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Abstract

Ultra-high-field magnetic resonance imaging (MRI) enables sub-millimetre resolution imag-

ing of the human brain, allowing the study of functional circuits of cortical layers at the

meso-scale. An essential step in many functional and structural neuroimaging studies is seg-

mentation, the operation of partitioning the MR images in anatomical structures. Despite

recent efforts in brain imaging analysis, the literature lacks in accurate and fast methods for

segmenting 7-tesla (7T) brain MRI. We here present CEREBRUM-7T, an optimised end-to-

end convolutional neural network, which allows fully automatic segmentation of a whole

7T T1w MRI brain volume at once, without partitioning the volume, pre-processing, nor

aligning it to an atlas. The trained model is able to produce accurate multi-structure seg-

mentation masks on six different classes plus background in only a few seconds. The exper-

imental part, a combination of objective numerical evaluations and subjective analysis,

confirms that the proposed solution outperforms the training labels it was trained on and is

suitable for neuroimaging studies, such as layer functional MRI studies. Taking advantage of

a fine-tuning operation on a reduced set of volumes, we also show how it is possible to

effectively apply CEREBRUM-7T to different sites data. Furthermore, we release the code,

7T data, and other materials, including the training labels and the Turing test.
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1 | INTRODUCTION

Image segmentation of brain magnetic resonance imaging (MRI)

scans is an essential quantitative analysis step for assessing both

healthy brain anatomy and pathophysiological conditions. The seg-

mentation of brain structures is necessary for monitoring anatomi-

cal variations during the development of neuro-degenerative

processes, psychiatric disorders and neurological diseases. In addi-

tion, segmentation is an essential step in functional MRI (fMRI)

studies to isolate specific brain regions and to investigate brain

activity patterns. For example, the accurate segmentation of inner

and outer grey matter (GM) boundaries is critical for cortex-based

analysis in laminar fMRI studies.

The advent of 7-tesla (7T) scanners, together with improvements

in acquisition methods, increased the imaging resolution to a sub-

millimetre level (Duyn, 2012), thus enabling functional imaging of dif-

ferent cortical depths and columns with high spatial specificity and

the visualisation of structures with an unprecedented definition

(e.g., hippocampal substructures). However, these innovative systems

come with new technical challenges. One of the most relevant issues

is the need for intensity-based pipelines specific for 7T data, due to

the lack of standardisation across 7T sites (Clarke et al., 2020).
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Segmentation tools available for 3T data—such as FreeSurfer

(Fischl, 2012)—which usually apply atlas-based or multi-atlas-based seg-

mentation strategies, are not maximally effective on 7T volumes, due to

increased data complexity, voxel intensity inhomogeneity (intra-/inter-

sites) and site-specific artefacts. Even the latest version of FreeSurfer

(v7), which has been improved for ultra-high-field data, can fail in per-

forming a fully automatic segmentation due to the high inhomogeneity of

7T volumes, requiring expert knowledge and multiple iterative steps by

the user. Consequently, in-house and site-specific pipelines are common-

place, which account for a sequence of several manual or semi-manual

operations, such as in the example shown in Figure 1a.

Automating and optimising segmentation and other processes by

artificial intelligence (AI) methods could improve clinical care with high

speed and low additional cost in healthcare settings (Esteva

et al., 2019), especially since intra- and inter-expert variability remains

a severe limitation in medical (as well as in brain) imaging. Further-

more, an increasing number of brain imaging projects rely on pre-

collected data, with thousands of structural scans (Lu et al., 2021)

available on open platforms such as OpenNeuro,1 EBRAINS,2 or the

Human Connectome Project (Van Essen et al., 2013). This unprece-

dented data availability demands a new class of fast, robust, reliable

and reproducible tools that provide high-accuracy output and are fully

automatic and scanner independent. Accurate and shared analysis

workflows would advance the opportunities offered by the huge

quantity of available shared data and could help to minimise otherwise

negative effects on the scientific conclusions of the entire field

(Botvinik-Nezer et al., 2020).

1.1 | Aims and contributions

In this work we introduce CEREBRUM-7T: an AI tool which, mimicking

expert knowledge in segmentation, encapsulates all automatic and

semi-manual segmentation modules into a unique fully automatic

step, as shown in Figure 1b. CEREBRUM-7T is, to the best of our

knowledge, the first fully automatic deep learning (DL) solution for

brain MRI segmentation on out-of-the-scanner3 7T data. By extending

the previous work on 3T data (Bontempi et al., 2020), CEREBRUM-7T

acts in a fully 3D fashion on brain volumes and produces a segmenta-

tion using the labelling strategy proposed by the Medical Image Com-

puting and Computer Assisted Intervention Society (MICCAI)

challenge (Mendrik et al., 2015): GM, white matter (WM), cerebrospi-

nal fluid (CSF), ventricles, cerebellum, brainstem and basal ganglia, as

shown in the method overview in Figure 2. The volumetric processing

(a)

(b)

F IGURE 1 CEREBRUM-7T

aims to replace (a) complex and
site-specific segmentation
pipelines which combine
automatic and semi-manual
methods with (b) a unique
automatic segmentation step
which mimics expert knowledge

F IGURE 2 Method overview. The principal database is composed of 142 T1w volumes (MP2RAGE at 7T, 0.63mm3-iso) and an inaccurate
ground truth (iGT) is obtained using a combination of AFNI-3dSeg (Cox, 1996) and methods as in Fracasso et al. (2016). Segmentation results
are provided in only few seconds (~10 on a desktop CPU). Data dimensions are provided below each volume, while the numbers of filters are in
the top-right corners
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of the whole brain is made possible by a light model architecture and

by distributing different parts of the model on different GPUs.

Processing the entire volume at once enables the tool to learn and

incorporate all steps performed during manual segmentation, like

inhomogeneity correction or skull stripping, and obtain a full brain

segmentation in a few seconds, compared to several hours of other

currently used non-DL methods for 7T data. Furthermore, exploiting

the ability of DL methods to efficiently learn internal representations

of data, brain segmentation happens with neither the support of ad

hoc pre-processing, nor the alignment to reference atlases. The model

is trained in a weakly-supervised fashion by exploiting a labelling with

errors, which in the following we will refer to as inaccurate ground

truth (iGT) obtained using a combination of AFNI-3dSeg (Cox, 1996)

and methods as in Fracasso et al. (2016).

CEREBRUM-7T is tested in three different experimental scenar-

ios. In the first one, the model trained from scratch on a large, but

site-specific data set, is compared against the reference training masks

and with other state-of-the-art solutions by a combination of objec-

tive numerical evaluations and subjective analysis carried out by expe-

rienced neuroscientists. In the second and third scenarios, we test the

practical portability of the trained model for researchers working on

scans from different MR sites, especially in conditions of limited data

availability. In particular, the second scenario explores the condition

when only few brain MRI 7T scans are available (e.g., less than 40):

under such hypothesis, we show how a researcher can augment data

and fine-tune the pre-trained CEREBRUM-7T model starting from a

few automatic segmentations. The last scenario simulates instead an

extreme data scarcity condition (less than five scans): in such situation

we demonstrate the practical portability of the pre-trained CERE-

BRUM-7T model with a fine-tuning procedure involving very few, but

accurately (i.e., manually) segmented volumes. As a last contribution,

we make publicly available through the project website set of 142 7T

MR scans from Glasgow (UK),4 the segmentation masks, all the code

necessary to train and fine-tune CEREBRUM-7T and to perform tests.

2 | METHODS

2.1 | State-of-the-art

Due to the lack of accurate fully automatic methods, manual segmen-

tation protocols (Wenger et al., 2014; Berron et al., 2017), although

time consuming (Zhan et al., 2018; Koizumi et al., 2019), are still a

common practise for 7T data. To partially reduce the laboursome pro-

cess of manual segmentation, the solution proposed by Gulban

et al. (2018) combines manual and semi-automatic segmentation, by

adopting a multi-dimensional transfer function to single out non-brain

tissue voxels in 7T MRI data of nine volunteers. Other semi-

automated methods developed in the past for generic MRI data, such

as ITK-SNAP (Yushkevich et al., 2006), have been adapted by Archila-

Meléndez et al. (2018) for tackling also ultra-high-field brain imaging.

Often, given the lack of harmonised neuroimaging analysis proto-

cols, multiple 7T sites created in-house pipelines to perform MRI

segmentation on site-specific data specifically. Fracasso et al. (2016)

developed a custom workflow (used, e.g., in Bergmann et al., 2019)

which we also adopt for labelling GM and WM. The placement of the

GM/CSF boundary is based on the location of the 75% quantile of

the variability of T1w partial volume estimates across cortical depth,

while GM/WM boundary from a combination of AFNI-3dSeg

(Cox, 1996) and a clustering procedure (see Section 2.3.2 for more

details).

As an attempt to develop a site-independent approach, Bazin

et al. (2014) presented a computational framework for whole brain

segmentation at 7T, specifically optimised for MP2RAGE sequences.

The authors develop a rich atlas of brain structures, on which they

combine a statistical and a geometrical model. The method, which

includes a non-trivial pre-processing chain for skull stripping and dura

estimation, achieves whole brain segmentation and cortical extraction,

all within a computation time below 6 hr. Despite these efforts, the

most existing solutions, including Bazin et al. (2014) and Nighres by

Huntenburg et al. (2018), still generate a variety of segmentation

errors that needs to be manually addressed, as reported in Gulban

et al. (2018).

All aforementioned solutions—including FreeSurfer v6, FreeSurfer

v7, or even BrainVoyager (Goebel, 2012)—can work well, but require

multiple pre-processing and parameters' tweaking steps. The effect is

a huge inter- and intra-user variability in the output analysis, as shown

for example in Botvinik-Nezer et al. (2020), in which authors asked

70 independent teams to analyse the same data set, testing the same

nine ex-ante hypotheses; results showed how every single team cho-

ses a different workflow for data analysis, leading to sizeable varia-

tions in the results of hypothesis tests. In this respect, having a

validated tool that works in a fully automatic fashion, which produces

systematic outputs—errors included—would be desirable to minimise

variability, thus boosting reproducibility and facilitating comparability

of downstream research.

2.1.1 | Other DL methods for MRI segmentation

Recent advances in DL offer a novel way to improve and automate

complex tasks that up until now could only be performed by profes-

sionals (Yu et al., 2018). In particular, the advanced classification and

segmentation capabilities ensured by DL methods have impacted sev-

eral medical imaging domains (Litjens et al., 2017; Hamidinekoo

et al., 2018). Various segmentation algorithms, which exploit the gen-

eralisation capabilities of DL and convolutional neural networks

(CNNs) on unseen data, made possible a drastic improvement in the

performance with respect to other traditional, mostly atlas-based, seg-

mentation tools.

To the best of our knowledge, no DL architectures have been

directly applied on 7T data for segmentation purposes yet. The only

attempt made by Bahrami et al. (2016) to use CNN in this field, aimed

at reconstructing 7T-like images from 3T MRI data. Specifically, from

the 3T image intensities and the segmentation labels of 3T patches,

the CNN learns a mapping function so as to generate the
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corresponding 7T-like image, with quality similar to the ground-truth

7T MRI.

Restricting the scope to 3T data only, recent DL-based methods

such as QuickNat (Roy et al., 2019), MeshNet (Fedorov et al., 2017;

McClure et al., 2019), NeuroNet (Rajchl et al., 2018), DeepNAT

(Wachinger et al., 2018) and FastSurfer (Henschel et al., 2020) have

been the most effective solutions among those which proposed to

obtain a whole brain segmentation. However, a common trait of all

the aforementioned methods is that none of them fully exploit the 3D

spatial nature of MRI data, thus making segmentation accuracy sub-

optimal. In fact, such solutions partition the brain into 3D sub-

volumes (DeepNAT, MeshNet and NeuroNet) or 2D patches

(QuickNAT, FastSurfer), which are processed independently and only

eventually reassembled; as recently shown in Reina et al. (2020), the

use of “tiling” introduces small but relevant differences during infer-

ence that can negatively affect the overall quality of the segmentation

result. For example in MRI segmentation, tiling entails a loss of global

contextual information, such as the absolute and relative positions of

different brain structures, which negatively impacts the segmentation

outcome.

The DL model CEREBRUM (Bontempi et al., 2020) is the first

attempt to fully exploit the 3D nature of MRI 3T data, taking advantage

of both global and local spatial information. This 3D approach adopts an

end-to-end encoding/decoding fully convolutional structure. Trained in a

weakly supervised fashion with 900 whole brain volumes segmented

with FreeSurfer v6 (Fischl, 2012), CEREBRUM learns to segment out-of-

the-scanner brain volumes, with neither atlas-registration, pre-processing,

nor filtering, in just ~5–10 s on a desktop GPU.

2.2 | Scenarios of application

CEREBRUM-7T is a segmentation tool useful for researchers working

in almost any condition of data availability. The first scenario accounts

for the availability of a large brain MRI 7T database (e.g., scans >50).

Under this hypothesis, the code we provide allows for training the

CEREBRUM-7T model from scratch, by exploiting inaccurate labelling

produced from automatic tools (e.g., Freesurfer, BrainVoyager, etc.).

In a second scenario, only a few brain MRI 7T scans from a differ-

ent site are available (e.g., 20 < scans < 40). The model trained from

scratch using a limited number of samples could lack generalisation

abilities. We therefore provide a CEREBRUM-7T model (pre-trained

on Glasgow data), and a fine-tuning procedure (and code) to specialise

it on a new site data. The term fine-tuning refers to the procedure of

adjusting weights of a network, trained on a large data set, and spec-

ialising them to optimally work on a different, usually smaller, data set.

Considering that the new data set is in general not drastically different

in context to the larger one, as in our case, the pre-trained model will

already have learnt features that are relevant to the specialised classi-

fication problem.

The last investigated scenario explores the condition of extreme

data scarcity (MRI scans <10, from a different site), which is partially

compensated by the presence of excellent segmentation masks

obtained via manual procedures. Also in this case we provide a CERE-

BRUM-7T pre-trained model and the data augmentation procedures

needed to fine-tune the network.

The three data sets described in Table 1—one for each of the

investigated scenarios—include a large one for training the model from

scratch (Glasgow data set, 142 scans, 120 for training); a reduced size

data set (Amsterdam Ultra-high field adult lifespan database [AHEAD]

data set, Alkemade et al., 2020; 105 scans, 20 for training) with auto-

matically obtained segmentations; an extremely tiny set (Schneider

et al., 2019; 4 scans, 3 for training), with manually segmented masks.

2.3 | Scenario 1: Training from scratch with a large
data set

In this scenario we train CEREBRUM-7T model from scratch on a large

data set which has been inaccurately labelled via an automated pipeline.

2.3.1 | Glasgow data: Acquisition and split

The database consists of 142 out-of-the-scanner volumes obtained

with a MP2RAGE sequence at 0:63 mm3 isotropic resolution, using a

TABLE 1 Data sets details

Parameter Glasgow data Alkemade et al. (2020) Schneider et al. (2019)

Sequence used T1w MP2RAGE

Field strength 7 tesla

Voxel size 0:63�0:625�0:625 0:7�0:641�0:641 0:7�0:7�0:7

Original volume sizes 256�360�384 234�320�320 320�320�240

Training volume sizes 256�352�224a

Training 110 vol. (+1.1k vol. augmented offline) 20 vol. (+300 vol. augmented offline) 0 vol. (+90 vol. augmented offline)

Validation 6 volumes 15 volumes 3 (original) volumes

Testing 26 volumes 64 volumes 1 volumes

Testing (Turing test) 3 vol. � 8 areas n.a. n.a.

aNeck cropping.
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Siemens 7T Terra Magnetom MRI scanner with 32-channel head coil.

All volumes were collected, as reconstructed DICOM images, at the

Imaging Centre of Excellence (ICE) at the Queen Elizabeth University

Hospital, Glasgow (UK). The columns of Figure 3 show some selected

slices of the out-of-the-scanner T1w, the segmentation resulting from

FreeSurfer v6, the one from Fracasso et al. (2016), the one from Hun-

tenburg et al. (2018), the reference iGT, the CEREBRUM-7T mask and

the manual segmentation, respectively.

Out of the total 142 volumes, 110 are used for training, 6 for vali-

dation and 26 for testing (3 of which used in a Turing test). The only

pre-processing applied is the neck cropping using the INV2 scan

obtained during acquisition. Data set details are shown in Table 1.

2.3.2 | Generation of the iGT

Similarly to most approaches employing DL frameworks for brain MRI

segmentation (Roy et al., 2019; McClure et al., 2019; Fedorov

et al., 2017; Rajchl et al., 2018; Bontempi et al., 2020), we also adopt

an almost fully automatic procedure for labelling, since the prohibitive

time cost required to produce a manual annotation on such large data

set. Such a decision is also driven by the consideration that, despite

the use of an iGT, in already documented cases the trained models

proved to perform the same (Rajchl et al., 2018), or even better

(Bontempi et al., 2020; Roy et al., 2019), than the iGT used for

training.

Differently from Bontempi et al. (2020), it is not possible to use

either FreeSurfer v6 (Fischl, 2012) nor FreeSurfer v7, as unique

sources for the generation of the iGT. Both tools perform similarly on

structures such as brainstem, basal ganglia, cerebellum and ventricles

(see, e.g., Figure 11). However, the quality of WM and GM segmenta-

tion masks obtained with FreeSurfer v6 is not acceptable (as also

hinted in Figure 3, second column), even considering inaccurate

supervision for learning. With respect to FreeSurfer v7, even if it is far

superior than v6 when it comes to segment WM and GM, it still pro-

duces some systematic failures in segmenting specific structures, for

example, the temporal lobes, as we show in Figure 13 and in the

Supporting Information (Figure S8).

For these reasons, we design a custom pipeline for the iGT genera-

tion process (overview in Figure 4) with performance on GM and WM

comparable to those offered by FreeSurfer v7, which is fully automatic,

free from unpredictable errors, does not require parameter tweaking, and

it is more site-independent and faster than FreeSurfer (in any version).

The pipeline accounts for two main branches: the upper one deals with

WM and GM segmentation, while the lower one isolates other brain

structures such as cerebellum, ventricles, brainstem and basal ganglia.

The two processing branches are combined afterwards, when a manual

correction step is also carried out to reduce major errors.

In the upper branch, the WM mask is obtained using a combina-

tion of AFNI-3dSeg (Cox, 1996) followed by geometric and cluster-

ing methods as in Fracasso et al. (2016). Specifically T1w images are

co-registered to an atlas (Desikan et al., 2006) and a brain mask is

overlaid to the T1w images to remove the cerebellum and subcortical

structures. The T1w images are then separated in six different parts

along the posterior to anterior direction to improve intensity homoge-

neity. Each part is afterwards separately processed by the 3dSeg

function in AFNI, to isolate WM. The WM masks obtained from each

part are summed together resulting in whole brain WM mask (see

Fracasso et al. (2016) for further details).

The GM segmentation exploits such whole brain WM segmenta-

tion and an atlas co-registered to the T1w images (Desikan

et al., 2006). Next, a distance map from the WM/GM boundary to the

pial surface is built computing the Euclidean distance of each voxel

from the WM/GM border. Negative distances are assigned inside

WM and positive distances are assigned from WM borders onward.

Each region of interest (ROI) in the atlas by Desikan et al. (2006) is

F IGURE 3 Visual examples of the data set and results. Columns, from left to right, show: T1w scan (left), FreeSurfer v6 and v7 segmentations
(Fracasso et al. 2016), nighres, iGT (obtained as described in Section 2.3.2), CEREBRUM-7T, and manual segmentation. Coloured labels are shown
in overlay only when returned by the specific method
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selected iteratively. For each ROI the coordinates are divided into four

separate subparts using k-means clustering. For each subpart, voxels

within �2 and 7 mm (Euclidean distance) from the WM/GM border are

selected and their T1w intensity stored for further analysis. For each clus-

ter 10 bins between �2 and 7 mm are obtained—with each bin containing

10% of the data. For each of them, a partial volume estimate, defined

as the SD of T1w intensity as well as the average Euclidean distance

for the same bin, is computed. A linear model is then fit between the

average Euclidean distance of each bin and the corresponding partial

volume estimate. The slope of the linear model can be either positive

or negative: if there is a positive slope, the 75% quantile of the SD

values is computed among the 10 bins; if, on the other hand, the slope

is negative, the 25% quantile is computed. The Euclidean distance of

the 25%/75% quantile corresponds to a drop or rise in T1w variability

and is considered as the transition between GM and CSF. To improve

the obtained GM segmentation, the WM and GM masks are fed to

the Cortical Reconstruction using Implicit Surface Evolution algorithm

in the Nighres software package (Huntenburg et al., 2018).

Despite the method ensures a robust result in segmenting GM/WM

boundary, no cerebellum, ventricles and basal ganglia areas are com-

puted. To address such lack of GT structures, in the lower branch of the

pipeline (Figure 4), we use FreeSurfer v6 (Fischl, 2012), which first

requires to denoise the T1w volume (O'Brien et al., 2014), to add the fol-

lowing labels: cerebellum, ventricles, brainstem and basal ganglia. The per-

formance of FreeSurfer v6 on these structures is comparable to that

offered by FreeSurfer v7 (as shown also in Figure 9), which was just

released at the moment of iGT creation. When necessary, a final step of

manual correction is carried out to reduce major errors (especially on cer-

ebellum classified as GM) using ITK-SNAP (Yushkevich et al., 2006).

The z-scoring procedure, applied to normalise the data before

CEREBRUM-7T training, is obtained using the mean and SD volumes

computed on the entire Glasgow data set (shown in Figure 5).

2.3.3 | Data augmentation

The data corpus used for our experiments is one of the biggest 7T

brain MRI publicly and freely available data sets. Yet, given the

complexity of the DL architecture, that is, the number of learnable

parameters, there are not enough training samples to deliver an off-

the-shelf model. Therefore, we decide to adopt two customised data

augmentation strategies: offline and online data augmentation, as

shown in Figure 6.

Offline augmentation, too computationally demanding to be per-

formed in training-time, consists in the application of small random

shifts max_shift¼ 10,15,10½ �ð voxels) or rotations max_rotation¼5 ∘ð ,

on all three axes) and elastic deformations. This ensures an augmenta-

tion factor of 10 of the training set.

Online data augmentation, performed during training, comprises vari-

ations on voxel intensities only: Gaussian, salt and pepper and

inhomogeneous-field noise. In MRI, and especially in Ultra-High Field

(UHF), the inhomogeneity in the magnetic field produces an almost linear

shift in the voxel intensity distributions for different areas in the 3D space

(Sled et al., 1998). In other words, the same anatomical structure has dif-

ferent voxel intensities in different areas, for example, GM in frontal and

occipital lobes. One of the main limitations of segmentation methods that

heavily rely on intensity values is the inability to correctly classify the

same class having different local distributions, even if inhomogeneity cor-

rection methods are applied as pre-processing. To increase our model

invariance, we introduce, as an additional data augmentation strategy, a

synthetic inhomogeneous field noise. We start by pre-computing a 3D

multivariate normal distribution, with zero-means and twice the dimen-

sion (for each axis, i.e., 8� the volume) of the original volume. For each

training volume, we randomly sample from the 3D multivariate normal

distribution a noise volume as big as the former volume. The so-

generated noise volume is then summed to the anatomical MRI,

adding further variability to the volume intensities and simulating dis-

tortions along different directions. In Figure 7, a sketch of the method,

when applied on a 2D slice example, is shown (see Supporting Infor-

mation for further examples on 1D and 3D cases—Section 3).

2.3.4 | Glasgow manual segmentation subset

A portion of the considered data set has been manually annotated by

one of the author from the University of Glasgow, who accumulated

F IGURE 4 Processing pipeline used to generate the iGT starting from the reconstructed T1w
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several years of experience in neuroscience and brain MRI segmenta-

tion and reviewed by a radiologist with 20 years of experience. In par-

ticular, volumes from three subjects have been randomly selected

from the 7T MRI data set, and for each of them, eight regions have

been selected and labelled—that is, early visual cortex (EVC), high-

level visual areas (HVC), motor cortex (MCX), cerebellum (CER), hippo-

campus (HIP), early auditory cortex (EAC), brainstem (BST) and basal

ganglia (BGA). Such regions have been chosen among the most com-

monly brain areas investigated with functional MRI. Since each of the

8 sub-volumes of interest includes 5 adjacent slices of dimension

150�150, the manually labelled data set accounts for a total number

of 2:7M voxels (150�150�5�8�3).

2.3.5 | DL model

Similarly to Bontempi et al. (2020), the model architecture is designed

to deal with the dimensionality of the training data

(i.e., 256�352�224 voxels) at once. As shown in Figure 2, the model

is a deep encoder/decoder network with three layers, with one, two

and three 3D convolutional blocks in the first, second and third levels,

respectively n_filters¼24,48,96ð Þ.
Since the network is fed with a whole volume as an input, each

convolutional block (kernel size 3�3�3Þ, processes the whole brain

structure. The full volume helps the model to learn both local and

global structures and spatial features (e.g., the absolute and relative

F IGURE 5 Mean and SD volumes of the database used to z-score the data. Denoised mean/standard volumes are found in Supporting
Information (Figure S5)

F IGURE 6 Data augmentation procedure. Offline (with respect to the training procedure), geometric augmentation is performed with
rotation or translation p¼ 0:5,0:5f gð Þ and elastic deformation (Çiçek et al., 2016). Online, voxel intensity changes are applied: salt and pepper
noise p¼0:25ð Þ, Gaussian noise p¼ :25ð Þ, or inhomogeneous-field noise p¼0:5ð Þ: An example of data augmentation is shown in the output
volume, where one rotation and one elastic deformation are followed by an additional Gaussian noise

SVANERA ET AL. 7



positions of different brain components), which are then propagated

to subsequent blocks. Dimensionality reduction is achieved using

strided convolutions instead of max-pooling, which contributes to

learning the best down-sampling strategy. A dimensionality reduction

(of Factor 4 on each dimension) is computed after the first layer, to

explore more abstract spatial features. Eventually, the adoption of

both tensor sum and skip connections, instead of concatenation, helps

in containing the dimension of the parameter space to �1:2M.

Training, which takes ~24 hr, is performed on a multi-GPU

machine equipped with 4 GeForce® GTX 1080 Ti, on which different

parts of the model are distributed.5 During training, we optimise the

categorical cross-entropy function using Adam (Kingma and Ba, 2014)

with a learning rate of 5�10�4, β1 ¼ :9 and β2 ¼ :999, using dropout

p¼ :1ð on second and third level) and without batch normalisation

(Ioffe and Szegedy, 2015), achieving convergence after �23 epochs.

The code is written in TensorFlow and Keras.

2.4 | Scenario 2: Fine-tuning with few automatic
segmentations

In this scenario, we simulate the condition in which only few brain

MRI 7T scans are available, and it is therefore not possible to train the

network model from scratch. We provide the CEREBRUM-7T model

pre-trained on Glasgow data, which is further specialised by fine-

tuning on a smaller data set from a different site, which has been

automatically labelled.

2.4.1 | Fine-tuning procedure

Since data acquired from different sites usually significantly differ in

statistical distribution—the so called distribution shift (Quionero-

Candela et al., 2009)—simply using the already trained DL on Glasgow

data would be ineffective, as the learnt data statistics would not be

sufficient to carry out the task on data from different sites. Therefore

we present a fine-tuning procedure which enables to extend the

previously trained model on other data sets with fewer scans, also col-

lected in different sites.

All steps of the fine-tuning procedure are detailed in Figure 8:

data preparation (Step 1) includes operations of rotation and cropping

and requires the computation of the training labels (either by auto-

matic tools or manually) and the mean/std volumes of the new data

set. Afterwards, geometric data augmentation, for both the anatomical

and the labelled volumes, is performed offline (Step 2). Step

3 describes the “warming-up” of the model, in which the new layer

weights are learnt without compromising the frozen layer features

obtained during the training ðlr¼1�10�5Þ. Finally, Step 4 is responsi-

ble for the fine-tuning of the entire network ðlr¼5�10�4Þ.

2.4.2 | AHEAD data: Preparation and split

In this scenario, we fine-tune the model (pre-trained on Glasgow data)

by using only 20 volumes from the AHEAD (Alkemade et al., 2020).

The full database consists of 105 7T whole-brain MRI scans, including

both male and female subjects (age range 18–80 years). In order to

mimic one real scenario, the labels used for fine-tuning are obtained

by one of the most recent tool openly available on the market:

FreeSurfer v07, which is also useful to completely disentangle the

model from Fracasso et al. (2016) which was used for training.

We then select 20 volumes, making sure that their segmentation

masks is accurate (FreeSurfer v07 presents frequent errors, as discussed

above), and we augment every volume 15 times. Validation is performed

on 4 volumes, while the remaining 81 are used as a testing set.

2.5 | Scenario 3: Fine-tuning with very few manual
segmentations

In this third scenario, we simulate a condition of extreme 7T data scar-

city. With the same fine-tuning procedure used in the previous sce-

nario, we specialise the pre-trained CEREBRUM-7T model with only

four manually labelled volumes belonging to Schneider et al. (2019).

F IGURE 7 Cartoon to describe the inhomogeneous-field noise for the 2D case. After pre-computing a multivariate normal distribution, we
randomly extract a noise sample as big as the sample to augment, for every training batch. The extracted patch is then summed to the original
sample
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2.5.1 | Schneider et al. (2019) Data set: Preparation
and split

Such data set contains sub-millimetre 7T MRI images of the human

brain, which are thought for the supervised training of algorithms to

perform tissue class segmentation. In particular it includes pre-

processed MRI images (co-registered + bias corrected) and

corresponding ground truth labels: WM, GM, CSF, ventricles, subcor-

tical, vessels and sagittal sinus. For our purposes we exploit only the

MP2RAGE subset, which exhibits accurate manual segmentation

masks based on four subjects.

Since the data set contains only four volumes, we exploit a cross-

validation strategy, using three volumes for training and one for test-

ing. However, since the method needs a larger training set, we apply a

stronger augmentation procedure, concatenating different volume

manipulation strategies: translation, rotation and morphing. Doing so,

we create 30 volumes for each training sample (for a total of 90). Due

to technical limitations, we decided to fine-tune the model on six clas-

ses only: WM, GM, CSF, ventricles, subcortical and vessels. To ease

the task, we also apply a brain mask to the volume, cropping outside

the skull.

3 | RESULTS

3.1 | Experiments on Scenario 1: Training from
scratch on Glasgow data

To evaluate CEREBRUM-7T, in Section 3.1.1 we first provide a quanti-

tative assessment of the obtained segmentation, with and without

data augmentation, with respect to the inaccurate labelling obtained

by other state-of-the-art methods (iGT). Then, in Section 3.1.2, we

evaluate if CEREBRUM-7T actually outperforms in quality the inaccu-

rate labelling it was trained on. To do so, we present the outcome of

the Turing test carried out on a data portion by experienced neurosci-

entists who were asked to subjectively evaluate the best segmenta-

tions among CEREBRUM-7T, the iGT and a manual segmentation,

which serves as a gold standard. In Section 3.1.3, we use manually

segmented masks as a reference to rank CEREBRUM-7T among state-

of-the-art methods including FreeSurfer v6, FreeSurfer v7, Fracasso

et al. 2016, Huntenburg et al. 2018, and the iGT pipeline. Finally in

Section 3.1.4, we show some soft masks associated with regions seg-

mented by CEREBRUM-7T.

3.1.1 | Contribution of data augmentation:
CEREBRUM-7T versus iGT

In order to evaluate the effect of the data augmentation strategy,

CEREBRUM-7T architecture is compared in two variants, with and

without data augmentation, against the iGT. The two models are

trained by minimising the same loss and using the same learning rate.

Performance is assessed by three metrics adopted by the

MICCAI MRBrainS18 challenge, which are among the most popular

ones used in the context of segmentation (Taha and

Hanbury, 2015): the dice coefficient (DC), a similarity measure

which accounts for the overlap between segmentation masks; the

Hausdorff Distance computed on its 95th percentile (HD95), which

evaluates the mutual proximity between segmentation contours

(Huttenlocher et al., 1993); the volumetric similarity (VS) as in

(Cárdenes et al., 2009), a non-overlap-based metric which con-

siders the similarity between volumes.

F IGURE 8 Steps to fine tune the method to a new sequence or site
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The quantitative comparison is outlined in Figure 9 where

average results for DC, HD95 and VS obtained on the 18 test vol-

umes are shown class-wise (i.e., on GM, WM, ventricles, cerebellum,

brainstem and basal ganglia). Independently from the observed metric,

it is evident the beneficial effect of applying data augmentation

strategies.

3.1.2 | Turing test: CEREBRUM-7T versus iGT
versus manual segmentation

From the quantitative assessment presented in Section 3.1.1 emerges

that there is a relative difference in performance between CERE-

BRUM-7T architectures and the iGT used for training. Nevertheless,

since performance are measured with respect to an iGT, CEREBRUM-7T

segmentations might be superior to those provided by the inaccurate

labelling, as in Bontempi et al. (2020) and Roy et al. (2019), as we also

suggest in Figure 3 where CEREBRUM-7T masks appear more accurate

than iGT masks.

To test this hypothesis, we design a Turing test in which seven

expert neuroscientists (different from those who generated the

manual segmentation) are asked to choose the most accurate

results among three provided ones: the mask produced by CERE-

BRUM-7T, the iGT and the manual segmentation (intended as gold

standard).

If systematically proven, the superiority of CEREBRUM-7T against

the iGT would confirm the validity of the weakly supervised learning

approach, resulting in a learnt model with generalisation capability

over its training set obtained with state-of-the-art methods. Further-

more, a human expert evaluation, compared to a purely numerical

measure, has the advantage to account for the grade of severity of

every single segmentation error, giving important feedback on the

suitability of the segmentation for the application (Taha and

Hanbury, 2015).

The survey participants are presented with a set of randomly

arranged slices taken from the manually annotated data set: they are

either axial, sagittal, or coronal views from the eight selected areas of

interests (see Section 2.3.4 for details) segmented with the three com-

pared methods (CEREBRUM-7T, iGT and manual segmentation). For

each presented couple of segmentation results, the expert is asked to

choose the best one between the two, or to skip to the next slice set

if unsure. Each participant inspects all eight areas of interest, for each

of the three test volumes. To better compare results in a volumetric

fashion, it is also possible for the participant to browse among neigh-

bouring slices (two slices before and two after) and interactively

change the mask opacity to more easily check for an exact anatomical

overlap. A snapshot of the survey interface, coded with PsychoPy

(Peirce et al., 2019), is provided in the Supporting Information

(Section 1).

The aggregated results of the Turing test are shown in

Figure 10a, while results split per different brain areas are given

in Figure 10b. In both figures, it is evident that participants judged the

segmentation masks generated by CEREBRUM-7T as more accurate

with respect to those of the iGT.

3.1.3 | Quantitative ranking: State-of-the-art
methods versus manual segmentation

On the same data set of 2:7M voxels used in the Turing test (three

volumes, eight selected areas per volume) we also perform a purely

F IGURE 9 Dice coefficient, 95th percentile Hausdorff distance,
and volumetric similarity computed using the inaccurate ground truth
(iGT) segmentation as a reference. The data augmented model
(yellow), and the model trained without data augmentation (red) are
compared. The height of the bar indicates the mean across all the test
subjects, while every mark is a tested volume
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numerical evaluation, based on DC. Considering manual annotations

as a reference, Figure 11 shows that the quality of segmentation

labels produced by CEREBRUM-7T is above other state-of-the-art

labelling methods including the iGT, labels obtained by FreeSurfer v6

and Freesurfer v7, by Fracasso et al. (2016) (on applicable classes only,

i.e., GM and WM), and those from Huntenburg et al. (2018).

3.1.4 | Probability maps

To appreciate the quality of CEREBRUM-7T output on Glasgow data,

in Figure 12 we show the segmentation inferred by the model before

thresholding. In testing, the model outputs both the probability maps

and the thresholded segmentation mask by default. Since in such

(a)

(b)

versus versusversus

F IGURE 10 Results of the Turing test. (a) The three subplots show the three comparisons questioned during the survey (manual
vs. CEREBRUM-7T, manual vs. iGT, iGT vs. CEREBRUM-7T), since segmentations masks were presented in couples. iGT votes are displayed in
blue, CEREBRUM-7T in orange, while skipped responses (S), meaning participants could not choose between the two segmentations, are displayed
in grey. The height of bars indicate the means across subjects (i.e., how many times a selection was made, where max. is 3 volumes � 8
areas = 24); every mark x is a participant. (b) Results are split per area of interest: early visual cortex (EVC), high-level visual areas (HVC), motor
cortex (MCX), cerebellum (CER), hippocampus (HIP), early auditory cortex (EAC), brainstem (BST), and basal ganglia (BGA)
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probability maps each voxel intensity is associated with the probabil-

ity of belonging to the most likely class, the reader can inspect the

almost total absence of voxel activation outside the correct areas.

3.2 | Experiments on Scenario 2: Fine-tuning on
AHEAD data set

In Figure 13, we show the results of a qualitative comparison (on slices

from five different subjects of the AHEAD testing set) using different

tools. In particular, the reader can inspect and appreciate the different

level of smoothness achieved on the segmentation masks produced by

FreeSurfer v7 (top row), CEREBRUM-T7 off-the-shelf (middle row) and

CEREBRUM-T7 fine-tuned on only 20 volumes (bottom row).

3.2.1 | Mesh reconstruction on AHEAD data

With CEREBRUM-7T, it is fast to produce 3D high-quality models useful

for the neuroscientific and biomedical communities. For example, in fMRI

F IGURE 11 Using manual annotation as a reference, comparison of Dice coefficient between our method (CEREBRUM-7T), the iGT used for
training, FreeSurfer v6, FreeSurfer v7, and the segmentation tools in Fracasso et al. (2016) (only GM/WM) and Nighres by Huntenburg
et al. (2018). Every mark is a tested volume from the manually annotated testing set. Nighres result (green bar) is missing for WM since the Dice
coefficient is below 0.5

F IGURE 12 Soft segmentation maps (i.e., probability maps) of a testing volume of Glasgow data for WM and GM classes. The model
produces maps with very consistent probabilities, giving additional flexibility than a hard thresholded map. Remaining classes are shown in
Supporting Information (Figure S6)
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studies, researchers need first to isolate specific brain structures

(e.g., GM) in order to analyse the spatio-temporal patterns of activity hap-

pening within it. As such, we show in Figure 14 a view on four

reconstructed meshes (WM/GM boundary and outer GM boundary)

obtained from a testing volume of the independent data set AHEAD,

processed by FreeSurfer V7 (left) and CEREBRUM-7T (right), respectively.

3.3 | Experiments on Scenario 3: Fine-tuning on
Schneider et al. (2019) data set

Table 2 shows very accurate segmentation performance obtained by

fine-tuning CEREBRUM-7T model with only three volumes. Results

are obtained in cross-validation for all four volumes in the data set.

Other visual results can be inspected on the project website.

4 | DISCUSSION

In this work we present a CNN-based segmentation algorithm for 7T

MRI brain data, which starting from a single MRI sequence (T1w), pro-

duces a 3D segmentation mask in only few seconds. Similarly to

CEREBRUM, also CEREBRUM-7T processes the whole brain volume as

one, avoiding the drawbacks of the tiling process (Reina et al., 2020),

thus preserving both global and local contexts. This partially resembles

what happens during manual segmentation: first, the expert looks at

the brain volume from afar to identify where different brain structures

are located (global clues). Once a coarse segmentation is apparent, the

expert begins to segment voxel by voxel at the pixel level, focusing

only on a specific area (local processing). For a human, both of these

two levels (or scales) of information are needed to perform the seg-

mentation. CEREBRUM-7T preserves such two-scale analysis: global

features are obtained by analysing the volume at once, without par-

titioning. The full-resolution processing of the first layer enables to

perform a maximum resolution analysis. A table reporting the recep-

tive fields for each convolutional block of CEREBRUM-7T can be

found in the Supporting Information (Table 1).

Classical automatic (pre-DL) segmentation tools, instead, emulate

these two steps using atlases to gain global clues and, for most of

them, gradient methods for the local processing. For what concerns

DL segmentation methods based on tiling, they conceptually lack in

the gain of global clues. Furthermore, limitations in memory size of

accelerator cards, prevented so far large medical volumes from being

processed as a whole: thanks to the reduction of network layers we

applied on the model architecture, it was possible to make the exploi-

tation of global spatial information computationally tractable. In fact

increasing the depth of a CNN does not always allows the model to

capture richer structures and yielding better performance. On the

contrary, as highlighted by works such as Perone et al. (2018), in

some cases the low-level features extracted by the network prove

F IGURE 13 Fine-tuning results on AHEAD data: comparison between FreeSurfer v7, plain CEREBRUM-T7 (trained on Glasgow data and
tested on AHEAD data), and CEREBRUM-T7 fine-tuned for AHEAD data. More results in Supporting Information (Figure S8). Animated GIF on
the project website. AHEAD, Amsterdam Ultra-high field adult lifespan database
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to be the most important ones—even if the task is complex.

Maintaining a small number of layers allow us to analyse the vol-

ume at full resolution and at once, gaining both global and local

scale: this brings in a sense our DL model closer to an atlas, with

respect to any other previous approach, since it finally learns

a-priori probabilities for every voxel.

Since the lack of a universally accepted labelling system, when decid-

ing for the widely adopted labelling strategy and metrics proposed by the

MICCAI Society—one of the most prestigious societies dedicated to the

practice in the field of medical image computing—we chose to maximise

research reproducibility and the possibility to compare our method

with state-of-the-art literature. GM, WM, CSF, ventricles, cerebellum,

brainstem and basal ganglia were chosen as labels, while results were

evaluated in terms of the dice similarity coefficient, the 95th Hausdorff

distance and the VS coefficient. Choosing for a different labelling system

or metrics would have hampered research comparison and reproducibil-

ity. In addition to this, despite the fact that software tools like Freesurfer

or MAGeTbrain return a higher number of structures, it is often the case

that, depending on the final application, having too many labels is not

always useful and re-clustering is often needed. Moreover, it is in general

true that the higher the number of labels, the less accurate the available

segmentation. In short, the MICCAI suggested labelling system consti-

tutes a good compromise between flexibility and research reproducibility.

4.1 | Fully trained model

From the inspection of results in Figure 9, we observe that the

architecture with data augmentation outperforms the baseline

solution on every class, independently from the observed metric.

This is especially noticeable for HD95, where the difference in the

average score between the two configurations (computed on all

test volumes) is proportionally more prominent than for other met-

rics. This might be due either to a larger variability (which might

affect the reliability of the measure), or to the fact that, since

HD95 accounts for differences in segmentation contours, the ben-

eficial effects given by offline data augmentation (i.e., shifts, rota-

tions and morphing) reflects on an increased accuracy of the

segmentation borders. Such interpretation is supported by the

observation that smaller brain structures, such as ventricles,

brainstem and, where the identification of segmentation bound-

aries is most critical, are the ones that benefit the most from such

augmentation. In summary, results in Figure 9 point out how much

the applied data augmentation strategy helps segmentation, signifi-

cantly improving results from Bontempi et al. (2020).

As for the aggregated results of the Turing test shown in

Figure 10a, the direct comparison between CEREBRUM-7T and the

iGT shows that survey participants clearly favoured our proposed

solution. Moreover, when both CEREBRUM-7T and the iGT are com-

pared against manual segmentation, CEREBRUM-7T obtains more

favourable results than iGT. This is confirmed also when results are

split per different brain areas, as in Figure 10b: in the comparison

against manual, the iGT is almost never chosen, while in selected areas

(i.e., EVC, MCX, HIP) CEREBRUM-7T becomes competitive also

against the gold standard offered by manual segmentation. Although

the gold standard is built by a single neuroscientist (on three subjects),

manual segmentation is here intended only as a reference: even con-

sidering multiple annotators (and also in case of low level of inter-

agreements between them) manual segmentation would remain any-

way by far the best,6 not impacting on the comparison between

CEREBRUM-7T and the iGT used for training the model itself.

The manually segmented masks are used as a reference also for

quantitatively comparing CEREBRUM-7T, the iGT, FreeSurfer v6,

(a) (b)

F IGURE 14 Reconstructed meshes of (a) WM/GM boundary and (b) outer GM boundary of a testing volume of the independent data set
AHEAD—sub. 88—for FreeSurfer V7 (left) and CEREBRUM-7T (right). A light smoothing operation is performed on both meshes (50 iterations—
BrainVoyager, Brain Innovation; Goebel, 2012)—no manual corrections performed. We added unsmoothed meshes on Supporting Information
(Figure S9). More results (animated GIF) on the website page. AHEAD, Amsterdam Ultra-high field adult lifespan database; GM, grey matter; WM,
white matter

TABLE 2 Dice coefficient computed on the four brain volumes of
Schneider et al. (2019) data

Subject Sub-001 Sub-013 Sub-014 Sub-019

Dice coeff. (tot) 0:977 0:977 0:980 0:977
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Freesurfer v7, Fracasso et al. (2016), Huntenburg et al. (2018) on each

of the six brain categories. Results shown in Figure 11 confirm that

CEREBRUM-7T returns the most accurate segmentation on all brain

structures against all other state-of-the-art methods.

Eventually, the advantages of a fully 3D segmentation method

are visible in the soft masks shown in Figure 12. Since most voxels are

associated with significant probability of belonging to their correct

brain class, such maps highlight the ability of the model to make use

of both global and local spatial cues. Furthermore, the almost total

absence of spurious activations, confirms the high level of confidence

achieved by the model.

4.2 | Fine-tuning

Fine-tuning experiments are important because they directly tackle

one of the main limitation of DL: the need for large training set.

Although in such scenarios it is pretty straightforward to apply safer

strategies—like decomposing the volumes in slices and apply a slice-

based method—it is, however, important to prove the portability of

the trained model and the fine-tuning procedure, with the objective

of releasing an effective and efficient tool applicable on data from

new sites.

Looking for example at Figure 13, although we use only 20 auto-

matically segmented volumes for fine-tuning CEREBRUM-T7 (Scenario

2), the improvements in the results with respect to using CEREBRUM-

T7 off-the-shelf are notable, also with respect to FreeSurfer v7. In

particular, in the comparison versus Freesurfer 7, it is evident that

CEREBRUM-7T produces smoother masks. Whereas FreeSurfer v7,

which has been improved for UHF data, is able to segment multiple

areas (e.g., GM/WM boundary), the inhomogeneity of the scan still

affects its ability to correctly select all regions (e.g., the parietal and

temporal lobes), often producing holes in the segmentation masks

(see the project website for more results). This is also the main rea-

sons why we did not exploit FreeSurfer v7 for the creation of the iGT.

The advantages delivered by a fully 3D segmentation are also visi-

ble in the reconstructed meshes built on AHEAD data and shown in

Figure 14. By operating as a true 3D structure model, CEREBRUM-7T

ensures globally smoother and more coherent surfaces across slices

with respect to 2D methods, both manual and automatic. Commonly

adopted editing tools, such as ITK-SNAP (Yushkevich et al., 2006) or

ilastik (Berg et al., 2019), usually display three synchronised 2D

orthogonal views onto which the operator draws the contour of the

structures. The extraction of a continuous 3D surface from the collec-

tion of 2D contours, as well as from 3D tiles, is a nontrivial post-

processing task, where bumps in the reconstructed 3D surface are

often inevitable due to inter-slice inconsistencies in segmentation.

Results obtained in the third scenario show that, with only three

(although accurately segmented) volumes employed for fine-tuning,

the predicted labels are very accurate (see Table 2). To further com-

ment results, we need to distinguish two different cases. If we con-

sider classes which are already known by the CEREBRUM-7T model

(i.e., the seven MICCAI labels) such as GM, WM and ventricles—or a

combination of previous classes—such as CSF or subcortical (which is

a combination of basal ganglia, brainstem and cerebellum), the model

takes advantage of the previous learning (on Glasgow data) and simply

transfers/applies the knowledge on the new data set, producing accu-

rate results. Conversely, when inferencing on new classes never seen

before, like vessels, on which the model has not a prior knowledge,

segmentation results are qualitatively lower.7 However, if a researcher

is interested in adding a set of different labels not currently handled

by CEREBRUM-7T, by the provided code it is possible to train (from

scratch or via fine-tuning) a model, using new labels provided by

FreeSurfer as iGT or by manual segmentation masks, as similarly done

for the seven MICCAI labels. The performance obtained on the seven

MICCAI labels, despite their variety in size and morphology, indicates

that potential results even on new structures will likely outperform

the labels generated by other existing tools. For example, we tested

CEREBRUM-7T ability to segment other small structures, such as

blood vessels (see Figure S7 of Supporting Information and the pro-

ject website for this and other examples).

4.3 | Error analysis

Errors made by CEREBRUM-7T are usually of two kinds: systematic

errors and casual ones. While not so much can be said about casual

errors (see Figure S8 of Supporting Information for few examples),

since they are unpredictable by definition, we observe that systematic

errors derive from incorrect training labels. If the model is consistently

fed with the same type of errors during training, it will eventually learn

to replicate them. Figure 15 shows some systematic errors derived

from inaccurate training labels. The first row highlights part of the

temporal lobe of sub-005, with different segmentation masks,

FreeSurfer v7, Fracasso et al. (2016), and our method, while the sec-

ond row reports the segmentation of the basal ganglia area of sub-

013 (all data can be found in EBRAINS Knowledge Graph). The red cir-

cles point out the errors made by each method. As it is possible to

see, both Fracasso et al. (2016) and CEREBRUM-7T make mistakes in

the same areas, like confusing vessels as GM (second row). Fracasso

et al. (2016) also segments as GM the inner boundary close to basal

ganglia (second row); this is only partially made by CEREBRUM-7T,

since the basal ganglia and the ventricles labels help to solve the prob-

lem masking the incorrect labels. In the first row, it is possible to

notice how FreeSurfer v7 performs poorly in the temporal lobe; this is

due to the strong inhomogeneity values within every scan, which

would require an expert intervention and more time. These errors are

consistent and occur in almost every scan (as noticeable in the results

on the independent data set AHEAD, visible at the project website).

While some types of errors, such as the inner GM, can be easily over-

come using more training samples, few others are easily removable

performing manual correction post CEREBRUM-7T. The type of error

made by FreeSurfer v7 in the temporal lobe may require a few hours

to be manually corrected. These errors are the fundamental reason

behind our choice to use Fracasso et al. (2016) to compose the train-

ing masks, alongside with random errors made by the default setting
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of FreeSurfer v7, as shown in Figure 13, which could have required a

large amount of time in pre-processing and parameter tweaking by

experts.

4.4 | Limitations

Although the inference can be easily done in a few seconds on a nor-

mal CPU, full training is much more time consuming (24 hr) and needs

dedicated hardware (i.e., GPUs ¼4� 1,080 Ti or 1� RTX8000). Fur-

thermore, as described above, although the quality of obtained results

is superior to labels used for training (in the condition of inaccurate

GT), such model is not able to overcome systematic errors.

Having decided to process the whole volume at once, which

required to maintain a model with low level of complexity, it was not

possible to include network elements which are very popular in recent

DL architectures (e.g., dense layers). As another downside of the

choice of processing the whole brain volume at once, it was not possi-

ble to increase the batch size to a value greater than one, due to the

technological constraints of GPU memory. We chose to analyse the

volume in its entirety, instead of exploiting the advantages that the

increase of the batch size could carry. With the rapid increase of hard-

ware capabilities, we are confident to be able soon to manage more

recent architecture elements and larger batch sizes.

Being developed on proprietary data, and especially inserted in a

study pipeline mostly focused on WM/GM analysis, we performed

neck cropping on data. Such reduction in the size of the input volume

allowed for an increase in the filter number, increasing model capabil-

ity. To provide another example of this, additionally showing the flexi-

bility of the method, we crop both T1w and iGT on the visual cortex

and we retrain the model on GM and WM classes only. Segmentation

results are presented in the Supporting Information (see Section 5).

As another main limitation, which is currently under investigation,

we cite the need of fine-tuning in case of new data sets coming from

different sites. Despite this phase requires manual intervention, how-

ever, for each newly given 7T data set, fine-tuning is performed just

once and does not depend on the operator, nor on the used data set,

does not require intervention on single volumes, and once trained, the

model works without any additional step, in just few seconds. This

makes our solution more generalizable and more leaning towards

reproducibility than other common software suites, which heavily suf-

fer from high variability within and between operators. Besides this,

on a longer-term vision, the fine-tuning phase can be fully engineered

too and integrated with the other main modules in a software suite,

which is again more suitable for clinical studies (e.g., as in Isensee

et al. (2021).

Lastly, our choice to perform segmentation only on one sequence

(i.e., T1w) was made in order to limit the scanning time, which is a con-

straint often imposed for reducing the patient discomfort. This choice

also avoids the need for sequence alignment, and the reduction of distor-

tion and morphing which are typical of each sequence. However, for

whoever would like to develop a segmentation method combining

F IGURE 15 Systematic errors made by different methods. The first row highlights part of the temporal lobe of sub-005, with different
segmentation masks, FreeSurfer v7 (Fracasso et al. 2016), and our method, while the second row reports the segmentations of the basal ganglia
area of sub-013. The red circles point out the errors made by each method
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multiple sequences, the code provided can be easily extended to other

sequences without adding much more complexity to the model.

5 | CONCLUSIONS

In this work, we design and test CEREBRUM-7T, an optimised end-to-

end DL architecture that allows the segmentation of a whole MRI brain

volume acquired at 7T at once. The speed of computation, which could

be decisive in clinical situations where turnaround time is important for

timely decision-making, and the quality of obtained results (i.e., above

the labelling used for training), make CEREBRUM-7T one of the most

advantageous fully automatic solutions for 7T MRI brain segmentation

among the few currently available. Furthermore, as shown above, by

following a simple fine-tuning procedure, any researcher in the field is

able to use CEREBRUM-7T to segment brain data from different MRI

sites. In order to allow other researchers to replicate and build upon

CEREBRUM-7T findings, we make code, 7T data, and other materials

(including iGT and Turing test) available to readers.8
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ENDNOTES
1 OpenNeuro: https://openneuro.org/
2 EBRAINS: https://search.kg.ebrains.eu/
3 With the term “out-of-scanner” we refer to the reconstructed data

saved in DICOM 2D images.
4 Data are openly available under EBRAINS knowledge graph (http://doi.

org/10.25493/RF12-09N).
5 Other graphic cards are also suitable for the purpose, such as 1� RTX

8000 or 2� RTX 3090.
6 In order to let the reviewer verify the quality of the produced maks, we

have also released the segmentations on the openNeuro project

(https://openneuro.org/datasets/ds003642/).
7 Visual results on these structures can be inspected on the project

website.
8 https://rocknroll87q.github.io/cerebrum7t/
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