On Hermitian varieties in $\operatorname{PG}\left(6, q^{2}\right)$

Angela Aguglia *
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
Luca Giuzzi ${ }^{\dagger}$
DICATAM, University of Brescia, Via Branze 53, I-25123 Brescia, Italy
Masaaki Homma
Department of Mathematics and Physics, Kanagawa University, Hiratsuka 259-1293, Japan

Received dd mmmm yyyy, accepted dd mmmmm yyyy, published online dd mmmmm yyyy

Abstract

In this paper we characterize the non-singular Hermitian variety $\mathcal{H}\left(6, q^{2}\right)$ of $\operatorname{PG}\left(6, q^{2}\right)$, $q \neq 2$ among the irreducible hypersurfaces of degree $q+1$ in $\operatorname{PG}\left(6, q^{2}\right)$ not containing solids by the number of its points and the existence of a solid S meeting it in $q^{4}+q^{2}+1$ points.

Keywords: unital, Hermitian variety, algebraic hypersurface.
Math. Subj. Class.: 51E21; 51E15; 51E20

1 Introduction

The set of all absolute points of a non-degenerate unitary polarity in $\operatorname{PG}\left(r, q^{2}\right)$ determines the Hermitian variety $\mathcal{H}\left(r, q^{2}\right)$. This is a non-singular algebraic hypersurface of degree $q+1$ in $\mathrm{PG}\left(r, q^{2}\right)$ with a number of remarkable properties, both from the geometrical and the combinatorial point of view; see [5, 16]. In particular, $\mathcal{H}\left(r, q^{2}\right)$ is a 2 -character set with respect to the hyperplanes of $\operatorname{PG}\left(r, q^{2}\right)$ and 3 -character blocking set with respect to the

[^0]lines of $\mathrm{PG}\left(r, q^{2}\right)$ for $r>2$. An interesting and widely investigated problem is to provide combinatorial descriptions of $\mathcal{H}\left(r, q^{2}\right)$ among all hypersurfaces of the same degree.

First, we observe that a condition on the number of points and the intersection numbers with hyperplanes is not in general sufficient to characterize Hermitian varieties; see [1],[2]. On the other hand, it is enough to consider in addition the intersection numbers with codimension 2 subspaces in order to get a complete description; see [7].

In general, a hypersurface \mathcal{H} of $\operatorname{PG}(r, q)$ is viewed as a hypersurface over the algebraic closure of $\operatorname{GF}(q)$ and a point of $\operatorname{PG}\left(r, q^{i}\right)$ in \mathcal{H} is called a $\operatorname{GF}\left(q^{i}\right)$-point. A $\operatorname{GF}(q)$-point of \mathcal{H} is also said to be a rational point of \mathcal{H}. Throughout this paper, the number of $\operatorname{GF}\left(q^{i}\right)-$ points of \mathcal{H} will be denoted by $N_{q^{i}}(\mathcal{H})$. For simplicity, we shall also use the convention $|\mathcal{H}|=N_{q}(\mathcal{H})$.

In the present paper, we shall investigate a combinatorial characterization of the Hermitian hypersurface $\mathcal{H}\left(6, q^{2}\right)$ in $\operatorname{PG}\left(6, q^{2}\right)$ among all hypersurfaces of the same degree having also the same number of $\operatorname{GF}\left(q^{2}\right)$-rational points.

More in detail, in $[12,13]$ it has been proved that if \mathcal{X} is a hypersurface of degree $q+1$ in $\mathrm{PG}\left(r, q^{2}\right), r \geq 3$ odd, with $|\mathcal{X}|=\left|\mathcal{H}\left(r, q^{2}\right)\right|=\left(q^{r+1}+(-1)^{r}\right)\left(q^{r}-(-1)^{r}\right) /\left(q^{2}-1\right)$ $\mathrm{GF}\left(q^{2}\right)$-rational points, not containing linear subspaces of dimension greater than $\frac{r-1}{2}$, then \mathcal{X} is a non-singular Hermitian variety of $\operatorname{PG}\left(r, q^{2}\right)$. This result generalizes the characterization of [8] for the Hermitian curve of $\operatorname{PG}\left(2, q^{2}\right), q \neq 2$.

The case where $r>4$ is even is, in general, currently open. A starting point for a characterization in arbitrary even dimension can be found in [3] where the case of a hypersurface \mathcal{X} of degree $q+1$ in $\operatorname{PG}\left(4, q^{2}\right), q>3$ is considered. There, it is shown that when \mathcal{X} has the same number of rational points as $\mathcal{H}\left(4, q^{2}\right)$, does not contain any subspaces of dimension greater than 1 and meets at least one plane π in $q^{2}+1 \mathrm{GF}\left(q^{2}\right)$-rational points, then \mathcal{X} is a Hermitian variety.

In this article we deal with hypersurfaces of degree $q+1$ in $\operatorname{PG}\left(6, q^{2}\right)$ and we prove that a characterization similar to that of [3] holds also in dimension 6 . We conjecture that this can be extended to arbitrary even dimension.

Theorem 1.1. Let S be a hypersurface of $\mathrm{PG}\left(6, q^{2}\right), q>2$, defined over $\operatorname{GF}\left(q^{2}\right)$, not containing solids. If the degree of S is $q+1$ and the number of its rational points is $q^{11}+q^{9}+q^{7}+q^{4}+q^{2}+1$, then every solid of $\operatorname{PG}\left(6, q^{2}\right)$ meets S in at least $q^{4}+q^{2}+1$ rational points. If there is at least a solid Σ_{3} such that $\left|\Sigma_{3} \cap S\right|=q^{4}+q^{2}+1$, then S is a non-singular Hermitian variety of $\mathrm{PG}\left(6, q^{2}\right)$.

Furthermore, we also extend the result obtained in [3] to the case $q=3$.

2 Preliminaries and notation

In this section we collect some useful information and results that will be crucial to our proof.

A Hermitian variety in $\mathrm{PG}\left(r, q^{2}\right)$ is the algebraic variety of $\mathrm{PG}\left(r, q^{2}\right)$ whose points $\langle v\rangle$ satisfy the equation $\eta(v, v)=0$ where η is a sesquilinear form $\operatorname{GF}\left(q^{2}\right)^{r+1} \times \operatorname{GF}\left(q^{2}\right)^{r+1} \rightarrow$ $\mathrm{GF}\left(q^{2}\right)$. The radical of the form η is the vector subspace of $\mathrm{GF}\left(q^{2}\right)^{r+1}$ given by

$$
\operatorname{Rad}(\eta):=\left\{w \in \operatorname{GF}\left(q^{2}\right)^{r+1}: \forall v \in \operatorname{GF}\left(q^{2}\right)^{r+1}, \eta(v, w)=0\right\}
$$

The form η is non-degenerate if $\operatorname{Rad}(\eta)=\{\mathbf{0}\}$. If the form η is non-degenerate, then the corresponding Hermitian variety is denoted by $\mathcal{H}\left(r, q^{2}\right)$ and it is non-singular, of degree
$q+1$ and contains

$$
\left(q^{r+1}+(-1)^{r}\right)\left(q^{r}-(-1)^{r}\right) /\left(q^{2}-1\right)
$$

$\mathrm{GF}\left(q^{2}\right)$-rational points. When η is degenerate we shall call vertex R_{t} of the degenerate Hermitian variety associated to η the projective subspace $R_{t}:=\operatorname{PG}(\operatorname{Rad}(\eta)):=\{\langle w\rangle: w \in$ $\operatorname{Rad}(\eta)\}$ of $\mathrm{PG}\left(r, q^{2}\right)$. A degenerate Hermitian variety can always be described as a cone of vertex R_{t} and basis a non-degenerate Hermitian variety $\mathcal{H}\left(r-t, q^{2}\right)$ disjoint from R_{t} where $t=\operatorname{dim}(\operatorname{Rad}(\eta))$ is the vector dimension of the radical of η. In this case we shall write the corresponding variety as $R_{t} \mathcal{H}\left(r-t, q^{2}\right)$. Indeed,

$$
R_{t} \mathcal{H}\left(r-t, q^{2}\right):=\left\{X \in\langle P, Q\rangle: P \in R_{t}, Q \in \mathcal{H}\left(r-t, q^{2}\right)\right\} .
$$

Any line of $\operatorname{PG}\left(r, q^{2}\right)$ meets a Hermitian variety (either degenerate or not) in either $1, q+1$ or $q^{2}+1$ points (the latter value only for $r>2$). The maximal dimension of projective subspaces contained in the non-degenerate Hermitian variety $\mathcal{H}\left(r, q^{2}\right)$ is $(r-$ $2) / 2$, if r is even, or $(r-1) / 2$, if r is odd. These subspaces of maximal dimension are called generators of $\mathcal{H}\left(r, q^{2}\right)$ and the generators of $\mathcal{H}\left(r, q^{2}\right)$ through a point P of $\mathcal{H}\left(r, q^{2}\right)$ span a hyperplane P^{\perp} of $\mathrm{PG}\left(r, q^{2}\right)$, the tangent hyperplane at P.

It is well known that this hyperplane meets $\mathcal{H}\left(r, q^{2}\right)$ in a degenerate Hermitian variety $P \mathcal{H}\left(r-2, q^{2}\right)$, that is in a Hermitian cone having as vertex the point P and as base a non-singular Hermitian variety of $\Theta \cong \mathrm{PG}\left(r-2, q^{2}\right)$ contained in P^{\perp} with $P \notin \Theta$.

Every hyperplane of $\operatorname{PG}\left(r, q^{2}\right)$, which is not tangent, meets $\mathcal{H}\left(r, q^{2}\right)$ in a non-singular Hermitian variety $\mathcal{H}\left(r-1, q^{2}\right)$, and is called a secant hyperplane of $\mathcal{H}\left(r, q^{2}\right)$. In particular, a tangent hyperplane contains

$$
1+q^{2}\left(q^{r-1}+(-1)^{r}\right)\left(q^{r-2}-(-1)^{r}\right) /\left(q^{2}-1\right)
$$

$\mathrm{GF}\left(q^{2}\right)$-rational points of $\mathcal{H}\left(r, q^{2}\right)$, whereas a secant hyperplane contains

$$
\left(q^{r}+(-1)^{r-1}\right)\left(q^{r-1}-(-1)^{r-1}\right) /\left(q^{2}-1\right)
$$

$\mathrm{GF}\left(q^{2}\right)$-rational points of $\mathcal{H}\left(r, q^{2}\right)$.
We now recall several results which shall be used in the course of this paper.
Lemma 2.1 ([15]). Let d be an integer with $1 \leq d \leq q+1$ and let \mathcal{C} be a curve of degree d in $\mathrm{PG}(2, q)$ defined over $\operatorname{GF}(q)$, which may have $\operatorname{GF}(q)$-linear components. Then the number of its rational points is at most $d q+1$ and $N_{q}(\mathcal{C})=d q+1$ if and only if \mathcal{C} is a pencil of d lines of $\mathrm{PG}(2, q)$.

Lemma 2.2 ([10]). Let d be an integer with $2 \leq d \leq q+2$, and \mathcal{C} a curve of degree d in $\mathrm{PG}(2, q)$ defined over $\mathrm{GF}(q)$ without any $\mathrm{GF}(q)$-linear components. Then $N_{q}(\mathcal{C}) \leq$ $(d-1) q+1$, except for a class of plane curves of degree 4 over $\mathrm{GF}(4)$ having 14 rational points.

Lemma 2.3 ([11]). Let \mathcal{S} be a surface of degree d in $\operatorname{PG}(3, q)$ over $\operatorname{GF}(q)$. Then

$$
N_{q}(\mathcal{S}) \leq d q^{2}+q+1
$$

Lemma 2.4 ([8]). Suppose $q \neq 2$. Let \mathcal{C} be a plane curve over $\operatorname{GF}\left(q^{2}\right)$ of degree $q+1$ without $\mathrm{GF}\left(q^{2}\right)$-linear components. If \mathcal{C} has $q^{3}+1$ rational points, then \mathcal{C} is a Hermitian curve.

Lemma 2.5 ([7]). A subset of points of $\mathrm{PG}\left(r, q^{2}\right)$ having the same intersection numbers with respect to hyperplanes and spaces of codimension 2 as non-singular Hermitian varieties, is a non-singular Hermitian variety of $\mathrm{PG}\left(r, q^{2}\right)$.

From [9, Th 23.5.1,Th 23.5.3] we have the following.
Lemma 2.6. If \mathcal{W} is a set of $q^{7}+q^{4}+q^{2}+1$ points of $\mathrm{PG}\left(4, q^{2}\right), q>2$, such that every line of $\mathrm{PG}\left(4, q^{2}\right)$ meets \mathcal{W} in $1, q+1$ or $q^{2}+1$ points, then \mathcal{W} is a Hermitian cone with vertex a line and base a unital.

Finally, we recall that a blocking set with respect to lines of $\mathrm{PG}(r, q)$ is a point set which blocks all the lines, i.e., intersects each line of $\operatorname{PG}(r, q)$ in at least one point.

3 Proof of Theorem 1.1

We first provide an estimate on the number of points of a curve of degree $q+1$ in $\operatorname{PG}\left(2, q^{2}\right)$, where q is any prime power.

Lemma 3.1. Let \mathcal{C} be a plane curve over $\operatorname{GF}\left(q^{2}\right)$, without $\operatorname{GF}\left(q^{2}\right)$-lines as components and of degree $q+1$. If the number of $\mathrm{GF}\left(q^{2}\right)$-rational points of \mathcal{C} is $N<q^{3}+1$, then

$$
N \leq \begin{cases}q^{3}-\left(q^{2}-2\right) & \text { if } q>3 \tag{3.1}\\ 24 & \text { if } q=3 \\ 8 & \text { if } q=2\end{cases}
$$

Proof. We distinguish the following three cases:
(a) \mathcal{C} has two or more $\operatorname{GF}\left(q^{2}\right)$-components;
(b) \mathcal{C} is irreducible over $\operatorname{GF}\left(q^{2}\right)$, but not absolutely irreducible;
(c) \mathcal{C} is absolutely irreducible.

Suppose first $q \neq 2$.
Case (a) Suppose $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$. Let d_{i} be the degree of \mathcal{C}_{i}, for each $i=1,2$. Hence $d_{1}+d_{2}=q+1$. By Lemma 2.2,

$$
N \leq N_{q^{2}}\left(\mathcal{C}_{1}\right)+N_{q^{2}}\left(\mathcal{C}_{2}\right) \leq[(q+1)-2] q^{2}+2=q^{3}-\left(q^{2}-2\right)
$$

Case (b) Let \mathcal{C}^{\prime} be an irreducible component of \mathcal{C} over the algebraic closure of $\operatorname{GF}\left(q^{2}\right)$. Let $\operatorname{GF}\left(q^{2 t}\right)$ be the minimum defining field of \mathcal{C}^{\prime} and σ be the Frobenius morphism of $\operatorname{GF}\left(q^{2 t}\right)$ over GF (q^{2}). Then

$$
\mathcal{C}=\mathcal{C}^{\prime} \cup \mathcal{C}^{\prime \sigma} \cup \mathcal{C}^{\prime \sigma^{2}} \cup \ldots \cup \mathcal{C}^{\prime \sigma^{t-1}}
$$

and the degree of \mathcal{C}^{\prime}, say e, satisfies $q+1=t e$ with $e>1$. Hence any $\operatorname{GF}\left(q^{2}\right)$-rational point of \mathcal{C} is contained in $\cap_{i=0}^{t-1} \mathcal{C}^{\prime \sigma^{i}}$. In particular, $N \leq e^{2} \leq\left(\frac{q+1}{2}\right)^{2}$ by Bezout's Theorem and $\left(\frac{q+1}{2}\right)^{2}<q^{3}-\left(q^{2}-2\right)$.
Case (c) Let \mathcal{C} be an absolutely irreducible curve over $\operatorname{GF}\left(q^{2}\right)$ of degree $q+1$. Either \mathcal{C} has a singular point or not.

In general, an absolutely irreducible plane curve over $\operatorname{GF}\left(q^{2}\right)$ is q^{2}-Frobenius nonclassical if for a general point $P\left(x_{0}, x_{1}, x_{2}\right)$ of it the point $P^{q^{2}}=P^{q^{2}}\left(x_{0}^{q^{2}}, x_{1}^{q^{2}}, x_{2}^{q^{2}}\right)$ is on
the tangent line to the curve at the point P. Otherwise, the curve is said to be Frobenius classical. A lower bound of the number of $\operatorname{GF}\left(q^{2}\right)$-points for q^{2}-Frobenius non-classical curves is given by [6, Corollary 1.4]: for a q^{2}-Frobenius non-classical curve \mathcal{C}^{\prime} of degree d, we have $N_{q^{2}}\left(\mathcal{C}^{\prime}\right) \geq d\left(q^{2}-d+2\right)$. In particular, if $d=q+1$, the lower bound is just $q^{3}+1$.

Going back to our original curve \mathcal{C}, we know \mathcal{C} is Frobenius classical because $N<$ $q^{3}+1$. Let $F(x, y, z)=0$ be an equation of \mathcal{C} over $\operatorname{GF}\left(q^{2}\right)$. We consider the curve \mathcal{D} defined by $\frac{\partial F}{\partial x} x^{q^{2}}+\frac{\partial F}{\partial y} y^{q^{2}}+\frac{\partial F}{\partial z} z^{q^{2}}=0$. Then \mathcal{C} is not a component of \mathcal{D} because \mathcal{C} is Frobenius classical. Furthermore, any $\operatorname{GF}\left(q^{2}\right)$-point P lies on $\mathcal{C} \cap \mathcal{D}$ and the intersection multiplicity of \mathcal{C} and \mathcal{D} at P is at least 2 by Euler's theorem for homogeneous polynomials. Hence by Bézout's theorem, $2 N \leq(q+1)\left(q^{2}+q\right)$. Hence

$$
N \leq \frac{1}{2} q(q+1)^{2} .
$$

This argument is due to Stöhr and Voloch [18, Theorem 1.1]. This Stöhr and Voloch's bound is lower than the estimate for N in case (a) for $q>4$ and it is the same for $q=4$. When $q=3$ the bound in case (a) is smaller than the Stöhr and Voloch's bound.
Finally, we consider the case $q=2$. Under this assumption, \mathcal{C} is a cubic curve and neither case (a) nor case (b) might occur. For a degree 3 curve over $\operatorname{GF}\left(q^{2}\right)$ the Stöhr and Voloch's bound is loose, thus we need to change our argument. If \mathcal{C} has a singular point, then \mathcal{C} is a rational curve with a unique singular point. Since the degree of \mathcal{C} is 3 , singular points are either cusps or ordinary double points. Hence $N \in\{4,5,6\}$. If \mathcal{C} is nonsingular, then it is an elliptic curve and, by the Hasse-Weil bound, see [19], $N \in I$ where $I=\{1,2, \ldots, 9\}$ and for each number N belonging to I there is an elliptic curve over GF(4) with N points, from [14, Theorem 4.2]. This completes the proof.

Henceforth, we shall always suppose $q>2$ and we denote by \mathcal{S} an algebraic hypersurface of $\operatorname{PG}\left(6, q^{2}\right)$ satisfying the following hypotheses of Theorem 1.1:
(S1) \mathcal{S} is an algebraic hypersurface of degree $q+1$ defined over $\operatorname{GF}\left(q^{2}\right)$;

$$
\begin{equation*}
|\mathcal{S}|=q^{11}+q^{9}+q^{7}+q^{4}+q^{2}+1 \tag{S2}
\end{equation*}
$$

(S3) \mathcal{S} does not contain projective 3 -spaces (solids);
(S4) there exists a solid Σ_{3} such that $\left|\mathcal{S} \cap \Sigma_{3}\right|=q^{4}+q^{2}+1$.
We first consider the behavior of \mathcal{S} with respect to the lines.
Lemma 3.2. An algebraic hypersurface \mathcal{T} of degree $q+1$ in $\operatorname{PG}\left(r, q^{2}\right), q \neq 2$, with $|\mathcal{T}|=\left|\mathcal{H}\left(r, q^{2}\right)\right|$ is a blocking set with respect to lines of $\operatorname{PG}\left(r, q^{2}\right)$
Proof. Suppose on the contrary that there is a line ℓ of $\mathrm{PG}\left(r, q^{2}\right)$ which is disjoint from \mathcal{T}. Let α be a plane containing ℓ. The algebraic plane curve $\mathcal{C}=\alpha \cap \mathcal{T}$ of degree $q+1$ cannot have $\operatorname{GF}\left(q^{2}\right)$-linear components and hence it has at most $q^{3}+1$ points because of Lemma 2.2. If \mathcal{C} had $q^{3}+1$ rational points, then from Lemma 2.4, \mathcal{C} would be a Hermitian curve with an external line, a contradiction since Hermitian curves are blocking sets. Thus $N_{q^{2}}(\mathcal{C}) \leq q^{3}$. Since $q>2$, by Lemma 3.1, $N_{q^{2}}(\mathcal{C})<q^{3}-1$ and hence every plane through r meets \mathcal{T} in at most $q^{3}-1$ rational points. Consequently, by considering all planes through r, we can bound the number of rational points of \mathcal{T} by $N_{q^{2}}(\mathcal{T}) \leq\left(q^{3}-1\right) \frac{q^{2 r-4}-1}{q^{2}-1}=$
$q^{2 r-3}+\cdots<\left|\mathcal{H}\left(r, q^{2}\right)\right|$, which is a contradiction. Therefore there are no external lines to \mathcal{T} and so \mathcal{T} is a blocking set w.r.t. lines of $\operatorname{PG}\left(r, q^{2}\right)$.

Remark 3.3. The proof of [3, Lemma 3.1] would work perfectly well here under the assumption $q>3$. The alternative argument of Lemma 3.2 is simpler and also holds for $q=3$.

By the previous Lemma and assumptions (S1) and (S2), \mathcal{S} is a blocking set for the lines of $\mathrm{PG}\left(6, q^{2}\right)$ In particular, the intersection of \mathcal{S} with any 3 -dimensional subspace Σ of $\operatorname{PG}\left(6, q^{2}\right)$ is also a blocking set with respect to lines of Σ and hence it contains at least $q^{4}+q^{2}+1 \mathrm{GF}\left(q^{2}\right)$-rational points; see [4].

Lemma 3.4. Let Σ_{3} be a solid of $\mathrm{PG}\left(6, q^{2}\right)$ satisfying condition ($S 4$), that is Σ_{3} meets \mathcal{S} in exactly $q^{4}+q^{2}+1$ points. Then, $\Pi:=\mathcal{S} \cap \Sigma_{3}$ is a plane.

Proof. $\mathcal{S} \cap \Sigma_{3}$ must be a blocking set for the lines of $\operatorname{PG}\left(3, q^{2}\right)$; also it has size $q^{4}+q^{2}+1$. It follows from [4] that $\Pi:=\mathcal{S} \cap \Sigma_{3}$ is a plane.

Lemma 3.5. Let Σ_{3} be a solid of satisfying condition (S4). Then, any 4-dimensional projective space Σ_{4} through Σ_{3} meets \mathcal{S} in a Hermitian cone with vertex a line and basis a Hermitian curve.

Proof. Consider all of the $q^{6}+q^{4}+q^{2}+1$ subspaces $\bar{\Sigma}_{3}$ of dimension 3 in $\operatorname{PG}\left(6, q^{2}\right)$ containing Π.

From Lemma 2.3 and condition (S3) we have $\left|\bar{\Sigma}_{3} \cap \mathcal{S}\right| \leq q^{5}+q^{4}+q^{2}+1$. Hence,

$$
|\mathcal{S}|=\left(q^{7}+1\right)\left(q^{4}+q^{2}+1\right) \leq\left(q^{6}+q^{4}+q^{2}\right) q^{5}+q^{4}+q^{2}+1=|\mathcal{S}|
$$

Consequently, $\left|\bar{\Sigma}_{3} \cap \mathcal{S}\right|=q^{5}+q^{4}+q^{2}+1$ for all $\bar{\Sigma}_{3} \neq \Sigma_{3}$ such that $\Pi \subset \bar{\Sigma}_{3}$.
Let $C:=\Sigma_{4} \cap \mathcal{S}$. Counting the number of rational points of C by considering the intersections with the $q^{2}+1$ subspaces Σ_{3}^{\prime} of dimension 3 in Σ_{4} containing the plane Π we get

$$
|C|=q^{2} \cdot q^{5}+q^{4}+q^{2}+1=q^{7}+q^{4}+q^{2}+1
$$

In particular, $C \cap \Sigma_{3}^{\prime}$ is a maximal surface of degree $q+1$; so it must split in $q+1$ distinct planes through a line of Π; see [17]. So C consists of $q^{3}+1$ distinct planes belonging to distinct q^{2} pencils, all containing Π; denote by \mathcal{L} the family of these planes. Also for each $\Sigma_{3}^{\prime} \neq \Sigma_{3}$, there is a line ℓ^{\prime} such that all the planes of \mathcal{L} in Σ_{3}^{\prime} pass through ℓ^{\prime}. It is now straightforward to see that any line contained in C must necessarily belong to one of the planes of \mathcal{L} and no plane not in \mathcal{L} is contained in C.

In order to get the result it is now enough to show that a line of Σ_{4} meets C in either 1, $q+1$ or $q^{2}+1$ points. To this purpose, let ℓ be a line of Σ_{4} and suppose $\ell \nsubseteq C$. Then, by Bezout's theorem,

$$
1 \leq|\ell \cap C| \leq q+1
$$

Assume $|\ell \cap C|>1$. Then we can distinguish two cases:

1. $\ell \cap \Pi \neq \emptyset$. If ℓ and Π are incident, then we can consider the 3 -dimensional subspace $\Sigma_{3}^{\prime}:=\langle\ell, \Pi\rangle$. Then ℓ must meet each plane of \mathcal{L} in Σ_{3}^{\prime} in different points (otherwise ℓ passes through the intersection of these planes and then $|\ell \cap C|=1$). As there are $q+1$ planes of \mathcal{L} in Σ_{3}^{\prime}, we have $|\ell \cap C|=q+1$.
2. $\ell \cap \Pi=\emptyset$. Consider the plane Λ generated by a point $P \in \Pi$ and ℓ. Clearly $\Lambda \notin \mathcal{L}$. The curve $\Lambda \cap S$ has degree $q+1$ by construction, does not contain lines (for otherwise $\Lambda \in \mathcal{L}$) and has $q^{3}+1 \operatorname{GF}\left(q^{2}\right)$-rational points (by a counting argument). So from Lemma 2.4 it is a Hermitian curve. It follows that ℓ is a $q+1$ secant.

We can now apply Lemma 2.6 to see that C_{1} is a Hermitian cone with vertex a line.
Lemma 3.6. Let Σ_{3} be a space satisfying condition (S4) and take Σ_{5} to be a 5 -dimensional projective space with $\Sigma_{3} \subseteq \Sigma_{5}$. Then $\mathcal{S} \cap \Sigma_{5}$ is a Hermitian cone with vertex a point and basis a Hermitian hypersurface $\mathcal{H}\left(4, q^{2}\right)$.

Proof. Let

$$
\Sigma_{4}:=\Sigma_{4}^{1}, \Sigma_{4}^{2}, \ldots, \Sigma_{4}^{q^{2}+1}
$$

be the 4 -spaces through Σ_{3} contained in Σ_{5}. Put $C_{i}:=\Sigma_{4}^{i} \cap \mathcal{S}$, for all $i \in\left\{1, \ldots, q^{2}+1\right\}$ and $\Pi=\Sigma_{3} \cap \mathcal{C}_{1}$. From Lemma $3.5 C_{i}$ is a Hermitian cone with vertex a line, say ℓ_{i}. Furthermore $\Pi \subseteq \Sigma_{3} \subseteq \Sigma_{4}^{i}$ where Π is a plane. Choose a plane $\Pi^{\prime} \subseteq \Sigma_{4}^{1}$ such that $m:=\Pi^{\prime} \cap C_{1}$ is a line m incident with Π but not contained in it. Let $P_{1}:=m \cap \Pi$. It is straightforward to see that in Σ_{4}^{1} there is exactly 1 plane through m which is a $\left(q^{4}+q^{2}+1\right)$ secant, q^{4} planes which are $\left(q^{3}+q^{2}+1\right)$-secant and q^{2} planes which are $\left(q^{2}+1\right)$-secant. Also P_{1} belongs to the line ℓ_{1}. There are now two cases to consider:
(a) There is a plane $\Pi^{\prime \prime} \neq \Pi^{\prime}$ not contained in Σ_{4}^{i} for all $i=1, \ldots, q^{2}+1$ with $m \subseteq \Pi^{\prime \prime} \subseteq$ $S \cap \Sigma_{5}$.

We first show that the vertices of the cones C_{i} are all concurrent. Consider $m_{i}:=$ $\Pi^{\prime \prime} \cap \Sigma_{4}^{i}$. Then $\left\{m_{i}: i=1, \ldots, q^{2}+1\right\}$ consists of $q^{2}+1$ lines (including m) all through P_{1}. Observe that for all i, the line m_{i} meets the vertex ℓ_{i} of the cone C_{i} in $P_{i} \in \Pi$. This forces $P_{1}=P_{2}=\cdots=P_{q^{2}+1}$. So $P_{1} \in \ell_{1}, \ldots, \ell_{q^{2}+1}$.
Now let $\bar{\Sigma}_{4}$ be a 4 -dimensional space in Σ_{5} with $P_{1} \notin \bar{\Sigma}_{4}$; in particular $\Pi \nsubseteq \bar{\Sigma}_{4}$. Put also $\bar{\Sigma}_{3}:=\Sigma_{4}^{1} \cap \bar{\Sigma}_{4}$. Clearly, $r:=\bar{\Sigma}_{3} \cap \Pi$ is a line and $P_{1} \notin r$. So $\bar{\Sigma}_{3} \cap \mathcal{S}$ cannot be the union of $q+1$ planes, since if this were to be the case, these planes would have to pass through the vertex ℓ_{1}. It follows that $\bar{\Sigma}_{3} \cap \mathcal{S}$ must be a Hermitian cone with vertex a point and basis a Hermitian curve. Let $\mathcal{W}:=\bar{\Sigma}_{4} \cap \mathcal{S}$. The intersection $\mathcal{W} \cap \Sigma_{4}^{i}$ as i varies is a Hermitian cone with basis a Hermitian curve, so, the points of \mathcal{W} are

$$
|\mathcal{W}|=\left(q^{2}+1\right) q^{5}+q^{2}+1=\left(q^{2}+1\right)\left(q^{5}+1\right) ;
$$

in particular, \mathcal{W} is a hypersurface of $\bar{\Sigma}_{4}$ of degree $q+1$ such that there exists a plane of $\bar{\Sigma}_{4}$ meeting \mathcal{W} in just one line (such planes exist in $\bar{\Sigma}_{3}$). Also suppose \mathcal{W} to contain planes and let $\Pi^{\prime \prime \prime} \subseteq \mathcal{W}$ be such a plane. Since $\Sigma_{4}^{i} \cap \mathcal{W}$ does not contain planes, all Σ_{4}^{i} meet $\Pi^{\prime \prime \prime}$ in a line t_{i}. Also $\Pi^{\prime \prime \prime}$ must be contained in $\bigcup_{i=1}^{q^{2}+1} t_{i}$. This implies that the set $\left\{t_{i}\right\}_{i=1, \ldots, q^{2}+1}$ consists of $q^{2}+1$ lines through a point $P \in \Pi \backslash\left\{P_{1}\right\}$.
Furthermore each line t_{i} passing through P must meet the radical line ℓ_{i} of the Hermitian cone $\mathcal{S} \cap \Sigma_{4}^{i}$ and this forces P to coincide with P_{1}, a contradiction. It follows that \mathcal{W} does not contain planes.

So by the characterization of $\mathcal{H}\left(4, q^{2}\right)$ of [3] we have that \mathcal{W} is a Hermitian variety $\mathcal{H}\left(4, q^{2}\right)$.

We also have that $\left|\mathcal{S} \cap \Sigma_{5}\right|=\left|P_{1} \mathcal{H}\left(4, q^{2}\right)\right|$. Let now r be any line of $\mathcal{H}\left(4, q^{2}\right)=\mathcal{S} \cap \bar{\Sigma}_{4}$ and let Θ be the plane $\left\langle r, P_{1}\right\rangle$. The plane Θ meets Σ_{4}^{i} in a line $q_{i} \subseteq \mathcal{S}$ for each $i=1, \ldots, q^{2}+1$ and these lines are concurrent in P_{1}. It follows that all the points of Θ are in S. This completes the proof for the current case and shows that $\mathcal{S} \cap \Sigma_{5}$ is a Hermitian cone $P_{1} \mathcal{H}\left(4, q^{2}\right)$.
(b) All planes $\Pi^{\prime \prime}$ with $m \subseteq \Pi^{\prime \prime} \subseteq \mathcal{S} \cap \Sigma_{5}$ are contained in Σ_{4}^{i} for some $i=1, \ldots, q^{2}+1$. We claim that this case cannot happen. We can suppose without loss of generality $m \cap \ell_{1}=P_{1}$ and $P_{1} \notin \ell_{i}$ for all $i=2, \ldots, q^{2}+1$. Since the intersection of the subspaces Σ_{4}^{i} is Σ_{3}, there is exactly one plane through m in Σ_{5} which is $\left(q^{4}+q^{2}+1\right)$ secant, namely the plane $\left\langle\ell_{1}, m\right\rangle$. Furthermore, in Σ_{4}^{1} there are q^{4} planes through m which are $\left(q^{3}+q^{2}+1\right)$-secant and q^{2} planes which are $\left(q^{2}+1\right)$-secant. We can provide an upper bound to the points of $\mathcal{S} \cap \Sigma_{5}$ by counting the number of points of $\mathcal{S} \cap \Sigma_{5}$ on planes in Σ_{5} through m and observing that a plane through m not in Σ_{5} and not contained in \mathcal{S} has at most $q^{3}+q^{2}+1$ points in common with $\mathcal{S} \cap \Sigma_{5}$. So

$$
\left|\mathcal{S} \cap \Sigma_{5}\right| \leq q^{6} \cdot q^{3}+q^{7}+q^{4}+q^{2}+1
$$

As $\left|\mathcal{S} \cap \Sigma_{5}\right|=q^{9}+q^{7}+q^{4}+q^{2}+1$, all planes through m which are neither $\left(q^{4}+q^{2}+1\right)$ secant nor $\left(q^{2}+1\right)$-secant are $\left(q^{3}+q^{2}+1\right)$-secant. That is to say that all of these planes meet \mathcal{S} in a curve of degree $q+1$ which must split into $q+1$ lines through a point because of Lemma 2.1.
Take now $P_{2} \in \Sigma_{4}^{2} \cap \mathcal{S}$ and consider the plane $\Xi:=\left\langle m, P_{2}\right\rangle$. The line $\left\langle P_{1}, P_{2}\right\rangle$ is contained in Σ_{4}^{2}; so it must be a $(q+1)$-secant, as it does not meet the vertex line ℓ_{2} of C_{2} in Σ_{4}^{2}. Now, Ξ meets every of Σ_{4}^{i} for $i=2, \ldots, q^{2}+1$ in a line through P_{1} which is either a 1 -secant or a $q+1$-secant; so

$$
|\mathcal{S} \cap \Xi| \leq q^{2}(q)+q^{2}+1=q^{3}+q^{2}+1
$$

It follows $|\mathcal{S} \cap \Xi|=q^{3}+q^{2}+1$ and $\mathcal{S} \cap \Xi$ is a set of $q+1$ lines all through the point P_{1}. This contradicts our previous construction.

Lemma 3.7. Every hyperplane of $\mathrm{PG}\left(6, q^{2}\right)$ meets \mathcal{S} either in a non-singular Hermitian variety $\mathcal{H}\left(5, q^{2}\right)$ or in a cone over a Hermitian hypersurface $\mathcal{H}\left(4, q^{2}\right)$.
Proof. Let Σ_{3} be a solid satisfying condition (S4). Denote by Λ a hyperplane of $\operatorname{PG}\left(6, q^{2}\right)$. If Λ contains Σ_{3} then, from Lemma 3.6 it follows that $\Lambda \cap \mathcal{S}$ is a Hermitian cone $P \mathcal{H}\left(4, q^{2}\right)$.

Now assume that Λ does not contain Σ_{3}. Denote by S_{5}^{j}, with $j=1, \ldots, q^{2}+1$ the $q^{2}+1$ hyperplanes through Σ_{4}^{1}, where as before, Σ_{4}^{1} is a 4 -space containing Σ_{3}. By Lemma 3.6 again we get that $S_{5}^{j} \cap \mathcal{S}=P^{j} \mathcal{H}\left(4, q^{2}\right)$. We count the number of rational points of $\Lambda \cap \mathcal{S}$ by studying the intersections of $S_{5}^{j} \cap \mathcal{S}$ with Λ for all $j \in\left\{1, \ldots, q^{2}+1\right\}$. Setting $\mathcal{W}_{j}:=S_{5}^{j} \cap \mathcal{S} \cap \Lambda, \Omega:=\Sigma_{4}^{1} \cap \mathcal{S} \cap \Lambda$ then

$$
|\mathcal{S} \cap \Lambda|=\sum_{j}\left|\mathcal{W}_{j} \backslash \Omega\right|+|\Omega|
$$

If Π is a plane of Λ then Ω consists of $q+1$ planes of a pencil. Otherwise let m be the line in which Λ meets the plane Π. Then Ω is either a Hermitian cone $P_{0} \mathcal{H}\left(2, q^{2}\right)$, or $q+1$
planes of a pencil, according as the vertex $P^{j} \in \Pi$ is an external point with respect to m or not.

In the former case \mathcal{W}_{j} is a non singular Hermitian variety $\mathcal{H}\left(4, q^{2}\right)$ and thus $|\mathcal{S} \cap \Lambda|=$ $\left(q^{2}+1\right)\left(q^{7}\right)+q^{5}+q^{2}+1=q^{9}+q^{7}+q^{5}+q^{2}+1$.

In the case in which Ω consists of $q+1$ planes of a pencil then \mathcal{W}_{j} is either a $P_{0} \mathcal{H}\left(3, q^{2}\right)$ or a Hermitian cone with vertex a line and basis a Hermitian curve $\mathcal{H}\left(2, q^{2}\right)$.

If there is at least one index j such that $\mathcal{W}_{j}=\ell_{1} \mathcal{H}\left(2, q^{2}\right)$ then, there must be a 3 dimensional space Σ_{3}^{\prime} of $S_{5}^{j} \cap \Lambda$ meeting \mathcal{S} in a generator. Hence, from Lemma 3.6 we get that $\mathcal{S} \cap \Lambda$ is a Hermitian cone $P^{\prime} \mathcal{H}\left(4, q^{2}\right)$.

Assume that for all $j \in\left\{1, \ldots, q^{2}+1\right\}, \mathcal{W}_{j}$ is a $P_{0} \mathcal{H}\left(3, q^{2}\right)$. In this case
$|\mathcal{S} \cap \Lambda|=\left(q^{2}+1\right) q^{7}+(q+1) q^{4}+q^{2}+1=q^{9}+q^{7}+q^{5}+q^{4}+q^{2}+1=\left|\mathcal{H}\left(5, q^{2}\right)\right|$.
We are going to prove that the intersection numbers of \mathcal{S} with hyperplanes are only two that is $q^{9}+q^{7}+q^{5}+q^{4}+q^{2}+1$ or $q^{9}+q^{7}+q^{4}+q^{2}+1$.

Denote by x_{i} the number of hyperplanes meeting \mathcal{S} in i rational points with $i \in\left\{q^{9}+\right.$ $\left.q^{7}+q^{4}+q^{2}+1, q^{9}+q^{7}+q^{5}+q^{2}+1, q^{9}+q^{7}+q^{5}+q^{4}+q^{2}+1\right\}$. Double counting arguments give the following equations for the integers x_{i} :

$$
\left\{\begin{array}{l}
\sum_{i} x_{i}=q^{12}+q^{10}+q^{8}+q^{6}+q^{4}+q^{2}+1 \tag{3.2}\\
\sum_{i} i x_{i}=|\mathcal{S}|\left(q^{10}+q^{8}+q^{6}+q^{4}+q^{2}+1\right) \\
\sum_{i=1} i(i-1) x_{i}=|\mathcal{S}|(|\mathcal{S}|-1)\left(q^{8}+q^{6}+q^{4}+q^{2}+1\right)
\end{array}\right.
$$

Solving (3.2) we obtain $x_{q^{9}+q^{7}+q^{5}+q^{2}+1}=0$. In the case in which $|\mathcal{S} \cap \Lambda|=\left|\mathcal{H}\left(5, q^{2}\right)\right|$, since $\mathcal{S} \cap \Lambda$ is an algebraic hypersurface of degree $q+1$ not containing 3 -spaces, from [19, Theorem 4.1] we get that $\mathcal{S} \cap \Lambda$ is a Hermitian variety $\mathcal{H}\left(5, q^{2}\right)$ and this completes the proof.

Proof of Theorem 1.1. The first part of Theorem 1.1 follows from Lemma 3.4. From Lemma 3.7, \mathcal{S} has the same intersection numbers with respect to hyperplanes and 4 -spaces as a non-singular Hermitian variety of $\operatorname{PG}\left(6, q^{2}\right)$, hence Lemma 2.5 applies and \mathcal{S} turns out to be a $\mathcal{H}\left(6, q^{2}\right)$.

Remark 3.8. The characterization of the non-singular Hermitian variety $\mathcal{H}\left(4, q^{2}\right)$ given in [3] is based on the property that a given hypersurface is a blocking set with respect to lines of $\operatorname{PG}\left(4, q^{2}\right)$, see [3, Lemma 3.1]. This lemma holds when $q>3$. Since Lemma 3.2 extends the same property to the case $q=3$ it follows that the result stated in [3] is also valid in $\operatorname{PG}\left(4,3^{2}\right)$.

4 Conjecture

We propose a conjecture for the general $2 n$-dimensional case.
Let \mathcal{S} be a hypersurface of $\mathrm{PG}\left(2 d, q^{2}\right), q>2$, defined over $\mathrm{GF}\left(q^{2}\right)$, not containing d dimensional projective subspaces. If the degree of \mathcal{S} is $q+1$ and the number of its rational points is $\left|\mathcal{H}\left(2 d, q^{2}\right)\right|$, then every d-dimensional subspace of $\mathrm{PG}\left(2 d, q^{2}\right)$ meets \mathcal{S} in at least $\theta_{q^{2}}(d-1):=\left(q^{2 d-2}-1\right) /\left(q^{2}-1\right)$ rational points. If there is at least a d-dimensional
subspace Σ_{d} such that $\left|\Sigma_{d} \cap \mathcal{S}\right|=\left|\mathrm{PG}\left(d-1, q^{2}\right)\right|$, then \mathcal{S} is a non-singular Hermitian variety of $\mathrm{PG}\left(2 d, q^{2}\right)$.

Lemma 3.1 and Lemma 3.2 can be a starting point for the proof of this conjecture since from them we get that \mathcal{S} is a blocking set with respect to lines of $\mathrm{PG}\left(2 d, q^{2}\right)$.

References

[1] A. Aguglia, A. Cossidente, G. Korchmáros, On quasi-Hermitian varieties, J. Combin. Des., 20 (2012), 433-447.
[2] A. Aguglia, Quasi-Hermitian varieties in $\operatorname{PG}\left(r, q^{2}\right), q$ even, Contrib. Discrete Math., $\mathbf{8}$ (2013), 31-37.
[3] A. Aguglia, F. Pavese, On non-singular Hermitian varieties of $\operatorname{PG}\left(4, q^{2}\right)$, Discrete Mathematics, 343 (2020), 1-5.
[4] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966), 96-104.
[5] R. C. Bose, I. M. Chakravarti, Hermitian varieties in a finite projective space $\operatorname{PG}\left(n, q^{2}\right)$, Canad. J. Math. 18 (1966), 1161-1182.
[6] H. Borges, M. Homma, Points on singular Frobenius nonclassical curves, Bull. Braz. Math. Soc. New Series 48 (2017), 93-101.
[7] S. De Winter, J. Schillewaert, Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2, Combinatorica $\mathbf{3 0}$ (2010), n. 1, 2545.
[8] J. W. P. Hirschfeld, L. Storme, J. A. Thas, J. F. Voloch, A characterization of Hermitian curves, J. Geom. 41 (1991), n. 1-2, 72-78.
[9] J. W. P. Hirschfeld, J. A. Thas, General Galois geometries, Springer Monographs in Mathematics, Springer, London, 2016.
[10] M. Homma, S. J. Kim, Around Sziklai's conjecture on the number of points of a plane curve over a finite field, Finite Fields Appl. 15 (2009), no. 4, 468-474.
[11] M. Homma, S. J. Kim, An elementary bound for the number of points of a Hypersurface over a finite field, Finite Fields Appl. 20 (2013), 76-83.
[12] M. Homma, S. J. Kim, The characterization of Hermitian surfaces by the number of points, J. Geom. 107 (2016), 509-521.
[13] M. Homma, S. J. Kim, Number of points of a nonsingular hypersurface in an odd-dimensional projective space, Finite Fields Appl. 48 (2017), 395-419.
[14] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A, 46 (1987), 183-211.
[15] B. Segre, Le geometrie di Galois, Ann. Mat. Pura Appl. 48 (1959), n. 4, 1-96.
[16] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. 70 (1965), 1-201.
[17] J.P. Serre, Lettre à M. Tsfaman, Astérisque 198-199-200 (1991), 351-353.
[18] K. O. Stöhr, J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52 (1986), n. 3, 1-19.
[19] A. Weil, Sur les courbes algebriques et les varietes qui s'en deduisent Actual. Sci. Ind., vol. 1041, Hermann, Paris (1948)

[^0]: *The author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).
 ${ }^{\dagger}$ The author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

 E-mail addresses: angela.aguglia@poliba.it (Angela Aguglia), luca.giuzzi@unibs.it (Luca Giuzzi), homma@kanagawa-u.ac.jp (Masaaki Homma)

