integrated Climate-Economy model) to

design self-adaptive climate policies trading off welfare maximization with Paris

Agreement achievement. In [46] and [47] the authors address the problem of build-

ing stock renovation at regional scale. They determined the trade-offs between en-

ergy savings and their implementation cost solving a linear programming problem

using a constraint method and selecting, through a cost-benefit analysis, the best

type and spatial diffusion of the energy saving measures. The analysis considers

GHG emissions, air pollutant emissions and costs.

Multiobjective decision problems have been also implemented to deal with the

design of sustainable agroecosystems: [48] presents a problem where the economic

income and agrobiodiversity are maximized while the intra-annual income variabil-

ity is minimized. The problem is solved adopting the classical constraint method.

In [49] agricultural water and land resources are optimized, solving an optimization

problem that involves three objectives, corresponding to economic, environmental

(GHG emissions) and social impacts.

In this thesis two decision problems are presented. The first one is a multi-

objective optimization problem targeting air pollution and costs and considering all

emission sources in the domain. The problem is solved through a constraint method.

The second one focuses on how the electricity mix can impact on air quality, GHG

emissions and costs. This problem aims at minimizing four indexes.
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Methodology

In this chapter, two different multiobjective decision problems are formalized

and explained. The first one is an air quality planning problem (Section 2.1). The

cost function is defined by an Air Quality Index, that represents the air pollution

level in a domain and a policy cost index, that includes costs needed to abate emis-

sions. The decision variables of this problem are the application rates of the emis-

sion abatement measures. Non-linear relationships link the decision variables to the

emission reductions and the precursors emissions to the AQI. Therefore the problem

can be formalized as a non-linear bi-objective decision problem. In this first case

GHG emission are not included in the objective function, but they are computed

ex-post.

The second decision problem presented in Section 2.2 aims at finding the elec-

tricity mix that satisfies the energy demand of a policy, minimizing a cost function

composed by four indexes: two Air Quality Indexes (targeting PM2.5 and NO2 con-

centrations), greenhouse gases emissions and a total policy cost. The decision vari-

able of the problem is the distribution of electricity production among renewable

and non renewable sources. In this case all the indexes, except the AQIs, are linear

and GHGs are included in the objective function.

A generic multiobjective decision problem aims at finding a set of values for the

13
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decision variables x that minimize a cost function f (x). The set of decision variables

is subject to equality and inequality constraints that must be satisfied, respectively

γ(x) and ξ(x). The problem can be formalized as in Eq. 2.1.

min
x∈X

f (x)

subject to

ξ(x)< 0

γ(x) = 0

(2.1)

2.1 Multiobjective air quality decision problem

The multiobjective air quality decision problem aims at minimizing an air qual-

ity index and the policy implementation cost, satisfying a set of constraints related

to the emission abatement measures [15]. The objective function f (x) can be for-

malized as in Eq. 2.2.

f (x) = [AQI(e(x)), TC(x)] (2.2)

where:

• AQI(e(x)) is the Air Quality Index that represents the level of air pollution in

a domain;

• TC(x) is the Total Cost of the emission abatement policy;

• x= [θ, φ, ψ] are the decision variables of the problem, meaning the application

rates of emission abatement measures. x ∈ X, where X = [Θ,Φ, Ψ] is the set

of applicable x values.

2.1.1 Decision variables and constraints

The emission abatement measures can be classified in:

1. end of pipe measures: they reduce the emission of a pollutant p right before

it is released in atmosphere, according to its removal efficiency rep, without
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reducing the energy consumption. θt ∈ Θk is the application rate of the t-th

end of pipe measure belonging to the set Θk of all technologies that can be

applied to the activity k.

2. energy efficiency measures: they abate the emissions reducing the activity lev-

els (i.e. electricity consumption, kilometers driven, numbers of animals in live-

stock). They include both energy efficiency technologies, for example the use

of low energy domestic appliances or energy efficiency intervention in build-

ings, and behavioral measures, such as active mobility measures, that reduce

the cars fuel consumption lowering the amount of kilometers driven. ψ f ∈Ψk

is the application rate of the f-th energy efficiency measure belonging to the

set Ψk of all energy measures that can be applied to activity k.

3. fuel switch measures: they substitute a fuel with another one that is more ef-

ficient (less emitting), such as substitute diesel with natural gas or lpg. Fuel

switch measures can be defined in couple, the active measure increase one

fuel/source use and the passive measure decrease the substituted fuel consump-

tion. φs ∈ Φk is the application rate of the s-th fuel switch measure belonging

to the set Φk of all fuel switch measures that can be applied to activity k.

The measures application rates (θ, ψ, φ) are constrained, according to the functions

ξ and γ in Eq. 2.1.

• The application rates can vary between an upper and a lower bound: for active

fuel switch measures φs,MIN = 0, for passive fuel switch measures φs,MIN =

−∞ and φs,MAX = 0.

θ
MIN
t ≤ θt ≤ θ

MAX
t

ψ
MIN
f ≤ ψ f ≤ ψ

MAX
f

φ
MIN
s ≤ φs ≤ φ

MAX
s

(2.3)

• The sum of the end of pipe measures application rates acting on each sector

activity must be less or equal to 1, because measures that reduce a precursor p

in an activity k are mutually exclusive. Mutual exclusion constraint is applied
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also to energy and fuel switch measures: the sum of those measures reducing

energy (activity level) of an activity can be maximum equal to 1.

∑
t∈Θk:rep

t >0

θt ≤ 1

∑
f∈Ψk

ψ f + ∑
s∈Φk

φs ≤ 1 (2.4)

• Mass conservation associated with the application of the end of pipe measures

for each activity and each precursor. This constraint means also that it is not

possible to abate less emission than the basecase (θMIN).

∑
t∈Θk

rep
t ·θt ≥ ∑

t∈Θk

rep
t ·θMIN

t (2.5)

• The amount of energy (represented by the activity level al) reduced substitut-

ing a fuel (passive measure) with a more efficient one (active measure) must

be equal to the increase of energy produced by the new fuel.

alk1 ·φk1ACT +alk2 ·φk2PAS = 0 (2.6)

2.1.2 Objectives

Air Quality Index

The AQI is an aggregated index that describes the level of air pollution in a

domain, it can be defined by various indicators, such as the average annual concen-

trations of PM2.5 or NO2, the population weighted mean or the number of cells in

the domain over a threshold value (e.g. air quality European limit values).

The variation of the AQI due to the application of emission abatement measures

is defined in Eq. 2.7.

∂AQI
∂x

=
∂AQI

∂e
· ∂e

∂x
(2.7)

The first term (∂AQI
∂e ) defines the non linear relationship between the precursors

emissions and air pollutant concentrations. This relation can be described by Chem-
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ical Transport Models (CTMs) or by surrogate models. In the optimization ap-

proach, only surrogate models can be used to estimate concentrations, because

CTMs are not computationally efficient enough to deal with the number of sim-

ulations required [50, 51].

The second factor (∂e
∂x) describes the relation between the emissions variation

and the application rates of abatement measures. The emission of a pollutant p in a

cell c of the domain is defined as in Eq.2.8.

e(θ,φ,ψ)c
p = ∑

k
[alc

k · e f p
k · (1− ( ∑

s∈Φk

φs + ∑
f∈Ψk

ce f ·ψ f )) · (1− ∑
t∈Θk

rep
t ·θt))] (2.8)

where:

• k is the human activity producing the emissions;

• alc
k is the activity level in the cell c of the domain. The activity level represents

the intensity of an activity in the domain, for example the electricity consump-

tion, the number of kilometers driven by a class of road transport vehicles, the

amount of animals in livestock;

• e f p
k is the emission factor of the precursor p for the activity k;

• φs is the application rate of the fuel switch measure s, belonging to the set Φk

of all fuel switch measures that can be applied to activity k;

• ψ f is the application rate of the energy efficiency measure f , belonging to the

set Ψk of all energy measures that can be applied to activity k;

• ce f is the fuel consumption reduction efficiency of the energy measure f ;

• θt is the application rate of the end of pipe measure t, belonging to the set Θk

of all end of pipe measures that can be applied to activity k;

• rep
t is the removal efficiency of the end of pipe measure t for the pollutant p.
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Total cost

The total cost of the policy is computed as the sum of the measures implementa-

tion cost in each cell.

TC(x) = ∑
c

∑
k

Cc
k(x) (2.9)

The measures implementation cost Cc
k(x) is computed as in Eq. 2.10.

Cc
k(θ,φ,ψ) = ∑

t∈Θk

[uct ·alc
k · (1− ( ∑

s∈Φk

φs + ∑
f∈Ψk

ce f ·ψ f ))]

+ ∑
f∈Ψk

[uc f · (alc
k · (1− ∑

s∈Φk

φs)) ·ψ f ]

+ ∑
s∈Φk

[ucs · (alc
k · (− ∑

s∈Φk

φs))]

(2.10)

where uct , uc f and ucs are the unit costs expressed in Me/alu (Activity Level Unit)

of respectively end of pipe, energy efficiency and fuel switch measures.

2.1.3 Problem solving

A multiobjective decision problem with conflicting objectives can be solved by

means of different algorithms. In this case the ε-constraint approach is used. The

cost index becomes a constraint and the problem is solved for different cost values

bounds.

Infinite number of Pareto optimal solutions exists, creating the Pareto front in

the objectives space. A solution is non-dominated (or Pareto optimal, or Pareto

efficient) if none of the objectives can be improved without degrading the others

[52].

2.1.4 Ex-post analysis: greenhouse gases emissions

Greenhouse gases emissions are not part of the objective function but they are

computed ex-post, as a result of the efficient air quality scenarios. GHG considered

are CO2, CH4, N2O and Fgases. Emissions of GHG are computed as in Eq. 2.11.

Furthermore the GHG emissions are aggregated in a CO2 equivalent indicator, con-
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sidering each gas Global Warming Potential (GWP).

e(θ,φ,ψ)c
g =∑

k
[alc

k ·e f g
k · (1− ( ∑

s∈Φk

φs+ ∑
f∈Ψk

ce f ·ψ f )) · (1− ∑
t∈Θk

reg
t ·θt))] (2.11)

GHG(θ,φ,ψ)g = ∑
g

eg ·GWPg (2.12)

2.2 Low emission energy policy decision problem

In this section a decision problem aiming at supporting energy scenario assess-

ment is formalized. The objective function in Eq. 2.1 is defined by four indexes.

f (x) = [AQIPM2.5 , AQINO2 , TC, GHG] (2.13)

where:

• AQIPM2.5 is the Air Quality Index for PM2.5, PM2.5 yearly average spatial

mean concentration.

• AQINO2 is Air Quality Index for NO2, NO2 yearly average spatial mean con-

centration.

• GHG represents the greenhouse gases emissions, in CO2 equivalent, emitted

in a year in the domain.

• TC is the total cost, that includes the energy policy costs, the implementation

of new renewable energy plants, imported electricity cost and the end of pipe

measures applied to reduce the air pollutant emissions.

• x = [nr,r] is the decision variable that includes the electricity production from

renewable (hydroelectric, photovoltaic, biomass, biofuels, biogas/biomethane,

waste) and non-renewable sources (natural gas, liquid fossil fuels and coal).

2.2.1 Decision variables and constraints

The decision variables r and nr are related to the electricity demand D: the total

production of electricity and the imported electricity must satisfy the demand, as
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formalized in Eq. 2.14.
nr

∑
j=1

r j +
nn

∑
i=1

nri +u = D (2.14)

where:

• r j is the renewable electricity production from the source j;

• nr is the total number of renewable sources;

• nri is the non-renewable fuel electricity production from source i;

• nn is the total number of non-renewable sources;

• u is the electricity imported from all areas outside the domain;

• D is the electricity demand in the domain, computed as in 2.15 and 2.16.

D = D0 +∆D (2.15)

∆D = u+
nt

∑
k

∆xk (2.16)

D0 is the base-case electricity demand and ∆D is the demand increase caused by the

energy policy, in this case the electrification of the light vehicle fleet. nk = nr +nn

is the total number of sources (renewable and non-renewable) in the domain. ∆xk is

computed for each road transport vehicle class w and fuel y, as in Eq. 2.17.

∆xk =
εk ·∆alk
ηe ·ηpd,k

(2.17)

where ηe and ηpd,k are respectively the electric vehicle engine efficiency and the

power production and distribution efficiency, εk is the share of the total increase in

energy demand that can be produced by the activity k. The variation of activity level

in road transport sector activities ∆alk can be computed as:

∆alk = ∑
w∈W

∑
y∈Y

alw,y ·ηy (2.18)

where:

• alw,y is the activity level of the vehicle class w and fuel y;
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• ηy is the efficiency of the fuel y internal combustion engine;

• W is the set of considered road transport vehicle types;

• Y is the set of vehicle fuels.

The amount of renewable energy produced in a scenario is constrained, as defined

by the decision problem constraints functions γ(x) and ξ(x) (Eq. 2.1).

First, renewable energy production should be at least what imposed through leg-

islation for a specific year (Eq. 2.19) and, secondly, the maximum and the minimum

energy production possible for each renewable and non-renewable source is subject

to domain specific limitations, such as the availability of the source and plants in

the domain and fuel specific legislation limits (Eq. 2.20 and 2.21).

nr

∑
j=1

r j ≥ α · (D−u) (2.19)

lbr
j ≤ r j ≤ ubr

j (2.20)

lbnr
i ≤ r j ≤ ubnr

i (2.21)

where:

• α is the renewable electricity production share imposed;

• lbr
j and ubr

j are respectively the production upper and lower bounds for each

renewable source j;

• lbnr
i and ubnr

i are respectively the production upper and lower bounds for each

non-renewable source i.

2.2.2 Objectives

Air Quality Indexes

The assessment of the air quality impacts depends on the emission variation

due to the application of emission abatement policies. They can include energy

efficiency abatement measures, fuel switch measures and end of pipe measures, as

described in Section 2.1.
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The emission variation of pollutants p from each electricity source k, due to the

application of the energy policy, is defined as in 2.8. In Eq. 2.22 emissions definition

is formalized making explicit the decision variable of this problem, the electricity

production (meaning the activity level of sector-activities related to electric energy

production).

e(x)c
p = ∑

k
[(x0

k +∆xk) · e f p
k · (1− ∑

t∈Θk

rep
t ·θt)] (2.22)

where:

• p ∈ P = {NOx,NH3,PPM10,PPM2.5,SO2}

• x0
k is the basecase electricity production from the source k;

• ∆xk is the variation in electricity production from the source k due to the energy

policy;

• e f p
k is the emission factor of the pollutant p for the source k;

• rep
t is the removal efficiency of the end of pipe measure t for the pollutant p

applied to the power plants;

• θt is the application rate of t-th end of pipe measure;

• Θk is the set of end of pipe measures that abate emissions caused by the activity

k.

The link between emissions and the m-th Air Quality Index (AQI) can be formalized

as:

AQIm = h(e(x)) with m = 1, ...,mtot (2.23)

where mtot is the total number of AQI computed, in this problem two AQIs are

considered: AQIPM2.5 and AQINO2 . Different types of surrogate model can be used,

in this work Artificial Neural Network (ANN) based statistical models are imple-

mented to compute h(e(x,θ)).
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Greenhouse gases emissions

Greenhouse gases emissions GHGc
g in a cell c depend on power production from

each activity k as:

GHGc
g = ∑

k
(x0

k +∆xk) · e f g
k (2.24)

where:

• g ∈ G = {CO2,CH4,N2O,Fgas}

• e f g
k is the emission factor of the fuel k for the greenhouse gas g.

Total cost

The total energy policy cost is described considering the following unitary costs:

1. energy policy costs: electric vehicle, hydroelectric plants revamping, photo-

voltaic plants (uck);

2. imported electricity cost (ucu);

3. cost of the end of pipe measures (uct).

The total cost of the policy scenario is computed as in Eq. 2.9, but considering

also the cost of the imported electricity, it can be written as in Eq. 2.25:

TC(x) = ∑
k
(xk ·uck +alk · ∑

t∈Θk

uct ·θt) (2.25)

where alk is the Activity Level of each emitting activity in the domain (excluding

the electricity production activities, that are the decision variables defined by xk).

2.2.3 Problem solving

The decision problem aims at selecting the non-dominated energy solutions among

N feasible scenarios, built distributing the electricity production among the differ-

ent sources, according to the constraints defined in section 2.2.1. The number N

of scenarios is chosen a-priori, evaluating how much the feasible set created can

describe the possible variations of the decision variables.
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Due to the number of objectives and the complexity of the problem, an enumer-

ation approach is used [53]. In the enumeration approach a finite set of scenarios is

listed, discretizing the decision variables (electricity production from each source)

in the feasible set, applying the following steps for each scenario from 1 to N:

1. the discretization of the decision variables is computed assigning to r j (renew-

able sources electricity production) and nri (fossil fuels electricity production)

randomly values varying εk in Eq. 2.17;

2. constraints (Eq. 2.19 - 2.21) related to electricity sources production feasibility

and legislation are checked;

3. if constraints are verified, the scenario is computed and listed in the feasible

set, otherwise point (1) and (2) are repeated;

When N feasible scenarios are computed, non-dominated scenarios are extracted for

each objective space, meaning AQIPM2.5 - TC, AQINO2 - TC and GHG - TC. The

solutions are the scenarios that comprehensive minimize two Air Quality Indexes

and greenhouse gases emissions, meaning that are extracted in all objective spaces.

2.2.4 Ex-post analysis: road transport meta-emission factors

Given the increase in electricity demand, the pollutants and GHG emissions for

each source k, and the total kilometers td driven by vehicles in the domain, a meta-

emission factor mEF p for each pollutant can be computed as in Eq. 2.26.

mEF p =
1
td
·∑

k
∆Dk · ep

k (2.26)

where 1
td ·∑

k
∆Dk represents the average energy consumption per kilometer.

2.3 Health impacts

In this section the methodology used to estimate air pollution impacts on human

health in terms of morbidity and mortality is reported. Impacts are computed con-

sidering exposure to PM2.5 and NO2, following the methodology proposed by the
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World Health Organization in the HRAPIE project (Health Risks of Air pollution

In Europe) [54]. Concentration-response functions and relative risks values are re-

ferred to WHO [54], then partially modified and updated by the studies of CE Delft

on health costs of air pollution in European cities [55, 56]. In the past years NO2

impacts on health have been mainly attributed to PM2.5 and Ozone, that are formed

by nitrogen oxides, not to NO2 itself, therefore NO2 adverse impacts have been ne-

glected to avoid double counting. Recently, different studies have shown a relation

between long-term and short-term NO2 exposure with negative health effects, even

if the scientific discussion about considering NO2 directly accountable for negative

health effects is still open [57, 58].

In this study the health impacts are computed also for NO2 considering the rel-

ative risk adjusted by [56], that takes into account the risk of double counting. For

all-cause mortality, expressed in years of life lost (YLL), WHO relative risks are

used (Table 2.1), accordingly to Eq. 2.27.

Y LLa = a fa · pop ·ag f · inc ·ayl (2.27)

a fa is the attributable fraction, it depends on coefficient βa and concentration as-

sociated to the air quality index a ∈ A = {PM2.5,NO2,O3}. It expresses incidents

of premature mortality cases in the population attributable to the pollutant a risk

factor. It is computed as:

a fa =
eβa·AQIa−1

eβa·AQIa
(2.28)

pop is the entire population and ag f is the age group fraction considered for the

selected impact. inc is the natural mortality rate of the population and it is do-

main specific, while ayl is the average years of life lost from somebody dying from

air pollution and it is set for Europe at 10.3 years by the European Environmental

Agency [59], values adopted in this work are reported in Table 2.1. PM2.5 relative

risk is given by the WHO, while NO2 relative risk is taken from [56], that com-

pute a specific relative risk correcting double counting with all-cause mortality of

PM2.5. Morbidity impacts are modeled using the concentration-response functions
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cr f , each health impacts hiz is computed according to Eq. 2.29.

hiz,a = cr fz,a · pop ·ag fz,a · rg fz,a (2.29)

where cr fz,a is given for each health impact z and pollutant a, rg f is the risk group

fraction. Values are reported in Table 2.2 and are based on [60] and [56].

External costs are evaluated considering the monetary value of each impact, re-

ported in Table 2.3, adjusted taking into account the domain specific income. WTP

(Willing To Pay) values reported in Table 2.3 are average EU28 values, the differ-

ences in income are corrected, according to the methodology reported in [56], mul-

tiplying the WTP by a coefficient given by the ratio between the average domain

income inD and the average EU28 income inEU and applying an income elasicity

given by δ, equal to 0.8.

WT PD =WT PEU · (
inD

inEU
)δ (2.30)

Table 2.1: Relative risks for mortality due to chronic exposure to PM2.5 and NO2 [56, 60]

Pollutant Age group RR per 10 µg/m3 β per µg/m3

PM2.5 +30 1.062 0.0062
NO2 All 1.0076 0.00076

Table 2.2: Impact values for morbidity endpoints [56, 60]

Core morbidity
Endpoints

Risk
group RGF

Age
group

CRF
[1/µg/m3]

PM2.5
Net Restricted activity days all 1 all 9.59E-03
Work loss days all 1 20-65(*) 2.07E-02
Minor restricted activity days all 1 18-64 5.77E-02

PM10
Increase in mortality risk (infants) infants 0.0019 0-5 4.00E-03
New cases of chronic bronchitis all 1 18+ 4.51E-05
Respiratory hospital admissions all 1 all 7.03E-06
Cardiac hospital admissions all 1 all 4.34E-06
Medication use/bronchodilator use children 0.045 5-14 4.76E-03

NO2
Prevalence of bronchitis in
asthmatic children children 0.045 5-14 5.25E-03

Respiratory hospital admissions all 1 total 1.11E-05
(*)Working people
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Table 2.3: Monetary valuation of health effects of PM2.5 and NO2 for average incomes in EU28 [55, 56]

Core endpoints Pollutant Unit
Monetary
Value [e]

Increase in mortality risks (YLL) NO2,PM2.5 YLL 70000
Net Restricted activity days PM2.5 Days 157
Work loss days PM2.5 Days 94
Minor restricted activity days PM2.5 Days 52
Increase in mortality risk (infants) PM10 Cases 3600000
New cases of chronic bronchitis PM10 Cases 240000
Hospital admissions NO2,PM10 Cases 2850
Medication use/bronchodilator use NO2,PM10 Cases 2
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CHAPTER 3

Integrated assessment modeling tool

The methodology described in Chapter 2 is implemented in the Multi-dimensional

Air Quality system (Figure 3.1) using the software Matlab®. MAQ system [15] in-

tegrates 4 modules: (1) a set of databases collecting the information related to the

impacts, in terms of cost and emission reductions, for a set of measures; (2) an AQI

module, including models able to relate the emissions reductions to the air quality

levels; (3) a module that includes optimization and enumeration algorithms, allow-

ing the solution of the decision problem and (4) an impact module, that defines the

impact of the decisions in terms of air quality, human health indicators, benefits

and costs. The modularity of the structure allows to implement and solve specific

decision problems designed and formalized defining spatial domain, objectives, de-

cision variables and constraints.

In this chapter, a brief description of the sources of uncertainties in each MAQ

module is also reported. IAMs are composed by different models and databases, and

often they include a set of models whose output can be the input of other models,

therefore the estimation of uncertainties can be a complex task because it must

consider the uncertainties of each model as well as the uncertainty of overall system

[61].

29
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Figure 3.1: MAQ system structure

3.1 Emissions database

The emission database consists in a file for each cell of the domain. The do-

main is classified in Policy Application Domain, PAD, and external domain. For

the PAD cells the database contains a file for each cell reporting the virtual emis-

sions detailed for GAINS macrosector-sector-activity-technology that are present

in the region. Virtual emissions are the pollutant levels that would be emitted

by each sector-activity if no measures were applied. The external cells emission

files report only the total emission for each precursor projected to the Current Leg-

islation Scenario according to GAINS database projections and domain specific

data. Those emissions are derived from a spatialized emission inventory (detailed

by macrosector-sector-activity and fuel). Therefore this inventory is mapped into

the GAINS classification in order to derive also, for each cell, the activity level val-

ues for the basecase. The emission macrosector considered are the ones defined by

CORINAIR approach, the 11 macrosector categories in which emission activities

are clustered by this approach are shown in Table 3.1. The emissions database pre-

processing phase needs to take into account inconsistencies between GAINS and

CORINAIR classification, furthermore the GAINS activity levels values are avail-
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Table 3.1: CORINAIR [62] macrosector classification

Macrosector Category description

1 Combustion in energy and transformation industries
2 Non-industrial combustion plants
3 Combustion in manufacturing industry
4 Production processes
5 Extraction and distribution of fossil fuels / geothermal energy
6 Solvent and other product use
7 Road transport
8 Other mobile sources and machinery
9 Waste treatment and disposal
10 Agriculture
11 Biogenic

able for the entire country (Italy, France) and they need to be down-scaled on the

regional domain analysed.

Uncertainties are related to the emission inventories as well as to the different

emission classification methodology used in GAINS and CORINAIR. The main

sources of uncertainties in this phase are related to:

• the mapping procedure of national or regional emission inventories in the

GAINS classification, needed to use the GAINS end of pipe measures databases.

• Activity levels rescaling from the national domain, given by GAINS for refer-

ence years, to the regional domain, described by the emission inventory.

• The projection of the emission inventory to the base case year used in the

IAM tool (in this work 2018 for Lombardy region, 2020 for Île-de-France.

The projection in the MAQ system is related to the activity levels estimated in

GAINS for the inventory and the projection years and to the variation in the

application rates of the end of pipe measures in these years.

Uncertainties can be reduce when national domain is considered in the MAQ sys-

tem, thus the down-scaling of activity levels is not necessary and if the temporal

distance between inventory and projection years is minimized.
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3.2 Measures database

Two main databases are needed to describe the set of emission abatament mea-

sures and the emissions in a domain. Emission abatement measures application

rates, meaning the penetration of the use of such technologies in the domain, are

defined in two databases, one for the end of pipe measures, that limit pollutants

emissions right before they are released in atmosphere with no variation in the ac-

tivity level (fuel consumption), and the second one for the energy measures. The

latter includes energy efficiency technologies (i.e. electricity production with photo-

voltaic panels, heat cost allocation in buildings,low energy domestic appliances...),

behavioural measures (i.e. commuting by bike, public transit or walking instead of

using the private car) and fuel switch measures, that substitute a fuel with another

one that is more efficient in reducing air pollution (i.e. increase in methane or LPG

cars instead of new diesel cars). All the energy measures can lower the activity

level, therefore the related emissions.

The end of pipe measures database includes information about their removal

efficiency for each pollutant, the unit cost and the activity level of the sector activity

the measures can be applied to. These data are derived from the GAINS model

database where they are reported and collected by country [20].

The energy measures database was firstly implemented in the VALUTA project

[63, 38] for Lombardy region and then updated with behavioral measures [14]. It

includes technologies for the combustion in energy and transformation industries

(macrosector 1), non-industrial combustion plants (macrosector 2), combustion in

manufacturing industry (macrosector 3) and road transport and other mobile sources

(macrosectors 7 and 8). In macrosector 7 behavioral (active mobility) and fuel

switch measures are also included. The unit costs of these measures, expressed in

Me/alu (Activity Level Unit, mainly Petajoule), were computed in the VALUTA

project and are derived from different sources reporting values on the local market

[64, 65]. For new plants, a replacement period of 20 years with a discount rate of 5%

and a yearly maintenance cost of 10% of the investment have been assumed [38].

Each measure database is domain specific and depends on emissions and activities
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in the domain as well as regional and local regulations.

The uncertainties related to the measures databases are linked in general to the

uncertainties of the responses in the DPSIR framework (1.1) and they must take into

account the knowledge of costs and externalities associated with the application

rates of each measure, the emission inventories, the air pollution in the domain

under study and societal consensus on control strategies [61].

3.3 AQI module: source-receptor models

Surrogate models are data-driven models aimed at mimicking the links between

emissions and concentrations in a faster way, allowing multiobjective or cost-effectiveness

approaches. They need to be identified using a set of CTM scenarios. In literature

there is a wide variety of air quality surrogate models, based on different hypothe-

ses, spatial scales and temporal horizons.

• In GAINS, functional linear relationships have been developed for changes in

annual mean PM2.5 concentrations, deposition of sulphur and nitrogen com-

pounds as well as in long-term levels of ground-level ozone. The parameters

of these relationships are country specific and they have been derived from a

sample of several hundred runs of the full EMEP Eulerian model with system-

atically perturbed emissions of the individual sources [20]. EMEP (European

Monitoring and Evaluation Programme model) is the chemical transport model

developed by the cooperative program for monitoring and evaluation of the

long-range transmission of air pollutants in Europe, under the CLRTAP. It has

been extensively used to describe the atmospheric dispersion of air pollution

in Europe and to assess impact of the Thematic Strategy for Air pollution.

• SHERPA surrogate models assume a linear relationship between concentra-

tion and emission changes. In SHERPA the variation in concentrations due to

emission reduction is computed with a model for each cell and SR relationship

are defined using a set of CHIMERE model runs [66]. These models can be

used also in RIAT+, a regional integrated assessment tool able to perform both
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scenario and optimization approach [67].

• CAMS Air Control Tool is a web-based fast response scenario forecasting. In

this toolbox forecast surrogate models are implemented. They are 2nd order,

4-dimension polynomial regression models, identified at each grid point, for

each forecast day and for each species in an automated daily machine learning,

based on 12 CHIMERE scenarios runs [68]. CHIMERE is an offline and, in

the v2020r1, online chemical transport model. It is widely used in research

institutes and in operational centers for forecast [69, 70, 71].

The AQI module is directly impacted by the uncertainties in the emission database,

that is the main input, moreover surrogate air quality models can be a source of un-

certainties related to other aspects:

• the Design of Experiment of the CTM simulations needed to train the models,

it is essential in the definition of a range of emission and target variations that

the model can ”learn”.

• The Chemical Transport Model used to compute the identification set, in terms

of model formulation and variability due to the stochastic nature of atmo-

spheric processes [61]. Generally, they are evaluated through measurements,

and also uncertainties related to the measurements themselves, generally well

known, should be considered.

• Assumptions made for the formalization of the SR model, such as the treat-

ment of non-linearity behaviors or the assumption of linearity between emis-

sion and concentrations.

• Spatial resolution and flexibility of the model: for example the implementation

of a country to grid approach (i.e. GAINS SR models), or a model for each

cell (i.e. SHERPA SR models), or a regional model (ANN implemented in this

work and in [15]).

In MAQ system different type of surrogate models can be implemented to de-

scribe the variation in the air quality index due to the variation in emissions. In the



Integrated assessment modeling tool 35

studies presented, neural networks (ANNs) surrogate models are used.

Artificial Neural Networks, that aim at capturing the non-linear relationship be-

tween emissions and concentrations, have been trained for Lombardy region using

a set of 14 TCAM simulations. TCAM (Transport Chemical Aerosol Model) is an

Eulerian CTM that implements different chemical schemes for gaseous chemistry

and it implements a fixed-moving approach to represent particles in aerosol phase.

It has been applied to a domain in northern Italy, centered on the Milan metropoli-

tan area [72, 73]. ANN have been implemented in RIAT+ (Regional Integrated

Assessment Tool) and in the MAQ system [15]. The same approach has been used

in the study reported in Chapter 4, for the Île-de-France region, using CHIMERE

simulations for the training.

ANNs are data-driven models with an architecture that emulates a biological

neural network especially in terms of learning characteristics, parallel processing

and self-adaptation. They are widely used for non-linear systems modelling and

identification, due to their flexible structure that allows to capture complex nonlinear

behaviors [74].

A neural network is composed by nodes and the links between them. Each

node contains a computational element called neuron, upstream and downstream

of a node represents the neuron input and output. The node performs the weighted

sum of the inputs and transmits the result to an activation function. The activation

function can be linear or non-linear, non-linear activation functions are widespread

because they allow to describe more complex systems. Different types of neural

networks can be defined changing the topological features of the network (number

of neurons and layers), the weights of the inputs and the type of transfer functions.

The networks are trained (identified) to ensure that a specific input lead the out-

put to mimic a specific target, varying the weights of the connections between the

basic structures of the network [75]. The learning algorithm iteratively compares

the outputs with the target values and progressively refine the network parame-

ters until a certain figure of merit assumes a value lower than a specified tolerance

[76]. Weights refining can be computed using different techniques, the ANN im-
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Figure 3.2: Training of neural network models [75]

plemented for this study are trained using a back propagation algorithm [77]. This

algorithm modifies the connection weights after each test, according to the error

between output and target 3.2.

In MAQ system two types of SR models are implemented:

• emission-concentration models (EMI-CONC), that link the total emissions for

each pollutant in a cell c, considering also the adjacent cells, and the AQI in

the cell c.

• ∆emission-∆concentration models (DELTA) that link the variation of emission

to the variation in concentrations with respect to a selected base case.

3.4 Solving module: optimization and enumeration algorithms

According to the decision problem defined, two solving algorithms are imple-

mented in the MAQ system.

The multiobjective optimization algorithm implements the ε-constraint method

and it is used when the decision variables are treated as continuous, as in 2.1. This

method, described in section 2.1.3, is implemented in the MAQ system using the

Matlab®software Optimization Toolbox, that allows to find the minimum of con-

strained non-linear multi-variable function [78].

An enumeration approach is used when the objective function is composed by

more than two indexes, as in 2.2, and the complexity of the problem requires a

discretization of the decision variable to generate a feasible set of finite scenarios.
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The approach, described in section 2.2.3, is implemented using Matlab®and the

solutions are non-dominated scenarios in all objective spaces.

3.5 Impact module

The impact module contains data and functions needed to compute health im-

pacts, external costs, energy and health savings. The implementation of this module

in MAQ needs a set of domain specific data:

• population data in terms of inhabitants (gridded over the domain according to

the spatial resolution used);

• population age distribution;

• mortality rates for age groups;

• asthmatic children rate;

• average income of the domain;

• fuel costs;

All these data are processed from domain specific information and national average

values, available in Eurostat database [79]. The health impact assessment can be

a source of uncertainties resulting from the exposure assessment and the epidemi-

ological analyses that link exposure to the health outcomes. The main sources of

uncertainties are:

• the estimation of each health outcome, in terms of incidence rates: health

outcomes may not be specifically linked to air pollution due to additive or

synergistic effects with other factors, it is difficult to directly identify deaths

caused by a mixture of cumulative toxicity (exposure to more than one pollu-

tant, smoking etc).

• Exposure assessment, uncertainties can result from biases in the exposure

model or inaccurate inputs.

• Relative Risks estimated by the epidemiological models.
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• Temporal scale of effects in long-term exposure studies [61].



CHAPTER 4

Efficient policies to reduce PM2.5 exposure in
Île-de-France

In this Chapter the case study over Île-de-France is presented. The multiobjec-

tive optimization problem, defined in Chapter 2, where an air quality index and

the policy implementation costs are minimized in order to define the efficient air

pollution abatement policies, has been implemented using the MAQ system [15].

4.1 Materials

The regional domain has a spatial resolution of 0.0625° x 0.03125° and it has a

total extent of about 254 km (77 cells) in longitude and 564 km (55 cells) in latitu-

tude (Figure 4.1). The implementation of the system needed different databases and

models, as described in Chapter 3: (1) end of pipe and energy measures databases,

(2) emission database, (3) demographic data and (4) source receptor models.

4.1.1 Measures databases

Two databases are implemented, one for the end of pipe measures and the sec-

ond one for the energy measures. The end of pipe technologies are derived from

the GAINS model database for France. Measures costs, removal efficiencies and

39
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Figure 4.1: Île-de-France MAQ domain

activity levels are downloaded for the REF pre2014 CLEv.Dec2018 scenario for

the years from 2005 to 2030 and for REF MTFR scenario for 2030 [80]. These

two scenarios, implemented by IIASA, are referred to PRIMES activities projec-

tion (2016) taking into account, for the first one, the legislation already in place in

2014 while, for the second one, the full implementation of the technical emission

control measures (MTFR: Maximum Technical Feasible Reduction).

The energy measures are derived from the VALUTA project database imple-

mented for Lombardy region [63, 38, 14]. It was adapted to Île-de-France region:

• considering only measures applicable to existing (and emitting) sector activi-

ties in the Île-de-France domain;

• excluding measures implemented in Lombardy because of specific regional

regulations (for example the ”stars” classification of stoves, the introduction

of the mobility manager role in the companies [63]);

• selecting energy efficiency measures suitable for the policy application do-

main, for example excluding the installation/revamping of hydroelectric plants,

that are not present in the region.
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4.1.2 Emission and activity levels database

The emission database consists in a file for each cell of the domain (4235 cells).

The domain is classified in Policy Application Domain (PAD, the optimization do-

main, the pink cells in Figure 4.1), that covers the Île-de-France region, and external

domain. External cells emissions are projected to the Current Legislation Scenario

(2020) according to France GAINS emissions.

MAQ emissions are processed from a spatialized CORINAIR France emission

inventory (detailed by macrosector-sector-activity and fuel) for 2007, supplied by

the French National Institute for Industrial Environment and Risks (INERIS).

4.1.3 Population data

Economic indicators, health data and geodata for the Île-de-France have been

downloaded from Eurostat and GISCO databases.

1. Inhabitants: 1 km2 gridded population data for 2011 are available from GISCO,

the geographic information system of the European Commission, developed

by Joint Research Center and DG Regional Policy - REGIO-GIS [81].

2. Population, age groups distribution, mortality data for age groups and morbid-

ity data (i.e. asthmatic rate for age group) are given by Eurostat for year 2018

for the entire France [79].

3. Mean equivalized net income, needed to compute the external costs is also

given by Eurostat for France [79].

4.2 Source-Receptor models: Design of Experiment, identifica-
tion and validation

Source-Receptor ANN models were trained using a set of 14 CHIMERE sce-

narios, one model for each target (PM10, PM2.5 and NOx concentrations) has been

implemented in the MAQ system, all the models tested were identified using the

80% of the dataset and validated on the remaining 20%.
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The main objective of the Design of Experiment (DoE) is to generate a limited

number of instances that evenly cover the extent of possible emission variations. In

the optimization approach emissions could vary between a minimum value, defined

by the Maximum Feasible Reduction scenario (MFR) and a maximum value, de-

scribed by the basecase scenario. For the computation of PM2.5 concentrations SR

models are trained using 14 CTM scenarios defined to describe a wide range of in-

put variations (particulate matter precursors are: NOx, NH3, VOC, primary PM and

SO2), between two extremes (LOW and HIGH). In Eq. 4.1 is reported the emission

of precursor p in the scenario s that depends on the reduction R(s, p).

es,p = R(s, p) · (HIGHp−LOWp)+LOWp (4.1)

4.2.1 Lower bound and upper bound scenarios

Lower bound and upper bound scenarios (HIGH and LOW projections) do not

correspond to ”real” emission scenarios but they are useful to estimate, for each

cell, the maximum and minimum emissions expected in the solution of the mul-

tiobjective problem. They are implemented starting from four artificial scenarios

(S1, S2, S3 and S4) built considering the France emission inventory for 2015 and

the GAINS model database for 2020 and 2030 in terms of activity levels (al) and

emission abatement technologies application rates (θ):

S1p,ms = EMIINVp,ms (4.2)

S2p,ms = EMIINVp,ms · (1−
EMI BY BCp,ms−EMI FY MFRp,ms

EMI BY BCp,ms
) (4.3)

S3p,ms = EMIINVp,ms · (1−
EMI BY BCp,ms−EMI BY MFRp,ms

EMI BY BCp,ms
) (4.4)

S4p,ms = EMIINVp,ms · (1−
EMI BY BCp,ms−EMI LYp,ms

EMI BY BCp,ms
) (4.5)

where:

• EMI INV is the 2015 emission inventory;

• EMI BY BC is the emission projection obtained using the application rates
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and the activity levels estimated from GAINS year 2020;

• EMI FY MFR are emissions projected to 2030, applying the MFR application

rates and the activity levels for 2030;

• EMI BY MFR are emissions projected to 2030 applying the MFR application

rates for 2030 and the 2020 activity levels;

• EMI LY is the projection of emissions using 2020 application rates but final

activity levels for 2030.

For each cell of the domain and each pollutant p, minimum and maximum emis-

sion values are identified between the four scenarios. These new minimum and

maximum emission values are respectively reduced and increased by the 20% and

define the two extreme scenarios LOW and HIGH.

LOWc,p = 0.8 ·∑
ms

min(S1ms,c,p,S2ms,c,p,S3ms,c,p,S4ms,c,p) (4.6)

HIGHc,p = 1.2 ·∑
ms

max(S1ms,c,p,S2ms,c,p,S3ms,c,p,S4ms,c,p) (4.7)

12 scenarios between LOW and HIGH have been implemented applying the

Sobol sequences based algorithm. Through this procedure, a set of values, cor-

responding to the reductions of precursors emission for each scenario R(s,P), has

been selected. These values are shown in Table 4.1

Table 4.1: R(s,P) values for the PM2.5 ANN training scenarios simulated with CHIMERE

Scenario NOx VOC NH3 SO2 PPM
1 (HIGH) 1 1 1 1 1
2 (LOW) 0 0 0 0 0
3 0 1 1 1 1
4 1 0 1 1 1
5 1 1 0 1 1
6 1 1 1 0 1
7 1 1 1 1 0
8 0.25 0.25 0.25 0.75 0.25
9 0.25 0.75 0.25 0.75 0.25
10 0.25 0.75 0.75 0.75 0.25
11 0.50 0.50 0.50 0.50 0.50
12 0.75 0.25 0.75 0.75 0.25
13 0.75 0.75 0.25 0.75 0.25
14 0.25 0.25 0.75 0.25 0.75
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Table 4.2: R(s,P) values for the NO2 and O3 ANN training scenarios simulated with CHIMERE

Scenario NOx VOC
1 (HIGH) 1 1
2 (LOW) 0 0
3 0 1
4 1 0
5 0.25 0.25
6 0.25 0.75
7 0.50 0.50
8 0.75 0.25
9 0.75 0.75

For the computation of NO2 and Ozone concentrations 9 CTM scenarios are

selected (in this case the precursors are NOx and VOC), as shown in table 4.2.

4.2.2 Chemical Transport Model simulations

Scenarios defined in the Desing of Experiment, and reported in Tables 4.1 and

4.2, were simulated by colleagues of the the French National Institute for Industrial

Environment and Risks (INERIS), using the Chemical Transport Model CHIMERE.

The CTM runs were carried out on the whole France, starting from emissions

spatialized over Europe according to the EMEP (European Monitoring and Evalu-

ation Program) grid (0.1° x 0.1°), for the 14 scenarios and for the following pol-

lutants: NH3, NMVOC, SOx, NOx, PPM2.5 and Coarse particles (between 2.5 and

10 µm). Emission reduction scenarios were applied on the whole Europe. Then,

final CHIMERE emission input files were down-scaled over the France domain on

a 0.0625° x 0.03125° grid, according to the land use. Pollutant emissions are also

speciated over 55 model-species and temporal profiles are applied (per month and

per day-of-the-week).

For the identification of the surrogate models, the Île-de-France domain, defined

in Figure 4.1 were extracted from the emissions and target scenarios, obtaining a set

of 14 scenarios with a spatial resolution of 0.0625° x 0.03125°, 77 x 55 cells.

Part of the dataset generated using CHIMERE model has been used to perform

a sensitivity analysis and understand how the air quality indexes are sensitive to

each precursor. The results are shown in Figure 4.2 and 4.3. In these plots the

x-axis represents the basecase annual average concentration and the y-axis is the
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Figure 4.2: PM2.5 ANN training dataset sensitivity analysis
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Figure 4.3: NO2 ANN training dataset sensitivity analysis
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variation in annual average concentrations duo to the maximum reduction of each

precursor. Figure 4.2 shows that PM2.5 concentrations reduction are mainly due to

the abatement of primary particulate matter, but also sensitive to NOx and NH3.

NO2 concentrations (Figure 4.3) are insensitive to VOC emissions and results show

they depend only on NOx.

4.2.3 Artificial Neural Networks identification and validation

The set of scenarios reported in Table 4.1 were used to train artificial neural net-

works aimed at simulating PM2.5 and NO2 yearly average concentrations. Different

tests were made to identify the best features of the net, in terms of shape of the

input (and emissions radius of influence) and type of net (if emission-concentration

or ∆emission-∆concentration). Three shapes of the input were tested, as shown in

4.4:

(a) four triangular slices;

(b) four rings;

(c) four rings and four slices (12 trapezoidal shapes + 4 triangular shapes)

Figure 4.4: ANN input shapes: (a)four triangular slices, (b) four rings, (c) four rings and four slices (12
trapezoidal shapes + 4 triangular shapes)

All the tests carried on the dataset and the resulting statistics are reported in

Appendix A. For the multiobjective optimization exercise, presented in Section 4.3

EMI-CONC ANN using slices input shape were implemented in the MAQ system

for both PM2.5 and NO2. The features of the selected PM2.5 and NO2 nets are

reported in Table 4.3. The number of neurons in the hidden layer and the number of
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layers were fixed, respectively 20 and 2, according to previous works published in

literature [15]; tests on the activation and output functions are automatically made

in the training phase and the chosen functions guarantee the best results achievable.

ANNs were trained using the 80% of the entire dataset, the validation phase was

carried on the 20% of the total cells (distributed as one cell every five), the resulting

statistics are reported in Table 4.4. The correlation between the ANN resulting

concentrations and CHIMERE target values varies between 0.97 and 0.98 with a

rmse of 0.44 µg/m3 for PM2.5 and 1.03 µg/m3 for NO2.

Validation scatterplots are reported in Figures 4.5 and 4.6.

Table 4.3: Selected PM2.5 and NO2 ANN features

Net name
Input
shape Net Class Layers Neurons

Activation
function

Output
function

Radius of
influence
(cells)

PM2.5 EC a Slice EMI-CONC 2 20 logsig tansig 6
NO2 EC a Slice EMI-CONC 2 20 logsig tansig 4

Table 4.4: Selected PM2.5 and NO2 ANN statistics

Net name r e max rmse expl var
PM2.5 EC a 0.98 0.50 0.44 0.90
NO2 EC a 0.97 1.85 1.03 0.92
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Figure 4.5: PM2.5 ANN EMI-CONC input slice -
validation scatterplot
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Figure 4.6: NO2 ANN: EMI-CONC input slice -
validation scatterplot

4.3 Multiobjective optimization results

MAQ system was used to perform a multiobjective optimization over Île-de-

France. The objectives are the Air Quality Index, in this study the population
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weighted PM2.5 yearly average concentration, and the policy implementation cost.

In this section, results are discussed in terms of objectives, emissions (air pollu-

tant and GHG) reduction, effectiveness in reducing AQIs, decision variables values,

health impacts and energy savings.

4.3.1 Objectives

The solutions of the multiobjective optimization problem are plotted in the objec-

tive space: on the x-axis is reported the cost over the base case, Current LEgislation

scenario for 2020 (CLE2020). The y-axis represents the population weighted PM2.5

yearly average concentrations (AQI). In Table 4.5 the population weighted concen-

trations of PM2.5 and NO2 of all the efficient policies computed are reported, from

the basecase to the Maximum Feasible Reduction scenario at 40958 Me/yr. A fo-

cus on the area of maximum curvature of the Pareto front is shown in Figure 4.7.

Detailed results are reported for the optimal policy at 500 Me/yr, that reaches a

reduction of 25% in PM2.5 exposure.

Table 4.5: Summary of the Pareto solutions in terms of yearly average population weighted PM2.5 concentra-
tion, yearly average population weighted NO2 concentration and the policy cost

Policy cost PM2.5 NO2
Me/yr µg/m3 µg/m3

0 (CLE2020) 16.0 23.4
50 13.5 22.1

500 12.1 21.7
1000 11.5 21.0

40958 10.4 19.4

4.3.2 Air quality Indexes

Focusing on the 500 Me/yr optimal policy, the average spatial PM2.5 concen-

trations can be improved from 9.9 to 8.7 µg/m3 (by 12%), highly reducing the con-

centrations in the Paris metropolitan area. The population exposure decreases more

and the reduction reaches 25%. Measures applied to reduce PM2.5 exposure have a

role also in reducing NO2 average concentrations, from an average spatial mean of

7.0 to 6.1 µg/m3 (that in terms of population weighted mean, it means a reduction

of 7%). A comparison between the basecase and the optimal policy at 500 Me/yr
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Figure 4.7: Pareto curve in the objective space (Cost vs.PM2.5 population weighted mean concentrations), focus
between 0 and 3000 Me/yr

of the spatial distribution of PM2.5 and NO2 is shown in the maps in Figure 4.8 and

Figure 4.9.

4.3.3 Emission and costs

The optimal policy at 500 Me/yr shows a reduction in precursors emissions that

vary between 0% (for NH3) and 26.6% (primary PM2.5 ), as shown in Table 4.6.

Focusing on each macrosector, the results show a reduction of NOx in macrosectors

characterised by combustion activities from internal combustion engines (MS 7 and

8), energy production (MS 1 and 2) and, in minor extent, industry (MS 3). Pri-

mary particulate matter (PM10 and PM2.5 ) is mainly abated in activities related to

residential and commercial sectors and also in other mobility sources, such as con-

struction machineries and railways (MS 8). A small reduction of VOC occurs, other

than in MS 2, 7 and 8) in the solvent use sector (6.6%, that become 8.7% if biogenic

emissions are not taken into account in the calculation). In Figure 4.11 costs over
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Figure 4.8: Spatial PM2.5 concentration in µg/m3 for
the base case (CLE2020) and the optimal policy at 500
Me/yr

Figure 4.9: Spatial NO 2 concentration in µg/m3 for the
base case (CLE2020) and the optimal policy at 500 Me/
yr

CLE2020, classified for type of measure, are reported. 96% of the investment is in

energy efficiency measures, mainly allocated in the residential heating sector. This

result depends on the cost of energy efficiency measures, that is higher compared

to the end of pipe technologies, furthermore at CLE2020 end of pipe measures are

already applied at some extent and there is not so much room for improvement.

While, on the other hand, energy efficiency measures diffusion can be improved in

all macrosectors.

4.3.4 Decision variables: measures selection and application

The emissions reductions depend on the application of end of pipe and en-

ergy measures, the decision variables of the problem. The database contains 906

measures, in Table 4.8 are reported the most relevant ones. The decision prob-

lem formalization includes both energy and end of pipe measures, therefore the

results show the relevance of behavioral measures (included in the energy measures

database) in reducing both residential heating and road transport activity levels. The

results show that is more efficient targeting macrosectors 1 (combustion in energy

and transformation industries) and 2 (non-industrial combustion plants) for the re-

duction of PM2.5 concentrations (abating primary PM).
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Table 4.6: Air pollutant emissions for the basecase CLE2020 and the optimal policy at 500 Me/yr

Emissions CLE2020 [t/yr]
MS NOx VOC NH3 PM10 PM2.5 SO2
1 10034 276 17 257 129 10030
2 13099 4632 0 2896 2561 6021
3 6185 274 0 719 401 4096
4 1081 5222 121 5028 1788 3363
5 0 128 0 0 0 0
6 0 55819 0 0 0 0
7 55557 1434 2 2192 2142 91
8 5107 1691 0 339 309 235
9 57 270 717 444 381 42
10 0 0 4667 4638 953 0
11 0 22010 0 0 0 0
TOT 91120 91755 5523 16513 8663 23879

Emissions OPT500 [t/yr]
MS NOx VOC NH3 PM10 PM2.5 SO2
1 8295 261 17 232 112 8848
2 10547 1798 0 1195 935 4620
3 5902 274 0 528 294 3920
4 1081 5222 121 5007 1776 3363
5 0 128 0 0 0 0
6 0 53105 0 0 0 0
7 45375 1248 2 1787 1742 75
8 4284 1354 0 172 163 235
9 57 270 717 444 381 42
10 0 0 4666 4638 953 0
11 0 22010 0 0 0 0
TOT 75541 85670 5523 14004 6355 21102
RED -17.1% -6.6% 0.0% -15.2% -26.6% -14.8%
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Figure 4.10: Percentage emission reduction over CLE2020 of the policy at 500 Me/yr

Figure 4.11: Emission abatement measures (energy and end of pipe) cost allocation per CORINAIR macrosec-
tor of the policy at 500 Me/yr

Energy efficiency measures are mainly applied, as it was discussed in 4.3.3, be-

cause there is more room for improvements compared to end of pipe technologies.

Measures in macrosector 1 focuses on reducing fuel consumption and emissions
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Table 4.7: Energy measures investments, energy savings and CO2 equivalent emission reduction per CORI-
NAIR macrosector, for the optimal policy at 500 Me/yr

MS
Energy measures

cost [Me/yr]
Energy

savings [Me/yr]
CO2 emission

reduction [kt/yr]
1 18 153 372 (-8.1%)
2 439 3540 2747 (-19.6%)
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 34.6 1465 2404 (-17.7%)
8 0 0 0
9 0 0 0
10 0 0 0
TOT 492 5158 5522 (-14.8%)

caused by heavy fuel oil and natural gas combustion in power plants, using both

energy efficiency and end of pipe techniques.

In macrosector 2 only energy measures are reported, the most efficient way to

abate primary particulate matter emissions from residential heating is the improve-

ment of building energy efficiency, implementing building energy performance cer-

tifications, heat allocation approches and district heating. Also the ban of open

fireplaces allows to reduce PPM emissions.

End of pipe measures are applied in industrial sectors (macrosector 3, combus-

tion in manufacturing industry, and macrosector 6, solvent use for industrial paint

application). Those measures lead to a reduction in combustion emissions and also

an abatement of VOC emission due to the use of solvent-free powder coating sys-

tems.

In the road transport sector, measures aim to abate diesel fuel use, mainly with

behavioral measures, such as walking, cycling or taking the bus instead of com-

muting driving diesel cars. Other mobile sources emissions (from railways and

construction machinery) can be reduced applying end of pipe technologies.

4.3.5 Health impacts and Cost-Benefit analysis

Health impacts are computed in terms of mortality (YLL) due to PM2.5 expo-

sure, mortality due to NO2 exposure and morbidity due to PM2.5, that includes net

restricted activity days, work loss days and minor restricted activity days. All the
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Table 4.9: Mortality due to air pollution exposure in the basecase scenario and optimal policy

Policy
Spatial average

PM2.5 YLL
[months/pers]

∆PM2.5
YLL
[%]

Spatial average
NO2 YLL

[months/pers]

∆NO2
YLL
[%]

CLE2020 6.1 - 0.35 -
500 Me/yr 5.4 -11% 0.31 -11%

health savings, meaning the difference in external costs with respect to the basecase

CLE2020, are plotted in the cost benefit space in Figure 4.12. The x-axis represents

the cost over CLE2020, the y-axis reports the savings due to a reduced exposure to

air pollution. The red dotted line is the cost-health benefit plan bisector, black line

represents the optimal scenarios of the Pareto curve (Figure 4.7). All the scenarios

(except MFR) lie in the area over the bisector, meaning that benefits are higher than

costs. In the chosen optimal policy, a cost of 500 Me/yr leads to save 2003 Me/yr

and 130 Me/yr because a reduction in mortality due to, respectively, PM2.5 and

NO2 exposure. Furthermore 235 Me/yr savings in reduced morbidity caused by

PM2.5 concentrations, for a total savings in health impact of 2368 Me/yr.

The 500 Me/yr optimal policy mortality impacts are reported in Table 4.9 in

terms of months per person and percentage variation with respect to CLE2020,

PM2.5 has higher impacts than NO2 on mortality, PM2.5 average YLL reach 11.2

months in the Paris metropolitan area at the basecase, as shown in Figure 4.14.

Benefits can also be analyzed in terms of savings due to the application of energy

efficiency measures, whose effect is to reduce fuel consumption and, in turn, fuel

costs. In Figure 4.13 policy costs and energy savings for the points of the pareto

curve are reported (a focus between 0 and 15000 Me/yr). Also in this case all the

optimal policies, except MFR, guarantee savings higher than costs, energy savings

vary between 0 (CLE2020) and 20951 (MFR) Me/yr. When a 500 Me/yr budget

is efficiently allocated in energy measures, savings can reach 5158 Me/yr.
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Figure 4.12: Cost benefit analysis: health savings Figure 4.13: Cost-benefit analysis: energy savings

Figure 4.14: YLL due to PM2.5 exposure
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CHAPTER 5

Low emission road transport scenarios in Lombardy
region

The decision problem defined in Section 2.2 has been implemented and tested

for the Lombardy region (Figure 5.2). In this chapter the problem constrains are

computed defining the electricity production projections and demand, solving the

decision problem and studying three efficient solutions in terms of air quality, GHG

emissions, health impacts, cost and savings [9].

5.1 Materials

Different energy production scenarios must be assessed to implement the case

study: (1) the business as usual (BAU) electricity demand projection for 2030 and

(2) energy scenarios to meet the electricity demand due to the BAU projection and

the vehicle fleet electrification.

This chapter is based on E. De Angelis, C. Carnevale, G. Di Marcoberardino, E. Turrini and M. Volta, ”Low Emission
Road Transport Scenarios: An Integrated Assessment of Energy Demand, Air Quality, GHG Emissions, and Costs,” in IEEE
Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2021.3073241.
©2021 by the authors. This article is an open access article disrtibuted under the terms and conditions of the Creative
Commons (CCBY) license.
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5.1.1 Basecase Lombardy energy scenario: data and projections

The Italian energy plan provides the future energy scenarios according to Euro-

pean Commission 2050 Roadmap. Member states are committed to reduce GHG

emission by 85-90% with respect to 1990 levels. To reach this objective an inter-

mediate step for 2030 has been defined in the “Clean Energy Package for all Eu-

ropeans”, which states that 32% of final gross European energy consumption will

be produced by Renewable Energy Sources (RES) [25]. The Italian plan for energy

and climate (PNIEC) sets the RES objective for 2030 at 30% of final gross energy

consumption, divided between electricity production, thermal energy and transport,

as shown in Table 5.1 [33].

In 2018, Lombardy region produced 65.4% of electric power demand. The re-

maining electricity demand was covered by the other Italian regions for 4.6% and

imported mainly from France and Switzerland, for 30.0% [82, 83]. The current en-

ergy production in Lombardy is based on fossil fuels (natural gas and coal), solid

biomass, waste, solar energy and hydroelectric plants [83, 84].

The energy production from fossil fuels is estimated from the installed capacity

of power plants. In Lombardy there are 15 combined cycle plants with an average

value of equivalent production hours of 1600 hr/yr. Nine of them produce only

electric energy with an efficiency assumed in ηE=0.55. Six plants produce both

thermal and electric energy in cogeneration (ηE=0.50, ηT =0.40). The maximum

energy production can be up to 7800 hr/yr [85], the reduction presumed for 2030

is 70% of current hours, 1120 hr/yr, as indicated by the Italian plan for Energy and

Climate. Solid biomass and waste are mainly used to produce thermal energy but,

in few cases, also electricity is produced in small plants through cogeneration.

The future of RES in Italy is mainly in the use of photovoltaic (PV), hydro-

electricity and wind farms. Lombardy is not a suitable location for wind farms

implementation due to frequent stagnant air conditions, but it is the Italian region

with the highest number of installed PV plants and it covers the 27.2% of the Ital-

ian hydroelectric power. The maximum potential hydroelectric energy production

is reported by Terna report [83] and in the PNIEC an increase of 7.0% of the hy-
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droelectric energy consumption is expected nationwide. Solar photovoltaic can be

improved installing new PV panels. Considering the regional area available (urban-

ized area equal to 2464 km2 [86]) and the average solar energy potential, there is

still room for improvements in PV implementation [87]. In fact, this is the RES for

which the PNIEC expects the maximum increase. In Table 5.2, electricity produc-

tion according to the MAQ model values and the data given by Terna e GSE are

reported. In 2030, also considering a revamping of existing plants, the increase in

hydroelectricity consumption can vary between 14% and 22% [88].

Table 5.1: RES penetration objectives in Italy in 2030 [33]

Sector RES target at 2030

Electric energy 55.00%
Thermal energy 33.90%
Transport 22.00%

Also for centralized thermal power production the projections defined in the

PNIEC are applied, resulting in a 33.9% of RES penetration for this sector. An

important effort in thermal solar energy implementation is expected. Values are

reported in Table 5.3.

Considering the future improvements expected in energy efficiency and the grad-

ual electrification of different activities, the electricity demand will increase by

2.3%. On the other hand, thermal energy demand will be reduced especially be-

cause of improved energy efficiency in buildings. As shown in Table 5.6, the re-

gional electricity production cannot satisfy the growing demand, producing an en-

ergy deficit equal to 28.2 PJ that could be covered increasing the import or further

improving production, using RES available in the region that still have potential.

The electricity production sources distribution for the basecase scenario and the

2030 scenario are shown in Figure 5.1. In 2018 fossil fuels electricity was 66% of

the total electricity produced in the region, in 2030 it will be only 44%. 56% of the

production will be produced by RES.
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Table 5.2: Electric power production scenarios given by the MAQ model database values and the PNIEC
projections (percentage variation with respect to 2018 and values in PJ)

Fuel
Maximum
Production

Basecase
2018

Projection
2030

[PJ] [PJ] [%] [PJ]
Natural gas 759 136.3 -30.5 94.7
Coal 0 0.6 -100 0
Oil foss fuels 10.8 10.8 -30.5 7.5
Solid biomass - 2 -18.7 1.6
Biogas 214.2 13.3 -18.7 10.8
Biofuels - 1.3 -18.7 1
Waste - 4.3 -18.7 3.5
Photovoltaic 986.7 11.4 197 34.1
Hydroelectric 64.3 ÷ 68.8a 52.7 7 56.4
a Improvements in the maximum hydroelectricity production can vary
according to existing plants revamping (+14% - +22%).

Table 5.3: Thermal power production scenarios given by the MAQ model database values and the PNIEC
projections (percentage variation with respect to 2018 and values in PJ)

Fuel Basecase 2018 2030 scenario
[PJ] [%] [PJ]

Natural gas 34.6 -30.5 24.1
Coal 2.8 -100 0.0

Oil fossil fuels 15.7 -43 8.9
Solid biomass 2.3 +3.8 2.4

Biogas 4.1 +3.8 4.3
Biofuels 1.5 +3.8 1.5
Waste 5.1 +3.8 5.2

Thermal solar 2.1 +259 7.7

Figure 5.1: Electric power production and import in Lombardy in 2018 (inner circle) and projections for 2030
(outer circle) according to data reported by [83], GSE [84] and PNIEC [33]
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5.1.2 Low emission road transport scenarios

In this work, a low emission road transport scenario is assessed: light duty ve-

hicles, cars and mopeds are shifted to electricity and heavy-duty vehicles (HDV)

are powered by biomethane. Electric mobility is growing fast, in 2018 the global

electric car fleet exceeded 5.1 million units and the technological advancements are

leading also to new vehicle models and cheaper batteries [89].

Different studies have been made to estimate the electric vehicle sales projection.

Among these, the percentage of EVs over the total vehicles sold in 2030 is uncertain

and it can vary between 5% and 50% [90]. Furthermore, the Italian RES share goal

of 30% can be achieved considering the transport sector, as shown in Table 5.1. In

addition to the fleet electrification, the PNIEC [26] considers also the application of

biomethane, especially for heavy duty vehicles. In Europe biomethane is emerging

as an interesting solution for HDV sector [91, 92, 93], even if in Italy is not yet

significantly exploited.

The objective of the case study is to evaluate the maximum benefit achievable

in terms of air pollution and GHGs emissions from a low emission road transport

scenario and how the energy mix used to produce electricity can impact on the

results. Road transport emissions include non-exhaust emissions due to tyres, use

of brakes and road abrasion. These emissions are estimated to not be modified by

the electrification of the fleet and the fuel switch in HDV.

The impacts of shifting the whole HDV fleet on biomethane is shown in Table

5.4. In order to compute the electricity demand due to the fleet electrification, the

activity level for each road transport vehicle class and fuel and the corresponding

internal combustion engine (ICE) efficiency η are needed. The ICE efficiencies con-

sidered depend on the fuel and class of vehicles. They are equal to the mean value

among all the vehicles belonging to a fuel-class. Moreover, the amount of electricity

requested by the fleet must consider the electric engine efficiency (higher than ICE

efficiency) and the losses due to electricity production and distribution. This latter

value is given at national level by the Italian Energy Authority (ARERA). It defines

the conversion factor of electric energy in primary energy, therefore the production
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and distribution efficiency is equal to 46%. The values computed from the MAQ

model databases data are reported in Table 5.5, where the net energy includes the

engines efficiencies (ICE and electric) and the final electricity demand takes into

account also electricity production and distribution efficiency. Eventually the final

energy demand is computed (506.4 PJ) adding to the 2030 energy demand projec-

tion, reported in Table 5.6 (363.8 PJ), the increase due to vehicle fleet electrification

(142.6 PJ).

Table 5.4: Heavy Duty Vehicles biomethane fuel consumption

Fuel Activity Level [PJ] η [-]

Diesel 66.2 0.4
Natural gas 0.1 0.3

Total 66.4

Net energy considering engine efficiency on biomethane 88.4

Table 5.5: Electricity demand due to vehicle fleet electrification (cars, LDV and motorcycles)

Fuel Activity Level [PJ] η [-]
Cars LDV Mopeds

Diesel 97.5 9.8 0 0.4
Gasoline 27.9 0.6 0.7 0.3
LPG 20.6 0 0 0.3
Natural gas 3.7 0.2 0 0.3

Gross electric fleet energy 160.9 0.9

Net
energy

65.6

Electricity
demand

142.6

Table 5.6: Regional electric energy production, demand and import

Basecase
2018

Projection
2030

Low emission
traffic scenario

2030

Energy demand 355.7 363.8 (+2.3%) 506.4
Production 232.6 209.6 209.6
Import 123.1 125.9 175.2
Production+Import 355.7 335.6 384.8
Deficit 0 28.2 121.6
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5.1.3 Scenarios design and implementation

The electricity deficit of 121.6 PJ is distributed among the k different energy

sources, varying the share of increase in electricity demand that can be produced by

each source (ε(k) in Eq. 2.17), according to the regional electricity production upper

and lower bounds. The lower bound is the value defined by the PNIEC projection

and the upper bound depends on the production feasibility of each power source,

computed according to data reported in the previous sections.

MAQ model simulation domain is composed by 5890 cells 6x6 km2 (Figure 5.2).

Energy production variation is applied to Lombardy region (pink cells) and resulting

emission variations for each scenario are applied in the whole Northern Italy domain

(light blue cells). According to the enumeration approach defined in section 2.2.3,

twenty-two scenarios are identified randomly varying the control variables, meaning

the sources electricity production, within the feasible set (detailed values for all

scenarios are reported in Appendix B):

• 13 scenarios respect the 55%-45% percentage distribution between RES and

fossil fuels, Italian objective for 2030;

• in 5 scenarios there is an increase in RES share, up to a 80%-20% ratio;

• 4 scenarios have the ambitious goal of 100% RES production.

In Figure 5.3 electricity production distribution of the 22 scenarios is presented

for the different sources. There is no evident variation in fossil fuels: coal is always

0, as expected past 2025 due to coal plants decommissioning. The renewable energy

sources have still room for improvement, except hydroelectric, where, according to

data collected, only a maximum increase of 12.4 PJ is feasible.

5.2 Results and discussion

Defined all the decision problem elements, MAQ model is applied to the simula-

tion domain, to assess the cost and the impacts on air quality and greenhouse gases

emissions of selected scenarios.
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Figure 5.2: MAQ model domain, scenarios analysis results are evaluated over Lombardy region (pink cells),
the policy is applied on the whole Northern Italy (light blue cells)

0 50 100 150 200 250

Electricity production [PJ]

Natural gas
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Figure 5.3: Electricity production distribution in PJ among the sources available in the region

5.2.1 Electricity production scenarios

The 22 scenarios assessed with MAQ are plotted in the 3 objective spaces, sce-

narios highlighted in red are the non-dominated solutions in each objective space.

1. Cost – mean yearly NO2 concentrations (Figure 5.4): scenarios 1, 3, 6, 8, 11,
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19 and 20 are non-dominated.

2. Cost – mean yearly PM2.5 concentrations (Figure 5.5): scenarios 1, 3, 6, 8, 11,

19 and 20 are non-dominated.

3. Cost – mean yearly CO2eq emissions (Figure 5.6): scenarios 8, 16, 19, 20 and

22 are non-dominated.

Scenarios 1, 3, and 6 are efficient in the objective space 1 and 2 but they are

dominated in objective space 3. Scenario 22 is efficient accordingly to CO2 and cost

but is dominated in the air quality objective spaces. Non-dominated scenarios for

all objectives are 8, 19 and 20. The selected scenarios have different activity levels

distribution over the electricity production sources, scenario 8 has the minimum

electricity RES production objective for 2030 (55%), while in scenarios 19 and 20

production is totally from RES. Detailed distribution of the power production is

shown in Figure 5.7.

5.2.2 Emissions

In Table 5.7 the percentage emission reductions with respect to the base case

scenario are reported. The main reductions are in NOx and SO2. NOx are emitted

from fuel combustion, therefore they are caused by energy production plants and,

mainly, by vehicles internal combustion engines. SO2 is emitted by power produc-

tion plants, combustion in industries and, to a lesser extent, by road transport. Pri-

mary particulate matter emissions are mainly due to residential/commercial heating

(that account for the 58% of total PPM emissions).

In the road transport sector PPM is emitted by exhaust and non-exhaust activi-

ties: non-exhaust emissions are assumed to be unchanged by the electrification of

the fleet, while exhaust emissions are reduced by 46%. The vehicle fleet electrifica-

tion and the biomethane use in HDV abate the road transport sector NOx emission

by 95.9% and SO2 emission by 100%. The total emission reductions depend on the

electricity production sources used. In scenario 19 and 20, the abatement of NOx

and SO2 is maximum, because the electricity is produced mainly with “clean” RES,
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Figure 5.4: Objective space 1: Policy cost - NO2 concentrations

Figure 5.5: Objective space 2: Policy cost - PM2.5 concentrations

Figure 5.6: Objective space 3: Policy cost - CO2 concentrations
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Figure 5.7: Percentage electricity production distribution among the sources for the selected solutions

hydroelectric and photovoltaic, that do not have direct pollutant emissions, further-

more biogas and natural gas a have low NOx emission factor (0.03÷0.06 kt/PJ in

modern power plants). In scenario 8, NOx emissions strictly depend on the use of

biofuels, biomass and waste.

Table 5.7: Air pollution precursors percentage emission reduction with respect to the base case 2018 for the
selected scenarios

Scenario NOx VOC NH3 PM10 PM2.5 SO2

scen 8 -46.8% -1.8% -0.5% -4.7% -5.8% -15.2%
scen 19 -53.4% -3.4% -0.6% -6.1% -7.3% -21.8%
scen 20 -55.0% -3.4% -0.6% -6.1% -7.4% -22.0%

5.2.3 Analysis of road transport meta-emission factors

A comparison between the scenarios can be performed computing an average

road transport meta-emission factor for NOx, primary PM10, primary PM2.5 and

CO2 equivalent that includes cars, light duty vehicles and mopeds. The meta-

emission factor mEF linearly depends on the activity level of the sources used to

produce electricity in each scenario. All scenarios have meta-emission factors val-
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ues drastically reduced for all the pollutants. Scenario 8 shows minor reductions

because it includes waste, biomass and biofuels in the energy mix. Even so, there is

an abatement in NOx and CO2eq of respectively 37% and 52%. PPM meta-emission

factors decrease by 84% (83% for PM2.5 ) in scenario 8 and 100% in scenario 19.

Scenario 20 describes an electricity production coming only from ”clean” sources,

meaning solar and hydroelectric, that don’t have direct pollutant emissions, there-

fore mEF are equal to zero for all pollutants. Natural gas and biogas, mainly used in

scenario 8 and 19, have very low primary PM emissions; however this has negligi-

ble impacts on the PM2.5 annual average concentrations (Table 5.9). This is due two

main reasons, (1) the main source of PPM (both PM10 and PM2.5 ) is the residen-

tial/commercial heating sector, that is not examinated in this study, but it is proven

to be a key challenge to reduce PM population exposure in urban areas and (2) it

must also be taken into account the important role of secondary particulate matter

formation in this area [94, 95, 96].

Table 5.8: Meta-emission factors for cars, LVD and mopeds in the selected scenarios compared to the basecase
(derived by INEMAR 2017 [97])

Scenario
NOx mEF PM10 mEF PM2.5 mEF CO2eq mEF
[mg/km] [mg/km] [mg/km] [g/km]

BC 2018 426.5 53.6 43.4 146.5
scen 8 267.3 8.7 7.6 70.9
scen 19 14.6 0.1 0.1 30.3
scen 20 0.0 0.0 0.0 0.0

5.2.4 Air quality and GHG objectives

Air quality indexes, GHG and costs are reported in Table 5.9, expressed respec-

tively in percentage variation with respect to the basecase and cost in Me/yr. Air

quality impacts are significant for NO2 concentrations, this is related to the abate-

ment of NOx emissions. The best result is obtained for scenario 20, with a 44.0%

reduction corresponding to a maximum spatial average reduction of 9.8 µg/m3.

PM2.5 reductions vary between 5.1% and 6.2%, meaning a maximum reduction

of 1.0 µg/m3. PM2.5 concentration impacts are negligible, compared to NO2. The

concentrations over the domain are mainly due to primary particulate matter (PPM10
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and PPM2.5 ) emitted by residential heating sources, and to secondary PM formation

caused by NOx, VOC, NH3 and SO2 emissions. While NOx and SO2 emissions are

considerably reduced, VOC and NH3 emissions have negligible reductions in the

scenarios analysed.

Scenario 8 reduces CO2 equivalent emissions by 20%, while scenario 19 and

20 increase the GHG abatement to 29.1%, but the policy implementation cost in

these two scenarios is one order of magnitude higher. The use of RES already

implemented in the domain, such as biomass and biofuels, allows to reduce green-

house gases emissions at a moderate cost. In scenario 8 natural gas is used for the

45%, RES are mainly solar, hydroelectric and biomethane. These sources have low

emission factors for air pollution precursors, but natural gas CO2 emission factor is

higher, equal to 55.8 kt/PJ.

In Figure 5.8 concentration maps over the domain are reported for NO2. The fleet

electrification allows a diffuse reduction of concentration exposure, that is critical

at the base case, especially in the highly urbanized area Milan-Bergamo-Brescia.

Even if scenario 8 still presents some critical hot spots, especially in the Milan

metropolitan area and the western border, the policy allows to contain the average

annual concentrations below the European limit value, 40 µg/m3, in the most part

of the domain.

Table 5.9: Cost over base case 2018 and objectives reduction with respect to the base case for the selected
scenarios

Scenario Cost over BC [Me/yr] ∆PM2.5 ∆NO2 ∆CO2

scen 8 2905 5.3% 35.3% 20.0%
scen 19 10550 6.2% 42.4% 29.1%
scen 20 20773 6.3% 44.0% 29.1%

5.2.5 Health impacts and Cost-Benefit analysis

Benefits in terms of energy savings and health impacts are computed for all sce-

narios. Health costs include mortality due to PM2.5 and NO2 exposure, morbidity

due to PM10 , PM2.5 and NO2. In terms of mortality (Table 5.10), expressed as

average spatial YLL (in months per person), there is an important decrease of NO2
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Figure 5.8: NO2 average concentration in µg/m3 in the selected scenarios and the base case 2018

Table 5.10: Mortality in terms of YLL of the basecase and the selected scenarios

Scen Cost
PM2.5
YLL

NO2
YLL

Me/yr months % months %

BC 0 9.9 - 1.3 -
8 2905 9.5 -4.8% 0.86 -35%

19 10550 9.4 -5.8% 0.76 -42%
20 20773 9.4 -5.8% 0.74 -44%

YLL, because it is the pollutant mainly impacted by the low emission road transport

policy, varying between -35% and -44%. On the other hand, it must be considered

that, even if spatial concentration reductions seem negligible, PM2.5 YLL can be re-

duced up to 0.5 months. Reduction in air pollution exposure leads to less morbidity

costs, as shown in Table 5.11.

The abatement of light vehicle fleet fuel consumption and the different electricity

production mixes lead to a reduction in energy costs. It is worth to mention that in

this study it is not taken into account the cost of buying electricity to power electric

vehicles, the cost of the primary fuel used (natural gas, biogas, ecc) it is considered

instead.
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Table 5.11: Costs and savings of the basecase and the selected scenarios

Scen Cost
Mortality

PM2.5

Mortality
NO2

Morbidity
Health
savings

Energy
savings

Total
savings

BC2018 0 8673 1681 10017 0 0 0
scen 8 2905 8202 1142 9471 1555 3229 4784

scen 19 10550 8085 1004 9389 1893 4275 6169
scen 20 20773 8070 975 9383 1943 5874 7817
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Conclusions

Low carbon transition and air pollution are highly interconnected and decision

makers have the task to develop win-win policies that reduce the pressures that hu-

man activities have on the environment. The Integrated Assessment approach can

help in the comprehensive evaluation of environmental, energy, economic and de-

mographic factors in order to define efficient policies aimed at tackling both climate

change and air pollution drivers. This research focuses on the formalization, imple-

mentation and solution of two decision problems that aim at defining efficient air

quality and low carbon policies, in an Integrated Asessment approach, including

in the decision process technological, health and economic aspects. The integrated

Assessment Modeling tool used is the Multi-dimensional Air Quality system, MAQ.

This work has the following objectives:

1. formulation of decision problems that include both end of pipe measures and

energy efficiency policies, aimed at decreasing air pollutants precursors emis-

sions mainly reducing the activity levels causing those pressures;

2. formalization and solution of a multiobjective air quality decision problem

where an air quality index and the policy cost are minimized;

3. formalization and solution of a multiobjective decision problem where two air

quality indexes, GHG emissions and the policy cost are minimized;

75
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4. formalization of a methodology that allows a cost-benefit analysis of efficient

policies in terms of policy implementation costs, health external costs and en-

ergy savings;

5. definition of the Multi-dimensional Air Quality system MAQ and all its com-

ponents. The modularity of the systems allows to implement and solve specific

decision problems setting domain and spatial resolution, objectives, decision

variables and constraints;

6. design of a decision problem to define efficient measures to reduce PM2.5 pop-

ulation exposure over the Île-de-France.

7. Design of a decision problem aimed at evaluating renewable and non renew-

able electricity sources needed to power the electrification of traffic fleet in

Lombardy region.

In the first case study (Chapter 4), the solution of an air quality multiobjective prob-

lem shows the benefits of the inclusion of energy efficiency measures in air quality

planning. The problem is solved considering a combination of end of pipe and

energy measures. The solution shows that this measure dataset allows to reach a

reduction of 25% in PM2.5 exposure if we consider a policy implementation cost

equal to 500 Me/yr.

Investment costs are mainly allocated in the implementation of energy efficiency

measures, because at the CLE2020 (the basecase) end of pipe measures are already

widely diffused and there is not so much room for improvement, while energy ef-

ficiency measures diffusion can be still implemented in all macrosectors. Further-

more energy efficiency technologies are more expensive and need a budget allo-

cation higher than end of pipe measures. It is also worth to mention that behav-

ioral measures can be included, they reduce the activity levels changing population

habits: in this study active mobility measures are included in the database, meaning

commuting by walking, by bike or bus instead of using private cars. These measures

can reduce the fuel consumption, lowering the average kilometers driven.

Furthermore, the importance of energy efficiency measures is highlighted by a
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GHG emissions reduction, equal to 15% in the optimal policy described that allows

to reach substantial energy savings, showing the important role of the MAQ system

in identifying effective win-win polices.

The second case study presented (Chapter 5) can help in the evaluation of costs

and benefits, through a quantitative estimation of the impacts on air quality, GHG

emissions and costs taking into account the economic, demographic and technolog-

ical projection of this domain. Results suggest what are the optimal energy mixes

possible and which are the renewable energy sources to invest on, showing, as ex-

pected, that the reduction of internal combustion engines fuel consumption of the

current fleet has a great impact on NO2 concentrations. The NO2 annual average

concentration is estimated to decrease over the whole domain while PM concen-

trations, often discussed because of the chronic exceedances of the European limit

values in this area, are minimally impacted by the scenarios analysed.

Furthermore, the case study focuses on alternative electric power sources and

how the energy mix used can change the impacts on air quality and CO2 equivalent

emissions. The use of renewable energy sources is still limited but it is growing

fast, and clear paths are defined by European and National regulation. RES include

biomass, waste and biofuels, emitting less CO2 respect to natural gas but more

PPM, VOC and SO2, therefore negative impacts on air quality can arise from their

application. On the other hand, the use of fossil natural gas has a detrimental im-

pact on GHG emission but a higher effect on air pollution concentration reduction.

”Cleaner” solution, such as photovoltaic panels and hydroelectric plants have limi-

tations due to the implementation cost (for the photovoltaic panels) and revamping

feasibility and costs (hydroelectric plants).

This thesis stresses the role of Integrated Assessment Modeling approaches and

tools in the design and implementation of decision problems for complex systems

control, when policies impact on different processes (air quality and climate change)

and dimensions (economy, technological innovation, human and ecosystem health).

Further research on this approach might consider both methodological and imple-

mentation developments, such as:
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• focusing on the decision variables set, more behavioral measures in the databases,

considering also their social acceptability, can be included;

• in the ex-post analysis methodology impacts on ecosystems, for example the

critical load exceedance for nitrogen, can be formalized;

• new methods for the multiobjective decision problem solution can be tested,

for example genetic algorithms;

• further study on the surrogate models implemented in the IAM tools can in-

clude:

– more study on their ability to describe emission-concentration relation-

ship both in the identification/validation process and in the optimization

phase;

– inclusion of other surrogate models in the MAQ system.
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Methodology nomenclature

Variables

a f : attributable fraction [-]

ag f : age group fraction [-]

al activity level [alu, Activity Level Unit]

AQI: air quality index [µg/m3]

C: Cost [Me/yr]

cr f : concentration-response function [1/µg/m3]

D: electricity demand [PJ/yr]

e: emission [t/yr]

hi: health impact [years]

nr: non-renewable sources electricity production [PJ]

mEF : road transport meta emission factor [mg/km, for GHG g/km]

φ: application rate of fuel switch measures [-]

pop: population in the domain [inhabitants]

ψ: application rate of energy efficiency measures [-]
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r: renewable sources electricity production [PJ]

TC: Total policy cost [Me /yr]

θ: application rate of end of pipe measures [-]

u: imported electricity [PJ]

x: decision variables

yll: years of life lost [years]

Sets

A: set of air quality indexes considered in the health impacts

G: greenhouse gases

K: activities

P: air pollutants

Φk: set of fuel switch measures applicable to the activity k

Ψk: set of energy efficiency measures applicable to the activity k

Sk: set of fuel switch measures applicable to the activity k

Θk: set of end of pipe technologies applicable to the activity k

W : set of considered road transport vehicles types

X : generic decision variables feasible set

Y : set of vehicle fuels

Parameters

α: renewable energy sources share required [-]

ayl: average years of life lost due to air pollution exposure [years]

β: relative risk [-]



nomenclature 91

ce: fuel consumption reduction efficiency [-]

δ: income elasicity [-]

e f g: emission factor for greenhouse gas g [kt/alu]

e f p: emission factor for air pollutant p [t/alu]

ε: share of the total increase in energy demand that can be produced by a

source [-]

ηe: efficiency of the electric engine [-]

ηpd: electricity production and distribution efficiency [-]

ηy: efficiency of the fuel y internal combustion engine [-]

in: average income [e]

inc: natural mortality rate of the population [-]

lbnr: production lower bounds for non renewable electricity sources [PJ]

lbr: production lower bounds for renewable electricity sources [PJ]

nn: total number of non renewable energy sources [-]

nr: total number of renewable energy sources [-]

nt : total number of energy sources [-]

re: removal efficiency [-]

rg f : risk group factor [-]

td: total kilometers driven [km]

ubnr: production upper bounds for non renewable electricity sources [PJ]

ubr: production upper bounds for renewable electricity sources [PJ]

uc: unit cost [Me]

ucu: imported electricity cost [Me/PJ]

wt p: willing to pay health impacts value [e]
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Acronyms and abbreviations

ANN: Artificial Neural Network

AQI: Air Quality Index

ARERA: (in italian) Autorità di Regolazione per Energia, Reti e Ambiente

CH4: methane

CLRTAP: Convention on Long-range Transboundary Air Pollution

CO2: carbon dioxide

CTM: Chemical Transport Model

EMEP: European Monitoring and Evaluation Program

EPEC: Equilibrium Problem with Equilibrium Constraints

EV: Electric Vehicle

Fgases: Fluorinated gases

GAINS: Greenhouse gas - Air pollution Interactions and Synergies

GHG: greenhouse gases

GSE: (in italian) Gestore Servizi Energetici

GWP: Global Warming Potential
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HRAPIE: Health Risks of Air Pollution in Europe

HDV: Heavy Duty Vehicle

IIASA: International Institute of Applied System Analysis

ICE: Internal Combustion Engine

IPCC: Intergovernmental Panel on Climate Change

LDV: Light Duty Vehicle

lpg: Liquefied Petroleum Gas

MAQ: Multi-dimensional Air Quality system

N2O: nitrous oxide

NH3: ammonia

NO2: nitrogen dioxide

NOx: nitrogen oxide

PM10 : particular matter with aerodynamic diameter less or equal to 10 µm

PM2.5 : particular matter with aerodynamic diameter less or equal to 2.5 µm

PNIEC: (in italian) Piano Nazionale Integrato Energia e Clima

PAD: Policy Application Domain

PPM10: Primary PM10

PPM2.5: Primary PM2.5

PRIMES: Price-Induced Market Equilibrium system

PV: Photovoltaic

RES: Renewable Energy Sources

SO2: sulphur dioxide

SR: Source-Receptor model
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TIAM: TIMES Integrated Assessment Model

TIMES: The Integrated MARKAL-EFOM System

VOC: non-methane Volatile Organic Compounds

YLL: Years of Life Lost



96



Appendix A

In this appendix are reported the detailed results of the ANN training for the

Île-de-France domain.

Table A.1: PM2.5 Artificial Neural Networks tested - EMI-CONC class - net features

Net name
Input
shape Layers Neurons

Activation
function

Output
function

Radius of
influence
(cells)

PM2.5 D a Slice 2 20 logsig tansig 6
PM2.5 D b Rings 2 20 tansig purelin 2-10-20-60
PM2.5 D c Ring+slice 2 20 logsig purelin 2-10-20-60

Table A.2: PM2.5 Artificial Neural Networks tested - DELTA class - net features

Net name
Input
shape Layers Neurons

Activation
function

Output
function

Radius of
influence
(cells)

PM2.5 D a Slice 2 20 tansig purelin 6
PM2.5 D b Rings 2 20 tansig purelin 2-10-20-60
PM2.5 D c Ring+slice 2 20 logsig purelin 2-10-20-60

Table A.3: PM2.5 Artificial Neural Networks tested - statistics

Net name r e max rmse expl var
PM2.5 EC a 0.98 0.41 0.44 0.87
PM2.5 EC b 0.98 0.37 0.33 0.95
PM2.5 EC c 0.98 0.48 0.37 0.94
PM2.5 D a 0.99 -0.89 0.01 0.98
PM2.5 D b 0.99 -0.53 0.01 0.98
PM2.5 D c 1.00 -0.25 0.01 0.99
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Table A.4: NO2 Artificial Neural Networks tested - EMI-CONC class - net features

Net name
Input
shape Layers Neurons

Activation
function

Output
function

Radius of
influence
(cells)

NO2 EC a Slice 2 20 logsig tansig 4
NO2 EC b Rings 2 20 tansig purelin 2-10-20-60
NO2 EC c Ring+slice 2 20 logsig tansig 2-10-20-60

Table A.5: NO2 Artificial Neural Networks tested - DELTA class - net features

Net name
Input
shape Layers Neurons

Activation
function

Output
function

Radius
of influence
(cells)

NO2 D a Slice 2 20 tansig purelin 4
NO2 D b Rings 2 20 logsig tansig 2-10-20-60
NO2 D c Ring+slice 2 20 tansig purelin 2-10-20-60

Table A.6: NO2 Artificial Neural Networks tested - statistics

Net name r e max rmse expl var
NO2 EC a 0.97 1.85 1.03 0.92
NO2 EC b 0.97 0.66 1.01 1.22
NO2 EC c 0.99 0.79 0.69 1.09
NO2 D a 1.00 -0.15 0.01 0.99
NO2 D b 1.00 -0.15 0.01 1.00
NO2 D c 1.00 -0.13 0.01 1.00
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Figure A.1: PM2.5 ANN EMI-CONC input
slice - validation scatterplot
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Figure A.2: PM2.5 ANN: DELTA input slice
- validation scatterplot
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Figure A.3: PM2.5 ANN: EMI-CONC input
rings - validation scatterplot
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Figure A.4: PM2.5 ANN: DELTA input rings
- validation scatterplot
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Figure A.5: PM2.5 ANN: EMI-CONC input
slice+rings - validation scatterplot

0 5 10 15 20 25

Chimere ide [ g/m3]

0

5

10

15

20

25

n
n

e
t 

v
a

l 
[

g
/m

3
]

corr=1.00
nrmse=0.07

Figure A.6: PM2.5 ANN: DELTA input
slice+rings - validation scatterplot
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Figure A.7: NO2 ANN: EMI-CONC input
slice - validation scatterplot
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Figure A.8: NO2 ANN: DELTA input slice -
validation scatterplot

0 10 20 30 40

Chimere ide [ g/m3]

0

10

20

30

40

n
n

e
t 

v
a

l 
[

g
/m

3
]

corr=0.97
nrmse=0.24

Figure A.9: NO2 ANN: EMI-CONC input
rings - validation scatterplot
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Figure A.10: NO2 ANN: DELTA input rings
- validation scatterplot
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Figure A.11: NO2 ANN: EMI-CONC input
slice+rings - validation scatterplot
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Figure A.12: NO2 ANN: DELTA input
slice+rings - validation scatterplot



Appendix B

In this appendix are reported the detailed results for all 22 scenario simulated for

Lombardy in the case study ”Low emission road transport scenarios in Lombardy

region”.

Table B.1: Air quality indexes, GHG and costs values for all scenarios

Scen PM10 PM2.5 NO2 CO2eq Cost
- µg/m3 µg/m3 µg/m3 kt/yr Me/yr

BC 20.3 15.7 22.2 91589 0
1 19.1 14.8 14.3 73529 70920
2 19.2 14.9 14.9 73540 70931
3 19.1 14.8 14.0 73524 70915
4 19.2 14.9 15.0 73535 70925
5 19.2 14.9 14.8 73533 70924
6 19.2 14.8 14.3 73307 70698
7 19.2 14.8 14.1 73301 70692
8 19.2 14.9 14.3 73306 70697
9 19.2 14.9 14.9 73309 70699

10 19.2 14.9 14.6 73309 70700
11 19.1 14.8 13.8 73456 70847
12 19.2 14.9 14.6 73460 70851
13 19.2 14.9 14.8 73469 70860
14 19.4 15.0 16.6 68838 66229
15 19.3 15.0 16.1 68835 66226
16 19.3 14.9 15.4 68710 66101
17 19.3 14.9 15.6 68712 66103
18 19.3 15.0 15.7 68702 66093
19 19.0 14.7 12.8 64970 62360
20 19.0 14.7 12.4 64970 62360
21 19.0 14.7 12.9 64972 62363
22 19.2 14.9 14.1 64990 62381
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Table B.2: Electricity production from each source in PJ

Scen
Natural

gas Coal
Liquid

fossil fuels Biomass Biogas Biofuels Waste PV Hydro

BC 136.3 0.6 10.8 2.0 13.3 1.3 4.3 11.4 52.7
1 138.1 0.0 10.9 20.2 42.8 1.0 16.9 40.6 60.5
2 138.1 0.0 10.9 21.5 11.3 17.3 22.8 46.9 62.2
3 138.1 0.0 10.9 6.0 45.1 12.1 9.7 49.0 60.1
4 138.1 0.0 10.9 4.3 26.9 41.3 4.7 45.6 59.2
5 138.1 0.0 10.9 28.2 28.6 9.5 9.2 46.7 60.0
6 149.0 0.0 0.0 8.0 32.2 18.2 25.5 38.7 59.5
7 149.0 0.0 0.0 17.1 21.2 8.9 12.9 61.8 60.2
8 149.0 0.0 0.0 11.0 34.7 19.4 18.6 38.0 60.3
9 149.0 0.0 0.0 25.5 14.9 23.4 5.7 48.9 63.7

10 149.0 0.0 0.0 20.0 14.8 20.6 14.6 55.6 56.5
11 141.5 0.0 7.5 3.0 22.3 8.5 23.0 64.8 60.5
12 141.5 0.0 7.5 23.7 22.1 12.4 7.8 59.0 57.1
13 141.5 0.0 7.5 5.9 15.2 28.7 28.9 39.3 63.9
14 60.0 0.0 6.2 7.4 44.8 85.9 6.0 58.3 62.4
15 60.0 0.0 6.2 57.6 48.3 19.0 15.5 60.6 64.0
16 66.2 0.0 0.0 15.1 55.9 37.3 49.9 43.9 62.9
17 66.2 0.0 0.0 17.9 26.4 43.7 45.3 72.4 59.1
18 66.2 0.0 0.0 48.1 34.6 25.1 12.5 86.6 57.9
19 0.0 0.0 0.0 0.0 130.9 0.0 0.0 135.9 64.3
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 266.8 64.3
21 0.0 0.0 0.0 1.6 130.9 1.0 3.5 137.6 56.4
22 0.0 0.0 0.0 15.0 121.8 15.0 15.0 100.0 64.3

Table B.3: Percentage emission reduction with respect to the base case 2018

Scenario NOx VOC NH3 PM10 PM2.5 SO2

BC - - - - - -
1 -47.2% -2.2% -0.5% -5.0% -6.3% -15.0%
2 -44.4% -1.3% -0.4% -4.3% -5.4% -12.2%
3 -48.1% -2.4% -0.5% -5.2% -6.4% -16.7%
4 -44.0% -1.1% -0.4% -4.0% -5.1% -15.0%
5 -45.1% -1.4% -0.5% -4.3% -5.5% -14.9%
6 -47.2% -1.9% -0.5% -4.9% -6.0% -14.3%
7 -48.0% -2.0% -0.5% -4.9% -6.1% -16.7%
8 -46.8% -1.8% -0.5% -4.7% -5.8% -15.2%
9 -44.7% -1.0% -0.4% -3.9% -5.0% -15.9%
10 -45.6% -1.3% -0.5% -4.2% -5.4% -15.0%
11 -49.1% -2.6% -0.5% -5.5% -6.7% -15.3%
12 -45.8% -1.6% -0.5% -4.4% -5.6% -15.8%
13 -45.1% -1.5% -0.5% -4.5% -5.6% -11.9%
14 -37.4% 1.2% -0.3% -1.9% -2.9% -10.7%
15 -39.6% 0.5% -0.3% -2.7% -3.7% -10.6%
16 -42.4% -0.5% -0.4% -3.7% -4.8% -7.2%
17 -41.4% -0.1% -0.4% -3.3% -4.4% -7.2%
18 -41.1% 0.3% -0.4% -2.8% -3.9% -12.3%
19 -53.4% -3.4% -0.6% -6.1% -7.3% -21.8%
20 -55.0% -3.4% -0.6% -6.1% -7.4% -22.0%
21 -52.8% -3.3% -0.6% -5.9% -7.2% -20.9%
22 -47.8% -1.8% -0.5% -4.7% -5.9% -16.0%
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Table B.4: Policy cost, energy cost and energy savings for all scenarios

Scen Cost Energy cost Energy savings
Me/yr Me/yr Me/yr

BC 0 7657 0
1 3109 4496 3161
2 3602 4330 3327
3 3764 4468 3189
4 3497 4544 3113
5 3579 4487 3170
6 2962 4369 3288
7 4761 4196 3461
8 2905 4428 3229
9 3757 4358 3299

10 4278 4288 3368
11 4997 4129 3528
12 4545 4361 3296
13 3008 4323 3334
14 4493 4264 3393
15 4666 4144 3513
16 3364 4017 3640
17 5592 3749 3908
18 6702 3885 3772
19 10550 3382 4275
20 20773 1783 5874
21 10685 3422 4235
22 7747 3656 4000
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Table B.5: Mortality costs, morbidity costs and health savings for all scenarios

Scen Cost
Mortality

costs
PM2.5

Mortality
costs
NO2

Morbidity
costs (PM2.5 )

Health
savings

Me/yr Me/yr Me/yr Me/yr Me/yr

BC - 8673 1681 10017 -
1 3109 8181 1128 9456 1605
4 3602 8225 1189 9490 1467
5 3764 8162 1110 9440 1659
6 3497 8211 1197 9475 1487
7 3579 8203 1175 9470 1523
9 2962 8203 1134 9474 1559
11 4761 8182 1117 9455 1616
13 2905 8202 1142 9471 1555
14 3757 8217 1189 9479 1485
15 4278 8215 1169 9480 1507
21 4997 8167 1091 9447 1665
22 4545 8196 1160 9464 1550
23 3008 8225 1176 9491 1478
26 4493 8296 1341 9538 1195
27 4666 8281 1294 9530 1266
28 3364 8278 1237 9538 1318
31 5592 8287 1258 9544 1282
32 6702 8269 1266 9520 1316
33 10550 8085 1004 9389 1893
36 20773 8070 975 9383 1943
37 10685 8101 1017 9400 1853
40 7747 8190 1123 9462 1596
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