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Abstract: This study aims to present an overall review of the recent research status regarding
Machine Learning (ML) applications in machining processes. In the current industrial systems,
processes require the capacity to adapt to manufacturing conditions continuously, guaranteeing high
performance in terms of production quality and equipment availability. Artificial Intelligence (AI)
offers new opportunities to develop and integrate innovative solutions in conventional machine tools
to reduce undesirable effects during operational activities. In particular, the significant increase of
the computational capacity may permit the application of complex algorithms to big data volumes in
a short time, expanding the potentialities of ML techniques. ML applications are present in several
contexts of machining processes, from roughness quality prediction to tool condition monitoring.
This review focuses on recent applications and implications, classifying the main problems that
may be solved using ML related to the machining quality, energy consumption and conditional
monitoring. Finally, a discussion on the advantages and limits of ML algorithms is summarized for
future investigations.

Keywords: Machine Learning; Deep Learning; feature extraction; machining process

1. Introduction

The Fourth Industrial Revolution has enhanced the application of Machine Learning
(ML), improving the machining capabilities and reducing the production costs. Articles
on ML in machining have been written from the late 1980s–1990s in the industry, as, for
example, by Junkar et al. [1], where a Decision Tree algorithm was applied for performance
monitoring in plunge grinding based on vibration signals with different frequency domain
features. Rangwala et al. [2] used an Artificial Neural Network (ANN) for predicting
optimal operating conditions (MRR maximization) in turning using process parameters
as the input. Okafor et al. [3] in 1995 used an ANN based on time domain features from
acoustic emission, vibration, cutting force and time signals in milling for surface roughness
and bore tolerance prediction. These were some of the first articles that showed the
application of ML in machining; nevertheless, these were sparse and limited due to the
low computational capacity in their times.

Stochastic-based models have been implemented in the literature for machining appli-
cations [4–6]. The well-known distributions, such as Gaussian, Log-normal, Exponential
and Weibull, are the mathematical techniques applied as the lives of tools are explored,
and the optimization of the parameters is requested [7]. These models are based on the
inner-relations searches between the tool wear factor and process parameters or surface
roughness, with the aim of optimizing the tool life. The proportional hazards model de-
veloped by Cox may be used for fog model optimization [8]. Other models differ on the
process parameters and signal features, and an optimization step is required for Cox and
the selected distribution parameters [9].

The conventional methods in the machining context are commonly established on
a physical model with the aim to extrapolate correlations between the model variables.
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Meanwhile, the ML model’s purpose is to obtain an accurate as possible predictor that is
frequently difficult to recognize with the physical term. Conventional methods require
several assumptions, such as the statistical distribution model for the studied variables. ML
methods enable to consider the available information without screening or prioritization
actions, obtaining a superior degree of flexibility [10]. Moreover, a significant expansion of
ML started from 2015 with an intensive application of methods and algorithms. For this
reason, this review aims to evaluate the advances of ML focusing on the recent state-of-the-
art innovations, analyzing the main techniques and the obtained results.

ML architectures may be classified into supervised, semi-supervised and unsupervised
learning. Supervised learning applications are composed by processes where there are
known input and output dataset values, and the forecast outcomes of the models need
to be verified with the real resultant dataset. An unsupervised dataset is arranged by
input information without knowledge of the resultant output. Finally, semi-supervised
learning uses mix the known features and unknown dataset. This learning method has
been implemented to improve the time-consuming limitations and corresponding expenses
in supervised learning. The combination of previously mentioned architectures shows a
number of challenges due to the uncertainty of the unknown result dataset [11].

The ML approach is applied in machining to solve a broad range of issues and
related root causes, such as the poor quality of the production due to process vibrations,
thermal conditions and component breakages or a low efficiency of equipment due to
ineffective monitoring of the component life, incorrect maintenance scheduling and high
energy consumption of a machine tool. Although these types of problems may seem
different, they can be addressed using the same approach. In fact, the application of
ML algorithms increases the machining capabilities, obtaining more robust conditions in
monitoring systems and models, since they are trained from data through seven main
steps: (1) problem definition, (2) data collection, (3) signal processing, (4) feature extraction,
(5) feature selection, (6) model implementation and (7) model validation.

The first step is the problem statement (1). The correct selection of input data de-
termines the capability of the deployed model. Typical choices in machining are the
measurements of the process forces [12,13], accelerations [14,15], vibrations or acoustic
emission sensors [16,17] (2–3). Furthermore, the availability of the inner sensors or process
parameters allow simple and reliable applications [18,19], including all the data available
during the production. The use of new external sensors may be evaluated in the details,
since it may increase the time and cost of the study and not imply better results in terms of
accuracy for the ML application.

In order to use data collection from the different sensors, a signal treatment (4) is
required for correct feature extraction. Typically, there are three main domains: (i) Time
Domain (TD), (ii) Frequency Domain (FD) and (iii) Time–Frequency Domain (TFD). For
each domain, there are typical coefficients, for example, statistical features (e.g., kurtosis,
standard deviation) are used for TD signals [20], while other types of features are obtained
(e.g., RMS and peak values [21]) for FD signals.

This analysis permits to understand those features that should be used in the pre-
diction of the ML model, excluding those signals that may create noise in the system
when incrementing the ML complexity (5). This step can be developed using wrapper
methods, which consist of testing the result variations for different settings of the input
data. In order to improve the selection of features, further methods, called filters, may be
considered that classify the features based on external criteria. In this case, PCA (Princi-
pal Component Analysis) [22,23] and PCC (Pearson Correlation Coefficient) evaluations
may be applied [24,25]. The filters could be used as the first processing phase, while the
wrapper methods could be implemented to obtain the optimal feature selection for the ML
applications [26,27].

Once these steps are defined (the feature selection with wrapper methods is completed
only after the ML model selection), the ML model can be applied (6). The selection of the
correct ML algorithm depends on the type of problem (e.g., regression or classification
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approach). The model selection is influenced by the dataset preprocessing activity for a
robust comparison between the prediction methods to maintain the generalization ability of
the architecture. Cross-validation techniques are commonly applied to determine the best
model. The conventional method separates the data into training and testing substructures.
The groups require that the training dataset contains representative conditions. Several
different approaches have been developed, such as k-fold cross-validation or leave-p-out
cross-validation [28], to allow a superior model design. The limitation is represented by
the time consumption and computational requirements. However, the ability to predict
data out-of-learning edges is a central characteristic of Machine Learning applications.

In this way, the wide availability of ML algorithms suggests comparing different meth-
ods in order to identify the most suitable scheme (7), with limited from time-consuming
work to collect, process and analyse data. In particular, an increment of sensors may be
required, resulting in big volumes of data.

These available datasets allow further extensions, such as Deep Learning (DL) appli-
cations that, differently from ML, do not obtain a limited learning rate due to the amount
of data. DL applications are used as feature extraction and selection methods (4 to 5) for
ML applications, proving to be a reliable and efficient application based on the obtained
results, as shown in References [29,30]. Moreover, it allows the implementation of simpler
ML methods, such as k-nearest neighbors (k-NN) or simple ANNs or a Decision Tree (DT).
Beside this application, the actual use of DL algorithms in machining in the substitution of
ML reduces the number of the required steps, since feature extraction and selection (4 to 5)
is typically done by the same model [31,32]. These steps may improve the final results of
the DL applications, as highlighted in References [33,34]. The main limits of DL algorithms
incur when the acquired data is not enough to train the models correctly, for example,
breakages or malfunctioning data tend to be reduced compared to the massive amount of
data collected in conventional operational conditions of a machine tool, which may lead
the model to biased situations.

A further extension of ML applications is transfer learning (TL), as shown in Refer-
ences [35,36], that consists of storing information and knowledge obtained in solving one
problem and applying them to a different but related problem. This approach may be used
in order to: (1) reduce the learning time required, (2) avoid the first problematic steps in
learning for ML and DL and (3) improve the results.

In recent years, the application of these AI methods has rapidly expanded in machining
processes. Their applications are typically based on nonlinear time variant problems that
can be clustered into five groups:

• Condition Monitoring [37,38]: it consists of monitoring process parameters (e.g.,
temperature, vibrations, accelerations and tool wear) in order to predict the MT
conditions, for example, it allows the correct definition of the tool replacement time
and reduces the periods of time that the machine is stopped due to critical breakages.
In this case, further approaches may be used, such as Tool Condition Monitoring
(TCM) and Condition Monitoring (CM—related to the current machining structure).

• Chatter [39,40]: it is a self-excited vibration caused by the continuous interaction
between the tool and the workpiece that creates several issues in machining: the
ability to correctly determine or predict when chatter occurs reduces the probability
to refinish the workpiece and the corresponding tool wear.

• Quality [41,42]: the thermomechanical behavior of the machining structure may
generate unwanted tool tip displacements, which would increase the final machining
error. In this case, the main issue is related to the quality level of the surface roughness,
which is one of the main requirements in machining.

• Modeling [43,44]: there are several applications that require to model and predict a
phenomenon related to the machine technology, for example, it is useful to determine
the correct material removal or the most suitable cooling/lubricating technology to
improve the equipment sustainability.
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• Energy [45,46]: the energy consumption prediction of a machine tool is becoming
increasingly critical in terms of emission reduction and energy efficiency of the man-
ufacturing processes. The application of ML techniques permits to predict the most
suitable MT setting to save energy in machining, guaranteeing the required production
performance.

Although the literature presents various ML applications in machining [47–50], further
studies are required to investigate the recent advances in algorithms and approaches in
development. In particular, the increase of the ML extension shows the need of a set
of structured rules to allow an effective comparison between different applications and
results. In this work, the authors aim to present a review of the recent state-of-the-art
innovations, classifying the type of application problems solved by ML implementation,
the applied approaches (input and features) and the obtained results, highlighting the
practical implications, as shown in Table 1.

This article is structured as follows: Section 2 presents the main applications and the
different ML models and configurations. In Section 3, a discussion of the analyzed research
is proposed, highlighting the advantages and limitations. Finally, Section 4 presents the
conclusions of the review.

2. Machine Learning Paradigm in Machining Application

In the last decades, ML has attracted much attention from academic researchers and
industrial engineers in a wide research area. In order to evaluate the practical applications
in industrial machining, this review classifies six macro-categories of problems addressed
by ML: chatter, roughness, quality, modeling, machine condition monitoring and tool
condition monitoring.

2.1. Chatter

Chatter is a self-excited vibration that occurs in machining (e.g., milling and turning)
while operating at a high speed. This is an undesirable phenomenon that has negative
effects, such as a poor surface finish, unacceptable accuracy, excessive noise and tool wear.
A conventional structured approach is the application of the stability lobe diagram (SLD)
that determines the process parameters to anticipate unwanted vibrations. SLD is used to
label the data; nevertheless, the system is learnt from analytical models, and therefore, it
requires effective initial modeling. In this way, ML may offer new opportunities for chatter
online recognition, employing extra sensors (e.g., accelerometers).

Denkena et al. [51] used the process parameters to train and compare a number of
models: an ANN, a support vector machine (SVM) and a new approach based on kernel
interpolation (KI) to predict the SLD. The study was applied to a five-axis milling center
with a milling tool of 10 mm in diameter and four teeth. The results showed that the
ML-based creation of SLD may be a good alternative to analytically calculated SLD. All
the models achieved accuracies over 88%. In particular, the KI model obtained the highest
accuracy (94%). The chatter phenomenon was collected using acceleration sensors and
a microphone. The main limit of this application was the availability of data when the
system changed the conditions. For this reason, Postel et al. [19] proposed a new approach
based on Deep Neural Networks and transfer learning, since DNN models are pretrained
with simulated data from analytical stability models. The aim was to reduce the differences
between the real measurements and the model output due to the cutting forces and the
tooltip dynamics. The study obtained an accuracy of 83.6% for the testing set, using as
inputs the spindle speed, depth of cut and tool clamping length, as well as the entry angle
and exit angle. Another transfer learning example with the Random Forest (RF) algorithm
was studied in Reference [35], where the vibration signal was used together with the stick
out length, the Ensemble Empirical Mode Decomposition (EEMD) was applied as the
feature extraction and the Recursive Feature Elimination (RFE) method was executed to
classify the machining state into three categories: no chatter, mild chatter and chatter. The
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final results showed that, for transfer learning feature extraction, the EEMD outperformed
Wavelet Package Transform (WPT).

Yesili et al. [52] focused on the feature extraction method to determine the presence
of chatter based on the simulated oscillations of the milling tool (1DOF) data with high
noise. They implemented the Topological Data Analysis—more specifically, Carlsson
Coordinates and Template Functions—obtaining high accuracies with several algorithms;
the ones with the highest accuracies were the SVM and Gradient Boosting. Binary chatter
classification employing vibration signals in the input also included SVM with frequency
domain features in Reference [53] and ANN in Reference [54], where the statistical time
domain features were used together with a DT (J48) for feature selection.

Other than accelerometers, sound sensors are sometimes considered for chatter recog-
nition, as in Reference [55], where the binary classification was obtained with a SVM,
the short-time Fourier-transform (STFT) features and an Autoencoder for dimension re-
duction. Mixing sound signals and vibration information has also been implemented in
Reference [56] with the t-distributed stochastic neighbour embedded to obtain the final
features and the Reinforced k-NN for chatter prediction.

Finally, force signals were employed for chatter classification into three classes, in
Reference [13] with the Gradient Tree Boosting algorithm, the ASA for feature extraction
and the Laplacian score for the final selection; in Reference [12], a convolutional neural
network (CNN) was implemented based on the features extracted from the continuous
wavelet transform (CWT). The obtained results showed new opportunities to combine
different signals to predict the chatter phenomenon.

2.2. Roughness

Roughness estimation and prediction may be evaluated through a set of models based
on two main clusters: classification and regression. The classification models permit a
discretization of the interval of the regression values, as demonstrated in Pan et al. [57],
where the roughness, from 0 to 300 nm, was discretized in 150 clusters of 2 nm each. Despite
limiting the maximum actual accuracy in the final roughness value, the discretization
allowed to increment the classification accuracy and reduce the output variability. The
vibration signals measured with a laser vibrometer were applied in the t-Distributed
stochastic neighbour embedding (t-SNE) method for feature selection to enhance the
capability of the CNN, obtaining high accuracies in their predictions.

The classification approach may generate a similar regression prediction with a high
amount of classes; nevertheless, other applications [58–60] defined few levels (three to
four) of surface roughness for the prediction, guaranteeing effective results. In this way, Yu
et al. [58] used the vibration signal and process parameters with a DL method—namely, the
Knowledge-Based Deep Belief Network (KBDBN)—to classify the roughness value within
three levels, obtaining a recognition rate of 97.67%. Differently, other studies based on tree
algorithms used the model to classify the roughness within four levels. In this case, Lu
et al. [59] implemented the Deep Forest, a DL method based on the WPT and Fast Fourier-
Transform (FFT) features of forces and load signals to predict the roughness class, obtaining
a testing accuracy of 90.91%. Finally, Grzenda et al. [60] applied a semi-supervised structure
based on Random Forest; although the accuracy was low if compared to the other results
(around 70%), the authors showed the potential contribution of unlabeled data in improving
the model accuracy.

Considering the regression predictions, the renowned algorithm is the ANN: Shi
et al. [61] used double-modeling (BP-ANN) to predict the cutting force and the final
roughness. Thankachan et al. [62] applied ANOVA as a feature selection method to predict
roughness in wire electrical discharge machining (WEDM). Mirifar et al. [63] proposed a
roughness prediction model based on the discrete wavelet transform (DWT) and RMS peak
value of the acoustic emission, and the grinding parameters obtaining accuracies over 97%.
Finally, Segreto et al. [42] studied the acoustic emission, forces and current measurements
through PCA feature reduction to obtain through the ANN the correct time for tool changes
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based on the roughness prediction, obtaining a mean absolute percentage error (MAPE) of
4.2% in their prediction.

Alajmi et al. [64] also implemented an ANN-based model (Adaptive Neuro-Fuzzy
Inference System—ANFIS) based on the Takagi-Sugeno Fuzzy Rules and the Quantum
Particle Swarm Optimization Algorithm (QPSO) to predict and optimize the surface rough-
ness in turning. The only DL application was also based on a neuro-like model; the authors
showed how 1D-CNN is able to extract high feature information in the medium range of
surface roughness, whilst the FFT-LSTM (long short-term memory) structure obtained bet-
ter results at higher roughness values, where its temporal modeling is advantageous [65].

Liu et al. [66] considered Gaussian modeling and Bayesian learning to implement a
surface roughness estimation in ring-shaped thin-walled discs to reduce the number of
measurements required based on measured values along different trajectories. Another
Bayesian application [22] applied as an input the vibration and process parameter time
domain features and the radial basis function-based kernel principal component analysis
(KPCA-IRBF) as a feature selection to apply the Sparse Bayesian Linear Regression (SBLR)
for the roughness prediction, obtaining a Root Mean Square Error (RMSE) of 0.0317 and a
Pearson Correlation Coefficient of 0.9926.

Finally, Vuong et al. [67] used a Quadratic Regression model based on the cutting
parameters, vibration signal and force components. In order to apply this model, a signal
treatment was implemented based on the extraction of the time–domain statistical and the
frequency–domain features from the input signals using FFT. The k-fold cross-validation
was applied with the t-statistics and p-value for feature selection, obtaining an accuracy of
95.25% and an adj-R2 of 71.75%.

2.3. Quality

The literature shows a number of ML applications to improve the overall performance
level and quality of a machine tool (MT). In this way, Aggogeri et al. [41] presented an
ANN application (Multi-Layer Perceptron—MLP) to model the MT thermomechanical
deformations of CFRP (Carbon Fiber Reinforced Polymers) structures based on the global
variations of the temperature, the gradient of the temperature between the front and
rear of the ram, the gradient between the spindle flange and the vertical axis and the
environmental condition temperatures. Authors have reduced the detected error under
10 µm. Wang et al. [68] used DL applications for thermal deformation modeling using
data mining based on RST and reducing the thermal error of ~99%. Fujishima et al. [69]
focused on thermal displacement prediction, applying a DNN with Bayesian Dropout and
considering the sensor failures to test the robustness of the model. In Reference [70], the
research aimed to predict the thermal drift based on four different working conditions; the
authors applied pretrained coefficients for the CNN initialization, obtaining a so-called
CNN-FT (fine-tuning). A model accuracy of 87.06% with an MSE of 0.0124 and a MAPE of
0.2154 was obtained. Li et al. [71] applied the CNN approach and a Domain Adaptation
Module for the thermal error prediction, achieving a model accuracy over 94.87% and an
MSE under 6.1 × 10−6.

The CNN scheme is also applied to detect workpiece surface defects [72], using,
as the input, the scattering data from a laser beam and simulated data for training to
reduce the required time. A further application to detect edge inconsistencies from images
was demonstrated in Reference [73]. The quality error evaluation on the workpiece was
evaluated in several researches by analyses performed with tree-based algorithms. For
example, Bustillo et al. [74] applied RF Ensemble combined with the Synthetic Minority
Over-Sampling Technique (SMOTE) for flatness deviation prediction based on the tool’s
life, average drive power and flank wear, with a testing accuracy of 86.44%. RF was also
implemented for the diameter, roundness and other quality parameters using torque values
and speed statistical time–domain features [75] or the axial force and torque together with
the process parameters [76]. Finally, an Extreme Tree Regressor (ETR) was considered for
the workpiece diameter and concentricity control in drilling and reaming [77].



Appl. Sci. 2021, 11, 8764 7 of 27

A further ML approach is the Support Vector Machine. Liu et al. [78] showed a
study on the residual properties of the ball screw raceway in dry machining using a
Gaussian RBF kernel and the combination of SVM with the Least Mean Square method
(LSSVM). The authors considered as input the cutting parameters, tool parameters and
the machining condition (clamping coefficient). RBF kernels were also applied for tool
deflection modeling [79], obtaining a 94% accuracy, including the SVM (k-RBF) based
on LIBSVM. Glatt et al. [80] predicted the martensite content after cryogenic turning,
considering the passive, cutting and feed forces and temperature, applying the PCC
approach for feature selection and obtaining a RMSE of ~0.8. Linear kernel was also
applied for flatness classification prediction in honeycomb cores using the time–domain
and frequency–domain (based on FFT) features of the force signal and the PCA for feature
reduction [81,82]. Finally, Nain et al. [83] implemented a Gaussian Process with Polynomial
Kernel to predict the SR peculiarities of WEDM.

2.4. Modeling

Machine learning and Deep Learning techniques may be also exploited to model the
behavior of a number of MT components and structural parts. Interesting applications
are related to the prediction of the process forces on the workpiece and the computation
of coefficients to define the stability of the machining. These applications could be seen
as a “virtual sensor” generator. Vaishnav et al. [84] developed an ANN scheme to model
the cutting force in end milling operations. The authors studied the process parameters
and the rotation angle to generate the necessary data to train the ML model, obtaining a
RSME of 1.0058 and an R2 of 99.98%. This structure was also implemented to develop a
Reinforcement Learning (RL) structure based on an ANN [85]. The aim was to limit the
resulting force in press-and-release systems, obtaining a resulting final roughness reduction
of 30.68%. A further example of RL application was described in Reference [86] to predict
the optimal clamping position of the workpiece.

Neural Network applications have been applied for tool tip dynamics, stability and
optimization problems [36,44,87,88]. Misaka et al. [89] considered Neural Networks, under
the form of CNN, based on camera images of the metal cutting processing for machining
parameters extraction, obtaining a model accuracy of 85.5% and a precision of 92.9%. In
the same way, a Convolutional Neural Network structure was implemented with ResNet
configuration, considering the responsive fixtures and process data as input, in order to
allow the Bidirectional LSTM model to predict the part deformation with an error equal to
10.61% [29]. LSTM was also applied to model the dependency between the deviation, tensile
force and eccentricity of low-rigidity shaft machining with a MSE of 1.5456 × 10−5 [90].

In order to predict the dynamic heat input to monitor the robotic belt grinding [91],
Ren et al. presented a Bayesian Adaptive Direct Research-Least Squares Support Vector
Machine (BADS-LSSVM) with a RBF kernel, considering the sound signal and the process
forces (e.g., normal and tangential). In this case, the force features were obtained using
the moving smoothing filter method and extracting the Dynamic Friction Coefficient. The
Wavelet Package Decomposition method was applied for the sound signal, calculating
several features such as average amplitude, kurtosis and zero passage rate.

SVM may be also applied to model and control the trajectory [92] and several MT pa-
rameters, such as the tool velocity, the roughness generation (90% of accuracy) and the part
features (e.g., diameter) prediction (97% of accuracy), as demonstrated in Reference [93].
The models are accurate enough to provide useful conclusions applicable to the current
industrial practices.

Gurgenc et al. [94] applied an Extreme Learning Machine (ELM) in milling for the time
estimation of cycloidal gear machining based on the design and manufacturing parameters
of the gear. The study obtained a RMSE of 1.6837 and an R2 of 99.34%. A further example
in milling was presented by Garrido-Labrador et al. [95], who evaluated the machining
mode, state and motor temperature (regression) predictions by applying the ML structure.
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The authors implemented the process parameters (e.g., axis position, cutting tool position
and machine speed) as the model input.

Gao et al. [43] considered a tree-based structure in modeling the material removal,
where the DWT and FFT of the acoustic signal was used as input for the k-fold XGBoost
model, obtaining a MAPE of 4.373%.

Finally, interesting applications of ML focus on Energy modeling in order to optimize
the MT consumption, guaranteeing the machining performance level. Pantazis et al. [45]
applied Hidden Markov Modeling using the power signal as an input while using dynamic
time warping with hierarchical clustering for the feature extraction. The authors obtained
a MAPE of 1.12%. Considering the instantaneous power and process parameters, He
et al. [46] proposed a complex structure with two different CNN, both for modeling and
feature extraction, including a fully connected layer.

Shin et al. [96] applied an ANN with a transfer learning approach based on the simi-
larity between manufacturing conditions. The authors considered the feed rate, spindle
speed and cutting speed as the model inputs, obtaining a maximum relative error of 5.94%.
Through the machining parameters and the ANOVA study for the feature selection, a Gra-
dient Boosting Regression Tree (GBRT) model was presented in Reference [18] to predict the
energy consumption of a five-axis MT. The study predicted the energy consumption ratio
of each considered component (e.g., basic, spindle, feed and milling) with the prediction
errors within 6%. Finally, a further example of energy consumption prediction was shown
in Reference [97]. The authors developed a multitasking learning for power classification
in laser machining, achieving an accuracy of the classification model over 90.61% and a
MAE of 0.29558 for the regression.

2.5. Machine Condition Monitoring

Condition monitoring is one of the most recognized application of ML in machining
processes. The capacity to predict and detect a failure or identify the wear level of the tool
may determine and improve the quality of the production and the performance level of
a MT. In particular, the prognostic of the MT component and part behavior is one of the
main topics of the state-of-the-art innovations in this area, although the literature shows
several studies related to the Tool Condition Monitoring with respect to MT structures
condition monitoring, since it may impact on equipment costs and efficiency strongly, as
demonstrated in Section 2.6.

Li et al. [98] presented a deep transfer learning perspective on condition monitoring
based on the CNN approach. Three types of faults were identified: spindle failure, severe
tool wear and tool breakdown. Through similarity coefficients, the authors addressed the
feature distribution mismatch during transfer learning, on which the CNN was applied
based on the maximum mean discrepancy in a Reproducing Kernel Hilbert Space. The
experimental results indicated that the approach achieved 94% accuracy in order to evaluate
the lifecycle of a MT.

CNN was also applied for an imbalanced classification problem, as demonstrated
in Reference [99], applying the Deep Cost Adaptive CNN configuration to the vibration
signal and obtaining a final MAE of 2.5 µm.

In order to predict the backlash error in machining centers [100], a Deep Belief Network
(DBN) via stacking Restricted Boltzman Machines (RBM) was applied using a number of
inputs, such as the number of weeks since the last maintenance, the temperature of the
coolant tank, the temperature of the machining center, the ambient temperature, machining
torque and the backlash error in the previous week. The result was an MSE of 0.0122 µm
and an ME of 0.2041 µm. A further extension of the neural-DL structure was the BLSTM-
ANN, which considered the FFT and sliding time window of the forces, vibrations and
acoustic emissions as the input to predict the Remaining Useful Life (RUL) of a MT [37].

Lu et al. [101] defined a six-state classification Deep Forest model based on tool wear,
chatter and machining deformation. In this case, the FFT and WPT of the vibrations and
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sound signal were considered as the inputs, while the Lasso technique was implemented
to select the model features.

An interesting application of MT performance monitoring and fault classification
was developed with a Random Forest structure in Reference [21] with the FFT, peaks and
RMS of the vibration signal from the spindle. The obtained results showed a structured
approach to monitor the machine health and performance in real time.

The last tree-like structure was applied in Zhang et al. [102] for the failure prediction
in cyber-physical productions system using the spindle speed, spindle power and vibration
level. The authors extracted the features through the Dynamic Principal Component Anal-
ysis, and a Gradient Boosting Decision Tree was applied as the model. The experimental
results indicated that the accuracy of the predicted production failures using the proposed
predictive tool was close to 73%.

Finally, Nguyen et al. [103] presented an interesting study to classify the bearing
fault diagnosis using the FFT of vibration data as an input signal, from which a Stacked
Autoencoder extracted the features applied by a Least-Squares Support Vector Machine
and optimized by the Chemical Reaction Optimization Algorithm.

2.6. Tool Condition Monitoring

The modeling and prediction of the tools’ condition may offer significant opportunities
in increasing the MT performance level, since it may ensure the quality of the parts,
improve machining efficiency and reduce the operation costs. For this reason, several ML
techniques may be evaluated and applied to model this phenomenon. The wear evolution
may classify and be discretized in three main phases. The first phase presents fast wear of
the tool, usually at the beginning of the process when the friction between the tool and the
workpiece generates the maximum stress. In the second phase, the tool and speed wear are
steady, since the roughness of the tool achieves a certain smoothness. Finally, the cutting
force arises due to the blunt tool edge, and the wear speed increases with the resulting
temperature, causing heat deformation, precision errors and, finally, the tool breakage.

The literature shows two main ML techniques to address this problem based on
direct and indirect methods. Direct methods aim to directly measure the wear on the
tool; this could also be achieved through the application of ML from images to avoid the
corresponding time needed for the manual measurement. Wu et al. [31] developed a CNN
approach based on tool images focusing on the spindle speed in order to allow the camera
to detect the effective images. The results indicated an average recognition precision rate
of 96.20% in tool wear classification (flank wear, tool breakage, adhesive wear and rake
face wear). Other applications are required to stop the machining process for the tool wear
measurement [32,104], with significant limits in terms of time waste. Despite the high
model accuracy and precision of direct methods, the request to stop the MT generates
several issues in production. Moreover, the direct measure requires a high knowledge of
the process to define when the tool wear should be measured, increasing the complexity of
the sample method.

In contrast, the indirect methods are based on sensor signals (e.g., vibrations, acoustic
emission or forces) and are applied to conduct continuous or intermittent estimations and
predictions of the tool wear. The implementation of indirect methods, despite a reduction
in the final accuracy, may be preferred and provide new opportunities to develop a TCM
application. The indirect methods are based on two main approaches: classification, that
may vary from multiple classes to a binary application, and regression, to obtain the current
wear status or the RUL.

Li et al. [23] developed a TCM classification in six wear states: good, slight, average,
heavy, severe and failure. The authors obtained the wavelet packages from the sound
signal in order to separate the source signals from the wavelet sub-bands. They applied the
Extended Convolutive Bounded Component Analysis (ECBCA), and finally, they decom-
posed the source signals into time-varying oscillatory components using the Multivariate
Synchro squeezing Transform (MSST) for denoising. The Adaptive Kernel Principal Com-
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ponent Analysis (AKPCA) was implemented to decompose the extracted features in a set
of linearly uncorrelated components to obtain an input vector that allowed the applica-
tion of a simpler ML method, such as SVM with an RBF kernel with a testing accuracy
of 98.47%. Simpler ML applications need extra signal treatment and feature extraction
for correct functioning. For example, a Two-Layer Angle Kernel Extreme Learning Ma-
chine (TAKELM) was found in three different applications by changing the input signals:
sound [105], current [106] and multi-sensor [107], where a Binary Differential Evolution
(DBE) was applied to search the optimal feature parameter combination.

In order to avoid any extra sensors mounted on the machining center, Pagani et al. [108]
presented an indirect measurement system using HSV images of the produced chips, obtain-
ing good performances on medium and high wear, but they obtained poor performances
in initial wear recognition. Despite the ability of this method in sensor choices, positioning
and acquisition; it still showed a few practical problems due to the high variability in chips
and coolant applications.

The literature shows interesting applications of the ANN method. Liu et al. [109]
used the WPT of the sound input signal and a Collinearity Diagnostic with a Stepwise
Regression for feature selection. The authors obtained an overall error of 7.20%. Differently,
Segreto et al. [25] applied the statistical features extracted from the WPT of Force, AE and
Vibrations. A feature selection step was implemented based on the PCC obtaining a MAPE
of 5.17%.

The multi-sensor scheme was applied in further applications, for example, with
tree-based structures. Wu et al. [110] considered time–domain features with a RF model,
obtaining an MSE of 10.156 µm. Shen et al. [111] introduced an ensemble conceptual
design based on several ML methods (e.g., RF, Gradient Boosting Regression, ANN, Linear
Regression and SVM), with a final phase of dynamically smoothing to predict the tool wear
size. As in other applications, the PCC was applied for feature selection, including the
process parameters, obtaining a final RMSE of 0.00834.

In this context, Deep Learning applications may improve the prediction model, as
demonstrated in different studies. In Reference [112], the authors applied a LeNet-WSRMC
network for tool state recognition and classification, employing vibration and current
signals and obtaining an average testing accuracy of 96%. Similarly, Lee et al. [38] obtained
an accuracy of 97.44% in worn grinding wheel recognition, evaluating the sound signal
and using the FFT and the retransformation into the time domain through iFFT for signal
processing. A further application of the CNN method was proposed by Martínez-Arellano
et al. [113]. They considered the GASF method to obtain an image representation of the
force’s signal input. Cao et al. [14] applied the DWF and the Hilbert Envelope Demod-
ulation Spectra (HEDS) approach to the vibration signals with a 2D input for the CNN,
resulting in a final classification accuracy (for five categories) of 98.7%.

Finally, the combination of LSTM and CNN improves the feature extraction step
and the ability of time-dependency feature extraction. An example was presented by An
et al. [33], where the vibrations and PLC controller signals (axes position and spindle
power) are analysed with a SBULSTM (Stacked Bi-Directional and Uni-Directional LSTM
Network) with a fully connected layer at the top, adding nonlinearity to the output and
one regression layer to generate the target RUL. The results indicated an accuracy of 90%.
Several other applications of both ML and DL schemes, such as SSAE [27] or DBN [114],
are classified and summarized in Table 1.

3. Discussion

The application of ML methods to machining processes is a challenging task that
covers a broad range of domains. The literature presents several recent research, examples
and practical experiments, with particular focus on the TCM applications and roughness
modeling. The main problems to be solved using ML and DL are often correlated, for
example, chatter phenomenon may generate unwanted vibrations that impact on the
workpiece surface finishing (roughness) and, consequently, on a quicker degradation



Appl. Sci. 2021, 11, 8764 11 of 27

of the tool. In the same way, the tool wear is directly correlated both with the final
quality of the workpiece and with an increase of the energy consumption. As noted in the
different applications, the main strategies are based on the same methods; nevertheless, the
integration of new algorithms and schemes are required to satisfy specific conditions. This
point may represent a limit to identify a structured rule to implement the ML approach.

Table 1 shows an overall summary of the recent literature classified by type of applica-
tion problem, machining, algorithm, input, features and obtained results. It is noted that
milling and turning machining show the most promising results to model and predict the
MT behavior. Nevertheless, new achievements have been obtained from other applications
that represent the new frontier for ML.

In this review, an overall analysis of the recent advances of ML and DL in machining
processes has been developed, starting from the application problem. Considering chatter
applications, several studies and research with fewer sensors (or even none, if a data-
driven model is deployed instead of a real-time recognition system) have been found.
Transfer Learning and DL applications are the main implemented methods with satisfying
results; despite this, the application of this type of architecture may be more complex
and referred for the problem. In this context, significant results are obtained using the
SVM or ANN approaches that represent an effective solution. Moreover, in order to have
real-time recognition, a sensor should be applied as, for example, vibrations or sound
sensors; nevertheless, the limits for industrial implementation should be considered.

Roughness prediction models can also be deployed with ML algorithms. As demon-
strated, there are two main ways: a regression model and multi-classification system that
corresponds to a coarser discretization of the roughness interval considered to reduce
the output variability. For these applications, good results were found with Bayesian
applications, especially with correct PCA applications for regression problems; for grind-
ing processes and a coarser discretization (multi-classification), good results have been
obtained by applying an ANN with a DWT feature extraction method. Finally, DL applica-
tions are used for classification problems, where a DBN application with a vibration signal
obtained the highest accuracies.

Quality problems, together with model problems, are tendentially a case development
problem; there are several applications, depending on the needs found by each author
in real applications. The literature shows different practical studies with a broad range
of algorithms and techniques. The adopted methods depend on the type of problem to
be solved. Special interest and promising results were found for thermal deformation
modeling and CFRP machining.

Machine Condition Monitoring through Deep Transfer Learning is an interesting area,
since they allow a greater generalization in their deployment. Most applications were
developed with DL structures with few ML algorithms, such as, for example, SVM, but
using as the feature extraction a Stacked Autoencoder or Random Forest. Deep Forest
showed, together with other DL algorithms, significative results in the backlash error
prediction through a DBN. Finally, TCM has been the main source of articles for Smart
Machining. As for other applications, two main structures have been found: regression
and classification problems, apart from direct and indirect methods. Considering indirect
methods, which are the ones that allow a continuous functioning of the machining center
and a real-time control of tool wear and RUL estimation, a correct choice would be to deploy
a DL strategy, through SSAE, LSTM (or RNN) and CNN, for feature extraction, which
would allow an extra degree of freedom for the choice of the actual modeling algorithm,
which may even be a ML one. If the available dataset is small, a good choice is to aim at
using a simpler ML algorithm as ELM or SVM, both of which obtained good results when
the lack of data was one of the issues. If the amount of data available is not an issue, a DL
application should be deployed, as this type of configuration allows for less interference of
human choices and a greater generalization of the algorithm scheme. The application of
CNN is particularly interesting for feature extraction, together with an LSTM for temporal
feature recognition.
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The physical comprehension of the model and the amount of data expected are two
factors that require an extensive experience in ML strategy deployment. White-box models
(e.g., DT and RT) are based on patterns or rules that can be understood by experts and/or
technicians. Black-box models (e.g., CNN and DNN) contain complex mathematical
functions, and their deployment is not determined by predictable interactions [115]. The
tradeoff between model complexity and depth affects the computation time of the training
phase. A concern regarding the model depth is the double-descent phenomena, where the
performance varies when the model complexity increases or the number of training epochs
is altered, as was investigated in Reference [116].

The selection and installation of the sensors may play a critical role in the ML results.
Depending on the application, the use of the sound sensors (microphones) and cameras
may be suitable, although their implementation in an actual industrial environment may
find several drawbacks. For example, cameras, apart from being an expensive sensor, need
a correct illumination, positioning scheme and a clean environment (dust may influence the
measurement), and even floor vibrations may influence the final image quality. Moreover,
the actual image quality will result in high-dimensional input data, which means more
complex algorithms are needed in order to be used; for CNN applications, although the
image could be used, a first filtering and data reduction phase should be implemented in
order to reduce the computational time required.

Sound sensors instead, despite their great ability in grinding wheel-worn control and
chatter recognition, require an important phase of signal treatment typically developed for
each application, and the actual microphone disposition may generate several issues in the
actual practical application. The advantage of these last sensors is that they do not influence
the actual machining center or change their configuration, as happens, for example, with
the implementation of a dynamometer. This type of sensor may limit the dimensions of
the workpieces; moreover, they are expensive and interfere with the rigidity of milling
machines. Although sensor positioning is crucial for the measurements, vibration sensors
tend to usually be applied among different applications, such as for sound sensors; there
is the need for an extensive signal processing phase for this kind of sensor, as they are
difficult to filter, and vibrations exist even during air-cut operations.

AE sensors have a superior sensitivity of high-frequency signals but are highly sensi-
tive to environmental noise, and it is difficult to process due to intermittent cutting, such
as, for example, in milling processes, there is a spike when each individual flute enters or
exits the workpiece.

Due to the nature of the manufacturing process, signals are usually nonstationary
and contain both high- and low-frequency components, which make the application de-
ployment with single sensors more difficult. This is why, for example, both vibrations and
AE sensors tend to be used together in order to simultaneously consider both high- and
low-frequency components. Multi-sensor applications tend to have a wider application
and better results, although the need for correct feature extraction and selection methods is
a necessity to allow ML and DL applications with higher amounts of data. Interestingly,
the current sensors are getting more attention for TCM, as they tend to be able to correctly
represent the wear stages; these applications tend to need an extra sensor to recognize
the actual state, as the current values depend on the machining parameters. The current
sensors tend to be subjected to considerable noise, and the actual signal influenced by the
damping and friction between elements; nonetheless, it has a limited sensitivity band with
respect to other sensors, such as AE.
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Table 1. Comparisons of the different ML methods applied in machining for TCM.

Application Machining Algorithm Input Parameters Feature Extraction Feature Selection Results Ref.

Tool Health Indicator
Estimation for Blade Wear

Monitoring
Bandsaw CNN Process Parameters - - RMSE < 0.084 [117]

Tool Wear Regression Broaching LS-SVM Vibrations, and
Forces TD PCA - [118]

Tool Wear Curve Prediction
in Drilling of CFRP Drilling ANN Force, and Torque TD, FFT, and FA SCC RMSE = 0.00113 mm [119]

Tool Wear Classification Drilling IBk

Vibrations, AE,
Forces, Torques,

Sound, and Process
Parameters

TD t-test 92.70% [120]

Grinding Wheel Wear
Prediction Grinding LSTM Vibrations, AE, and

Forces WPT, EEMD, TD, FD mRMR and Wrapper
Method RMSE = 0.00024 mm [26]

Grinding Burn Detection Grinding SSAE Vibrations, AE, and
Forces

WPT, EEMD, TD,
and FD

Relief-F and Wrapper
Method 97.50% [27]

Worn Grinding Wheel
Recognition Grinding CNN Sound FFT and iFFT - 97.44% [38]

Grinding Burn Detection Grinding CNN AE STFT - 99.40% [121]

Tool Wear Classification Milling KELM Vibrations ITD CC Analysis based
on PR 93.28% [15]

Tool Wear Monitoring
Classification Milling SVM Sound WPT, and

ECBCA-MSST AKPCA 98.11% [23]

Tool Health Degradation
Classification Milling GenSVM Vibrations, AE, and

Current
TD, FD (FFT), and

CEEMDAN PCC 99.78% [24]

Tool Wear Direct
Classification Milling SVM-intersection Tool Image B-ORCHIZ - >87.06% [104]

Tool Wear Condition
Monitoring Milling TA-KELM Sound TD, and FD - RMSE = 0.0195 mm [105]
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Table 1. Cont.

Application Machining Algorithm Input Parameters Feature Extraction Feature Selection Results Ref.

Tool Wear Condition
Monitoring Milling TA-KELM Current TD, FD, and WPT - RMSE = 0.0328 mm [106]

Tool Wear Condition
Monitoring Milling TA-KELM Vibrations, Forces,

Current, Sound TD, FD, and WPT BDE RMSE = 0.0013 mm [107]

Tool Wear Regression
Monitoring Milling ANN Sound WPT VIF 8.59% [109]

Tool Wear Amount
Prediction Milling RF Vibrations, AE, and

Forces TD - MSE = 10.156 µm2 [110]

Tool Wear Amount
Prediction Under Varying

Cutting Conditions
Milling FCNN (MAML) Forces, Current, and

Power -
Deep-FS, and

Entropy Weight-Grey
Correlation Analysis

MAE = 0.02 mm [114]

Tool Condition Classification Milling CHMM Forces and Torque TD, WPT FDR ~92% [122]

Tool Wear Monitoring Milling ANN Forces, Current, and
Voltage TD Cross-Correlation

Chart 0.031 mm [123]

In-process Tool Wear
Prediction Milling ANN Forces, and Process

Parameters TD - ±0.037 mm [124]

Tool Wear Regression
Prediction Milling ANN Process Parameters - - 2% [125]

Tool Wear Prediction Milling ANN

Vibrations, AE,
Forces, Spindle

Current, and Process
Parameters

LSTM - RMSE = 0.0456 mm [126]

Optimized Tool Wear
Condition Classification Milling GWO-SVM Vibrations OR Forces TD, FD, WPT GA >96% [127]

Tool Wear Classification Milling OS-ELM Current SDAE - 96.84% [128]

Tool Wear Amount
Prediction Milling Parallel RF Vibrations, AE, and

Forces TD - MSE = 10.469 µm2 [129]
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Table 1. Cont.

Application Machining Algorithm Input Parameters Feature Extraction Feature Selection Results Ref.

Tool Wear State
Classification Milling SVM Forces WTMM, and HE

index MI 86.20% [130]

Tool Condition Binary
Classification Milling SVM Forces TD PCA 91.43% [131]

Tool Tipping Monitoring Milling SVM Vibrations WTMM, and HE
index MI 98.70% [132]

Tool Wear Classification in 5
Wear States Milling CNN Vibration DWFs, and HEDS - 98.70% [14]

Tool Wear Classification Milling SSAE AE, and Process
Parameters MFCC - 99.63% [17]

In-Process Tool Condition
Forecasting Milling LSTM + ResNet Vibrations, AE, and

Forces - - RMSE < 0.001995 mm [30]

Tool Wear Type and Amount
Recognition Milling CNN + ATWVD Tool Images - - MAPE = 4.76%

(Precision = 96.20%) [31]

Tool Wear Type and Amount
Recognition Milling CNN Tool Images Sliding Window

Segmentation -

17.1µm average error
reduction (91.5%
accuracy in pixel

classification)

[32]

Tool Wear Classification Milling CNN Forces WT DBN 99.40% [34]

Tool Wear State
Classification Milling CNN (LeNet) Vibrations, and

Current SCCS - >95.9% [112]

Tool Wear Classification Milling CNN Forces GASF PAA >80% [113]

Tool Wear Prediction in
Milling TC18 Milling BLSTM Forces CNN - RMSE = 0.007368 mm [133]

Tool Wear Prediction and
Roughness Estimation Milling Bi-RNN + CNN Process Parameters,

and Spindle Power - - >90% [134]

Real-Time Tool Wear
Monitoring Classification Milling CABLSTM Vibrations - - 96.97% [135]
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Table 1. Cont.

Application Machining Algorithm Input Parameters Feature Extraction Feature Selection Results Ref.

Tool Wear Binary
Classification Milling CNN Sound STFT - 99.50% [136]

Tool Breakage Classification Milling CNN Current TD - 93% [137]

Tool Anomaly Detection Milling CNN-AD Current TD, FFT, and WPT - 99.12% [138]

Tool Wear Estimation for
Complex Part Milling Milling DNN Forces, and Process

Parameters TD, and WPT DAE ME = 8.2% [139]

Tool Wear Prediction Milling LSTM
Vibrations, AE,

Forces, and Process
Parameters

SAE - MAPE = 5.31% [140]

Tool Wear Classification Milling SSAE Currents OA based on FFT - 98.79% [141]

Current Health and RUL
Prediction Milling IELM AE CCWT - RMSE < 0.1968 [16]

Tool Wear Amount
Prediction, Classification,

and RUL Prediction
Milling ANN + BDT

Vibrations, AE,
Forces, Spindle

Current and Process
Parameters

TD, FT CC and
Multicollinearity

RMSE = 0.110 mm &
Classification

Accuracy = 95.7%
[142]

Tool Wear and RUL
Prediction Milling ELM Vibrations, and

Forces TD, FFT, and WT CC MSE = 185.6 µm2 [143]

Tool Wear Monitoring and
RUL Prediction Milling SVM Vibrations, AE, and

Forces WPT EM-PCA, and
ISOMAP MAPER < 8.98% [144]

RUL Prediction Milling
SBULSTM + FC

layers + Regression
layer

Vibrations, Current,
and PLC signals

(Axes Positions and
Spindle Power)

CNN - RMSE < 7.81 min [33]

RUL Estimation with
Varying Spindle Load Milling LSTM with Attention

Mechanism
Vibrations, Current,
and Spindle Load

VMD (with GA), TD,
FD 1D-CNN RMSE < 9.08 [145]

RUL Prediction with the
Confidence Interval Milling RCNN

Vibrations, AE,
Forces, Current,

Sound
- - CRA > 77.81% [146]
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Table 1. Cont.

Application Machining Algorithm Input Parameters Feature Extraction Feature Selection Results Ref.

Tool State Classification and
RUL Prediction Milling sLSTM-HMM Forces, and

Temperature TD, and WPT - 95.25% Accuracy &
MSE = 10.1816 µm2 [147]

Tool Insert Health
Monitoring Turning DT Vibration TD DT 94.78% [20]

Tool Wear Regression
Estimation in Turning of

Inconel 718
Turning ANN Vibrations, AE, and

Forces WPT PCC MAPE = 5.17% [25]

Tool Wear Size Prediction
across Multi-Cutting

conditions
Turning

Ensemble based on:
RF, GBR, ANN, LR,

and SVM

Vibrations, AE,
Forces, and Process

Parameters
TD, FD (FFT), WPT PCC RMSE = 0.00834 mm [111]

Tool Wear Monitoring
Classification Turning ANN Vibrations, and AE TD, WPT, and DWT Relief-F 92.59% [148]

Tool Wear Regression
Prediction in Ti-6Al-4V

Turning
Turning ANN Vibrations, AE, and

Forces TD PCC, PCA based on
SVD

MSE < 5.17 × 10−2

mm2 [149]

Tool Wear Diagnosis Turning ANN Cutting Parameters,
AE, and Forces TD, and FD CC RMSE < 0.0018 mm [150]

Tool Wear Prediction Turning ANN Process Parameters - - - [151]

Tool Wear Monitoring Turning ANN (EKF) Forces, and Process
Parameters - Fisher’s Linear

Discriminant Criteria
96.36% & MSE =

0.1463 mm2 [152]

Tool Wear Monitoring and
Optimal Process Parameters

Selection under input
uncertainty

Turning ANN-GA Strain, and Current WPT PCA 10.76% ± 10.29% [153]

Tool Flank Wear
Classification Turning DT AE, and Forces TD, and FD - NSE = 0.031 [154]

Tool Wear Classification Turning DT Vibrations TD - 77.22% [155]

Flank Wear and Crater Wear
Estimation Turning FNN AE, Forces, and

Process Parameters TD, and FD - - [156]
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Table 1. Cont.

Application Machining Algorithm Input Parameters Feature Extraction Feature Selection Results Ref.

In-process Tool Wear
Monitoring Turning LS-SVM Current, Sound, and

Process Parameters SSA - RMSE < 0.01705 mm [157]

Tool Wear Monitoring
Classification Turning OLAM ANN

Spindle Load, Tool
Load, Spindle Power,

and Process
Parameters

Data Mining based
on t-student

Self-Organizing Deep
Learning Method

(K-Means)
93.80% [158]

Tool Wear Regression
Prediction Turning TWNFIS Vibrations, AE,

Forces, and Time TD - SSE = −0.0071 mm2 [159]

Tool Wear Classification
Based on Chip Color

Analysis
Turning CNN HSV Chip Images KDE - >95% [108]
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4. Conclusions

This review aimed to present an overall analysis of the recent advances in machining
processes using ML. The literature presents several studies and research with promising
results. The proposed approaches are based on the same methods; nevertheless, the
integration of new schemes and algorithms is required to satisfy specific conditions. This
point may represent a limit to identify a common rule to implement the ML approach.
Although a number of practical studies show promising results—in particular, for milling
and turning machining—the limits and constraints of ML application cannot be ignored.
First, semi-supervised methods are rarely found despite being a promising typology for
industrial applications, probably due to their critical aspect of depending on the output
of a trained model to train the actual ML model. Another further issue is the usage of
reinforcement learning, which is still difficult to be applied due to the training duration
and complexity.

These drawbacks need to be considered in the overall evaluation of ML/DL machining
applications. They represent an open challenge to improve the integration of ML and DL
schemes into a real manufacturing environment. Smart equipment, sensors and cloud data
sources that connect industrial machines are the boosting drivers for ML/DL applications.
Consequently, model deployment and testing are becoming a work activity for experienced
technicians and lab researchers, achieving significative results for manufacturing and
production applications [160–163]. Additionally, the ML/DL combination with stochastic
procedures permits a superior accuracy. In particular, a parallel operation would allow to
train the models in the presence of unstable or transient processes, assuring a minimization
of the convolution time.

The main technology adopted for most applications is based on Deep Neural Networks
(DNN), where CNN and LSTM have proven to be particularly important in obtaining higher
accuracies with respect to other ML methods, especially for TCM, where a combination of
both has proven to be the optimal structure to extract the temporal features and for wear
calculations. Despite the accuracy obtained with Deep Learning methods, its application is
subject to great amounts of data availability with respect to other, simpler ML methods that
sometimes manage to obtain close results requiring smaller datasets and a fraction of the
computational time. Deep Learning applications do not require any feature extraction and
selection phase, where they are required in ML applications. Moreover, the choice of the
correct features, or even their extraction, may not be optimal, and thus, the influence and
need of some expertise and know-how is crucial for this type of application. The review of
the literature highlighted several research directions and unexploited opportunities for ML
and DL applications that require further investigation.
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Nomenclature

Acronym Full Name
AKPCA Adaptive Kernel Principal Component Analysis
ANFIS Adaptive Neuro-Fuzzy Inference System
ASA Angular Synchronous Averaging
ATWVD Automatic Tool Wear Value Detection
BADS Bayesian Adaptive Direct Research
BDE Binary Differential Evolution
BDT Boosted Decision Tree
Bi-RNN Bidirectional Recurrent Neural Network
BLSTM Bidirectional Long Short-Term Memory
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CABLSTM Convolutional Bi-directional LSTM with an Attention Mechanism
CC Correlation Coefficient
CEEMDAN Complete EEMD with Adaptive Noise
CHMM Continuous Hidden Markov Models
CNN-AD Convolutional Neural Network with Abnormal Detection
CRA Cumulative Recurrent Accuracy
CWT Continuous Wavelet Transform
DAE Deep Autoencoder
DBN Deep Belief Network
Deep-FS Deep Feature Selection
DF Deep Forest
DNN Deep Neural Network
DT Decision Tree
DWFs Derived Wavelet Frames
DWT Discrete Wavelet Transform
ECBCA Extended Convolutive Bounded Component Analysis
EEMD Ensemble Empirical Mode Decomposition
EKF Extended Kalman Filter
ELM Extreme Learning Machine
ETR Extreme Tree Regressor
FA Fractal Analysis
FCNN Fully Connected Neural Network
FD Frequency Domain
FDR Fisher Discriminant Ratio
GA Genetic Algorithm
GASF Gramian Angular Summation Fields
GBR Gradient Boosting Regression
GBRT Gradient Boosting Regression Tree
GenSVM Generalized Support Vector Machine
GTB Gradient Tree Boosting
GWO Gray Wolf Optimization
HE Holder Exponent
HEDS Hilbert Envelope Demodulation Spectra
HMM Hidden Markov Model
IBk Instance-Based k
IELM Improved ELM
KBDBN Knowledge-Based DBN
KDE Kernel Density Estimation
KELM Kernel Extreme Learning Machine
KI Kernel Interpolation
k-NN k-Nearest Neighbors
KPCA-IRBF Radial Basis Function Based Kernel Principal Component Analysis
LR Linear Regression
LSSVM Least Mean Square SVM
LSTM Long Short-Term Memory
MAML Model-Agnostic Meta-Learning
MFCC Mel-frequency Cepstrum Coefficients
MI Mutual Information
mRMR Minimum Redundancy Maximum Relevance
MSST Multivariate Synchrosqueezing Transform
NSE Normalized Square Error
OA Order Analysis
OLAM Optimal Linear Associative Memory
OS-ELM Online Sequential Extreme Learning Machine
PAA Piecewise Aggregation Approximation
PCA Principal Component Analysis
PCC Pearson Correlation Coefficient
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PR Proper Rotation
QPSO Quantum Particle Swarm Optimization
RBF Radial Basis Function
RBM Restricted Boltzman Machines
RCNN Recurrent Convolutional Neural Network
RF Random Forest
RFE Recursive Feature Elimination
RNN Recurrent Neural Network
RST Rough Set Theory
SAE Stacked Autoencoder
SBLR Sparse Bayesian Linear Regression
SBULSTM Stacked Bi-Directional and Uni-Directional Long Short-Term Memory
SCCS Spindle Current Clutter Signal
SDAE Stack Denoising Autoencoder
sLSTM Stacked Long Short-Term Memory
SMOTE Synthetic Minority Over-Sampling Technique
SSA Singular Spectrum Analysis
SSAE Stacked Sparse Autoencoder
SSE Sum of Square Errors
SVM Support Vector Machine
TAKELM Two-Layer Angle Kernel Extreme Learning Machine
TD Time Domain
TDA Topological Data Analysis
TFD Time–Frequency Domain
t-SNE t-Distributed Stochastic Neighbor Embedding
VIF Variance Inflation Factor
WPT Wavelet Packet Transform
WSRMC Wear State Recognition of Milling Cutter
WT Wavelet Transform
WTMM Wavelet Transform Modulus Maxima
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