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4. RESULTS 

 

4.1. JS patients enrolled in the study 

 

To established iPSC-based JS models, five JS patients of different ages have been enrolled in this 

study and they have been designated as JS1, JS2, JS3, JS4, and JS5. Ethical approval to conduct the 

study have been obtained from the Scientific Committee and the Board of the ASST Spedali Civili, 

Brescia. The parents or guardians of the patients have signed the informed consent forms to be 

enrolled.  All the patients exhibited different genetic defects in one of the causative genes of JS and 

variable clinical manifestations of the disease. The following table 4-1 shows the genetic mutations 

associated with each patient and their ages at the time of enrollment.   

 

 

Table 4-1. JS patients enrolled in the study and the genetic mutations detected in their genomes 

Predicted effect on protein Nucleotide alterations Exon(s) Gene Sex Patient 

p.C1286R c.3856T>C  

31 

 

CC2D2A 
 

Male 

 

JS1 p.C1286R c.3856T>C 

P.E1000V c.2999A>T 24 
 

CC2D2A 
 

Female 

 

JS2 p.G1213Afs*7 c.3638delG 30 

p.R440Q c.G1319A 13 
 

TMEM67 
 

Male 

 

JS3 p.S728G c.A2182G 21 

p.M252T c.755T>C 17 
 

TMEM67 
 

Male 

 

JS4 p.F590S c.1769T>C 21 

p.S1290P c.T3868T>C 22 
 

C5orf42 
 

Female 

 

JS5 p.R2493X c.7477C>A 36 

 

 

 

4.2. Establishment of JS-derived fibroblast lines 
 

As an initial step towards generation of JS-specific iPSCs for this research, we established fibroblast 

lines from skin biopsies obtained from five Italian patients with JS. The skin biopsies were collected 

at the Child Neuropsychiatry Unit of the ASST Spedali Civili, Brescia, or from the the Neurogenetics 

Unit, IRCCS Santa Lucia Foundation, Rome, and immediately transferred to the Angelo Nocivelli 

Institute for Molecular Medicine where setting up the fibroblast lines and generation of the iPSCs 

were carried out. We successfully established and maintained fibroblast lines of JS1, JS2, JS3, JS4, 

and JS5 patients (Fig.4-1). 
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4.3. PCR-based detection of Mycoplasma contamination in the fibroblast cultures  

Before being induced into iPSCs, all the fibroblast cell lines have been tested for detection of 

Mycoplasma to avoid the effect of this bacterium on the reprogramming efficiency, maintenance of 

the generated iPSC lines in culture, and their differentiation capacity. All the cell lines were not 

contaminated with Mycoplasma (Fig.4-2).   

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-2. PCR-based Mycoplasma detection in JS-derived fibroblast lines. A representative image of 

Mycoplasma detection in a 2% gel electrophoresis shows negative testing result in all JS-derived fibroblast lines. 

Lanes 1, 2, and 3 correspond to fibroblast lines of JS1, JS2, and JS3. Lane M: 100bp marker. Lane +ve: positive 

control. Lane: -ve: negative control.  

 
 

Figure 4-1. Establishment of JS-derived fibroblast lines. Representative images show the fibroblast lines of the 

control BJ and JS1-5 prepared for iPSC reprogramming. The images were obtained using a 4X microscope objective. 

Scale bars correspond to 1000 µm. 
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4.4. Establishment of JS-derived iPSC lines 
 

 

4.4.1. Reprogramming of JS-derived fibroblasts in feeder-free conditions 

 

To establish iPSC-based models for JS, we used the CytoTune™-iPS 2.0 Sendai Reprogramming Kit 

(Fusaki et al., 2009) to reprogram the JS-derived fibroblasts. We transduced the fibroblasts obtained 

from five JS patients (JS1, JS2, JS3, JS4, and JS5) with different mutations in one of three different 

JS causative genes CC2D2A, C5orf42, and TMEM67. To observe the morphological alterations 

during the reprogramming, the transduced cells were checked daily. Due to a high uptake of the virus, 

a significant number of dead cells (>50%) were detected 24 hr post-transduction. The fibroblast 

medium was changed every other day, until day 6. On day 7, the transduced cells were plated on 

Matrigel coated culture wells with two to three different concentrations from each fibroblast line. 

From day 8, the spent medium was replaced with complete NutriStem® hPSC XF medium every day, 

and the cells were visualized under an inverted phase contrast microscope for the emergence of cell 

clumps indicative of reprogrammed cells. The new colonies emerged on day 8 post-transduction of 

JS2-derived fibroblasts, however for the other JS-derived fibroblast lines, the emergence of colonies 

started on day 12 post-transduction. On day 26 post-transduction, some of the newly formed iPSC 

colonies were selected to be picked and expanded using TRA-1-60 antibody which detects the human 

antigen podocalyxin. This antigen is used as a surface marker for iPSCs, hESCs, hEGCs, and ECCs. 

On day 28, at least 15 clones from each reprogrammed fibroblast line were transferred into Matrigel-

coated 12-well culture plates containing complete NutriStem® hPSC XF medium. After 

reprogramming and during the long-term maintenance in culture, our generated iPSC lines showed 

distinct ESC-like morphological features such as compact round colonies with distinct borders and 

well-defined edges, dense and flat cells with a high nucleus/cytoplasm ratio (Fig.4-3). 

 

4.4.2. Selection and expansion of JS-derived iPSC clones 

 

To establish JS-derived iPSC lines, the selected 15 clones from each reprogrammed fibroblast line 

have been picked manually and expanded based on morphology and live staining with human TRA-

1-60 antibody (Fig.4-8). The colonies were continuously picked and passaged every 4-5 days and 

maintained in culture for at least 25 passages using standard culture procedures (Fig.4-4). The iPSCs 

were collected at different passages for cryopreservation and stored in a liquid nitrogen tank in the 

Bio-bank of Angelo Nocivelli Institute for Molecular Medicine. Further, we have selected three 

clones from each JS-derived iPSCs namely:  JS1 (C1, C2, and C11), JS2 (C6, C7, and C17), JS3 (C1, 

C4, and C13), JS4 (C4, C5, and C10), and JS5 (C3, C5, and C10) for extensive characterization, 

expansion, and differentiation into NSCs and neurons. 
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Figure 4-3. Generation of iPSC lines from JS-derived fibroblasts. Representative images show the morphological 

alterations occurred during the reprogramming process of JS2-derived fibroblasts into iPSCs. At day 0, the 

fibroblasts were counted and transduced using the CytoTune™ 2.0 Sendai viruses and the cells underwent 

progressive morphological changes for 23 days before selecting and passaging the generated iPSC colonies for 

further expansion. At day 8, cell clumps indicative of reprogrammed cells were observed. Images of clone 1 and 13 

picked on day 24 show iPSC colonies on day 25 and 28 respectively. The images were obtained using 4X and 20X 

microscope objectives. Scale bars correspond to 1000 µm in 4X images and 200 µm in 20X images. 
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4.5. Detection of Sendai virus (SeV) genome and transgenes  

RNAs were collected and extracted from all JS iPSC lines at passage 5 to assess the gene expression 

profiles for Sendai virus and its transgenes. RT and PCR analysis were carried out with the 4 sets of 

specific primers to detect the SeV genome and transgenes KOS, KLF4, and c-MYC. The results 

confirmed that the generated iPSCs were free of CytoTune™ 2.0 Sendai reprogramming vectors 

(Fig.4-5) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-4.  iPSC colonies of JS- and BJ-derived cell lines. Representative images show compact round iPSC 

colonies with well-defined edges of C21, C1, C6, C4, C10, and C5 of iPSCs derived from BJ, JS1, JS2, JS3, JS4, and 

JS5 respectively. The images were obtained using a 4X microscope objective. Scale bars correspond to 1000 µm. 

 

 

 
Figure 4-5. PCR-based detection of SeV genome and transgenes in the generated iPSCs using the CytoTune™ 

2.0 Sendai reprogramming vectors. Representative images of detection of SeV genome and transgenes c-MYC, 

KLF4, and KOS in a 2% gel electrophoresis show negative testing result in all JS2-derived iPSC lines. A representative 

image of detection of endogenous β‐actin shows positive result in all the samples except the negative control. Lanes 

1: positive control extracted at day 7 post-transduction and used as an internal control. Lanes 2, 3 and 4 correspond to 

C6P5, C7P5, and C17P5 of JS2-derived iPSCs respectively. Lane 5: negative control. Lane M:  100bp marker.  
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4.6.Characterization of the generated iPSC lines  

4.6.1. Sequencing analysis of the iPSC lines 

The DNA extracted from the JS-derived iPSC lines have been sequenced using the Sanger sequencing 

method. This is to ensure that the generated iPSC lines retained the pre-existing mutations in the 

genes CC2D2A, C5orf42, and TMEM67 in the parental cells, and the reprogramming process and 

long-term maintenance of the iPSCs did not cause any genetic variation in the mutation sites as 

compared to the parental fibroblasts. The sequencing analysis revealed that all JS-derived iPSC lines 

retained the same genetic mutations of their parental cells (Fig.4-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4-6. Sequencing analysis of genetic mutations in CC2D2A, C5orf42, and TMEM67 in the 

generated iPSC lines. 
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4.6.2. Karyotyping analysis of the iPSC lines  
 

To assess the long-term genomic stability of the generated iPSCs, cytogenetic analyses have been 

carried out on low and high passages of JS-derived fibroblasts and three selected clones of each 

generated iPSC line, namely: JS1 (C1, C2, and C11), JS2 (C6, C7, and C17), JS3 (C1, C4, and C13), 

JS4 (C4, C5, and C10),  and JS5 (C3, C5, and C10) and the control BJ (C21 and C23). The 

karyotyping analyses were performed on these clones and their parental fibroblasts using the Q-

banding technique at 400–450 bands resolution. For karyotype analysis of each clone preparation, at 

least 20 metaphase spreads were analysed and karyotyped following the International System for 

Human Cytogenomic Nomenclature (ISCN 2016). The analyses revealed that all the parental cells 

and their derived iPSC lines possess structurally and numerically normal karyotype (46, XX) or (46, 

XY) (Fig.4-7). These results suggest that the generated JS-derived iPSC lines were genetically stable 

during reprogramming and prolonged maintenance in culture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.3. Short tandem repeat (STR) analysis  
 

For further assessment of the genomic stability and real identity of the generated iPSC lines, short 

tandem repeat (STR) analyses were performed on three iPSC clones of each JS patient and the 

parental fibroblasts using the AmpFlSTR® Identifiler® Plus PCR Amplification Kit (Applied 

Biosystems™). Analysis of the amplified loci confirmed that the generated iPSCs were derived from 

the parental fibroblasts. (Table 4-2 & 4-3).  

 

 

 

Figure 4-7. Q-banding chromosome analysis of JS-derived iPSCs. Representative images of karyotype analysis 

of three iPSC lines derived from JS5 fibroblasts show a normal female karyotype (46, XX). Bands resolution: 400-

450. 
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Table 4-2. Analysis of 16 STR loci in JS2-derived iPSCs and the parental fibroblasts 
 

Locus 

designation 
Chr location 

Parental line 

(fibroblasts) 

Clone 

C6 C7 C17 

D8S1179 8 13-15 13-15 13-15 13-15 

D21S11 21q11.2-q21 30-32.2 30-32.2 30-32.2 30-32.2 

D7S820 7q11.21-22 11 11 11 11 

CSF1PO 5q33.3-34 11-12 11-12 11-12 11-12 

D3S1358 3p 15-16 15-16 15-16 15-16 

TH01 11p15.5 8-9 8-9 8-9 8-9 

D13S317 13q22-31 11 11 11 11 

D16S539 16q24-qter 11-13 11-13 11-13 11-13 

D2S1338 2q35-37.1 16-17 16-17 16-17 16-17 

D19S433 19q12-13.1 13 13 13 13 

vWA 12p12-pter 18-19 18-19 18-19 18-19 

TPOX 2p23-2per 8-11 8-11 8-11 8-11 

D18S51 18q21.3 16-17 16-17 16-17 16-17 

Amelogenin 
X:p22.1-22.3    

Y:p11.2 
XX XX XX XX 

D5S818 5q21-31 12 12 12 12 

FGA 4q28 19-21 19-21 19-21 19-21 

 

Table 4-3. Analysis of 16 STR loci in JS5-derived iPSCs and the parental fibroblasts  

Locus 

designation 
Chr location 

Parental line 

(fibroblasts) 

Clone 

C3 C5 C10 

D8S1179 8 12-16 12-16 12-16 12-16 

D21S11 21q11.2-q21 29-31 29-31 29-31 29-31 

D7S820 7q11.21-22 10-14 10-14 10-14 10-14 

CSF1PO 5q33.3-34 10-11 10-11 10-11 10-11 

D3S1358 3p 16 16 16 16 

TH01 11p15.5 8-9,3 8-9,3 8-9,3 8-9,3 

D13S317 13q22-31 12 12 12 12 

D16S539 16q24-qter 10-12 10-12 10-12 10-12 

D2S1338 2q35-37.1 16-23 16-23 16-23 16-23 

D19S433 19q12-13.1 13-15 13-15 13-15 13-15 

vWA 12p12-pter 16 16 16 16 

TPOX 2p23-2per 8 8 8 8 

D18S51 18q21.3 15-18 15-18 15-18 15-18 

Amelogenin 
X:p22.1-22.3    

Y:p11.2 
XX XX XX XX 

D5S818 5q21-31 12-13 12-13 12-13 12-13 

FGA 4q28 23 23 23 23 
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4.6.4. Immunofluorescence assay for stemness assessment of the generated iPSC lines 
 

Immunostaining  was performed as described in section (3.7.4) for evaluation of the stemness of all 

the selected iPSC clones derived from JS fibroblasts. The immunocytochemistry assays showed 

positive expression of stemness markers OCT4, and TRA-1-60 in that the generated iPSC lines 

(Fig.4-8). These results confirmed the stemness state of JS-derived iPSC lines.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.5. SYBR Green-based RT-qPCR analysis of the stemness markers 

SYBR Green-based RT-qPCR assay was used to assess stemness markers OCT4, SOX2, KLF4, C-

MYC, and NANOG gene expression in three iPSC clones of each JS patient enrolled.  For the relative 

quantification we used as calibrator gene expression of three control iPSC lines derived from BJ 

commercial line (ATCC® CRL-2522™) that we reprogrammed in our laboratory and checked with 

a deeper pluripotency characterization by TaqMan® Human Pluripotent Stem Cell Scorecard™ 

analysis. In the generated iPSC lines derived from JS1, JS3, and JS5, RT-qPCR assays for the 

stemness markers exhibited a relatively similar gene expression patterns to BJ-derived iPSCs (Fig.4-

9, 4-10, & 4-11). Unexpectedly, iPSCs derived from JS2 and JS4 showed a relatively lower level of 

expression as compared to iPSCs of the control (Fig.4-12 & 4-14). To confirm that JS2- and JS4-

derived iPSC lines have been transformed into pluripotent stem cells, we re-assessed the expression 

levels of the same stemness markers in these cell lines relative to their parental fibroblasts by RT-

qPCR gene expression assay. As expected, all the iPSC lines of JS2 and JS4 showed high expression 

levels of NANOG, OCT4, and SOX2, while the expression of c-MYC and KLF4 was significantly low 

 

                             Hoechst                            OCT4                               TRA-1-60                            Merge 

 
 

Figure 4-8. Immunofluorescence assay for detection of stemness markers in the generated iPSC lines derived 

from JS2 and JS5 fibroblasts. Representative immunofluorescence images of the iPSC lines show typical iPSC 

colonies double immuno-stained with anti-OCT4 (red) and anti-TRA-1-60 (green) antibodies to detect the expression 

of the stemness marker proteins OCT4 and TRA-1-60 in JS2- and JS5-derived iPSC lines. The nuclei are stained 

with Hoechst (blue). The images were obtained using a 10X microscope objective.  Scale bars correspond to 100 µm. 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunostaining
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in the iPSCs as these markers are also expressed in fibroblasts (Fig.4.13 and 4-15). These results 

confirmed the stemness of the generated cell lines. 
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Figure 4-9. Relative expression levels of stemness markers in JS1-derived iPSC clones. RT-qPCR analysis of 

relative gene expression of the stemness markers OCT4, SOX2, c-MYC, KLF4, and NANOG in JS1-derived iPSC 

clones 1, 2, and 11 relative to BJ iPSCs. BJ-derived iPSCs were analyzed in triplicate and the relative quantification 

(RQ) value was calculated from the mean Ct values of the triplicates. 
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Figure 4-10. Relative expression levels of stemness markers in JS3-derived iPSC clones. RT-qPCR analysis of 

relative gene expression of the stemness markers OCT4, SOX2, c-MYC, KLF4, and NANOG in JS3-derived iPSC 

clones 1, 4, and 13 relative to BJ iPSCs BJ-derived iPSCs were analyzed in triplicate and the relative quantification 

(RQ) value was calculated from the mean Ct values of the triplicates. 
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Figure 4-12. Relative expression levels of stemness markers in JS2-derived iPSC clones. RT-qPCR analysis of 

relative gene expression of the stemness markers OCT4, SOX2, c-MYC, KLF4, and NANOG in JS2-derived iPSC 

clones 6, 7, and 17 relative to BJ iPSCs. BJ-derived iPSCs were analyzed in triplicate and the relative quantification 

(RQ) value was calculated from the mean Ct values of the triplicates. 
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Figure 4-11. Relative expression levels of stemness markers in JS5-derived iPSC clones. RT-qPCR analysis of 

relative gene expression of the stemness markers OCT4, SOX2, c-MYC, KLF4, and NANOG in JS5-derived iPSC 

clones 3, 5, and 10 relative to BJ iPSCs. BJ-derived iPSCs were analyzed in triplicate and the relative quantification 

(RQ) value was calculated from the mean Ct values of the triplicates. 
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Figure 4-13. Expression levels of stemness markers in JS2-derived iPSC clones relative to the parental 

fibroblasts. RT-qPCR analysis of relative gene expression of the stemness markers OCT4, SOX2, c-MYC, KLF4, and 

NANOG in JS2-derived iPSC clones 6, 7, and 17 relative to JS2-derived fibroblasts. 

 

NANOG OCT4 SOX2 c-MYC KLF4
0

1

2

3

R
el

at
iv

e 
ex

pr
es

si
on

 v
al

ue

JS4 C4P11
JS4 C5P12
JS4 C10P11
BJ [n=3]

 
Figure 4-14. Relative expression levels of stemness markers in JS4-derived iPSC clones. RT-qPCR analysis of 

relative gene expression of the stemness markers OCT4, SOX2, c-MYC, KLF4, and NANOG in JS4-derived iPSC 

clones 4, 5, and 10 relative to BJ iPSCs. BJ-derived iPSCs were analyzed in triplicate and the relative quantification 

(RQ) value was calculated from the mean Ct values of the triplicates. 
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4.6.6. Differentiation of the generated iPSCs into the cells of all three germ layers 
 

To further demonstrate the pluripotency of JS-derived iPSCs, the iPSC lines were differentiated into 

ectodermal, mesodermal, and endodermal cells using the StemMACS Trilineage Differentiation Kit 

(Miltenyi Biotec). On day 7, TaqMan-based qPCR assays were performed to assess the expression 

levels of two specific markers (PAX6, SOX1), (ACTA2, CXCR4), and (GATA4, SOX17) for ectoderm, 

mesoderm, and endoderm respectively. 

 

 

 

4.6.6.1.TaqMan-based RT-qPCR assays for expression of germ layer-specific markers 
 

TaqMan-based qPCR assays were performed to examine the expression of the ectodermal, 

mesodermal and endodermal markers in all the differentiated iPSCs derived from JS2, JS4, and JS5 

patient. Expression of these markers was assessed in differentiated and undifferentiated iPSCs of 

three clones of each JS patient. β‐actin was used as a house-keeping gene and the relative 

quantification of the target genes was calculated using the 2−∆∆CT method (Livak & Schmittgen, 2001). 

All the differentiated cells exhibited significantly high expression levels of lineage-specific molecular 

markers as compared to their corresponding undifferentiated iPSCs. The three clones of each JS-

derived iPSCs showed a relatively similar gene expression pattern (Fig.4-16, 4-17 & 4-18). These 

results confirmed the ability of the generated JS-derived iPSCs to differentiate into three germ layer 

lineages and therefore their potential to transform into almost all cell types including neurons. 
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Figure 4-15. Expression levels of stemness markers in JS4-derived iPSC clones relative to the parental 

fibroblasts. RT-qPCR analysis of relative gene expression of the stemness markers OCT4, SOX2, c-MYC, KLF4, 

and NANOG in JS4-derived iPSC clones 4, 5, and 10 relative to JS4-derived fibroblasts. 
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Figure 4-16. Relative gene expression levels of germ layer-specific markers in differentiated JS2-derived iPSC 

clones. A representative image of RT-qPCR analysis of relative gene expression of ectodermal, mesodermal, and 

endodermal markers (PAX6 and SOX1), (ACTA2 and CXCR4), and (GATA4 and SOX17) respectively, in 

differentiated JS5-derived iPSC clones 6, 7, and 17 relative to their corresponding undifferentiated iPSCs.  
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Figure 4-17. Relative gene expression levels of germ layer-specific markers in differentiated JS4-derived iPSC 

clones. A representative image of RT-qPCR analysis of relative gene expression of ectodermal, mesodermal, and 

endodermal markers (PAX6 and SOX1), (ACTA2 and CXCR4), and (GATA4 and SOX17) respectively, in 

differentiated JS5-derived iPSC clones 4, 5, and 10 relative to their corresponding undifferentiated iPSCs.  
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4.7. PCR-based detection of Mycoplasma contamination in the iPSCs  

All the generated iPSC lines have been tested for detection of Mycoplasma at different passages 

during their long-term maintenance in culture to ensure that they are free of mycoplasma 

contamination before being cryopreserved and before differentiation of JS3 and JS5 and BJ into NSCs 

and neurons. All the iPSC lines have been confirmed by specific PCR to be free of Mycoplasma 

contamination (data not shown). 

 

 

4.8. Cryopreservation of the generated iPSCs 

From all the generated iPSC lines, high quality iPSCs were cryopreserved at different passages when 

they reached 70-80% confluence and stored in a liquid nitrogen tank at the Bio-bank of Angelo 

Nocivelli Institute for Molecular Medicine, the ASST Spedali Civili, Brescia. 

 

4.9. Induction of NSCs from JS-derived iPSC lines 

JS is associated with defects in the CNS particularly in the cerebellum at the posterior part of the 

brain. The inaccessibility of neurons from the cerebellum makes establishment of human neuronal in 
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Figure 4-18. Relative gene expression levels of germ layer-specific markers in differentiated JS5-derived iPSC 

clones. A representative image of RT-qPCR analysis of relative gene expression of ectodermal, mesodermal, and 

endodermal markers (PAX6 and SOX1), (ACTA2 and CXCR4), and (GATA4 and SOX17) respectively, in 

differentiated JS5-derived iPSC clones 3, 5, and 10 relative to their corresponding undifferentiated iPSCs.  
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vitro models of JS not possible without differentiation of iPSCs derived from somatic cells of JS 

patients. Therefore, the fibroblast-derived iPSCs of JS2 (C6), JS5 (C6) and BJ (C21) were induced to 

NSCs as an intermediate state between the iPSCs and the iPSC-derived neurons. The NSCs are 

multipotent and have the capacity to differentiate into all types of the nervous system cells.   The 

iPSCs were induced into NSCs using Matrigel-coated 6-well plates and complete PSC Neural Induction 

Medium  for 7 days (Fig.4-19). The medium was continuously changed every other day and any non-

neural differentiated cells were removed. At day 7 post-induction, P0 NSCs were enzymatically detached 

and replated in Matrigel-coated 6-well plates containing Neural Expansion Medium for further passaging, 

cryopreservation, and differentiation into neurons.  Morphologically heterogenous population consists of 

compact NSCs and flat non-neural cells were observed at day 4 post-expansion of P0 NSCs (Fig.4-19C).  

At day 2 of re-plating of P1 NSCs, a relative homogenous morphology of NSCs (Fig.4-19D & 4-19H) were 

observed and further expanded (Fig.4-20). The generated NSC lines were analyzed for NSC markers by 

immunofluorescence and qPCR assays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-19. Induction of NSCs from a JS2-derived iPSC line.  Representative phase contrast images of day 2 and 

day 7 of neural induction and P0 and P2 of JS2-derived NSCs show morphological changes in the iPSC colonies (A, 

B, E, and F), a heterogenous morphology with compact NSCs (indicated by arrows) and flat non-neural cells 

(indicated by asterisks) (C) and a relative homogenous morphology of P2 NSCs (D and H). The images were obtained 

using 4X and 20X microscope objectives. Scale bars correspond to 1000 µm in 4X images and 200 µm in 20X 

images. 
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4.10. Characterization of JS-derived NSC lines 
 

4.10.1.Genetic analysis for confirmation of the pre-existing variants in parental cells 

 

The Sanger sequencing of the genomic DNA isolated from JS-derived NSCs revealed that the NSC 

lines retained the genetic mutations of the corresponding parental cell lines (data not shown).  

 

4.10.2. Immunofluorescence analysis for detection of NSC markers 
 

The NSCs (P0) of JS2, JS5 and BJ attached to Matrigel-coated coverslips in 24-well culture plates 

were stained with antibodies for NSC markers SOX1, SOX2, and NESTIN to confirm the 

differentiation of the iPSC lines into NSCs. All the cell lines stained positive for SOX1, SOX2, and 

NESTIN antibodies confirming the complete differentiation of the iPSC lines into NSC lines (Fig.4-

21). 

 

 

 

 

 

 
 

 

Figure 4-20. NSCs differentiated from JS- and BJ-derived iPSC lines.  Representative phase contrast images 

show a relative homogenous morphology of P3, P11, and P9 of NSCs derived from iPSCs of BJ, JS2, and JS5 

respectively. The images were obtained using 4X and 20X microscope objectives. Scale bars correspond to 1000 µm 

in 4X images and 200 µm in 20X images. 
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Figure 4-21. Immunofluorescence analysis for detection of NSC markers in JS-derived NSC lines. 

Representative immunofluorescence images of the NSCs show positive expression of the NSC marker proteins 

SOX1 (green), SOX2 (red), and NESTIN (red). The nuclei are stained with Hoechst (blue). The images were 

obtained using a 10X microscope objective.  
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4.10.3. SYBR Green-based RT-qPCR gene expression analysis of NSC markers 

 

Neural induction of JS-derived iPSCs was assessed also by key NSC-related genes NESTIN, SOX1, 

SOX2, and PAX6 and iPSCs marker OCT4 gene expression analysis. RNAs were purified at the end 

of induction treatment (day 7- NSCs P0) and cDNAs were prepared to perform RT-qPCR assessment. 

The relative expression of the marker genes was calculated using the 2−∆∆C
T method with β‐actin 

(ACTB) as the internal reference. The quantitative results of each NSC line were calculated relative to 

the corresponding undifferentiated iPSC line. RT-qPCR analysis on JS2- and JS5-derived NSC lines 

revealed a significant increase in the gene expression level of SOX1 and PAX6 and an expected 

moderate expression of SOX2 and NESTIN as these markers are also expressed in iPSCs. Both the 

NSC lines showed a markedly low expression level of the pluripotency marker OCT4 indicating that 

the generated NSC lines are free of residual iPSCs (Fig.4-22 & 4-23). These findings confirmed that 

JS-derived iPSC lines were successfully differentiated into a relatively pure NSC lines. 
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Figure 4-22. Relative expression levels of NSC markers in JS2-derived NSC line. RT-qPCR analysis of relative 

gene expression of OCT4, NESTIN, SOX1, SOX2, and PAX6 in a JS2-derived NSC line (C6) relative to the 

undifferentiated JS2-derived iPSCs.  
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4.10.4. Cytogenetic analysis of JS-derived NSC lines 
 

All the iPSC-derived NSC lines were karyotyped, and no structural or numerical alteration was found 

(Fig.4-24). The analysis results were consistent with the previous karyotype analyses of the parental 

cells and their derived iPSCs.  

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

4.11. Differentiation of JS-derived NSCs into neurons  
 

iPSC-derived NSC lines of JS2 (C6), JS5 (C6), and BJ (C21) were differentiated into neurons 

following a standard protocol in GibcoTM Neurobiology Protocol Handbook (Thermo Fisher 

Scientific). The NSCs were seeded on poly-L-ornithine- and laminin-coated 6-well culture plates in 

complete StemPro NSC SFM medium. After 48 hr, the NSCs transformed into intermediate neural 
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Figure 4-23. Relative expression levels of NSC markers in JS5-derived NSC line. RT-qPCR analysis of relative 

gene expression of OCT4, NESTIN, SOX1, SOX2, and PAX6 in a JS5-derived NSC line (C6) relative to the 

undifferentiated JS5-derived iPSCs.  

 
 

 

Figure 4-24. Q-banding chromosome analysis of JS-derived NSCs. Representative images of karyotype analysis 

of three NSC lines derived from JS2 NSCs show a normal female karyotype (46, XX). Bands resolution: 400-450. 
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progenitor cells (NPCs) characterized by their elongated and radially aligned morphology compared 

to NSCs which form clusters (Fig.4-25), and the medium was replaced by the neural differentiation 

medium for 15 days. The spent medium was changed every 3-4 days. The cells continued their 

differentiation into mature neurons which are characterized by dendritic branching and axonal 

projections compared to NPCs viewed under an inverted phase contrast microscope (Fig.4-26). At 

day 15, the cells were collected to extract RNA for molecular characterization of the neurons as they 

started to detach from the poly-L-ornithine- and laminin-coated culture plates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-25. NSCs and NPCs differentiated from JS- and BJ-derived iPSC lines.  Representative phase contrast 

images show morphological differences between NSCs and NPCs derived from iPSCs of BJ, JS2, and JS5 

respectively. Scale bars correspond to 1000 µm and 200 µm in the images obtained using 4X and 20X microscope 

objectives respectively.  
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Figure 4-26. JS- and BJ-derived neurons.  Representative phase contrast images show morphology of JS- and BJ-

derived cells grown in the neural differentiation medium during differentiation of NSCs into neurons at day 3, 6, 9,12 

and 15. The images were obtained using a 20X microscope objective. Scale bars correspond to 200 µm. 
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4.12. Characterization of JS-derived neuronal cell lines 
 

4.12.1. Immunofluorescence assays for detection of neuronal markers 
 

At day 15 in the neural differentiation medium, the cells differentiated from JS-derived NSC lines 

were stained to examine the expression of neural proteins during the differentiation of the NSCs into 

neurons. The cells were immunofluorescent-stained with MAP2 monoclonal (M13) and purified anti-

tubulin β-3 (TUBB3) antibodies. Immature and mature neurons were identified by positive staining 

for TUBB3 and MAP2 respectively (Fig.4-27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.12.2.SYBR Green-based RT-qPCR gene expression analysis of neuronal markers 
 

The neuronal differentiation performed was not directed towards any particular cell type but led to 

the growth of heterogeneous neuronal populations. Therefore, in order to assess which kind of 

neurons was predominant in the cellular culture obtained, a RT-qPCR on specific genes for the several 

typologies of neurons was carried out. Genes tested include glutamic acid decarboxylase (GAD) 

marker for GABAergic neurons, choline Acetyltransferase (CHAT) for cholinergic neuron, and 

tyrosine hydroxylase (TH) for dopaminergic neurons. In addition, to estimate the neuronal culture 

purity, expression of genes specific for glia cells (glial fibrillary acidic protein - GFAP) was also 

 
Figure 4-27. Immunofluorescence analysis for detection of neuronal markers in the generated neuronal lines 

derived from JS2 and JS5 iPSCs. Representative immunofluorescence images of the neurons show positively 

stained cells with anti-MAP2 (red) and anti-TUBB3 (green) antibodies. The nuclei are stained with Hoechst (blue). 

The images were obtained using a 60X microscope objective.  

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC387603/
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evaluated. A similar gene expression patterns of the neuronal markers in all the cell lines was 

observed after 15 days of neural differentiation. Precisely, all samples exhibit an increased expression 

of PAX6, DCX, MAP2, CHAT, GFAP, and TH at day 15 confirming the neuronal phenotype acquired. 

This increase is not appreciable for TUBB3, and GAD because of their high expression also in the 

parental NSCs used as a calibrator in the relative quantification. Moreover, results in figure 4-28 show 

that the dopaminergic population was predominant in cell culture for all the samples, especially in 

the healthy donor BJ, and that a moderate contamination of glia cells expressing GFAP was present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4.13. Functional analysis of primary cilia in JS-derived cell lines 

We explored the existence of primary cilia and characterized their phenotypes in BJ- and JS-derived 

fibroblasts, iPSCs, and NSCs. The cells were stained using a commercial primary antibody to target 

acetylated α-tubulin (AcTb), a commonly used primary cilia marker. Based on immunofluorescent 

staining for AcTb, the length of primary cilia and the number of ciliated cells were quantified.   

 

 

4.13.1. Primary cilia in JS-derived fibroblasts 
 

We performed immunofluorescent staining on fibroblasts of JS2 (P9), JS5(P7) and BJ (P22) to detect 

the expression of the AcTb. Fibroblasts of each cell line were cultured in DMEM media containing 

(10% FBS) and serum-starved DMEM media containing (0.5% FBS) for 24 hr. Fibroblasts of JS2 

and JS5 grown in serum-starved DMEM media showed a significantly low percentage of ciliated cells 

(~4.5%) and (~11%) respectively, as compared to BJ-derived fibroblasts (~23.5%) (Fig.4-29B). 

 
Figure 4-28. Relative expression levels of neuronal markers in JS- and BJ-derived neuronal cell lines. RT-

qPCR analysis of relative gene expression of PAX6, DCX, MAP2, TUBB3, GFAP, GAD, CHAT, and TH in a JS- and 

BJ-derived neurons relative to the undifferentiated P0 NSCs derived from BJ. Each sample was analyzed in triplicate 

and the relative quantification (RQ) value was calculated from the mean Ct values of the triplicates. 
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Likewise, the fibroblasts grown in complete DMEM media exhibited similar pattern of low 

percentage of ciliated fibroblasts in JS-derived fibroblasts (JS2, ~2.3% and JS5 ~2.4%) (Fig.4-29A). 

Unexpectedly, there was not a markedly difference in the length of primary cilia in all the ciliated 

fibroblasts cultured in both types of DMEM media between JS- and BJ-derived fibroblasts. The mean 

length of primary cilia  was found to be (~4 µm) (Fig.4-30). The experiments were performed in 

triplicate for the fibroblasts grown in serum-starved and serum-enriched medium and the cells were 

counted from 30 randomly selected fields on a microscope slide. 
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Figure 4-29. Number of ciliated cells in JS- and BJ derived fibroblasts. Percentage of ciliated fibroblasts grown 

in starved (A) and serum-enriched medium (B). Statistical significance was determined using an unpaired Student’s 

t test (**p < 0.002, ***p < 0.0006, ****p < 0.0001). 
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4.13.2. Primary cilia in JS-derived iPSCs 

The presence of primary cilia was examined in JS2-, JS5-, and BJ-derived iPSCs grown in complete 

NutriStem® hPSC XF Medium by immunofluorescence staining to visualize the AcTb-labelled 

primary cilia. As expected, the number of ciliated JS-derived iPSCs was significantly low compared 

to BJ-derived iPSCs (Fig.4-31). The percentage of ciliated iPSCs of BJ, JS2 and JS5 was ~7.9%, 

~5.7%, and ~3.4% respectively. No significant variation in the length of primary cilia between JS- 

and BJ-derived iPSCs (~5-10 µm) (Fig.4-32). The experiments were performed in triplicate for each 

iPSC line and the cells were counted from 10 randomly selected fields on a microscope slide.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-30. Immunofluorescence analysis for detection of primary cilia in BJ- and JS-derived fibroblasts. 

Representative immunofluorescence images of fibroblasts show positively stained primary cilia with anti-AcTb (red) 

antibody. The actin filaments in the cytoskeleton are stained with anti-phalloidin (green) antibody and the nuclei are 

stained with Hoechst (blue). The images were obtained using a 60X microscope objective. Scale bars correspond to 

5 µm and 10 µm in JS- and BJ-derived fibroblasts images respectively. 
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Figure 4-31. Number of ciliated cells in JS- and BJ-derived iPSCs. Statistical significance was determined using 

an unpaired Student’s t test (**p < 0.002, ****p < 0.0001). 
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4.13.3.Primary cilia in JS-derived NSCs 
 

AcTb-stained primary cilia were identified in NSCs of JS2 (P16), JS5 (P6) and BJ (P12) derived from 

iPSCs C6P26, C6P26, and C21P145 respectively. There was extreme variability in the number of 

ciliated NSCs between BJ-derived NSCs and JS-derived NSCs. The percentage of ciliated NSCs in 

BJ-derived NSCs was significantly higher (~7%) than of those in JS2- and JS5-derived NSCs ~2% 

and ~0.8% respectively (Fig.4-31). As observed in JS- and BJ-derived ciliated fibroblasts and iPSCs, 

measurement of the ciliary length in the NSCs showed no significant differences between the ciliated 

NSCs  derived from JS2, JS5, and BJ (mean length was ~5µm) (Fig.4-32). The experiments were 

performed in triplicate for each NSC line grown in Neural Expansion Medium and the cells were 

counted from 10 randomly selected fields on a microscope slide. 

 

 

 

 

 

 

 

 
 

Figure 4-32. Immunofluorescence analysis for detection of primary cilia in BJ- and JS-derived iPSCs. 

Representative immunofluorescence images of iPSCs show positively stained primary cilia (indicated by arrows) 

with anti-AcTb (red) antibody. The actin filaments in the cytoskeleton are stained with anti-phalloidin (green) 

antibody and the nuclei are stained with Hoechst (blue). Arrowheads indicate extremely short primary cilia. The 

images were obtained using a 60X microscope objective. Scale bars correspond to 10 µm. 

 



105 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.14. Functional analysis of SHH signaling pathway in JS-derived cell lines  
 

In this study, we carried out functional analysis of SHH signaling molecules Gli1, Gli2, Smo, and 

Ptch1 in JS- and BJ-derived fibroblast, iPSC, NSC, and neuronal lines. To determine whether the 

genetic defects in JS-derived cell lines affect the SHH signaling pathway, we used 2 µM of 

smoothened agonist (SAG) to induce the SHH signaling pathway in these cell types. The cells were 

SAG-stimulated for 24 hr in complete medium -except for the fibroblasts which were grown in a 

 
 

Figure 4-34. Immunofluorescence analysis for detection of primary cilia in BJ- and JS-derived NSCs. 

Representative immunofluorescence images of NSCs show positively stained primary cilia (indicated by arrows) with 

anti-AcTb (red) antibody. The actin filaments in the cytoskeleton are stained with anti-phalloidin (green) antibody 

and the nuclei are stained with Hoechst (blue).  The images were obtained using a 60X microscope objective. Scale 

bars correspond to 10 µm. 

 

 
Figure 4-33. Number of ciliated cells in JS- and BJ-derived iPSCs. Statistical significance was determined using 

an unpaired Student’s t test (***p < 0.0006). 
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serum-starved medium-before being collected for RNA extraction and further assessment of the 

expression patterns of SHH signaling molecules Gli1, Gli2, Smo, and Ptch1 by RT-qPCR. 

 

 

4.14.1.SHH signaling pathway in JS-derived fibroblasts  
 

Quantitative RT-PCR analysis of SAG-stimulated fibroblasts derived from JS2, JS5, and BJ revealed 

a significant downregulation of Gli1 in both JS-derived fibroblast lines as compared to the healthy 

control BJ. Considering the basal gene expression in non-stimulated fibroblasts, JS2- and JS5-derived 

fibroblasts showed a slight induction of Gli1 and Smo after 24 hr SAG stimulation. No statistically 

significant differences were detected in gene expression of Gli2 and Ptch1 in SAG-stimulated 

fibroblasts of JS2, JS5 and BJ (Fig.4-35). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.14.2. SHH signaling pathway in JS-derived iPSCs  
 

In SAG-stimulated iPSCs of JS2 and JS5, the expression levels of Gli1, Gli2, and Smo were relatively 

similar to those of SAG-stimulated control BJ and non-stimulated iPSCs. Interestingly, in SAG-

stimulated iPSCs, Ptch1, a key activator of the SHH signaling pathway, showed a significantly high 

expression in BJ-derived iPSCs, while it exhibited no activation by SAG in JS2- and JS5-derived 

iPSCs (Fig.4-36).  

 

 
Figure 4-35. Relative expression levels of Gli1, Gli2, Ptch1, and Smo in SAG-stimulated fibroblasts of JS2, JS5, 

and BJ. RT-qPCR gene expression levels in the stimulated cells were calculated relative to non-stimulated fibroblasts 

of each cell line. Each sample was analyzed in triplicate and the relative quantification (RQ) value was calculated 

from the mean Ct values of the triplicates. Statistical significance was determined using an unpaired Student’s t test 

(*p < 0.03, **p < 0.002, ***p < 0.0003). 
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4.14.3. SHH signaling pathway in JS-derived NSCs  
 

Assessment of the effect of SAG stimulation on the expression levels of SHH signaling genes Gli1, 

Gli2, Patch1, and Smo in JS- and BJ-derived NSCs revealed that only Gli1 and Ptch1 were induced 

in this kind of cells. Moreover, the JS2- and JS5- derived NSCs showed a statistically significant 

reduction of Gli1 and Ptch1 gene expression as compared to BJ-derived NSCs (Fig.4-37). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-36. Relative expression levels of Gli1, Gli2, Ptch1, and Smo in SAG-stimulated iPSCs of JS2, JS5, and 

BJ. RT-qPCR gene expression levels in the stimulated cells were calculated relative to non-stimulated iPSCs of each 

cell line. Each sample was analyzed in triplicate and the relative quantification (RQ) value was calculated from the 

mean Ct values of the triplicates. Statistical significance was determined using an unpaired Student’s t test (***p < 

0.0001). 

 

 
Figure 4-37. Relative expression levels of Gli1, Gli2, Ptch1, and Smo in SAG-stimulated NSCs of JS2, JS5, 

and BJ. RT-qPCR gene expression levels in the stimulated cells were calculated relative to non-stimulated NSCs 

of each cell line. Each sample was analyzed in triplicate and the relative quantification (RQ) value was calculated 

from the mean Ct values of the triplicates. Statistical significance was determined using an unpaired Student’s t test 

(**p < 0.001, ***p < 0.0007). 
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4.14.4. SHH signaling pathway in JS-derived neurons  
 

The expression patterns of Gli1, Gli2, Ptch1, and Smo in the SAG-stimulated neurons of JS2, JS5, 

and BJ were evaluated by RT-qPCR. No induction of Gli2, Ptch1, and Smo was detected in this cell 

type. Only Gli1 showed increased expression after SAG stimulation, in particular a high expression 

was noted in BJ-derived neurons, while in JS-derived neurons, Gli1 was significantly reduced. Gli2 

and Ptch1 were significantly downregulated in JS5-derived neurons (Fig.4-38). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-38. Relative expression levels of Gli1, Gli2, Ptch1, and Smo in SAG-stimulated neurons of JS2, JS5, 

and BJ. RT-qPCR gene expression levels in the stimulated cells were calculated relative to non-stimulated neurons 

of each cell line. Each sample was analyzed in triplicate and the relative quantification (RQ) value was calculated 

from the mean Ct values of the triplicates. Statistical significance was determined using an unpaired Student’s t 

test (*p < 0.03, **p < 0.002, ***p < 0.0002, ****p < 0.0001). 
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5. DISCUSSION 

 
 

5.1. Establishment of JS-derived iPSC lines 

For decades, establishing human models for neurological diseases have been considered as a far-

fetched dream since the challenge to obtain live neurons from the CNS or peripheral nervous system 

(PNS) of patients or healthy individuals. This obstacle has led scientists to utilize animal models 

(Chesselet & Carmichael, 2012) and neural cells isolated from human post-mortem tissues to study 

the neurological diseases (Chu et al., 2020; Anand et al., 1995). As a result of modeling neurological 

disorders by using primary neural cells, immortal cell lines, animal models, and analysis of human 

post-moretm-derived neural tissues, great advancements in understanding  the mechanisms of several 

neurological disorders have been achieved in addition to their essential role in pre-clinical studies 

(Chesselet & Carmichael, 2012). However, there are certain limitations in using animal models for 

studying human neurological disorders (Cenci et al., 2002). Full recapitulation of disease phenotypes 

is hindered by species differences which may lead to high rates of failure during drug screening. In 

clinical translation of roughly 500 novel therapeutic agents that have shown promising results in 

rodent models of stroke, only one drug has been approved as a new therapy for stroke (Sena et al., 

2010; Macleod et al., 2006). However, many of these unsuccessful preclinical trials could descend 

from incorrect study design and data analysis approaches used rather than from the animal models 

themselves (Scott et al., 2008; Macleod et al., 2008). It is also important to note that the disappointing 

outcomes in clinical trials may result from uncertainty of the relevance of these models to the human 

disease (Chesselet & Carmichael, 2012). The development of iPSC technology (Takahashi & 

Yamanaka, 2006) and the rapid advancements in genome editing approaches (Perez-Pinera et al., 

2013; Ding et al., 2013; Jinek et al., 2012; Hockemeyer et al., 2011) have revolutionized the field of 

disease modeling and translational research particularly for neurological disorders.  In the last decade, 

many human iPSC-derived models have been developed for several neurological disorders including 

ALS, familial and sporadic AD, and PD (di Domenico et al., 2019; Israel et al., 2012; Dimos et al., 

2008). In this PhD study, we primarily aimed to establish human in vitro models of JS by generating 

disease-specific iPSCs and subsequently differentiating them into neural cell lines. JS is a rare 

neurological disorder characterized by hypotonia, psychomotor impairment, intellectual disability, 

and a hallmark finding on brain MRI known as the molar tooth sign (MTS). Other clinical features 

of JS include eye abnormalities such as retinal dystrophy, ocular colobomas, oculomotor apraxia 

(OMA) (Wang et al., 2018), liver and kidney disease (Strongin et al., 2018; Bachmann- Gagescu et 

al., 2015). The pathological basis of JS is still not well-understood. However, it is known to be 

associated with structural and/or functional defects of primary cilia. There are a heterogenous group 
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of disorders that overlap genetically and phenotypically with JS and are known as ciliopathies 

(Romani et al., 2013). These disorders are associated with ciliary dysfunction due to mutations in 

genes that encode ciliary proteins or their interacting proteins such as B9/tectonic-like complex. This 

protein network includes AHI1, B9D1, B9D2, CC2D2A, CEP290, TCTN1, TCTN2, TMEM67, 

TMEM231, and TMEM237. It blocks certain proteins from passing through the TZ and 

simultaneously allows specific proteins to diffuse into the ciliary compartment (Okazaki et al., 2020; 

Gonçalves & Pelletier, 2017). Due to unavailability of an approved therapy for JS and lack of a 

comprehensive understanding of the pathogenic mechanisms associated with this neurological 

disease, it has become necessary to incorporate iPSC-derived neuronal models of JS into the pre-

clinical and translational research of JS. The core objective of this research was establishment of JS-

derived iPSC lines by reprogramming of fibroblasts obtained from five patients with JS harbouring 

different mutations in C5orf42, CC2D2A, and TMEM67, and subsequent differentiation of the 

generated iPSCs into neuronal cell lines. To the best of our knowledge, to date only two reports on 

patient-derived iPSC models of JS have been described from an Italian research team showed 

establishment of two patient-specific iPSC models of JS with a homozygous missense mutation 

(p.H896R) and (c.2168G > A) in AHI1 respectively (Altieri et al., 2019; Rosati., 2018). Two new 

reports are part of this Ph.D thesis (Ali et al., 2021; 2020).  

 

In this study, we demonstrate the successful generation of high-quality iPSC lines from dermal 

fibroblasts obtained from five patients with JS (JS1-JS5) using the CytoTune™-iPS 2.0 Sendai 

Reprogramming Kit (Fusaki et al., 2009). Patient-derived fibroblasts carrying mutations in CC2D2A 

(JS1 and JS2), TMEM67 (JS3 and JS4), and C5orf42 (JS5), were transduced with four reprogramming 

factors OCT3/4, SOX2, KLF4, and c-MYC. Following 24 hr in culture, substantial number of dead 

fibroblasts were observed due to a high uptake of the viral vectors. All the transfected fibroblast lines 

showed gradual morphological changes that were clearly observed under an inverted phase contrast 

microscope. Approximately 3 weeks post-transduction, ESC-like colonies have emerged indicative 

of reprogrammed cells. To establish JS-derived iPSC lines, at least 15 TRA-1-60- positive iPSC 

clones from each fibroblast line were manually picked and expanded for >20 passages. In order to 

assess their capacity for self-renewal, pluripotency, and genetic integrity following long-term 

maintenance in culture, 3 clones from the generated iPSC lines were selected for further expansion 

and characterization. iPSCs from different passages of each clone were cryopreserved.  

From a biosafety perspective, the genomic integrity of iPSCs during reprogramming and long-term 

culture is of great importance in translational medicine. The genomic and epigenomic defects may 

compromise the differentiation capacity of iPSCs and induce tumorgenesis in patients treated with 

iPSC-derived cell therapies (Zhang et al., 2012; Martins-Taylor et al., 2011; Taapken et al., 2011). 
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Moreover, they will not be used as reliable disease model. Therefore, it was essential to investigate 

the genomic stability of the generated iPSCs during reprogramming and long-term maintenance in 

culture. All the iPSC lines have shown no structural or numerical chromosomal aberration during 

their prolonged culture. These results suggest that the reprogramming of somatic cells does not 

instigate massive genomic instability. On the other hand, our STR analysis has revealed that JS-

derived iPSCs retain parental fibroblasts genotype. Additionally, Sanger sequencing results have 

shown persistence of the parental cells mutations in C5orf42, CC2D2A, and TMEM67. For further 

characterization of the generated iPSC lines, the stemness capacity of the cells was evaluated with 

immunofluorescence staining and subsequently with RT-qPCR analysis. All the iPSCs stained 

positively with antibodies against TRA-1-60 and OCT4, while RT-qPCR analysis of the stemness-

related markers OCT4, SOX2, KLF4, and c-MYC have shown significantly high expression of these 

markers in all the JS-derived iPSC lines except JS2 and JS4 as compared to the expression pattern in 

BJ-derived iPSCs which were previously validated as fully pluripotent stem cells (Park et al., 2008). 

To verify that the reprogrammed cells of JS2 and JS4 have the stemness capacity, we re-evaluated 

the expression pattern of stemness markers in these cells relative to their parental fibroblasts. The 

expression analysis has shown significantly high expression levels of the markers in reprogrammed 

cells when compared to their parental counterparts. We suggest that these variations in the expression 

profile of stemness markers in JS2- and JS4-derived iPSCs could be attributed to the genetic 

mutations in the parental cells. Finally, to assess the differentiation capability of the generated iPSC 

lines, we have successfully differentiated three JS-derived iPSC lines namely: JS2-, JS4-, and JS5-

iPSCs, into ectodermal, mesodermal and endodermal cells using the StemMACS Trilineage 

Differentiation Kit (Miltenyi Biotec). This differentiation into the three germ layer lineages have been 

validated by TaqMan-based RT-qPCR assay which has shown expression of lineage-specific 

markers. These results demonstrate that the generated iPSCs are pluripotent. Taken together, our 

results have confirmed the establishment of JS-derived iPSC lines as an initial step towards 

developing neuronal models of JS. 

 

5.2. Induction of NSCs from JS-derived iPSC lines and neural differentiation 

As previously mentioned, animal models provide an indispensable tool for modeling neurological 

diseases. However, undeniable limitations such as species-specific differences and variations in 

pharmaco- and toxico-kinetics of substances make it difficult to recapitulate the biochemical and 

molecular hallmarks of human neurological diseases and to persistently translate the novel findings 

into new therapies for humans. These obstacles have been overcome by the development of iPSC 

technology and the ability to create patient-specific iPSCs that can be differentiated into almost all 

types of neural cells, including but not limited to NSCs, NPCs, neurons, oligodendrocytes, astrocytes, 
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and microglia (Li & Shi, 2018). To accomplish the second objective of this study, we have 

differentiated iPSC derived from JS2 (C6), JS5 (C6), and the healthy control BJ (C21) into neurons. 

The differentiation process of iPSCs into neurons passes through an intermediate phase when the 

iPSCs are induced to NSCs using complete PSC Neural Induction Medium for 7 days following by Neural 

Expansion Medium for further passaging. We have induced the iPSC lines into NSCs and analyzed the 

generated cells by immunofluorescence and qPCR assay. From the morphological point of view, all the 

NSC lines assume a neuronal-like phenotype as compared to the iPSCs morphology before the 

induction and positively stained for the NSC markers SOX1, SOX2 and NESTIN. This has been 

confirmed by qPCR assay exhibiting high expression levels of the same NSC markers and PAX6, and 

no expression of the pluripotency marker OCT4 as compared to undifferentiated iPSCs. However, 

the expression of SOX2 and NESTIN was relatively low as compared to SOX1 and PAX6 as they are 

also expressed in iPSCs. The neuroectodermal markers SOX1 and PAX6 are critical in regulating 

neurogenesis, proliferation and multipotency in the CNS (Venere et al., 2012; Mo & Zecevic, 2008; 

Pevny et al., 1998). Additionally, DNA sequencing and karyotype analysis of the generated NSCs 

have shown that they retained the same genetic mutations identified in the parental cells and normal 

karyotypes. These results confirmed the induction of JS-derived iPSC lines into NSC lines. 

 

The generated NSC lines maintained in culture have been cryopreserved before being differentiated 

into neurons.  Initially, the NSCs transformed into NPCs after 48 hr in complete StemPro NSC SFM 

medium. Replacement of the spent medium by the neural differentiation medium has facilitated the 

differentiation of the NPSs into a heterogeneous population including mature neurons. This was 

validated by observing distinct morphological features of neurons under the microscope and positive 

staining of the neuronal markers MAP2 and TUBB3. Differentiation of the NSCs into neurons has 

yielded heterogeneous neuronal populations. Therefore, it was important to determine the 

predominant type of neurons in the cell cultures obtained. The neuronal phenotype acquired was 

confirmed by qPCR assay which revealed increased expression of PAX6, DCX, MAP2, CHAT, GFAP, 

and TH. It is important to note that TUBB3 and GAD have shown low expression levels in the 

generated neuronal cells because their expression was significantly high in the parental NSCs used 

as a calibrator in the relative quantification. Furthermore, our results revealed that dopaminergic 

neurons were predominant in all the cell lines, particularly in the healthy control BJ. All the cell lines 

have shown expression of GFAP indicative of a moderate contamination of glia cells. It is worth 

noting that differentiation of JS-derived iPSCs into specific neuronal cell types rather than 

heterogenous populations of neurons could be more useful to develop efficient models for JS. 

However well-characterized patient-specific in vitro neuronal cell culture systems, as reported here, 

remain necessary to uncover disease mechanisms and develop therapeutic strategies. 
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5.3.Functional analysis of primary cilia and SHH signaling pathway in JS-derived lines 

As all JS-related genes encode ciliary proteins or their interacting proteins, it has become evident that 

primary cilia play a crucial role in the SHH signaling pathway and pathogenic mechanisms of JS and 

other genetic disorders known as ciliopathies (Valente et al., 2014). Genetic mutations in JS-related 

genes often result in defective ciliogenesis and/or dysfunction of the primary cilia, however, the 

mechanisms underlying this is poorly understood. The vast majority of research on the role of primary 

cilia in JS and other ciliopathies has been carried out on animal or in vitro models (Veleri et al., 2014; 

Srour et al., 2012; Gorden et al., 2008). Therefore, we have investigated the correlation between the 

genetic mutations in the CC2D2A and C5orf42 corresponding to JS2 and JS5 and the number and 

length of primary cilia in different JS-derived cell types.  The length of primary cilia and the number 

of ciliated cells were quantified based on immunofluorescent staining for the ciliary marker acetylated 

α-tubulin (AcTb) ) using serum-starvation or complete medium as SHH is activated by starvation. 

 

In JS- and BJ-derived fibroblasts grown in serum-starved medium for 24 hr, the number of ciliated 

fibroblasts was significantly low in JS2- and JS5-derived fibroblasts ~4.5% and ~11% respectively, 

as compared to ~23.5% in BJ-derived fibroblasts. Similarly, the fibroblasts grown in serum-enriched 

medium exhibited low number of ciliated cells in JS-derived fibroblasts as the number of ciliated 

fibroblasts was 4-fold higher in the fibroblast culture of the healthy control BJ than in the fibroblast 

culture of JS. These results are consistent with previous data reported on two JS patients with 

mutations in C5orf42 and analyzed after 4 days of starvation. (Asadollahi etal., 2018). Unexpectedly, 

we found no difference in the length of primary cilia in all the ciliated fibroblasts grown in both types 

of media between JS- and BJ-derived fibroblasts. The mean length of primary cilia  was found to be 

~4 µm which was within the normal range 1-6 µm (Schneider et al., 2005). Notably, another study 

has reported, under the same culture conditions, a significantly higher number of ciliated cells in both 

serum-enriched and serum-starved fibroblasts cultures of a healthy donor ~23% and ~53% 

respectively than in our healthy control BJ ~9.8% and 23.5% respectively (Nathwani et al., 2014). 

However, the variation in the number of ciliated cells could be attributed to low number of total cells 

counted in aforementioned report 30/129 cells and 30/57 cells in serum-enriched and serum-starved 

medium respectively (Nathwani et al., 2014) as compared to our study 285/2894 cells in serum-

enriched medium and  640/2670 cells in serum-starved medium. Interestingly, abnormally long 

dysmorphic cilia have been associated with compound heterozygous mutations in CEP290 gene in 

three JS patients. However, ciliogenesis was decreased in the fibroblasts of the three patients 

(Shimada et al., 2017). These results suggest that genetic defects in CC2D2A and C5orf42 contribute 

to the low number of ciliated cells in the JS-derived fibroblasts. In other words, ciliogenesis  affected 
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in patients with JS. This finding was supported by data from the cc2d2a (-/-) mouse embryonic 

fibroblasts (MEFs) which showed complete lack of cilia (Veleri et al., 2014). 
 

We have also examined the presence of primary cilia in JS2-, JS5-, and BJ-derived iPSCs grown only 

in complete NutriStem® hPSC XF complete Medium as iPSCs tend to die under serum-deprived 

conditions. In accordance with the results of our fibroblast lines, the number of ciliated JS-derived 

iPSCs was low with no significant differences in the ciliary length (~5-10 µm) as compared to the 

control iPSCs. In contrast, two previous studies have reported that the number of ciliated cells in H1 

hESCs (Kiprilov et al., 2008) and hiPSCs (Nathwani et al., 2014) derived from healthy donors and 

grown in serum-enriched conditions was ~33% and ~19% respectively as compared to ~7.9% in our 

control BJ iPSCs. These differences in the number of ciliated cells are likely due to variations in the 

number of days in culture (H1 hESCs:5 days, hiPSCs: 2 days, and BJ iPSC: 5 days) or the total 

number of cells counted (H1 hESCs: 25/75 cells, hiPSCs: 30/159 cells, and BJ iPSC: 2123/23373 

cells). However, prominent tiny red spots were observed in BJ- and JS2-derived iPSCs which we 

thought to be extremely short primary cilia that were in early ciliogenesis or normal intact cilia that 

have lost their axoneme by normal cilia disassembly mechanisms. It is important to note that 

ciliogenesis was decreased in our iPSCs compared to their parental fibroblasts and this was consistent 

with a previous study on hiPSCs (Nathwani et al., 2014).  Our experiments on JS- and BJ-derived 

NSCs have revealed significant differences in the number of ciliated cells between the healthy control 

and JS-derived NSCs. While the number of ciliated cells in JS2- and JS5-derived NSCs was ~2% and 

~0.8% respectively, it was as high as ~7% in BJ-derived NSCs. The ciliary length in NSCs showed 

no notable differences between the ciliated NSCs derived from JS patients and BJ (mean length was 

~5µm) consistent with our previous observations in JS- and BJ-derived ciliated fibroblasts and iPSCs. 

These findings suggest that unlike the reduced percentage of ciliated cells, ciliary length is not an 

established biomarker for JS or at least for JS caused by mutations in C5orf42 and CC2D2A. 

 

Furthermore, we carried out functional analysis to evaluate the ability of smoothened agonist (SAG) 

to induce the SHH signaling pathway in JS- and BJ-derived fibroblasts, iPSCs, NSCs, and neurons. 

To assess the effect of SAG stimulation on SHH signaling molecules Gli1, Gli2, Smo, and Ptch1 in 

these cells, we performed qPCR assays. The cells were SAG-stimulated for 24 hr in a complete 

medium except for the fibroblasts which were grown in a serum-starved medium. SAG-stimulated 

fibroblasts derived from JS2, JS5, and BJ showed that Gli1 was significantly down-regulated in both 

JS-derived fibroblast lines as compared to the healthy control BJ. In general, JS-derived fibroblasts 

showed a slight induction of Gli1 and Smo after 24 hr of SAG stimulation, while Gli2 and Ptch1 were 

not induced in SAG-stimulated fibroblasts of JS2, JS5, and BJ. These results are partially consistent 
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with results of a recent study showing similar pattern of Gli1 expression in fibroblasts obtained from 

two JS patients with compound heterozygous mutations in C5orf42 and healthy controls (Asadollahi 

etal., 2018). In contrast to our results the expression of Ptch1 in fibroblasts of the patients showed 

lower expression as compared to the controls. This variation could be due to duration of starvation 

and treatment with SAG as these cells were treated with SAG for 48 hr following 48 hr serum 

starvation. These results suggest that Gli1 expression in JS-derived fibroblasts is negatively affected 

by the genetic defects in C5orf42 and CC2D2A. In SAG-stimulated iPSCs, we found that SAG 

significantly enhanced Ptch1 expression only in the control, while it showed no effect on Gli1, Gli2, 

and Smo in both control and patient-derived iPSCs. In agreement with our results, two previous 

studies showed elevated Ptch1 expression in SAG-induced H1 hESCs (Kiprilov et al., 2008) and 

hiPSCs (Nathwani et al., 2014) obtained from healthy donors. However, a significant induction of 

Gli1 and Gli2 in H1 hESCs and Gli1, Gli2, and Smo in hiPSCs was revealed. It is important to note 

that H1 hESCs and hiPSCs were stimulated with SAG in a serum-starved medium for 18-20 hr, while 

our iPSCs were treated with SAG for 24 hr in complete NutriStem® hPSC XF complete Medium 

because iPSCs tend to die under serum-deprived conditions. These observations support the notion 

that serum-deprived conditions promote SHH signaling cascade and that SHH pathway is strictly 

regulated by the timing and concentration of SAG exposure. 

 

Taking into consideration the fact that JS is a neurological disorder and associated with dysregulation 

of SHH signaling pathway (Abdelhamed et al., 2013; Aguilar et al., 2012), we also evaluated the 

effect of SAG stimulation on the expression levels of Gli1, Gli2, Patch1, and Smo in JS- and BJ-

derived NSCs  and neurons. Upregulation of Gli1 and Ptch1 was observed in SAG-stimulated NSCs 

of the control BJ, while JS-derived NSCs showed no induction of these molecules.  Interestingly, in 

SAG-stimulated neurons, Gli1 showed a significant high expression in the control which was ~22-

folds and ~11-folds higher than in JS2 and JS5 respectively. Unexpectedly, Gli2 and Ptch1 were 

significantly downregulated in JS5-derived neurons following their treatment with SAG. It is 

noteworthy that after SAG stimulation the expression of Gli1 in BJ neurons was extremely higher 

(~10-folds) than in BJ NSCs. This was also noted to a lesser extent in JS-derived neurons and their 

corresponding NSCs. These results are supported by several previous findings in in vitro and in vivo 

models which showed high expression level of Gli1 in NSCs in the subventricular zone (SVZ) of 

adult mouse brain (Ihrie et al., 2011) and primary culture of the cortical/hippocampal cells (Bragina 

et al., 2010). Collectively, we have assessed the expression of SHH signal-related genes in fibroblasts, 

iPSCs, NSCs, and neurons derived from two JS patients with heterozygous and homozygous 

mutations in CC2D2A and C5orf42 respectively, and a healthy control BJ. Our results showed 



116 
 

significant differences in the expression levels of the signaling molecules in JS-derived cells as 

compared to the control and non-stimulated cells.  
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6. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The primary objective of this PhD thesis was to develop iPSC-based models of JS by reprogramming 

fibroblasts obtained from skin biopsies of five JS patients using a non-integrating reprogramming 

method. We have successfully generated and established JS-derived iPSC lines which were well-

characterized for stemness and pluripotent features. Our second objective was to establish neuronal 

models of JS by differentiating the generated JS-derived iPSCs into NSCs and subsequently into 

neurons. We selected JS2-, JS5-, and BJ-derived iPSC lines and established their corresponding 

neuronal models. The intermediate JS-derived NSC lines were characterized and cryopreserved to be 

utilized -instead of iPSCs- in the future as a readily available source of patient-specific cells that can 

be differentiated into specific neural lineage cells. We generated heterogenous neural populations 

from each NSC-line with dopaminergic neurons as a predominant population in all the cell cultures. 

These patient-specific neural cells serve as an indispensable in vitro JS models that will enable us to 

uncover the molecular and cellular mechanisms underlying the pathogenesis of JS and to develop 

therapeutic interventions for treatment of JS. 

 

The third objective of our study was to evaluate the effect of the genetic defects in JS-derived cells 

on the number and length of primary cilia in JS-derived fibroblasts, iPSCs, and NSCs. We confirmed 

the presence of primary cilia in all the cell types studied. As expected, we found a significantly 

decreased number of ciliated cells in all JS-derived cell cultures as compared to the healthy control 

and that could be attributed to defects in the ciliary genes CC2D2A and C5orf42 in patient-derived 

cells. Strikingly, despite the variation in the number of ciliated cells between the patients and control, 

no notable differences were found in the ciliary length between them. We suggest that variation in 

ciliary length cannot be utilized as a biomarker for JS or at least for C5orf42- and CC2D2A-related 

JS.  

 

Finally, the fourth objective of this study was to assess the expression patterns of the key molecules 

in SHH signaling pathway namely: Gli1, Gli2, Smo, and Ptch1 in JS-derived fibroblasts, iPSCs, 

NSCs, and neurons.  Our findings revealed alteration in the expression levels of these molecules in 

JS-derived cells as compared to the control and non-stimulated cells, especially for Gli1 that was 

markedly reduced in all the cell types analyzed, confirming the correlation between defects in the 

ciliary genes and dysregulation of SHH signaling pathway found in animal model studies.  

 

Future investigations are necessary for deciphering the role of primary cilia and JS-related genes in 

disease mechanisms and evaluating distinct therapeutic approaches. Our recommendations for further 

studies include, but not limited to, differentiation of JS-derived NSCs into Purkinje cells to assess the 



118 
 

functional defects in this type of neurons which are predominant in the cerebellum, development of 

cerebellar organoids from JS-derived NSCs for better understanding of development and progression 

of JS, development of JS-derived glia cells, the non-neuronal cells in the CNS and PNS that provide 

support and protection for neurons, due to the crucial role of neuronal-glial interactions in the CNS. 

Moreover, utilizing CRISPR/Cas9 genome-editing system to correct the genetic mutations in patient-

specific iPSCs as an approach for development of gene therapy and an in-depth study of the role of 

primary cilia and SHH signaling pathway in the pathogenesis of JS could be of great importance for 

development of effective cellular and chemical therapeutics for treatment of JS. 
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