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Abstract

In previsione di una sempre maggior dipendenza della produzione industri-
ale dal mondo della meccatronica, alcuni aspetti dei sistemi meccatronici
industriali devono essere investigati per garantire una maggiore efficienza
dei sistemi produttivi stessi.

Per la necessità delle aziende di competere sul mercato, il mondo in-
dustriale sta chiedendo una sempre maggiore flessibilità degli impianti, in
modo da consentire una riduzione del time to market del prodotto. Questo
si scontra con la concezione classica di impianto industriale come macchina
perfettamente tarata ed ottimizzata per la produzione di grandi lotti, ma
sostanzialmente statica.

D’altro canto, la messa in funzione di sistemi meccatronici industriali
comporta tipicamente la risoluzione di problematiche sempre nuove, molte
delle quali riconducibili però a casistiche note e per le quali esistono già
soluzioni, che sono spesso avanzate dal mondo accademico.
Per venire incontro a queste necessità, è necessario quindi colmare il gap es-
istente tra lo stato dell’arte della ricerca e le tecnologie industriali disponibili
sul mercato.

Questa tesi riassume il lavoro svolto nella progettazione di alcuni dei
moduli che si propongono di risolvere i problemi relativi alle elasticità nelle
trasmissioni meccaniche nei sistemi meccatronici, alla definizione di uno
schema di controllo e di una procedura automatica per la taratura di sistemi
dedicati al motion control e ai disturbi di natura ripetitiva, che limitano la
larghezza di banda del controllo.





Preface

Industrial world is moving at an increasing speed towards an interconnected,
modular and flexible production paradigm. Production sites rely more and
more on fully automated mechatronic systems. These kinds of systems were
firstly born to perform a single task for all their lifespan, and their reconfig-
uration was hardly feasible. The change towards reconfigurable and flexible
production flows forced to rethink the integration of cyber-physical systems,
which are now required to be easily reconfigurable, interconnected and to
guarantee high performance over a wide range of different applications.
While standardized solutions for the control of industrial cyber-physical
systems are commercially available, their generality usually guarantees a
performance that is not acceptable when the industrial market is asking
for an increase of size, motion speed, precision, adaptability, self-diagnostic,
connectivity, new cognitive features, etc.
Fulfillment of these requirements is essential for building smart, safe and
reliable production systems. This implies completely new demands also on
bottom layers of employed motion control systems which cannot be routinely
handled by available commercial products. In fact, commercially available
general purpose motion control systems guarantee, on most of the cases,
only moderate performance as the mass market has no special requirements
(such as, for example, high bandwidth position loops).

The use of these standardized control systems leads to a suboptimal
performance, that can be pushed further only by means of ad-hoc solutions,
which often require a significant investment on R&D.
On the contrary, many academic publications show that solutions for the
most general limitations in standard industrial control hardware already
exist, but such solutions cannot be applied on industrial environments due
to stringent standards on reliability, robustness and safety on this field.

Many of the issues concerning the use of standard commercial solutions
for the control of smart mechatronic systems for applications with high
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performance requirements could be therefore solved by bridging the gap
between the best industrial practice and latest research results.
The aim of this thesis is to make available to an industrial level a wide
range of mechatronic systems solutions, both existing and new, to some of
the most common problems of modern mechatronic systems in a modular
and easily adaptable format, and to verify that the proposed solutions are
implementable on standard off-the-shelf industrial control hardware.

The issues that are addressed in this work are the control and compen-
sation of oscillations in underdamped mechatronic systems, the automatic
tuning of control parameters for mechatronic systems and the rejection of
repetitive disturbances affecting mechatronic systems.

The control of underdamped systems, discussed in Chapter 2, is treated
by focusing on a key industrial application, that is the handling of heavy
loads by means of industrial cranes. While this could be regarded as a
specific application, the presented solutions have a general relevance for
generic underactuated underdamped mechatronic systems.

The autotuning of control parameters for mechatronic systems is dis-
cussed in Chapter 3, where a set of automatic procedures for the tuning
and compensation of oscillatory dynamics are presented. While a variety
of approaches are present in literature, few of them focus on the respect
of physical constraint during the tuning procedure, and even fewer address
the issue of their implementability on industrial hardware, which is, for
example, typically characterized by limitations in both computational and
memory capability.
The algorithms presented in Chapter 3 are tested on the HIL setup de-
scribed in Section 1.4.4, which consists of industrial off-the-shelf hardware,
demonstrating their applicability to industrial applications.

Mechatronic systems can be also affected by repetitive disturbances,
which can depend on the position of the system (i.e. the actuator position)
or which can be periodic in time. By exploiting the information about
their periodicity, it is possible to enhance the performance of the system
by compensating them with approaches based on Repetitive Control (RC)
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and Iterative Learning Control (ILC). The application and validation of this
techniques on industrial hardware is addressed in Chapter 4.

The results discussed in this thesis have been achieved in the frame of
the I-MECH European Union project [13].

The results discussed in this thesis have been presented in the following
scientific publications:

1. M. Giacomelli, F. Padula, L. Simoni, and A. Visioli. Simplified input-
output inversion control of a double pendulum overhead crane for
residual oscillations reduction. Mechatronics, 56:37–47, 2018.

2. M. Giacomelli, M. Faroni, D. Gorni, A. Marini, L. Simoni, and A. Visi-
oli. Model predictive control for operator-in-the-loop overhead cranes.
In 2018 IEEE 23rd International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), volume 1, pages 589–596. IEEE,
2018.

3. M. Giacomelli, M. Faroni, D. Gorni, A., L. Simoni, and A. Visioli.
Mpc-pid control of operator-in-the-loop overhead cranes: A practi-
cal approach. In 2018 7th International Conference on Systems and
Control (ICSC), pages 321–326. IEEE, 2018.

4. M. Giacomelli, D. Colombo, L. Simoni, G. Finzi, and A. Visioli. A
fast autotuning method for velocity control of mechatronic systems.
IFACPapersOnLine, 51(4):208–213, 2018.

5. M. Giacomelli, D. Colombo, G. Finzi, V. Šetka, L. Simoni, and A.
Visioli. An autotuning procedure for motion control of oscillatory
mechatronic systems. In 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), pages
829–835, 2019.

6. M. Giacomelli, D. Colombo, G.Finzi, V. Šetka, L. Simoni, and A. Vi-
sioli. A closed-loop automatic tuning method for velocity control of
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oscillatory mechatronic systems. In IECON 2019-45th Annual Con-
ference of the IEEE Industrial Electronics Society, volume 1, pages
3245–3250, 2019.

7. M. Giacomelli, L. Simoni, A. Visioli. A software tool to make primary
school students aware of control systems, presented to 2020 IFAC
World Congress, in press.



Chapter 1

Approach, methods and
materials

1.1 Introduction

In this thesis, a series of solutions for smart mechatronic systems is presented
and validated. While academical research on most of the topics touched by
the thesis is vibrant, and new solutions are published in scientific journals
on a daily basis, the approach of this thesis is to collect the most promising
among them, together with some original contributions, and to convert
them into modular solutions easily accessible and implementable on both
greenfield and brownfield mechatronic industrial applications.

In order to do so, the V-model approach, described in Section 1.2, has
been followed. Section 1.3, provides a context for the chosen approach,
briefly introducing the I-MECH project. The applicability in the industrial
field of the proposed techniques has then been validated by following the
rapid prototyping paradigm described in Section 1.4.

1.2 The V-model approach

For the realization of the mechatronic solutions here presented, a V-model
approach has been followed. The V-model paradigm, shown in Figure 1.1,
consists in a pyramidal workflow. At the beginning, high-level design spec-
ifications and requirements raised by the industrial field have been identi-
fied, with a particular stress on the requirements characterized by a broad
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Figure 1.1: V-model approach (image after [50]).

generality among industrial mechatronic systems. The specification and im-
plementation of the elaborated solutions were brought to completion after
an accurate review of the scientific literature, so that both already existing
and new implemented methodologies were scientifically consistent. In this
high-level stage, the validation procedures are also defined.

The second phase of the V-model paradigm is the low-level design, in
which hardware and software components are defined. Once the architecture
is defined, the actual implementation takes place. In this phase, the coding
of the solution must take into account all the requirements and specifications
(e.g. accepted coding languages). Finally, the validation phase takes place,
and the solutions are checked against the initially identified requirements
and specifications. The validation can be performed through a variety of
different approaches, both by using the instruments of the rapid prototyp-
ing paradigm or by actually implementing the solution on real industrial
systems.
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1.3 The I-MECH project

For the case of this thesis, use cases for the validation part have been found
thanks to the collaboration with industrial partners in the frame of the Intel-
ligent Motion Control Platform for Smart Mechatronic Systems (I-MECH)
project, developed within the European Union H2020 program funded by
ECSEL-2016-1. The consortium, composed by both technological and re-
search professionals from 31 participating organisations and 10 European
countries, was moved together by the common feeling that the limits in the
control of cyber-physical systems can still be pushed further. In particular,
a strong collaboration with Gefran s.p.a. allowed to have access to modern
industrial hardware and software for the testing of the techniques proposed
in the frame of the I-MECH project.
I-MECH project aimed to bridge the gap between the latest research re-
sults and best industrial practice by focusing on the sensors, actuators and
physical control infrastructure of the motion control system more than on
the application itself. Dividing the general structure of a control system
in three layers, the first layer is composed by actuators and sensors, which
physically interact with the plant. On the second layer the (digital) control
takes place and the information coming from sensors are elaborated in order
to control the plant using actuators. The third layer is the layer concern-
ing the application, on which the system behaviour is defined in therms of,
for example, the desired motion trajectory. This division into layers of a
general motion control system is shown in Figure 1.2.

While the third layer can be very general, most industrial applications
relies on the same stack of layers 1 and 2 and are affected by the same issues.

By developing modular and unified building blocks, each one responding
to a specific need, the final outcome of the project is a modular solutions
platform. In order to develop sustainable general techniques and solutions
for the smart control of mechatronic systems, model-based approach was
adopted, which is a standard practice and is integrated with modeling and
simulation as well as digital enterprise functions.
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Figure 1.2: General structure of a control system.

The I-MECH Platform consists of a set of components which are referred
as Building Blocks (BB). Every BB responds to a particular key objective
of the I-MECH project. The list of BBs is outlined in Table 1.1. The
BBs on which the University of Brescia was directly involved are BB6 (Self-
commissioning velocity and position control loops), BB7 (Vibration control
module) and BB9 (Iterative and repetitive control module). The structure
of this thesis, as well as the methods for the validation of the techniques
presented, is linked to this three BBs. As shown in Figure 1.3, all of this
BBs are part of the Layer 2 (control).

1.4 Rapid Prototyping cycle

In order to fully prove the implementability and performance of the pro-
posed solutions, the implemented technique needed to be pass Model-In-the-
Loop (MIL), Simulation-In-the-Loop (SIL), Processor-In-the-Loop (PIL)
and Hardware-In-the-loop (HIL) tests. Nonetheless, for practical reasons,
some validations steps are often skipped, for example by testing the solution
directly on HIL after the MIL validation.
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Figure 1.3: Decomposition of layers in a control system with I-MECH re-
gions of interest.
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BB1 Platform for Smart Sensors
BB2 Real-time wireless sensors
BB3 Robust condition monitoring and predictive diagnostics
BB4 High speed vision
BB5 High performance servo amplifier
BB6 Self-commissioning velocity and position control loops
BB7 Vibration control module
BB8 Robust model-based multivariable control
BB9 Iterative and repetitive control module
BB10 Control Specific Multi-many core Platform
BB11 RTOS for multi-many core platform

Table 1.1: I-MECH building blocks.

1.4.1 Model-In-the-Loop

In order to test the techniques on simulations, a combination of different
software have been used along the project in order to run accurate models of
both controllers and plants. While Mathworks Matlab/Simulink/Simscape
has been acknowledged as a valid platform for software testing, the ability of
other software (e.g., Siemens Amesim) to better describe certain dynamics
has been exploited by means of co-simulation.
In Figure 1.4 the general scheme of the MIL simulation is shown. The
controller is implemented and run on Matlab/Simulink and a model of the
plant can run in Matlab/Simulink as well, or in co-simulation on another
software, depending on the model accuracy required for the testing.

1.4.2 Software-In-the-Loop

In SIL testing, the control technique is compiled into code and the embedded
software is tested within a simulated environment model, but without any
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Figure 1.4: MIL scheme.

specific hardware.
As Gefran IDE does not support SIL testing nor co-simulation with other
software, SIL testing has not been implemented: once the techniques have
passed the MIL testing they were implemented on the industrial hardware
and PIL testing was directly executed.

1.4.3 Processor-In-the-Loop

PIL simulation is essential part of prototyping where the control system is
fully installed into the final hardware platform and can interact with the
plant through the proper Inputs/Outputs. The machine model is running
on the real-time system with I/O simulations (contains emulators of sensors
and simulated actuators).
The techniques were implemented in IEC 61131-3 ST language and the pro-
gram was downloaded into the drive motherboard along with simple models
of the plants. This kind of testing is necessary to debug the translation
of Matlab/Simulink controller into ST language and to check the imple-
mentability of the techniques in standard industrial hardware. A scheme of
the PIL scheme is shown in Figure 1.5.
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Figure 1.5: PIL scheme.

1.4.4 Hardware-In-the-Loop

HIL simulation has been demonstrated to be a powerful instrument for test-
ing the software on industrial hardware before the test on the actual plant.
This prevents the arising of errors from damaging the real plant [40].
The group of the University of Brescia, thanks to a strict collaboration with
Gefran S.p.a., relied on a Hardware-In-the-Loop setup fully composed by
industrial off-the-shelf hardware [62].
The HIL setup consists of two Gefran brushless servomotors (Gefran SBM
series). The Motor Under Test (MUT), on which the control techniques are
tested, has a rated nominal power of 1.51 [kW], while the motor simulating
the plant dynamics (SM) has a rated nominal power of 3.77 [kW]. The two
motors are controlled by two Gefran ADV200S inverter and controller units.
The characteristics of the actuators are shown in Table 1.2. The HIL setup
has been built in order to be flexible and easily reconfigurable. The two
motors can be linked together by means of a rigid shaft or by a series of
elastic transmissions composed by two belts and pulleys. The pulleys are
linked together by means of a rigid shaft, but their diameter is different, so
that a complete turn of the SM corresponds to a quarter of turn on MUT.
Moreover, it is possible to change the inertia of the system composed by
the two pulleys by adding a series of metal discs. This highly flexible and
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Motor Simulator Motor Under Test
Type SBM73303 SBM53303

Nominal power [kW] 3.77 1.51

Stall torque [Nm] 15.3 5.4

Stall current [A] 9.71 3.52

Nominal torque [Nm] 12 4.8

Nominal current [A] 7.62 3.13

Nominal voltage [V] 318 310

Nominal velocity [rpm] 3000 3000

Torque constant [Nm/A] 1.58 1.53

Poles 8 8

Table 1.2: Characteristics of the motors of the HIL setup.

easily reconfigurable setup can be used to simulate the behaviour of a great
variety of mechanical systems. Figure 1.6 shows the mechanical hardware
setup used for HIL validation. The University of West Bohemia provided
an industrial PC running their proprietary REXYGEN software [61]. This
industrial PC was used as a gateway between the host PC and the drives
using EtherCAT standard and ethernet. This allowed for a faster commu-
nication and an easier and more powerful data acquisition overcoming the
limits of Modbus communication. A scheme of the setup is shown in Figure
1.7.

1.4.4.1 HIL setup dynamics

Even if the reconfigurability of the system allows for the introduction of
physical inertia and elasticities by including pulleys and belts, it is also
possible to simulate the whole plant by using only the SM.
In order to effectively simulate the dynamic of the plant, the dynamic of
the HIL setup must be known in order to compensate for it. In particular,
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Figure 1.6: Mechanical setup of the HIL.
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Figure 1.7: HIL setup scheme.

the rigid configuration can be approximated with a motor and load system
so that the parameters that describe its dynamics are the total inertia of
the system Jtot [kgm2], the dynamic friction Bm [Nm/rad] and the static
friction Kf [Nm]. The system of differential equations that describes the
dynamics of the system is{

JT ω̇(t) = τm(t) + τs(t)−Bmω(t)−Kf sign(ω(t))

φ̇(t) = ω(t)
(1.1)

where ω [rad/s] is the angular velocity, φ [rad] the angular position, τm
[Nm] and τs [Nm] the MUT and SM torques respectively. The estimation
of these parameters as well as the methods for the compensation of the HIL
setup dynamics will be presented in detail in Chapter 3.





Chapter 2

Control of industrial cranes

In this chapter a set of methods for the control of industrial cranes will
be presented. In particular, different techniques for both open-loop and
closed-loop control of oscillating underactuated systems are proposed.

Industrial cranes, thanks to their capability of moving heavy payloads
despite their relative simplicity and low cost, are by far the most diffused
Material Handling Systems (MHS) in the industrial and construction fields.
Their simple design allows for the motion of heavy loads over wide ranges
in clustered spaces.
Nonetheless, cranes are underactuated oscillatory systems, and the oscilla-
tion that affect the load position is highly underdamped. This poses issues
both in terms of performance and safety. For this reason, the control of
industrial cranes has raised increasing interest in both academical and in-
dustrial research [1, 57].
While expert operators learn to cope with the oscillatory dynamics of the
crane, it has been demonstrated that the use of simple control techniques
improves the manoeuvre performance of human operated cranes [39].
In this chapter, different models of industrial cranes are described and dis-
cussed. The described models are then exploited for the definition of both
open and closed-loop approaches for the control of industrial cranes.

The chapter is structured as follows: in Section 2.1 mathematical mod-
els for the most diffused types of industrial cranes are derived; Section 2.2
motivates the need of scientific research in the field of the control of indus-
trial cranes and reviews the available literature on the subject; in Section
2.3 open-loop control techniques for oscillatory systems are presented and
tested, while closed-loop approaches are covered in Section 2.4. Section 2.5
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concludes the chapter.

2.1 Cranes models

In order to apply innovative control techniques to industrial cranes, differ-
ent models of the system have been exploited.
A crane consists of a support mechanism, that can be either a trolley
mounted on a girder (e.g. for portal cranes) or a boom (e.g. for rotary
cranes) and a hoisting mechanisms composed of a hoisting line and a hook.
Based on their kinematics, the most diffused industrial cranes can be clas-
sified in four main classes, as shown in Figure 2.1.
While cranes can be considered as relatively simple systems, they can be

represented by very different models depending on the desired degree of
accuracy and the aim of the control. In fact, accurate models of a crane
must include nonlinearities in order to describe its dynamics, and very ac-
curate models can also include the elasticity of the hoisting cable in the
equations. Nonetheless, for some applications complex models are not only
not needed, but would require a parameters estimation phase that is not
trivial and should be rerun at every change in the crane layout. More-
over, the models can also differ because of the different inputs and outputs
considered. For example, for completely autonomous cranes, the payload
position reference must be tracked, so that, in order to apply a model-based
control technique, the model of the crane should have the payload position
as the output. On the contrary, for human operators manoeuvred cranes a
velocity output of the model is the most intuitive and by far the most used.
In this section the equations and models for the different kinds of industrial
cranes will be presented with a focus on the linearizations and simplifica-
tions that are necessary for control purposes.
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Figure 2.1: Industrial cranes: overhead crane (top left), portal crane (top
right), rotary crane (bottom left) and boom crane (bottom right).
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Figure 2.2: Overhead crane model.

mp Payload mass [kg]
mc Cart mass [kg]
l1 Length of the hoisting line [m]
Cc Dynamic friction coefficient of the cart [Ns/m]
C1 Dynamic friction coefficient of the line [Nms/rad]

Table 2.1: Parameters of the single pendulum model for overhead cranes.

2.1.1 Overhead and portal cranes as a single pendulum

Both overhead (or gantry) cranes and portal cranes can be modeled, for
control purposes, as a single pendulum attached on a sliding cart, as shown
in Figure 2.2. The assumption of motion on a bidimensional plane does not
limit the extension to more general cases. The model is characterized by
the parameters shown in Table 2.1. The system has a total of three degrees
of freedom: the position of the cart xc [m], the sway angle θ1 [rad] and
the length of the cable l [m]. Two motors can control the position of the
cart and the length of the cable. As no actuator controls the sway angle,
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the crane is indeed an underactuated system. The actuator controls the
position of the cart by acting on the cart with a force u [N]. In this model
the hook and the payload are considered as a single mass point.
Some approximations must be made in order to ensure a simple mathemat-
ical description of the model:

• the line is considered as an inflexible rod;

• compared to the mass of the payload, the mass of the cable can be
neglected;

• the system moves only on a x− y plan.

For the following dynamical model, a last assumption of static length of l
have been made. This simplification allows for an easy linearization of the
model. The effects of this assumption will be discussed in depth on the
section dedicated to the control techniques.

2.1.1.1 Differential equations

The Lagrangian method can be used to find the differential equations of the
system in Figure 2.2. The potential energy of the system is a function of
the position of the payload, that is

P = mpgl1(1− cos θ1) (2.1)

where g [m/s2] is the gravitational constant.
The kinetic energy of the system is given by

K =
1

2
mcẋ

2
c +

1

2
mpv

2
1 (2.2)

where ẋc is the velocity of the cart and v1 is the velocity of the payload,
that is

v2
1 = v2

1x + v2
1y (2.3)



22 Chapter 2. Control of industrial cranes

where
v1x = ẋc + l1θ̇1 cos(θ1) and v1y = −l1θ̇1 sin(θ1) (2.4)

Given (2.1) and (2.2), the Lagrangian of the system is

L = K − P =
1

2
mcẋ

2
c +

1

2
mpl1v

2 −mpgl1(1− cos(θ1)) (2.5)

The equations of the system dynamics can be calculated using the La-
grangian method, that states that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (2.6)

where qi, i = [1...N ], are the variables that represent the free ways of moving
of the system and Qi is the vector of the generalized external forces, which
includes the dissipative forces through Rayleigh dissipation function [29].

The two variables that describe the free ways of moving of the system
are xc and θ1. Differentiating L with respect to ẋc in (2.5) we find

∂L

∂ẋc
= mcẋc +mp(ẋc + l1θ̇1 cos θ1) (2.7)

Differentiating (2.7) with respect to time t yields

d

dt

(
∂L

∂ẋc

)
= mcẍc +m1(ẍc + l1θ̈1 cos θ1 − l1θ̇2

1 sin θ1) (2.8)

The potential energy of the system does not depend on xc, therefore we
have

∂L

∂xc
= 0 (2.9)

The generalized external forces for the variable xc depend on the external
force u(t) and the frictional force, thus

Qx = u(t)− CC ẋc (2.10)
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In the same way, differentiating (2.5) with respect to θ̇1 yields

∂L

∂θ̇1

= m1[(ẋc + l1 cos θ1)l1 cos θ1 + (−l1θ̇1 sin θ1)(−l1θ̇1 sin θ1)]

= m1l1ẋc cos θ1 +m1l
2
1θ̇1

(2.11)

and differentiating (2.11) with respect to time we obtain

d

dt

(
∂L

∂θ̇1

)
= m1l1ẍc cos θ1 −m1l1ẋcθ̇1 sin θ1 +m1l

2
1θ̈1 (2.12)

Further, differentiating (2.5) with respect to θ1 can have

∂L

∂θ1
= m1[(ẋc + l1θ̇1 cos θ1)(−l1 sin θ1) + (l1θ̇1 sin θ1)(l1θ̇1 cos θ1)]

−m1gl1 sin θ1 = −m1l1ẋcθ̇1 sin θ1 −m1gl1 sin θ1

(2.13)

Finally, generalized external forces for the variable θ1 depends on the fric-
tional force, thus

Qθ1 = −C1

l1
θ̇1 (2.14)

Considering (2.8), (2.9) and (2.10) and (2.12), (2.13) and(2.14), from (2.6)
the two equations that describe the dynamics of the system are (m1 +mC)ẍc +m1l1(θ̈1 cos θ1 − θ̇2

1 sin θ1) = u(t)− CC ẋc
m1ẍc cos θ1 +m1l1θ̈1 +m1g sin θ1 = −C1

l1
θ̇1

(2.15)

2.1.1.2 Linearized dynamic model

The system of differential equations (2.15) can be linearized for control
purposes, so that it can be expressed in a linear state space form. Under
the hypothesis of small angles, the following approximations can be done:

cos θ1 u 1

sin θ1 u θ1

θ̇2
1 u 0,

(2.16)
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so that the system in (2.15) becomes (m1 +mC)ẍc +m1l1θ̈1 + CC ẋc = u(t)

m1ẍc +m1l1θ̈1 +
C1

l1
θ̇1 +m1gθ1 = 0.

(2.17)

The system (2.17) can be expressed in a well-known form for mechanical
compliant systems as

Mẍ+ Cẋ+Kx = F (2.18)

where

M =

 m1 +mC m1l1

m1 m1l1

 , C =

 CC 0

0
C1

l1

 ,K =

 0 0

0 m1g


(2.19)

and where

x =

(
xc
θ1

)
,F =

(
u(t)

0

)
. (2.20)

The linear representation in (2.18) can be rearranged in order to express
the dynamics of the system in the form of the state space description, which
is a standard description in the control field. Defining

xss =


xc
ẋc
θ1

θ̇1

 (2.21)

the state-space representation of the system (2.18) is in the form{
ẋss(t) = Axss(t) + Bu(t)

y(t) = Cxss(t),
(2.22)
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where

A =


0 1 0 0

0 −CC
mC

gm1

mC

C1

l1mC

0 0 0 1

0
CC
l1mC

−g(m1 +mC)

l1mC
−C1(m1 +mC)

l21m1mC

 ,B =



0
1

mC

0

− 1

l1mC


(2.23)

Defining the output of the system as the position of the load with respect
to a fixed frame, it is given by

xp = xc + l1 sin θ (2.24)

Under the assumption of small angles, the equation (2.24) can be approxi-
mated as

xp = xc + l1θ (2.25)

as sin θ u θ.
The matrix of the outputs C in (2.22), considering the velocity of the payload
as the output of the system, is therefore

C =
(
0 1 0 l1

)
(2.26)

2.1.1.3 Kinematic model

Another way of modeling the overhead crane is to describe the dynamics
between the kinematic of the cart and the kinematic of the load. In fact, by
taking the acceleration of the cart as the input, the system is characterized
by the following system of nonlinear differential equations:

ẋnl =


ẋc
0

0

θ̇

−g sin(θ)
l1

+


0

1

0

0

− cos(θ)
l1

 ẍc +


0

0

1

0

−2θ̇
l1

 l̇1 (2.27)
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where xnl = [xc, ẋc, l1, θ, θ̇]
T is the state vector and the velocity of the

payload is given by ynl = ẋc + θ̇l1 cos θ + l̇1 sin θ.
This nonlinear model can effectively take into account also the contri-

bution of the lengthening and shortening of the hoisting cable. If the length
cable is, again, considered as constant, the model can be linearized with the
assumption of small oscillation angles, so that the system can be described
again in a state space form like

ẋl = Axl + Bẍc
yl = Cxl

(2.28)

where the state is xl = [xc, ẋc, θ, θ̇]
T and the state space matrices are

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 − g
l1

0

 , B =


0

1

0

− 1
l1

 , C =


0

1

0

l1


T

. (2.29)

2.1.1.4 Useful transfer functions

In the following part, in particular when introducing input-output inversion
control, the transfer function describing the dynamics of overhead cranes
will assume significant importance.
The most important transfer functions regarding overhead cranes are the
one that link the force acting on the cart and the velocity/position of the
payload, and the one linking the velocity of the cart to the velocity of the
payload.
The transfer function which takes as input the force acting on the cart and
has as output the payload position is easily obtained from (2.22), remember-
ing that the transfer function can be obtained from the state space model
as

G(s) = C(sI − A)−1B +D (2.30)
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obtaining

G(s) =
Xp(s)

U(s)
=
NG(s)

DG(s)
(2.31)

where
NG(s) = C1s+ gm1l

2
1

and

DG(s) =(l21m1mC)s4 + (Ccm1l
2
1 + C1m1 + C1mC)s3+

+ (gl21m
2
1 + gmC l

2
1m1 + C1Cc)s

2 + (Ccgl
2
1m1)s.

The transfer function with the force on the cart as the input and the
velocity of the payload as output is easily obtained by differentiating (2.31),
that is,

Ẋp(s)

U(s)
=
Xp(s)

U(s)
s = sG(s). (2.32)

The transfer function between the velocity of the cart and the velocity
of the payload can be obtained, with the same procedure, from (2.28),
obtaining

Ẋp(s)

Ẋc(s)
=

gm1l
2
1 + C1s

l21m1s2 + C1s+ gl21m1
. (2.33)

It should be noted that (2.33) is valid also to describe the dynamics between
the position of the cart and the position of the payload, that is

Xp(s)

Xc(s)
=
Ẋp(s)

Ẋc(s)
. (2.34)

2.1.2 Overhead crane as a double pendulum

In many cases, approximating the dynamics of the overhead crane with a
simple pendulum on a sliding cart is not sufficiently accurate. In the case
of distributed inertia payloads or when the hook mass cannot be neglected,
the dynamics of the overhead crane can be better described using a double
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mC Cart mass [kg]
m1 First load mass [kg]
m2 Second load mass [kg]
l1 Length of the hoisting line [m]
l2 Length of the cable between loads [m]
Cc Dynamic friction coefficient of the cart [Ns/m]
C1 Dynamic friction coefficient of the cable l1 [Nms/rad]
C2 Dynamic friction coefficient of the cable l2 [Nms/rad]

Table 2.2: Parameters of the double pendulum model for overhead cranes.

pendulum on a sliding cart, with two different masspoint bodies. This allows
for a more accurate description of the dynamics in such cases where multiple
oscillations are present in the dynamics of the crane.
The model can be schematized as in Figure 2.3, where xc is the position of
the cart, mC , m1 and m2 the masses of the cart, the first and the second
loads respectively, CC , C1 and C2 the viscous friction coefficients of the
cart, of the first and of the second cable, θ1 and θ2 are the inclinations of
the cables with respect to the vertical and xP is the position of the second
load. The parameters of the model are resumed in Table 2.2.

2.1.2.1 Differential equations

Under the assumptions of lines considered as inflexible rods, concentrated
axes and movement constrained to the x− y plan, through the Lagrangian
method used in Subsection 2.1.1.1, the system in Figure 2.3 can be described
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Figure 2.3: Scheme of an overhead crane modeled as a double pendulum on
a sliding cart.
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by the system of equations

(mC +m1 +m2)ẍc + (m1 +m2)l1θ̈1 cos θ1 +m2l2θ̈2 cos θ2

− (m1 +m2)l1θ̇
2
1 sin θ1 −m2l2θ̇

2
2 sin θ2 = u(t)− CC ẋc

(m1 +m2)l1ẍc cos θ1 + (m1 +m2)l21θ̈1 +m2l1l2θ̈2cos(θ1 − θ2)

+m2l1l2θ̇
2
2 sin(θ1 − θ2) + (m1 +m2)gl1 sin θ1 = −C1

l1
θ̇1

m2l2ẍc cos θ2 +m2l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2)

−m2l1l2θ̇
2
1 sin(θ1 − θ2) +m2gl2 sin θ2 = −C2

l2
θ̇2.

(2.35)

2.1.2.2 Dinearized dynamic model

The system of differential equations (2.35) can be linearized around its sta-
ble equilibrium point, that is for θ1 = 0, θ2 = 0, θ̇1 = 0 and θ̇2 = 0. The
obtained linear system can be written in the form{

ẋss(t) = Axss(t) + Bu(t)

xp(t) = Cxss(t),
(2.36)

where the states vector xss is composed by the cart position and velocity
and the angular positions and velocities, that is

xss =
(
xc ẋc θ1 θ̇1 θ2 θ̇2

)T (2.37)

and

A =



0 1 0 0 0 0

0 −
CC

mC

(m1 + m2)g

mC

C1

l21mC

0 0

0 0 0 1 0 0

0
CC

l1mC

−
g(m1 + m2)(m1 + mc)

l1m1mC

−
C1(m1 + mC )

l31m1mC

gm2

l1m1

C2

l1l22m1

0 0 0 0 0 1

0 0
g(m1 + m2)

l2m1

C1

l21l2m1

−
g(m1 + m2)

l2m1

−
C2(m1 + m2)

l32m1m2


,

(2.38)
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B =

(
0

1

mC
0 − 1

l1mC
0 0

)T
, (2.39)

C =
(
1 0 l1 0 l2 0

)
. (2.40)

2.1.2.3 Useful transfer functions

In what follows, in particular when introducing input-output inversion con-
trol, the transfer function describing the dynamics of overhead cranes will
assume a significant importance.
From system (2.36) the transfer function of the system is determined as

F (s) :=
XP (s)

U(s)
=
NF (s)

DF (s)
, (2.41)

where

NF (s) =(C1C2)s2 + (C1gm2l
2
2 + C2(gl21m1 + gl21m2))s

+ g2l22l
2
1m2(m1 +m2)

and

DF (s) =p6s
6 + p5s

5 + p4s
4 + p3s

3 + p2s
2 + p1s,
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where

p6 =l31l
3
2m2m1mC ,

p5 =C1l
3
2m1m2 + C2l

3
1m1mC + C1l

3
2m2mC + C2l

3
1m2mC

+ CC l
3
1l

3
2m1m2,

p4 =gmC l
3
1l

2
2m1m2 + gmC l

3
1l

2
2m

2
2 + C2CC l

3
1m1 + C2CC l

3
1m2

+ gl21l
3
2m

2
1m2 + gl21l

3
2m1m

2
2 + gmC l

2
1l

3
2m1m2 + gmC l

2
1l

3
2m

2
2

+ C1CC l
3
2m2 + C1C2m1 + C1C2m2 + C1C2mC ,

p3 = + CCgl
3
1l

2
2m1m2 + CCgl

3
1l

2
2m

2
2 + CCgl

2
1l

3
2m1m2 + CCgl

2
1l

3
2m

2
2

+ C2gl
2
1m

2
1 + 2C2gl

2
1m1m2 + C2gmC l

2
1m1 + C2gl

2
1m

2
2

+ C2gmC l
2
1m2 + C1gl

2
2m1m2 + C1gl

2
2m

2
2 + C1gmC l

2
2m2

+ C1C2CC ,

p2 =g2l21l
2
2m

2
1m2 + 2g2l21l

2
2m1m

2
2 +mCg

2l21l
2
2m1m2 + g2l21l

2
2m

3
2

+mCg
2l21l

2
2m

2
2 + C2CCgl

2
1m1 + C2CCgl

2
1m2 + C1CCgl

2
2m2,

p1 =CCg
2l21l

2
2m

2
2 + CCm1g

2l21l
2
2m2.

It is easy to demonstrate that the transfer function between the force on
the cart and the payload velocity can be obtained by differentiating (2.41),
that is

ẊP (s)

U(s)
= s

XP (s)

U(s)
= sF (s). (2.42)

Since in typical industrial cranes only the position/speed of the motor (that
is, of the cart) is measured, it is convenient to represent (2.41) as the product
of two different transfer functions, namely

F (s) =
XP (s)

U(s)
= P (s)

1

s
G(s), (2.43)

where

P (s) :=
VC(s)

U(s)
=
NP (s)

DP (s)
(2.44)
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is the transfer function between the force applied to the cart and the velocity
of the cart, where

NP (s) =λ4s
4 + λ3s

3 + λ2s
2 + λ1s+ λ0,

where

λ4 =
l1 l2m1

g2 (m1 +m2)
,

λ3 =
C2 l

3
1 m1 + C1 l

3
2 m2 + C2 l

3
1 m2

g2 l21 l
2
2 m2 (m1 +m2)

,

λ2 =
g l31 l

2
2 m

2
2 + gm1 l

3
1 l

2
2 m2 + g l21 l

3
2 m

2
2 + gm1 l

2
1 l

3
2 m2 + C1C2

g2 l21 l
2
2 m2 (m1 +m2)

,

λ1 =
C2 l

2
1 m1 + C1 l

2
2 m2 + C2 l

2
1 m2

g l21 l
2
2 m2 (m1 +m2)

,

λ0 =1,

and

DP (s) = DF (s), (2.45)

and
G(s) :=

XP (s)

Xc(s)
=
VP (s)

VC(s)
=
NF (s)

DP (s)
(2.46)

is the transfer function between the position (velocity) of the cart and the
position (velocity) of the payload.

2.1.3 Boom crane model

In this work, antisway techniques have also been applied to boom cranes.
Due to the rotational degree of freedom of boom cranes, their dynamics and
kinematic are better described using the polar coordinates shown in Figure
2.4. In general, boom cranes have five degrees-of-freedom (DOF) which,
referring to Figure 2.4, are the rotation angle α, the pitching angle β, the
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Figure 2.4: Scheme of a boom crane.

length of the cable l, and the tangential and radial sway angles, θT and θR
respectively. While rotation, pitching and hoisting are actuated DOF, the
sway angles cannot be directly controlled, so that the boom crane can be
classified as an underactuated system. The dynamics of the system requires
also the following parameters:

• lB, the length of the boom arm

• m, the mass of the boom arm

• mL, the payload mass.

For most industrial applications, for constructive reasons, the length of
the hoisting cable is directly related to the pitching angle β, so that if the
hoisting actuator is not activated, a change in the pitching does not affect
the height of the payload, thus affecting l.

2.1.3.1 Differential equations

In order to obtain manageable dynamics equations, the following assump-
tions on the boom crane have to be made:

• the mass of the rope and of the hook supporting the payload have
been neglected;
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• the inertia of the payload has been neglected, and the payload has
been considered as a point mass;

• the rope is considered as an inextensible cable;

• the frame of the boom crane is considered as infinitely rigid;

• frictions and dampenings are not considered, as they have very small
influence on the crane dynamics.

Under these assumptions, the differential equations describing the dynamics
of the boom crane can be obtained following the same procedure used for
the single and double pendulum overhead cranes, that is by defining the
Euler–Lagrange equations. The position of the payload is given by



xL(t) = lB cosβ(t) cosα(t) + l(t)(cos θR(t) sin θT (t) sinα(t)

− sin θR(t) cosα(t))

yL(t) = lB sinβ(t)− l(t) cos θR(t) cos θT (t)

zL(t) = −lB cosβ(t) sinα(t)− l(t)(cos θR(t) sin θT (t) cosα(t)

− sin θR(t) sinα(t)).

(2.47)

By applying the Lagrangian method, using the sway angles θR and θT as
variables, and by applying the small angles approximations

sin(θT ) = θT , cos(θT ) = 1 , sin(θR) = θR , cos(θR) = 1 (2.48)
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the dynamics of the boom crane can be described by the equations

θ̈T + 2
l̇

l
θ̇T + (

g

l
− α̇2 − lB

l
sin(β)β̇2 +

lB
l
cos(β)β̈)θT

+ (α̈+ 2α̇
l̇

l
)θR =

lB
l

(
2 sin(β)α̇β̇ − cos(β)α̈

)

θ̈R − 2α̇θ̇T + 2
l̇

l
θ̇R +

(
g

l
− α̇2 − lB

l
sin(β)β̇2 +

lB
l
cos(β)β̈

)
θR

−
(
α̈+ 2α̇

l̇

l

)
θT =

lB
l

(
cos(β)α̇2 + cos(β)β̇2 + sin(β)β̈

)
(2.49)

2.1.3.2 Dynamic model

The system in (2.49) can be rewritten in matrix form as

MΘ̈ + CΘ̇ +KΘ = U (2.50)

where

Θ =

(
θT
θR

)

U =

 lB
l

(
2 sin(β)α̇β̇ − cos(β)α̈

)
lB
l

(
2 cos(β)α̇2 + cos(β)β̇2 + sin(β)β̈

)


M =

(
1 0

0 1

)

C = 2

 l̇

l
α̇

α̇
l̇

l
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K =

(
K11 K12

K21 K22

)
with

K11 =
g

l
− α̇2 − lB

l
sin(β)β̇2 +

lB
l

cos(β) ¨beta

K12 =

(
α̈+ 2

l̇

l
α̇

)

K21 =−
(
α̈+ 2

l̇

l
α̇

)

K22 =
g

l
− α̇2 − lB

l
sin(β)β̇2 +

lB
l

cos(β)β̈.

The system in (2.50) can be linearized under the following assumptions:

• small values of α̇, β̇ and l̇;

• small values of α̈, β̈ w.r.t.
g

l
.

Under these assumptions, (2.50) can be simplified as

(
1 0

0 1

)
Θ̈ +

gl 0

0
g

l

Θ =

− lBl cos(β)α̈

lB
l

sin(β)β̈

 (2.51)
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2.2 Cranes control: state-of-the-art

As reported in [1, 57], a first differentiation between the proposed control
techniques can be firstly done by dividing the techniques on open-loop and
closed-loop approaches.

Open-loop approaches are by far the most diffused for the control of in-
dustrial cranes. Their approach is to devise a motion trajectory for the cart
in order to obtain an efficient motion of the payload, i.e. with low (opti-
mally null) residual oscillations. This approach is also the most appreciated
in industry for a number of reasons:

• it avoids the need for sensors for the measure of the oscillation angles,
which are hardly available in industrial off-the-shelf-cranes;

• the motion planning of the cart is easily implementable on standard
industrial hardware as, being only based on a predefined model of
the system, all the cart trajectories can be easily computed offline,
avoiding the computational burden of online optimizations;

• their implementation is fully compatible with the standard velocity
control loops, which are already present in industrial cranes.

The most widespread open-loop solution for the control of oscillating sys-
tems is the input shaping [20, 56, 63, 64, 65, 66, 67, 74], which is discussed
in detail in Section 2.3.1. This technique consists in modifying the trajec-
tory of the cart by convolving it with a filter composed by impulses, which
amplitudes and times are computed so that the sum of the responses gen-
erated by each of them on the systems result in a perfect cancellation of
the oscillatory dynamic on the total response, thanks to the superposition
principle valid for linear systems. The research on input shaping is still
active, and in the last 10 years various modifications to the approach have
been proposed [6, 7, 45, 59].
Another open-loop technique proposes to solve one of the drawbacks of input
shaping. Input shaping filters introduce a delay between input and output
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which is directly linked to the oscillating periods of the system. While, de-
pending on the desired robustness, the operator can hypothetically choose
between a wide set of input shaping filters, the choice is not supported by
parameters with physical meaning, so that non-expert operators might pre-
fer to not modify the default filter, resulting in sub-optimal performance in
terms of positioning time when the filter is too conservative, and in excessive
residual oscillations when the robustness is lacking. Input-output inversion
[51, 54, 55], as presented in Section 2.3.2, is an open-loop technique based
on the inversion of the model of the system. By defining a desired trajectory
of the system, the corresponding input can indeed be found by inverting the
transfer function of the system. Input-output inversion presents as its only
tuning parameter the transition time τ required to reach the steady state.
Having an immediate physical meaning, the transition time can be easily
tuned also by non-expert operators.

A further possible solution for the open-loop control of industrial cranes
is the use of a band-stop filters on the input of the system in order to
cancel the frequency components of the input that would excite the vi-
bration modes of the system. Various publications have proposed different
approaches, which have been demonstrated to be effective in particular with
rotary cranes [42, 52, 53].

While open-loop techniques are simple to implement and do not require
additional sensors for being used in industrial cranes, they typically lack
in terms of robustness. In fact, cranes are used to move a variety of loads
which differs in terms of mass, inertia and anchoring mechanism, so that a
precise model of the system is hard to obtain, and open-loop techniques are
particularly subject to errors in the model parameters.
For this reason, closed-loop techniques have been proposed for the control
of industrial cranes. With the lowering of the price of industrial sensors and
the development of new and more performing communication standards,
the sensorization of cranes for the measure of the sway angle is an issue
which is more easily overcome than some years ago. Moreover, even if most
closed-loop approaches require a knowledge of all the states of the system,
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it is not necessary to have them all measured, as state observer can be easily
used for their reconstruction.

An effective approach for the closed-loop control of overhead cranes is
full state feedback control. With this approach, it is possible to define
the dynamics of the states of the closed-loop system so that the generated
oscillations are rapidly damped by simply defining the eigenvalues of the
closed-loop dynamic matrix. In order to use full state feedback approaches,
observers are typically used for reconstructing unmeasured states [38]. The
application of full state feedback to overhead cranes is discussed in Section
2.4.1

Another closed-loop control that is worth addressing is Model Predic-
tive Control (MPC). Due to its high computational requirements, MPC has
been initially limited to process control, where large time constants allowed
the controller to solve complex optimization problems that took time to be
solved. With the increasing in computational capability of modern control
hardware, optimization problems can be solved online also when controlling
mechatronic systems, for which the control cycle time is in the range of the
milliseconds.
While most of the MPC techniques for the control of industrial cranes pro-
posed in the literature are focused on the position control of industrial
cranes, their use is limited to fully automated cranes, for which the end-
position of a manoeuvre is known in advance. Section 2.4.2 presents innova-
tive and practical MPC approaches for the control of operated manoeuvre
ed overhead cranes.

The aforementioned academic publications propose very different ap-
proaches to the problem of antisway control of cranes, but few of them have
been validated on industrial systems, and even fewer are actually available
as commercial solutions.
ABB provides a set of drives and PLCs dedicated to the control of indus-
trial cranes, equipped with antisway libraries based on the input shaping
approach and mechanical brake control features. No specific solution is pro-
vided for the closed-loop control of cranes.
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Danfoss commercial products provide open-loop antisway control features,
based again on input shaping, a variety of solutions for the safety (me-
chanical brake, functional safety), energy saving (regenerative power), but
standard antisway closed-loop control solutions are not available.
Siemens provides a dedicated product, SIMOCRANE, which is available
in five different versions, each one with different functionalities. Antisway
closed-loop control features can be unlocked by mounting a camera on the
trolley and a reflector on the hook.
Schneider electric provides libraries for the implementation of basic input
shaping zero vibration solutions, but closed-loop control is not addressed.
Gefran s.p.a. provides a dedicated firmware for its ADV200 drive for "Hoist
and cranes" applications, with full management of the mechanical brake
and an antisway solution based on Zero Vibration input shaping.
Vinati S.r.l. provides an inertial platform for the measure of the oscilla-
tion and tilting of the load, together with closed-loop approaches for their
compensation.

From the comparison between academic and industrial state-of-the-art,
it is clear that a gap exists between academic solutions and commercially
available products. For example, the proposed advanced closed-loop ap-
proaches such as Model Predictive Control is not available on the market
as a solution for the antisway control of cranes. Advanced solutions would
provide, as presented in various scientific publications, a way to respect hard
constraints while reducing energy consumption, thus bringing the market
to the cutting edge when existent academical solutions will be brought to
commercial products.

Consistently with the goal of this thesis, the following chapters will
present the details of a number of anti-sway control techniques for cranes,
both new and already present in the literature, and the implementability
of the presented techniques on industrial systems will be addressed, with
the aim of bridging the gap existing between academic and commercially
available industrial solutions.
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Table 2.3: Parameters of the model used in simulations.

Model data
mC 100 [kg] CC 0.1 [Nsm ]

m1 10 [kg] C1 3 [Nmsrad ]

m2 10 [kg] C2 3 [Nmsrad ]

l1 3 [m] l2 3 [m]

2.3 Open-loop control

In this section, open-loop approaches for the control of cranes will be pre-
sented, while closed-loop approaches are treated in Section 2.4.

The control of a pendulum is often used during control academic courses
as an example for the control of oscillating systems. In fact, being the pen-
dulum a highly underdamped underactuated system, it is a perfect example
for the control of a system with strong oscillatory behaviours, while allowing
for a simple and straightforward description of its dynamics [21].
As industrial cranes can be modelled basically as pendulums on a moving
cart, the literature regarding their control is vast and it focuses mainly on
open-loop approaches. Among proposed techniques, the most common ap-
proaches can be resumed in three main categories: Input Shaping, Notch
filtering and Input-Output Inversion.

The various methodologies have been validated on a double pendulum
model of an overhead crane, whose parameters are shown in Table 2.3. For
the case of MIL validation, the model has been built with Simulink Simscape
Multibody. For the HIL validation, the SM of the hardware setup described
in Chapter 1.4.4 simulates the dynamic response of the double pendulum
overhead crane.
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2.3.1 Input shaping

Input shaping is the most widespread control techniques for industrial cranes.
Conceived in the late ’50 [9, 69] and then formalized in [63], input shaping
is a technique which is based on the superposition principle for linear sys-
tems. Basing on the evidence that, for linear systems, the total response
to a sum of a series of inputs is equal to the sum of the single responses
of the system corresponding to each input, input shaping filters the input
signal that would generate an oscillatory response in order to obtain two
(or more) oscillatory responses, which summed cancel each other.

The impulse response of an oscillatory system can be described in the
time domain by

y(t) =

[
A

ωn√
1− ξ2

expωn(t−t0)

]
sin(ωn

√
1− ξ2(t− t0) + φ) (2.52)

where A is the initial amplitude of the oscillation, ωn the natural frequency
of the oscillation, ξ is the damping coefficient and φ is the phase. An exam-
ple of impulse response is shown in Figure 2.5. The sum of the responses
to two different impulses, thanks to the superposition principle for linear
systems, can be written as

yt(t) = B1 sin(α(t− t0) + φ1) +B2 sin(α(t− t0) + φ2)

= At sin(αt+ φt)
(2.53)

where
Bi = Ai

ωn√
1− ξ2

expωn(t−ti) , α = ωn
√

1− ξ2.

The amplitude and phase of the resulting oscillatory response are given
by

At =
√

(B1 cosφ1 +B2 cosφ2)2 + (B1 sinφ1 +B2 sinφ2)2

φt = tan−1

(
B1 cosφ1 +B2 cosφ2

B1 sinφ1 +B2 sinφ2

) (2.54)
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Figure 2.5: Impulse response of an oscillatory system, as defined by (2.52),
with parameters A = 1, ωn = 2, ξ = 0.2, φ = 0.

Generalizing for the N impulses, the amplitude and phase of the resulting
response are given by

At =

√√√√(
N∑
i=1

Bi cosφi)2 + (
N∑
i=1

Bi sinφi)2

φt = tan−1

(∑N
i=1Bi cosφi∑N
i=1Bi sinφi

)
.

(2.55)

It must be noted that, if the impulses act on the system at different times
(i.e. some impulses do not intervene at t0), the result in (2.55) is still valid
only after the last impulse has acted on the system.
In order to have a non-oscillatory final response, the resulting amplitude At
should be equal to zero. This yields, for t > max(ti), to{∑N

i=1Bie
−ξωn(tN−ti) sin(tiωn

√
1− ξ2) = 0∑N

i=1Bie
−ξωn(tN−ti) cos(tiωn

√
1− ξ2) = 0.

(2.56)

The solution of system (2.56) gives the amplitudes and times of the impulses
that would result in zero oscillation for the system.
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Two-impulse (ZV) input shaping
The simplest and most diffused input shaping filter derives from solving

system (2.56) with N = 2 and imposing a strictly positive value for the
impulse amplitudes, together with the condition

N∑
i=1

Ai = 1.

The resulting solution, which is named Zero Vibration (ZV) Input Shaping,
in terms of amplitudes and times of the two impulses, can be written as

ZV =

[
Ai

ti

]
=

 1

1 +K

K

1 +K
0

π

ωd

 (2.57)

with
K = e

− ξπ√
1−ξ2

and wd the damped natural frequency of the system

wd = w0

√
1− ξ2.

A scheme of the ZV input shaping technique is shown in Figure 2.6.

ZVD and ZVDD input shaping
By increasing the number of impulses, other conditions must be added

in order to analytically solve system (2.56). One solution is to set as equal to
zero the derivatives of the resulting amplitudes, that is, the first equation in
system (2.55). With N = 3, and by setting equal to zero the first derivatives
of the resulting amplitude, the series of impulses found have the name of
Zero Vibration and Derivatives (ZVD) input shaping, and can be written
as

ZVD =

[
Ai

ti

]
=

 1

1 + 2K +K2

2K

1 + 2K +K2

K2

1 + 2K +K2

0
π

ωd

2π

ωd

 (2.58)
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Figure 2.6: Two-impulse (ZV) IS method.

By further increasing the number of impulses to N = 4, the second
derivatives of the total amplitude must be set equal to zero (giving name to
the technique as ZVDD input shaping), and the resulting impulses series is
defined by

ZVDD =


Ai

ti

 =


1

DZV DD

3K

DZV DD

3K2

DZV DD

K3

DZV DD

0
π

ωd

2π

ωd

3π

ωd

 (2.59)

where
DZV DD = 1 + 3K + 3K2 +K3 (2.60)

The reason for increasing the number of impulses is that, by setting
equal to zero high order derivatives of At, the robustness of the method with
respect to errors in the model parameters increases, as shown in Figure 2.7.

While increasing the number of the impulses could be further increased,
it must be noted that N is strictly linked to the time of the last impulse.
In particular, tN is equal to N − 1 times the half-period of the system
oscillation. For this reason, as will be shown later, it is unpractical to
increase the total number of impulses, as it results in an increase of the
delay introduced by the input shaping filter.
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Figure 2.7: Robustness of the IS methods [74].

Extra Insensitive input shaping

Being input shaping an open-loop technique, its robustness is a key is-
sue when applied to industrial applications, as it is rarely possible to have
an accurate model of the system to be controlled, and errors in the model
parameter can be relevant.
One way to further increase the robustness of the technique without increas-
ing the introduced delay is to allow a certain level of residual oscillation At
in the nominal case, resulting in the so called Extra Insensitive (EI) input
shapers. The rationale behind this is shown in Figure 2.8

For example, the resulting filter obtained by setting the admissible os-
cillation at the nominal case equal to Vtol and N = 3 is given by

EI =

[
Ai

ti

]
=

A1 1− (A1 +A3) A3

0 t2
2π

ωd

 (2.61)
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Figure 2.8: Robustness of Extra Intensive shapers [74].

with

A1 =0.24968 + 0.24962Vtol + 0.80008ξ + 1.23328Vtolξ + 0.49599ξ2

+ 3.17316Vtolξ
2

A3 =0.25149 + 0.21474Vtol − 0.83249ξ + 1.41498Vtolξ + 0.85181ξ2

− 4.90094Vtolξ
2

t2 =
2π

ωd
(0.49990 + 0.46159Vtolξ + 4.26169Vtolξ

2 + 1.75601Vtolξ
3

+ 8.57843V 2
tolξ − 108.644V 2

tolξ
2 + 336.989V 2

tolξ
3)

(2.62)

The parameters of other EI filters (for N = 4 and N = 5) can be found
in [74].

Negative impulse input shapers
One limitation of input shaping is that the delay introduced in the input

is forced to be a multiple of half of the oscillation period of the system. For
some applications, for which a fast manoeuvre time is more relevant than
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a precise and robust oscillation compensation, and for which the interested
oscillation period can last for seconds, half of a period can be an unaccept-
able delay.
By allowing the impulses that define input shaping filters to have negative
values, it is possible to overcome this limitation [68]. By limiting the am-
plitude of the impulses to unitary values results in Unitary Module (UM)
input shaping

UM =


Ai

ti

 =

1 −1 1

0 t2 t3

 (2.63)

where

t2 =
2π

ωn
(0.16724 + ξ0.27242 + ξ20.20345)

t3 =
2π

ωn
(0.33323 + ξ0.00533 + ξ20.17914 + ξ30.20125)

An input shaping with further reduced delay is the Partial Sum (PS)
input shaping, for which the cumulative sum of the impulses is limited to
the range [−1, 1]:

PS =

Ai
ti

 =

1 −2 2

0 t2 t3

 (2.64)

where

t2 =
2π

ωn
(0.20970 + ξ0.22441 + ξ20.08028 + ξ30.23124)

t3 =
2π

ωn
(0.29013 + ξ0.09557 + ξ20.10346 + ξ30.24624)

Input shaping as a filter
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Figure 2.9: Input shaping used as a filter for a general input signal

Until now, the provided results only consider the system response to a
train of impulses. The convolution principle extends the use of the Input
Shaping approach to general inputs, as shown in Figure 2.9.

In this sense, input shaping can handily be implemented as a filter on
the input of the system.

Input shaping for multiple oscillations
The extension of input shaping for the control of multimode system is

straightforward. Thanks again to the superposition principle, multiple in-
put shaping filters can be designed, one for each oscillatory frequency, and
the input must be filtered by the series of all the build filters.
One drawback of this approach is that the delays introduced by the fil-
ters sum each other, resulting in a total delay which could slow down the
performance of the system to an unacceptable level.

The choice of the filter
Industrial cranes are used for lifting a number of different loads, with

very different inertias which influence the natural oscillation frequency of the
system. As already mentioned, it is therefore of the uttermost importance
to address the issue of robustness of the technique with respect to errors in
the model parameters.
Table 2.10 resumes the rule of thumb for the choice of the correct filter for
the application. When robustness is a critical factor, performance in terms
of fast acceleration times should be sacrificed, and more robust techniques
such as Extra Insensitive Two-Hump input shaping should be adopted. On
the contrary, in applications where the key goal is the reduction of the
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Figure 2.10: Trade-off between introduced delay and robustness for input
shaping filters. T is the period of the oscillation to be deleted.

manoeuvre time, and (reduced) residual oscillation are acceptable, more
aggressive approaches such as PS and UM input shaping can be considered.
In Section 2.3.5 the robustness of input shaping methods will be compared
with the robustness of the other open-loop control techniques presented in
this chapter.

2.3.1.1 MIL validation

In order to validate IS methodologies for the control of industrial cranes, a
Simulink model of a double pendulum overhead crane have been developed
using Simscape Multibody. The parameters describing the model are shown
in Figure 2.3.
A series of two input shaping filters have been used to filter the cart reference
velocity. Given the parameters in Table 2.3, it can be demonstrated that
the two natural oscillation frequencies are given by

ωn1 = 1.49 [rad/s], ωn2 = 3.39 [rad/s], (2.65)

while the damping of the oscillation can be neglected, as done in practice
for the control of industrial cranes.
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From (2.65), the oscillation periods necessary for the tuning of the two filters
are respectively

T1 = 4.217 [s], T2 = 1.853 [s]. (2.66)

Figure 2.11(a) shows the original ramped cart trajectory reference together
with the filtered reference for all the simulated input shaping approaches.
The delay introduced by the filters depends on the choice of the filter, as
shown by Figure 2.10.
The resulting payload velocity is shown in Figure 2.11(b). For all the tech-
niques the resulting trajectories reach the setpoint value with small residual
oscillations with respect to the unfiltered case. This is also evident by an-
alyzing Figure 2.11(c), which shows the displacement of the payload with
respect to the position of the cart. After an initial transient, the trajecto-
ries resulting from the input shaping filtered inputs are affected by minor
residual oscillations.

2.3.1.2 HIL validation

Input shaping techniques have been implemented as function blocks for
the ADV200 industrial drive of the industrial setup in Figure 1.6, while
the SM simulated the dynamics of the double pendulum described by the
parameters in Table 2.3. The results, shown in Figure 2.12, are coherent
with the MIL test results of Figure 2.11, so that input shaping techniques
effectively reduce residual oscillations when applied to the antisway control
of overhead cranes.
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(a) Cart velocity.

(b) Payload velocity.

(c) Displacement of the payload with respect to cart po-
sition

Figure 2.11: MIL validation of input shaping techniques. In dashed blue
line, the unshaped command. The shaped commands are obtained with
ZV (orange dotted line), ZVD (green dotted line), ZVDD (light-blue solid
line), EI (yellow solid line) and EI Two-Hump (dash-dot purple line) input
shaping
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(a) Cart velocity.

(b) Payload velocity.

(c) Displacement of the payload with respect to cart po-
sition

Figure 2.12: HIL validation of input shaping techniques. In blue line, the
unshaped command. The shaped commands are obtained with ZV (orange
line), ZVD (green line), ZVDD (light-blue line), EI (yellow line) and EI
Two-Hump ( purple line) input shaping
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2.3.2 Input-output inversion

Input-output inversion is an open-loop technique which consists in comput-
ing an adequate input for the system in order to have a predefined non-
oscillating response by inverting the transfer function of the system. Thus,
once a suitable desired payload trajectory has been defined, the correspond-
ing input can be found analytically. Unlike input shaping, the transient time
necessary for reaching a situation with zero oscillation can be varied, as it
is indeed the tuning variable of the approach. The operator, depending
on the application, can choose between a fast manoeuvre or a more robust
approach.

Input-output inversion has been demonstrated to be a suitable choice for
the control of industrial overhead cranes [51], also when double pendulum
dynamics are present [25].

The input-output inversion approach for the control of industrial cranes
is presented in [51] and is here summarized.

Considering a generic strictly proper linear system in the form

H(s) =
Y (s)

U(s)
=
βms

m + βm−qs
m−1 + · · ·+ β1s+ β0

αnsn + αn−1sn−1 + · · ·+ α1s+ 1
(2.67)

with a relative order
ρ = n−m > 0.

The linear system in (2.67) can be inverted, resulting in

H−1(s) =
U(s)

Y (s)
= γρs

ρ + γρ−1s
ρ−1 + · · ·+ γ1s+ γ0 +H0(s), (2.68)

where

H0(s) =
σm−1s

m−1 + σm−2s
m−2 + · · ·+ σ0

βmsm + βm−qsm−1 + · · ·+ β1s+ β0
(2.69)

is the zero order dynamics of the system H(s).
It can be demonstrated [25] that, for highly underdamped systems, the

contribution of H0(s) to the dynamic of the inverted system can be ignored,
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so that in this case the inverted transfer function in (2.68) can be written
as

H−1(s) =
U(s)

Y (s)
= γρs

ρ + γρ−1s
ρ−1 + · · ·+ γ1s+ γ0. (2.70)

This means that the input U(s) of the system can be computed as a weighted
sum of the derivatives of the output Y (s) up to order ρ, where the weighting
coefficients are [γρ, γρ−1, . . . , γ1, γ0], that is,

U(s) = H−1(s)Y (s). (2.71)

Consequently, by defining an adequate output trajectory, the corresponding
input can be easily computed. For the output trajectory to be adequate, it
has to be ρ times differentiable. For this reason, a polynomial form for the
output trajectory seems like a good choice, as its differentiability order is
easily defined.
The polynomial normalized output trajectory ȳ can be written in the form

ȳ(t, τ) =


0 t ≤ 0
(2k+1)!
k!τ2k+1

∑k
i=0

(−1)k−it2k−i+1

i!(k−i)!(2k−i+1) 0 < t < τ

1 t ≥ τ
(2.72)

where τ is the transient time of the polynomial trajectory and 2k + 1 is
the order of the polynomial. In order for (2.72) to be a feasible output
trajectory for system (2.67), k must be chosen so that

2k + 1 ≥ ρ.

The derivative of order α of (2.72) Dα can be written in closed form as

Dαȳ(t, τ) =
0 t ≤ 0
(2k+1)!
k!τ2k+1

∑k
i=0

(−1)k−iτ i(2k−i+1)
i!(k−i)!(2k−i+1)(2k−i+1−α)!τ

it2k−i+1−α 0 < t < τ

0 t ≥ τ

(2.73)
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The corresponding input can be therefore computed in closed form as

u(t, τ) = γρD
ρy(t, τ) + γρ−1D

ρ−1y(t, τ) + ...+ γ0y(t, τ) (2.74)

2.3.3 Input-output inversion for double-pendulum overhead
cranes

The proposed simplified input-output inversion approach is here extended to
the control of a overhead crane which exhibits double pendulum dynamics.
The approach and the results have been published in [25].

Input-output inversion can be applied for both the case of position and
velocity control of overhead cranes. Depending on the variable to be con-
trolled, the schemes in Figure 2.13(a) or Figure 2.13(b) can be chosen.
While the cart position or velocity trajectories can be computed by com-

puting the inverse of the transfer function that links the cart kinematics
with the payload velocity and position (2.46), the feedforward force signal
can be computed by inverting the transfer function that describes the dy-
namic of the crane when the considered input is the force acting on the
cart (that is, equation (2.41)). The feedforward force signal increases the
tracking performance of the control system.

By inverting equation (2.46), the resulting inverted transfer function can
be written in the form

G−1(s) = γ2s
2 + γ1s+ γ0 +

ρ1s+ ρ0

NF (s)
. (2.75)

If the damping coefficients C1 and C2 in equation (2.46) are small enough
[25], the zero dynamics of the system can be neglected when computing the
input of the system. This brings a major advantage to the approach. In fact,
the zero dynamics would result in a convolution integral when computing
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(a)

(b)

Figure 2.13: (a) Velocity control scheme and (b) position control scheme.
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the input, resulting in a non-analytical form for the input. If the zero
dynamics can be neglected, the input results in a parametric closed form,
which is constant when t > τ .

Under the assumption of small damping coefficients, such is verified in
industrial overhead cranes, (2.75) can be simplified in

G−1(s) = γ2s
2 + γ1s+ γ0 (2.76)

.
As transfer function (2.46) describes both the relation between cart ve-

locity and payload velocity, and between cart position and payload position,
the result in (2.76) is valid for both the schemes in Figure 2.13.

The desired trajectory, for both velocity ( ˙̄xp) and position (x̄p) control,
can be computed by multiplying the trajectory in (2.72) for the desired
steady state payload velocity or position q, resulting in (for the case of
position control)

x̄p(t, τ, q) =


0 t ≤ 0

q (2k+1)!
k!τ2k+1

∑k
i=0

(−1)k−it2k−i+1

i!(k−i)!(2k−i+1) 0 ≤ t < τ

q t ≥ τ
(2.77)

so that the derivatives are easily computed as

Dαx̄p(t, τ, q) ={
q (2k+1)!
k!τ2k+1

∑k
i=0

(−1)k−iτ i(2k−i+1)
i!(k−i)!(2k−i+1)(2k−i+1−α)!τ

it2k−i+1−α 0 < t < τ

0 t ≥ τ
(2.78)

The cart velocity or position trajectory, from (2.76), is therefore given
by

x̄c(t, τ, q) = q
[
γ2D

2x̄p(t, τ) + γ1D
1x̄p(t, τ) + γ0x̄p(t, τ)

]
. (2.79)

The force feedforward for the velocity control can be computed by in-
verting transfer function (2.42), which results, under the assumption of
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negligible values of C1 and C2, in

ū(t, τ, q) =λ4D
4x̄p(t, τ) + λ3D

3x̄p(t, τ) + λ2D
2x̄p(t, τ)

+ λ1D
1x̄p(t, τ) + λ0x̄p(t, τ)

(2.80)

Similarly, the force feedforward for the position control can be comput-
ing by inverting (2.41), resulting in

ū(t, τ, q) =ψ6D
6x̄p(t, τ) + ψ5D

5x̄p(t, τ) + ψ4D
4x̄p(t, τ)

+ ψ3D
3x̄p(t, τ) + ψ2D

2x̄p(t, τ) + ψ1D
1x̄p(t, τ)

+ ψ0x̄p(t, τ)

(2.81)

2.3.3.1 MIL validation

The technique has been validate through MIL testing, using a model of the
system with the parameters shown in Figure 2.3. As a first example we
consider the velocity control with final velocity q = 5 [m/s] and transition
time τ = 4.21 [s].
The application of the input-output inversion methodology yields the com-
mand signal ˙̄xc and the feedforward signal ū, which are shown in Figure
2.14, where the desired output (i.e., the transition polynomial (2.72)) is also
shown, along with the response of the nonlinear model. As a second exam-
ple the position control task is considered, with q = 10 [m] and τ = 4.21

[s]. The signals x̄c and ū obtained with the inversion based methodology
are shown in Figure 2.15 together with the obtained results.

2.3.3.2 HIL validation

The same test have been executed on the HIL setup described in Chap-
ter 1.4.4. A function block with the parametric function for the position,
velocity and feedforward force have been coded directly on the ADV200
industrial drive. The only needed parameters are q, which can be either the
steady state velocity or position reference depending on the desired variable
to be controlled, and the transition time τ .
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Figure 2.14: Velocity command signal ˙̄xc (blue dash-dot line), desired pay-
load trajectory (solid black) and actual payload trajectory obtained with
the nonlinear model (orange dashed line) (top). Force feedforward signal
ũv for velocity control obtained with input-output inversion of the model
(bottom).
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Figure 2.15: Position command signal x̄c (purple dash-dot line), desired
payload trajectory (black solid line) and actual payload trajectory (dashed
orange line) (top). Force feedforward signal ū for position control obtained
with input-output inversion of the model (bottom).

For the case of velocity control, the same parameters of the MIL vali-
dation phase have been used, that is, a desired velocity of q = 5 [m/s] and
transition time τ = 4.21 [s].
The application of the input-output inversion methodology yields the com-
mand signal ˙̄xc and the feedforward signal ū, which are shown in Figure
2.16, where the desired output (i.e., the transition polynomial (2.72)) is
also shown, along with the velocity of the payload, simulated by the SM
on the HIL setup. Then, also input-output inversion position control have
been validated on the HIL setup, with the same parameters of the MIL
validation, that is, a desired final position of q = 10 [m] and a transient
time τ = 4.21 [s]. The signals x̄ and ū obtained with the inversion based
methodology are shown in Figure 2.17 together with the obtained results.

By comparing the results obtained with HIL testing with the ones ob-
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Figure 2.16: Cart velocity command signal ˙̄xc (orange line), desired payload
trajectory (solid black) and actual payload trajectory simulated by the SM
on the HIL setup (blue line)(top). Force feedforward signal ũv for velocity
control obtained with input-output inversion of the model (bottom).
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tained by MIL testing (Figure 2.14 and Figure 2.15), no significant differ-
ences can be seen.
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Figure 2.17: Cart position command signal x̄c (orange line), desired payload
trajectory (black line) and actual payload trajectory simulated by the SM
on the HIL setup (blue line) (top). Force feedforward signal ū for position
control obtained with input-output inversion of the model (bottom).
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2.3.4 Input Notch filtering

Oscillations in dynamic systems are represented by couples of poles in the
transfer function with non-zero imaginary part. Typically, if this poles
couple is known, it can easily be cancelled by filtering the input with a
notch filter [60].
In industrial cranes, the oscillation frequency, and thus the poles position,
can be easily expressed as a function of the cable length, while the damping
is approximately equal to zero (generated oscillations can last for minutes
in industrial cranes). Thus, it is straightforward to apply notch filtering for
the anti-sway control of industrial cranes [43].

For the simplest of single pendulum crane dynamics, the oscillation fre-
quency is given by

ωn(l) =

√
g

l
(2.82)

Thus, for highly underdamped cranes, the notch filter can be defined as

FN (s) =
K(s2 + ω2

n)

(s+ a)3
(2.83)

where
a = âωn

and â is a tuning parameter that is approximately equal to one. A reduction
of this parameters brings increased robustness in spite of reduced perfor-
mance in terms of rapidity in the response.
Then K is set in order to obtain a unitary gain filter, thus

K =
a3

ω2
n

.

2.3.4.1 MIL validation

Notch filter approach has first been validated on the MIL testing bed, with
the nonlinear Simscape Multibody model, whose parameters are described
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in Table 2.3. In order to test different filter robustness, three different values
(0.7, 1.5 and 2.5) have been chosen for the tuning parameter â. This value
have been chosen as they approximately correspond to the input shaping
filters ZV, ZVD and ZVDD in terms of introduced delay on the input, that
is, 0.5(T1 +T2), (T1 +T2) and 1.5(T1 +T2), where (T1 +T2) are the natural
periods of the system.
Figure 2.18(a) shows the velocity reference for the cart, in the filtered and
unfiltered cases. By comparing the velocity trajectories with Figure 2.11(a),
the filter with â result in a slightly more aggressive cart velocity trajectory
with respect to its analogue ZV input shaping filter.
Payload velocities, shown in Figure 2.18(b), reach without oscillating the
setpoint value. In fact, the oscillation (shown in terms of relative displace-
ment of the payload with respect to the cart position), after an initial tran-
sient, is contained and stabilizes around zero.

2.3.4.2 HIL validation

A notch filter function block has been built on the ADV200 industrial drive
controlling the MUT of the HIL setup described in 1.4.4, while the SM
motor simulated the behaviour of the double pendulum crane already de-
scribed. By setting the same parameters as in the MIL validation, that is,
â = [0.7, 1.5, 2.5], the resulting cart trajectories are shown in Figure 2.19(a).
The payload velocity trajectories are shown in Figure 2.19(b). In all the
cases, except for the unfiltered case, payload velocity reaches the setpoint
value with only small residual oscillations.
This can also be seen by comparing the payload displacement with respect
to the position of the cart, as shown in Figure 2.19(c).

The results obtained during the HIL validation are consistent with the
results obtained with the MIL, as the use of notch filtering technique suc-
cessfully reduces the residual oscillation of the payload.
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(a) Cart velocity.
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(b) Payload velocity.
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(c) Displacement of the payload with respect to cart po-
sition.

Figure 2.18: HIL validation of notch filtering. Unfiltered cart velocity com-
mand reference (blue dashed line), and notch filtered signals obtained by
setting a delay time in the filter corresponding to 0.5(T1 + T2) (orange dot-
ted line), (T1 + T2) (yellow dash-dot line) and 1.5(T1 + T2) (solid purple
line), where (T1 + T2) are the natural oscillation periods of the system.
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(a) Cart velocity.
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(b) Payload velocity.
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(c) Displacement of the payload with respect to cart po-
sition.

Figure 2.19: HIL validation of notch filtering. Unfiltered cart velocity com-
mand reference (blue line), and notch filtered signals obtained by setting a
delay time in the filter corresponding to 0.5(T1 +T2) (orange line), (T1 +T2)

(yellow line) and 1.5(T1 + T2) (solid line), where (T1 + T2) are the natural
oscillation periods of the system.
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2.3.5 A comparison between open-loop techniques

In order to compare the presented open-loop techniques for the control of
industrial cranes, intensive simulations have been executed in order to test
their robustness with respect to errors in the model parameters.
The measure of robustness adopted in this thesis is the sensitivity curves
surface, which correlates the maximum residual oscillation of the payload
with the parameters uncertainty. The reason of the success of the maximum
residual oscillation for the evaluation of the robustness lies in its simplicity
and at-a-glance comprehensibility, which renders the adopted metric very
suitable for non highly-specialized engineers and industrial practitioners.
This is in line with the objective of devising industrially feasible solutions,
easily implementable by using off-the-shelf automation components.
In order to obtain a fair comparison of the techniques, various input shaping
filters have been tested, and both input-output inversion and input notch
filtering control parameters have been adjusted in order to set the intro-
duced delay of each technique comparable with the various input shaping
techniques.
The system on which the robustness is tested is a double-pendulum over-
head crane, whose simulated model is described by the parameters in Table
2.3. The input shaping techniques tested are shown in Table 2.4, along with
the delay they introduce in the nominal case.

Table 2.4: Delays introduced by the input shaping techniques. T is the sum
of the periods of the system to be controlled.

IS technique Delay Total transient time [s]
ZV 0.5T 4.21

ZVD T 7.42

EI T 7.42

ZVDD 1.5T 10.63

Two-hump EI 1.5T 10.63



2.3. Open-loop control 71

As input-output inversion has τ as its tuning parameter, which is exactly
the transition time, it is easy to directly compare input shaping and input-
output inversion by setting τ equal to the delay introduced by the input
shaping filter.
The notch filter parameters have been tuned manually to have the same
delay as input shaping.

In order to test the robustness, both the payload mass m2 and the
hoisting cable length l1 have been varied.
Residual oscillations are measured at the end of the acceleration phase, with
a reference steady state velocity of 1.5 [m/s], simulating an Operator-In-the-
Loop overhead crane.

The resulting sensitivity curves surfaces are shown in Figure 2.20.
It can be seen that the resulting robustness is comparable when the total
delay time introduced by the techniques is the same. In particular in Figure
2.20(a) all the techniques have comparable robustness, but the notch filter
approach is slightly less robust when the estimated length of l1 is less than
the nominal value of 3 [m].
In Figure 2.20(b) input-output inversion and notch filter have comparable
robustness. ZVD input shaping results in a flat sensitivity curve around the
nominal value of l1, while Extra Insensitive input shaping have non-zero
residual oscillation at the nominal case, but contrarily to the other tech-
niques it shows a decreasing residual oscillation when the length l1 moves
away from its nominal value.
In Figure 2.20(c), all the techniques show comparable robustness around
the nominal values, except for the notch filter, which result in a less robust
sensitivity curve.
Moreover, as shown by Figure 2.21 and Figure 2.22, the results in terms

of residual oscillations when comparing input shaping to input-output in-
version are very similar, both in the case of velocity and position control,
meaning that the robustness does not depend on the controlled variable.



72 Chapter 2. Control of industrial cranes

20

Payload mass [kg]

10
0

0.2

0.4

1

0.6

l
1
 length [m]

R
e
s
id

u
a
l 
o
s
c
ill

a
ti
o
n
 [
m

]

1.5 2

0.8

2.5

1

3 3.5

1.2

4 04.5 5 5.5 6

I/O inversion

ZV IS

Notch filter

(a) Total time of 1 +
T1 + T2

2
seconds.

20

Payload mass [kg]

10
0

0.1

0.2

1

0.3

l
1
 length [m]

R
e
s
id

u
a
l 
o
s
c
ill

a
ti
o
n
 [
m

]

1.5 2

0.4

2.5

0.5

3 3.5

0.6

4 04.5 5 5.5 6

I/O inversion

ZVD IS

EI IS

Notch filter

(b) Total time of 1 + T1 + T2 seconds.

20

Payload mass [kg]

10
0

0.05

0.1

0.15

1

0.2

l
1
 length [m]

R
e
s
id

u
a
l 
o
s
c
ill

a
ti
o
n
 [
m

]

1.5

0.25

2 2.5

0.3

3

0.35

3.5

0.4

4 04.5 5 5.5 6

I/O inversion

ZVDD IS

EI2 IS

Notch filter

(c) Total time of 1 +
3(T1 + T2)

2
seconds.

Figure 2.20: Comparison of the robustness to parameter errors of input
shaping, input-output inversion and notch filtering techniques for the ma-
noeuvre of an OIL double-pendulum crane.
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Figure 2.21: Position trajectory reference of the cart (black dashed line)
and shaped cart position signal (blue solid line), using the ZV shaper, and
resulting payload trajectory (dashed orange line).
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Figure 2.22: Velocity ramp trajectory reference of the cart (black dash-dot
line), shaped cart velocity signal (blue solid line) using the ZV shaper, and
actual payload trajectory (dashed orange line).

2.3.5.1 Experimental results

In order to test the effectiveness of the proposed techniques on a real sys-
tem, having evaluated the seemingly greater robustness of input shaping
and input-output inversion techniques with respect to notch filtering, these
two techniques have been developed as function blocks for the ADV200
Gefran inverter and tested on the overhead crane inside Gefran industrial
warehouse. Gefran s.p.a. already optionally provides the ADV200 inverter
with a built-in software specially dedicated to hoist and crane solutions.
Nonetheless, the previous available solution was based on a predefined set
of antisway trajectories for the cart to follow, mainly based on a ZV input
shaping approach. Hence, the already available solution was not capable
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of coping with user-defined trajectory and its robustness was not tunable,
resulting in a non flexible solution.
The introduction of input shaping and input-output inversion function blocks
can increase the flexibility of antisway solutions. Input shaping function
blocks can work as filters, being independent from the input signal which
can be generated by the operator depending on the particular application.
input-output inversion provide for a very practical tuning of the technique
robustness, which can again be defined depending on the application. As al-
ready mentioned, the reason for not having experimentally tested the notch
filter approach is the lack in robustness when compared to robust input
shaping approaches when applied to the antisway control of overhead cranes,
as shown in Figure 2.20(c). With already being able to chose between in-
put shaping and input-output approaches, which have been demonstrated
through intensive simulations to be more robust than notch filtering, this
last technique has been excluded by the experimental testing procedure.
The techniques have therefore been tested on the industrial overhead crane
at Gefran s.p.a., manoeuvreing a payload consisting in a 1000 [kg] high
voltage transformer. The load was moved for a predefined displacement
and then stopped. The residual oscillations where measured by recording
the load after the cart has stopped and by identifying the displacement of
a single point of the load during some oscillation periods. A frame of the
resulting post-processing procedure is shown in Figure 2.23.

The results of the testing are shown in Figure 2.24 and Figure 2.25.
Both the techniques effectively reduce significantly the residual oscillations
when applied for the control of industrial overhead cranes. It must be noted
that, as the parameters of the real system where roughly estimated, errors
in the parametrization of the model must have been made. For this reason,
it can be seen that more robust methods effectively tackle the problem of
residual oscillations also when based on uncertain models.
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Figure 2.23: Measuring procedure of residual oscillations during the test
of open-loop technique on the industrial crane in Gefran s.p.a.. A marker
was placed in order to identify a single point of the load, and the video was
analyzed frame per frame.
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Figure 2.24: Residual oscillation of the overhead crane with input shaping
control. Residual oscillations are greatly reduced with respect to the case
when no antisway technique is used.
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Figure 2.25: Residual oscillation of the overhead crane with input-output
inversion control. Residual oscillations are greatly reduced with respect to
the case when no antisway technique is used.
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2.3.6 An example of application of open-loop techniques to
boom cranes

All the open-loop techniques presented in this chapter strongly rely on the
assumption of linearity for the system to be controlled. This assumption is
acceptable for gantry, overhead and portal cranes, for which the sources of
nonlinearities in their dynamics are limited to the sinus and cosinus func-
tions, whose contribution is limited for small sway angles.
The dynamics of other cranes configurations, such as tower and boom
cranes, can not be so easily described by means of linear models, as they
are inherently nonlinear. While their kinematics can be easily described
by means of polar coordinates, their dynamics cannot be reduced to linear
models.

As the strength of the proposed open-loop approaches lies in their sim-
plicity and easy application, tailoring complex open-loop approaches for this
nonlinear cranes would disrupt the aim of this work, which lays in providing
easy-to-use mudules for the control of industrial applications.

Focusing on the concept behind input shaping, input-output inversion
and notch filtering approaches, we note that only input-output inversion ap-
proach strictly relies on the linear model of the system, while input shaping
and notch filtering are based on the suppression of certain frequencies on
the input signal. This approach can provide decreased residual oscillations
also when applied to highly nonlinear systems, such as boom cranes.

Input shaping and notch filtering approaches will now be applied for
the control of a boom crane, and simulations will show the effectiveness of
these techniques in containing the residual oscillations affecting the payload.
The model of the boom crane is described in Chapter 2.1.3. A nonlinear
model of the crane has been built using Simscape Multibody in Simulink
environment, with values for its parameters which are shown in Table 2.5
and which reflect the values of a real industrial boom crane.

For the sake of simplicity, only the rotation angle α is controlled during
the simulation, while the pitching angle β has been kept constant to 0 [rad].
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Table 2.5: Parameters of the boom crane model used in simulations.

Model data
Parameter Value
L 55 [m]
mL 3000 [kg]
LR 30 [m]

In this configuration, to all effects, the boom crane behaves as a tower crane.
In order to verify the effectiveness of the proposed open-loop methods,

different end positions have been identified for the rotation angle α. The
velocity reference signal for α has been built as a three traits law of motion,
with acceleration α̈ = 0.0279 [rad/s2] and maximum velocity α̇max = 0.0838

[rad/s].
The velocity reference has then been filtered using different input shap-

ing and notch filters. In order to tune the filters, the required parameters
(oscillation period and natural frequency) can be easily obtained as

T =2π

√
LR
g

ωn =
1

T
2π

(2.84)

ZV, ZVD and ZVDD input shaping filters have been tested. For the
sake of a fair comparison, the notch filter tuning parameter â has been
adjusted in order to introduce a delay in the filtered signal equal to the

delay introduced by the input shaping filters, that is, equal to
T

2
for the ZV

filter, T for the ZVD filter and
3T

2
for the ZVDD filter.

The payload trajectories resulting from the simulations are shown in
Figure 2.26, Figure 2.27 and Figure 2.28. It is easy to see that the intro-
duction of both either input shaping or notch filters greatly improve the
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Figure 2.26: Payload trajectories for the case of unfiltered velocity reference
(grey dashed line), ZV input shaping velocity filtered reference (black solid
line) and notch filtered velocity reference, with â = 2.0 (dashed red line).

trajectories of the payload, by both reducing the oscillations during and
after the manoeuvres.

In order to better understand the contribution of the two approaches, the
residual oscillation after the movement has been evaluated as the maximum
distance, in the horizontal plane, between the projection of the point on
which the cable is connected to the boom and the position of the payload.

The results of this evaluation are shown in Figure 2.29, 2.30 and 2.31.
As already pointed out, the residual oscillations are greatly reduced when
filtering the reference signal. The two approaches (input shaping and notch
filtering) provide similar performance when the filter introduces a delay cor-
responding to the ZV approach.
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Figure 2.27: Payload trajectories for the case of unfiltered velocity reference
(grey dashed line), ZVD input shaping velocity filtered reference (black solid
line) and notch filtered velocity reference, with â = 1.4 (dashed red line).
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Figure 2.28: Payload trajectories for the case of unfiltered velocity reference
(grey dashed line), ZVDD input shaping velocity filtered reference (black
solid line) and notch filtered velocity reference, with â = 0.9 (dashed red
line).
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Figure 2.29: Maximum residual oscillation of the payload during different
rotation manoeuvres, for the case of unfiltered velocity reference, ZV input
shaping and notch filtering with â = 2.0.

On the other hand, when more robust approaches are needed, by the com-
parison in Figure 2.30 and Figure 2.31 notch filtering guarantees less residual
oscillations with respect to input shaping approaches. Moreover, changing
the robustness of notch filtering is straightforward, as it only depends on the
tuning parameter â. For this reason, for this particular application notch
filtering approach is to be preferred.
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Figure 2.30: Maximum residual oscillation of the payload during different
rotation manoeuvres, for the case of unfiltered velocity reference, ZVD input
shaping and notch filtering with â = 1.4.
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Figure 2.31: Maximum residual oscillation of the payload during different
rotation manoeuvres, for the case of unfiltered velocity reference, ZVDD
input shaping and notch filtering with â = 0.9.
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2.4 Closed-loop control

In the previous section, open-loop control approaches for the antisway con-
trol of industrial cranes have been evaluated. The evaluation of this ap-
proaches have been mainly focused on their robustness with respect to errors
in the model parametrization in terms of residual oscillation. As open-loop
approaches are not able to cope with the reduction of the residual oscilla-
tion, it is important to reduce it as much as possible, hence the robust input
shaping filters. In some applications (offshore cranes, shipyard cranes etc.),
external disturbances such as, for example, wind and sea waves, may intro-
duce oscillations that directly affect the payload. These oscillations can not
be reduced in any way with open-loop approaches that, on the contrary,
by introducing delays between the operator command and the cart motion,
may negatively affect the ability of expert operators in manually reducing
payload oscillations.
For this reason, and with the lowering in costs of modern cameras and the
capability of modern control hardware to cope with computationally requir-
ing tasks such as image recognition, closed-loop control approaches for the
control of industrial cranes are under study, and some of them are already
available as commercial solutions.
Closed-loop control techniques are more robust to errors in the model pa-
rameters and to external disturbances with respect to open-loop approaches
[49]. Nonetheless, the implementation of closed-loop techniques for such
powerful and expensive machines arises issues related to stability and noise
problems; moreover, the implementation of closed-loop approaches in indus-
trial cranes, which have been typically controlled in open loop, may disrupt
the control performance when used in conjunction with expert operators,
who are not accustomed to the sometimes counterintuitive cart motions
generated by the control [75].

In the literature, various closed-loop control technique have been pro-
posed for the control of industrial cranes, and among them linear control,
sliding mode control, state feedback control, Model Predictive Control and
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adaptive control are worth mentioning. A comprehensive overview on the
closed-loop control techniques available in the literature has been presented
in [57].

2.4.1 Full state feedback

Full state feedback is a practical approach to the control of overhead cranes.
Since the problem when controlling these systems are the highly under-
damped complex poles on their transfer functions, which result in highly
underdamped oscillations of the payload, state feedback control aims to re-
locate the poles of the closed-loop transfer function, which will be positioned
as opportunely damped ones.

Indeed, with full state feedback control, under some assumptions, one is
able to arbitrarily place the poles of the controlled system. For this reason
full state feedback is also referred to simply with the more generic name of
pole placement. Such assumptions are satisfied by overhead cranes, as can
be demonstrated by computing the rank of the controllability matrix for
both the simple and double pendulum models in Chapter 2.1.
As already mentioned, one of the drawbacks of using closed-loop approaches
for the control of cranes is that the states of the system are not measured
on off-the-shelf industrial cranes, and adding ad-hoc sensors for the measure
of the sway angle is usually unpractical. In these cases, full state feedback
control can be applied by reconstructing the states of the system under con-
trol by using an observer. Again, by checking the rank of the observability
matrix of the overhead crane models, overhead cranes result in fully observ-
able systems, so that the use of an observer for computing the sway angle
of the payload is possible.

The scheme for the state feedback control of a generic system is shown
in Figure 2.32. The measured state vector x is multiplied by a vector of
coefficients x and summed to the input of the system.
The coefficients of K are computed in order to obtain the desired closed-
loop poles, knowing that the poles of the closed-loop systems are given by
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Figure 2.32: Full state feedback control scheme.

the eigenvalues of the matrix A− BK.
As already mentioned, when it is not possible to directly measure the

states of the system, an observer can be exploited for the reconstruction of
the full state vector K. The scheme representing the state feedback control
of a system with an observer is shown in Figure 2.33.
In the scheme, an approximated model of the system is simulated, re-

ceiving the same input as the real system. The internal states evolution is
corrected by means of the feedback between of the difference between the
real measured output and the simulated output. It must be noted that, for
the simulated system, the output of the system can be chosen by selecting
an appropriate matrix C, so that it is composed by a linear combination of
only measurable states, as sometimes the desired output of the system is
not measurable.
The scalar values of L are chosen to consider the dynamics with which the
observer states follow the measured states depends on its value, as this dy-
namics is defined by the eigenvalues of the matrix A−LC. For the choice of
this dynamics, a trade-off is necessary between a too-slow dynamics which
would introduce delays on the feedback line, and a too-fast dynamics, which
would amplify the effects of measurement noise.
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Figure 2.33: Full state feedback control scheme with state observer.
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Figure 2.34: Full state feedback control scheme with state observer and
states set point.

In order to adapt state feedback control to the control of overhead cranes,
a setpoint is added on the scheme in Figure 2.33 for every state. While the
cart position and velocity reference are easily obtained (for example by
defining a three traits law of motion), the setpoints for the sway angle and
the sway angular velocity are always set to zero, as the oscillations should
be ideally always reduced during and after the manoeuvre. The resulting
scheme is shown in Figure 2.34.

It must be stressed that the control scheme in Figure 2.34 can be applied
for the control of OIL overhead cranes, as the cart velocity reference can be
easily defined as

w1 :=


α if forward jog button is pressed,

−α if backward jog button is pressed,

0 if no button is pressed,

(2.85)

where α is a predefined velocity reference value, and the cart position ref-
erence can be set as the actual position, in order to have a prompt stop of
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the system when the button is released.
The application of state feedback control to overhead cranes will be

demonstrated practically in the following MIL and HIL tests.

2.4.1.1 MIL validation

The simulated model of the overhead crane is obtained by substituting the
parameters in Table 2.6, and simulating the nonlinear dynamics of the over-
head crane using Simscape Multibody. The coefficients of the feedback

Table 2.6: Parameters of the overhead crane model used in simulations.

Model data
Parameter Exact parameters Parameters with errors
mC 38 [kg] 45 [kg]
CC 20 [Ns/m] 25 [Ns/m]
Cp 0.1 [Nms/rad] 0.2 [Nms/rad]
l 1.5 [m] 1.3 [m]
mp 10 [kg] 12 [kg]

vector K are computed, based on the model with correct parameters de-
scribed by the values in the second column of Table 2.6, in order to obtain
a closed-loop system with poles in

[−10, −20, −1 + 0.1i, −1− 0.1i]

and by considering the linear model in (2.22). The resulting feedback gain
vector is

K = [1174, 2480, −12632, 1926] .

For the purpose of simulating the control of an industrial overhead crane,
only cart velocity and position are supposed to be measurable, and the
values of the sway angle and sway angular velocity are reconstructed by
means of an observer, whose model is based on the estimated parameters in
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Table 2.6, where errors have been introduced. Following the rule of thumb,
without having information regarding the noise affecting the measure of
the states, the poles of A − LC have been placed one decade faster than
the closed-loop dynamics given by A − BK, while avoiding imaginary or
multiple poles, so that the poles have been arbitrarily placed in

[−100, −200, −10, −11] .

The resulting vector L is

L = [−335240, 335560, −51640, 225250]T .

The velocity reference is shown in Figure 2.35, along with the cart and
payload velocities. The force acting on the cart is shown in Figure 2.36.
While the velocity of the payload does not reach the reference, a steady
state error in the velocity is acceptable when the crane is directly actuated
by an operator. It should also be noted that, due to the impossibility of
including constraints during the control, the initial and final force peaks are
hardly acceptable for industrial actuators, which should be greatly oversized
for the application in order to guarantee the required peaks.

2.4.1.2 HIL validation

State feedback control have been implemented on Gefran ADV200 industrial
drive in order to test the methodology on the HIL setup described in Chapter
1.4.4. The control application runs with a cycle time of Ts = 0.001 [s]. The
Simulation Motor simulates the response of the overhead crane described by
the parameters in Table 2.6. The limits of the actuator have been imposed
to be

Fmax = 500 [N]

The feedback vector K and the innovation vector L are the same ones as
those used for the MIL validation.
The velocity reference is shown in Figure 2.37, along with the cart and
payload velocities. The force acting on the cart is shown in Figure 2.38.
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Figure 2.35: Full state feedback MIL validation. Velocity reference (dash-
dot blue line, cart velocity (dashed orange line) and payload velocity (solid
yellow line).

Figure 2.36: Full state feedback MIL validation. Force action on the cart.
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Figure 2.37: Full state feedback HIL validation. Velocity reference (dash-
dot blue line, cart velocity (dashed orange line) and payload velocity (solid
yellow line).

Figure 2.38: Full state feedback HIL validation. Force action on the cart.
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It can be seen that the results are comparable with the tests on the MIL
validation test. Force limit of 500 [N] does not limit significantly the overall
performance of the control system.

2.4.2 Model Predictive Control

Although it has been shown in Chapter 2.4.1 that state feedback control
is a valid choice for the control of OIL overhead cranes, it is not capable
of coping with systems with hard constraints. When working with such
systems and state feedback, the only option is to decrease the bandwidth of
the controlled system until all the constraints are satisfied, thus obtaining
sub-optimal performance. An advanced control approach that is focused on
the optimality of the response given some constraints is Model Predictive
Control (MPC).

MPC has been identified as one of the more promising approach for the
closed-loop control of cranes. This is motivated by the increasing compu-
tational capability of modern off-the-shelf controllers. While MPC was in
origin confined to process control applications, due to the heavy compu-
tational burden bound to the solution of constrained quadratic problems,
modern controllers can now afford to run MPC at a cycle time which is
suitable for the control of mechatronic systems.
MPC brings together the intrinsic robustness of closed-loop techniques and
the ability to respect hard constraints typical of optimal control approaches.
Although solutions for the closed-loop control of cranes are indeed present
in the literature, few of them address the problem from an industrial point
of view. In fact, most of them consider the problem as a positioning prob-
lem, defining an offline computed trajectory and relying on the closed-loop
control in order to follow this trajectory. While this approach is appropriate
to fully automated cranes, in typical industrial applications the end position
is usually not known in advance with sufficient precision, and the operator
acts directly on the cart in an incremental fashion until the desired position
is reached, and then he eventually act on the cart in order to dampen pay-
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load oscillations that have come into being.
In this sense, Operator-In-the-Loop (OIL) cranes are velocity-controlled
systems. In fact, when the operator presses a button, the cart reaches a
predefined velocity, and when the button is released the cart stops.

MPC has here been applied for the control of OIL overhead cranes.
First, an MPC controller acting directly on the torque moving the cart
has been developed. Then, by using the cart velocity control loop which
is already present in industrial cranes, the model has been simplified and
a MPC-PID control scheme has been proposed, which results in increased
robustness w.r.t. nonlinearities like friction in the sliding cart. Finally, in
order to cope with the varying cable length during hoisting manoeuvres,
different linear and nonlinear approaches have been tested and compared in
order to identify the best solution to the problem of simultaneous hoisting
and travelling manoeuvres for overhead cranes.

MPC is a predictive technique that exploit a given model of the system in
order to know in advance its response to a vector of future inputs U , which
is defined as the vector of c future inputs, where c is the control horizon
measured in number of controller cycles., each of them kept constant along
the controller cycle time.
The predicted output Y is a vector of p values, where p is the predictive
horizon measured in number of controller cycles. For the case of Operator
In the Loop cranes, the velocity reference w1 can considered as constant
along the prediction horizon p, as it is not possible to predict the future
behaviour of the operator. The velocity reference can therefore be defined
as done for the case of state feedback, that is, as in (2.85).
The input vector U is computed at each control period by minimizing a cost
function, with weights on the predicted input vector U , on the predicted
error between the velocity reference and the velocity of the payload, and on
other linear combinations of the system states.



96 Chapter 2. Control of industrial cranes

Figure 2.39: MPC control scheme.

2.4.2.1 MPC for overhead cranes

The first proposed controller is based on the model of the crane which has
the force acting on the cart as input of the system and as output the velocity
of the payload. The reason for considering the force acting on the cart as the
input is motivated by the fact that the cart is actuated by a motor, for which
the simpler and most immediate control mode is the torque control. The
force acting on the cart is than related to the motor torque by a constant
factor that is given by the transmission.
The model to be considered is the one defined by (2.22). The scheme of
the proposed MPC approach is shown in Figure 2.39. The matrix C of
system (2.22) can be modified, in order to obtain and weight the states of
the system, as

C =
(
CT

0 CT
1 CT

2 CT
3

)T (2.86)

with
C0 =

(
1 0 l 0

)
C1 =

(
0 1 0 l

)
C2 =

(
0 0 0 1

)
C3 =

(
0 1 0 0

)
.

Doing so, the output y is now y = (y0, y1, y2, y3)T where yi are, respectively,
payload position, payload velocity, sway angle angular velocity θ̇1 and cart
velocity ẋc.
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The predictive equations of the outputs at instant k can be written in
the form

Y1 = F1 x(k) + G1U (2.87)

Y2 = F2 x(k) + G2U (2.88)

Y3 = F3 x(k) + G3U (2.89)

with
Y1 := (y1(k + 1), . . . , y1(k + p))T ∈ Rp,

and Y2, Y3 similarly, U := (ū1, . . . , ūc)
T ∈ Rc and x(k) ∈ R4 is the current

state vector.
The matrices F1,F2,F3 ∈ Rp×4 and G1,G2,G3 ∈ Rp×c are the predictive

matrices, calculated from the system model matrices A, B and C as in
[58]. At each control cycle, the MPC controller solves an Optimal Control
Problem (OCP) that is defined as a Quadratic Program (QP) that minimizes
the squared norm of the difference between the predicted outputs and their
references. For the case of crane control, the payload velocity reference has
been defined in (2.85). Moreover, in order to avoid excessive oscillations
during the manoeuvre , also the angular velocity should be kept as small as
possible. At last, in order to avoid chattering behaviours, the force input is
also weighted.
The OCP is then defined as

minimize
∥∥Y1 − w1

∥∥2
+ λ2

∥∥Y2

∥∥2
+ λu

∥∥U ∥∥2

subject to ẋmin ≤ Y3 ≤ ẋmax

umin ≤ U ≤ umax

(2.90)

where λ2 is the weighting factor on the angular velocity of the sway angle
and λu is the weighting factor on the input force. As the primary goal of the
controller is the tracking of the velocity reference, the introduced weighting
factors should be small enough.
In the OCP (2.90), the velocity reference w1 of (2.85) is kept constant
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along the predictive horizon. This choice derives from the impossibility of
predicting in advance the future behaviour of the operator, that could indeed
release the button on the very next control instant. For this unpredictability
of the future velocity reference, the use of a reduced predictive horizon is
also motivated.

Problem (2.90) can be written in standard quadratic form with respect
to the control vector U as

minimize
1

2
UTMU +NT U

subject to E U ≤D
umin ≤ U ≤ umax

(2.91)

where:

M := GT1 G1 + λ2GT2 G2 + λuIc (2.92)

N := GT1 (F1 x(k)− w1) + λ2GT2 F2 x(k) (2.93)

E :=
(
GT3 , −GT3

)T (2.94)

D :=
(
ẋmax −F3 x(k), −ẋmin + F3 x(k)

)T (2.95)

where Ic denotes the identity matrix.
While the steady state velocity reference α could be a parameter set by

the operator, a method for automatically link α with the overshoot in the
payload position when the jog button is released is here presented. The
overshoot in the payload position is a relevant parameter, as it directly
affects a precise positioning of the payload and the safety of the overall
system.
Once the maximum acceptable overshoot value ∆xmax has been defined,
the maximum value of α so that the overshoot in position ∆x does not
overcome ∆xmax must be found.
In order to do so, the following optimization problem must be solved:

maximize α

subject to ∆x(t) ≤ ∆xmax ∀ t ≥ tB
(2.96)
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where tB is the time instant when the operator releases the jog button.
To solve (2.96) numerically, assume that: (i) the predictive horizon p is
long enough to take into account the maximum position overshoot, (ii)
when the operator releases the button, the system is at steady-state, that
is, x(tB) = (0, α, 0, 0)′ =: x0.
The predicted overshoot can be therefore calculated as:

∆X = F0 x0 + G0U0 (2.97)

where ∆X := (∆X(k+ 1), . . . ,∆X(k+p))T , F0 ∈ Rp×4 and G0 ∈ Rp×c can
be computed from A,B, C0, similarly to the predictive matrices in (2.87),
and U0 is calculated as the solution of (2.91), with x(k) = x0. Thus,
problem (2.96) becomes:

maximize α

subject to F0 x0 + G0U0 ≤ ∆xmax

x0 = (0, α, 0, 0)T

U0 = argmin UTMU+NT U

s.t. E U≤D

umin≤U≤umax

(2.98)

Problem (2.98) can now be solved by using an iterative method, such as
the secant method, to find the root of the equation f(α) = 0, where
f : [0, ẋmax] ⊆ R→ R, α 7→ max(∆X(α))−∆xmax.

MIL validation

The proposed method has been tested by using the MIL approach described
in Chapter 1.4.1. To validate the proposed approach, a model of the system
with the parameters in Table 2.6 has been simulated using Amesim with
the scheme shown in Figure 2.40, while running the control approach on
Simulink in co-simulation. The validation follows the guidelines for MIL
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validation, and follows the scheme in Figure 1.4.
For the purpose of comparison, both the proposed MPC approach and the

Figure 2.40: Simcenter Amesim model of the overhead crane

ZV input shaping technique have been implemented, is it is the most widely
diffused technique for the control of industrial overhead cranes.
Two different situations have been tested. First, a perfect knowledge of
the model parameters is assumed. Then, errors in the model parameters
have been introduced. We expect the performance of the ZV input shaping
control to strongly degrade in the second situation, while MPC, being a
closed-loop technique, should be more robust with respect to changes in the
model parameters.
The parameters of the simulated systems are shown in Table 2.6, along with
the estimated (wrong) parameters used for the second trial.
The limits for the simulated overhead crane imposed in (2.90) are set to

ẋmax = −ẋmin = 1.2 [m/s] umax = −umin = 150 [N] (2.99)
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while the weighting parameters in (2.90) are set to

λ2 = 5.0 · 10−4 λu = 1.0 · 10−6. (2.100)

The values in (2.100) have been tuned by trial and error method.
The maximum overshoot in position ∆xmax has been set equal to 0.5 [m],

and the resulting set point velocity value α results from (2.98) in α = 0.985

[m/s]. The control sampling time is set to Ts = 0.01 [s]; the control horizon
is set to c = 50 and the predictive horizon to p = 100.
The reference velocity is set to α at time instant t = 1.0 [s], and it is set
back to zero at t = 7.0 [s].

Nominal case
In the nominal case, that is, when the model parameters are supposed

to be perfectly known, the MPC approach is compared to the ZV input
shaping. The force acting on the cart for both techniques is shown in Fig-
ure 2.41. As expected, the MPC approach takes into account explicitly the
constraints on the maximum force to be applied to the cart.
Figure 2.42 shows that also the velocity of the cart is successfully contained
within its limits.
In Figure 2.43 the velocity of the cart is shown for both MPC and in-

put shaping approaches. Due to the aggressive tuning of the parameters
in (2.100), the cart velocity has a more aggressive behaviour with respect
to the velocity generated by the input shaping approach. Nonetheless, it
should be noted that the velocity of the cart is always positive, meaning
that the cart does not even stop during the manoeuvre .
In Figure 2.44 the sway angle θ is shown. Due to the perfectly known
parameters of the system, the input shaping approach result in reduced os-
cillations during the acceleration and deceleration phase, and in a very small
residual oscillation, which is generated by the non-modelled nonlinearities
of the simulated overhead crane. On the contrary, the MPC approach yields
to an increased sway angle peak, and an increased settling time of the sway
angle. Nonetheless, the oscillation is contained and controlled.

In Figure 2.45, the position overshoots are compared. Position over-
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Figure 2.41: Force acting on the cart. Solid blue: proposed method.
Dashed-dotted grey: ZV input shaping. Dashed red: cart force limits.
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Figure 2.42: Velocity of the cart during the control, for both MPC (blue
solid line) and input-shaping (grey dash-dot line) in the case of exact model
parameters. The dashed red line represents the velocity limit imposed to
the cart.
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Figure 2.43: Velocity of the payload with MPC (blue solid line) and input-
shaping (grey dash-dot line). In red dashed line the velocity reference.
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Figure 2.44: Swing angle of the payload in the case of exact model pa-
rameters, for both MPC (blue solid line) and input-shaping (grey dash-dot
line).
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Figure 2.45: Position overshoot of the payload in the case exact model
parameters. Solid blue: proposed method. Dashed-dotted grey: ZV input
shaping. The red dashed line is the imposed limit.

shoots are measured as the position of the payload in excess to its position
when the reference velocity w1 is set to 0, that is, when the operator re-
leases the jog button.
As expected by having found the value of α from (2.98), the position over-
shoot of the MPC approach is below the set value of ∆xmax. The IS ap-
proach shows an increased drifting in the payload position after the jog
button is released, which is not only an issue in terms of safety, but has also
be demonstrated to be counterintuitive for the operator.

Errors in the model parameters

When applying model based control strategies in industrial applications,
modelling errors can affect the effectiveness of the methods. For this reason,
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Figure 2.46: Force acting on the cart in the case of errors in the model
parameters. Solid blue: proposed method. Dashed-dotted grey: ZV input
shaping. Dashed red: cart force limits.

the simulation will consider a simulated system with the same parameters
as before, while the control techniques will be based on a model with the
parameters with errors in Table 2.6.
In this case, the force acting on the cart, shown in Figure 2.46 does not dif-
fer significantly from the previous case. It is worth stressing that the MPC
approach exploits the force constraints of the actuator without exceeding
its limits.
In Figure 2.47, due to the errors in the model parametrization, the cart
velocity for the MPC case exhibit an oscillatory trajectory.
In Figure 2.48, the payload velocity using both control techniques is com-
pared to the reference velocity. While both approaches generate oscillations,
input shaping approach can not compensate for the residual oscillations gen-
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Figure 2.47: Velocity of the cart during the control, for both MPC (blue
solid line) and input-shaping (grey dash-dot line) in the case of errors in
the model parameters. The dashed red line represents the velocity limit
imposed to the cart.
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erated by the errors in the parametrization of the model. On the contrary,
the residual oscillations are rapidly compensated with the MPC approach.
This is underlined in Figure 2.49 where the sway angles are compared. The
MPC is able to bring the oscillation angle under control despite the intro-
duced errors in the model parameters.
The position overshoot is shown in Figure 2.50. As the optimization
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Figure 2.48: Velocity of the payload with MPC (blue solid line) and input-
shaping (grey dash-dot line) control in the case of errors in the model pa-
rameters. In red dashed line the velocity reference.

problem (2.98) is based on the model with errors on the parameters, when
the approach is applied to the simulated system, the position overshoot is
slightly more than the imposed value of ∆xmax = 0.5 [m].

With the proposed MPC approach, it has been shown that a closed-loop
control of an overhead can fully exploit the limits of the actuator; moreover,
the MPC can cope with errors in the model parameters, showing increased
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Figure 2.49: Swing angle of the payload in the case of errors in the model
parameters, for both MPC (blue solid line) and input-shaping (grey dash-
dot line).

robustness with respect to standard open-loop approaches. The operator
can select a significant parameter for the definition of the velocity reference
value α, which is the position overshoot after the jog button is released.
The proposed method for the MPC control of overhead crane has been
published as [23].

2.4.2.2 MPC-PID control of overhead cranes

The method proposed in the previous chapter focuses on the MPC control
of overhead cranes acting directly on the torque generated by the actuator
that moves the crane. The proposed MPC approach is based on a linear
model of the system, thus ignoring the nonlinearities (e.g. the friction act-
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Figure 2.50: Position overshoot of the payload in the case of errors in the
model parameters. The red dashed line is the imposed limit.
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Figure 2.51: Cascade control of the crane, with an internal PID for the
velocity control of the sliding cart, and an external MPC controller for the
velocity control of the payload.

ing on the sliding cart) that profoundly influence the dynamics of a real
overhead crane.
For this reason, the approach has been modified in order to take advantage
of the control loops already present on industrial overhead cranes to com-
pensate for some of the nonlinearities that affects the system. In particular,
the control of industrial overhead cranes relies on PID controllers for the
control of the cart velocity. As the cart itself is not affected by significant
oscillating dynamics, its control is easy and the reachable bandwidth can
effectively compensate for modelling errors such as errors in the model pa-
rameters and unmodelled nonlinearities. A PID controller can therefore be
used for the velocity control of the sliding cart, while an external MPC
controller acts on the velocity reference of the cart in order to control the
payload, thus creating a cascade control of the overhead crane as shown in
Figure 2.51.
The outer MPC controller solves, at every control cycle, the same OCP

as before, that is, (2.90). The velocity reference to be given to the internal
velocity control loop can be computed by applying the first value of the
optimal control action array U(k) = ū1 to the model of the crane described
by (2.22). In fact, the future cart velocity can be easily computed as, by
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setting the output matrix C as in (2.86), it corresponds to y3(k + 1).
In order to enhance the performance of the internal loop, the computed op-
timal force ū1 is given as a feedforward signal to the actuator. Thus, thanks
to the force feedforward that relies on the linear model of the system, the
internal PID controller can be tuned for disturbances rejection, as its task
is to compensate for nonlinearities, model uncertainties and external dis-
turbances.
It is worth stressing that industrial controllers have built-in torque and po-
sition loops, which are typically based on PID structures. Most of them
also provide the possibility to assign torque feedforward signals. Therefore,
the implementation of the proposed technique on industrial hardware is fa-
cilitated by the presence of an underlying well-known control structure.

MIL validation

In order to test the increased performance of the MPC-PID approach w.r.t.
the MPC approach proposed in the previous section, both of the approaches
have been implemented in Simulink. To validate the proposed approach, a
model of the system with the parameters in Table 2.6 has been simulated
using Amesim, as done for the previous MIL validation tests. While the
model used for the MPC approaches is the linear one described by (2.22) and
the exact parameters of Table 2.6, some variations have been inserted in the
simulated overhead crane, in order to test the robustness of the techniques.
In particular, the mass of the cart has been changed to mC = 49.4 [kg], the
friction coefficient has been changed to CC = 10 [Ns/m], and a Coulomb
friction has been added on the sliding cart, with a value of C0 = 150 [N].
Moreover, a disturbance in the form of a Fd = 500 [N] acts on the cart at
time t = 9.0 [s], as shown in Figure 2.52.
During the simulation, the jog button is pressed at time t = 1.0 [s] and

released at time t = 6.0 [s]. The reference velocity trajectory is shown in
Figure 2.53.
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Figure 2.52: Disturbance acting on the force acting on the cart at time t = 9
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Figure 2.53: Payload velocity reference.

As MPC controllers are computational consuming, the control cycle for
the MPC controllers has been set to TMPC = 0.024 [s]. The control cycle
for the PID controller has been set to TPID = 0.001 [s]. The weighting
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parameters are set to λ2 = 5.0 ·10−4, λu = 3.0 ·10−6, with a control horizon
c = 5 and a predictive horizon p = 30. The PID has been tuned, through
trial and error, as

PID(s) = Kp

(
1 +

1

Tis
+

Tds
Td
N s+ 1

)
where

Kp = 1800

Ti = 0.2778 [s]

Td = 0.0056 [s]

N = 20

The system constraints have been set to

ẋmax = −ẋmin = 1.2 [m/s] (2.101)

umax = −umin = 1000 [N]. (2.102)

In Figure 2.54 the payload velocities obtained with the MPC and MPC-PID
approaches are shown. While the acceleration phase is mostly comparable,
the settling time is reduced for the case of the MPC-PID control scheme.
Moreover, after the stop phase, the payload velocity continues oscillating
around zero, with a more significant oscillation for the case of the MPC
approach. This effect can be observed also when analyzing the sway angle,
shown in Figure 2.55.
The reason for this residual oscillation is to be identified as the Coulomb

friction, which introduces a strong nonlinearity in the system. The effect
of the Coulomb friction can be observed also in Figure 2.56, where the cart
velocity is shown.
Figure 2.57 compares the actuator efforts of the two approaches, which do
not differ much from each others.

The proposed method for the MPC-PID control of overhead crane has
been published in [24].



116 Chapter 2. Control of industrial cranes

0 5 10 15

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
a

y
lo

a
d

 v
e

lo
c
it
y
 [

m
/s

]

Figure 2.54: Load velocity response of the MPC standard scheme (red
dashed line) and the MPC-PID scheme (blue solid line). The velocity ref-
erence w1 is the yellow dash-dot line.
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Figure 2.55: Angular position θ: standard MPC control scheme (red dashed
line) and proposed MPC-PID approach (blue solid line).
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Figure 2.56: Cart velocity ẋ for both standard MPC (red dashed line) and
MPC-PID control schemes (blue solid line).
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Figure 2.57: Control force acting on the cart. Standard MPC control
(dashed red line), MPC-PID scheme (blue solid line).
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2.4.2.3 Adaptive and Nonlinear MPC

The closed-loop approaches proposed up until now relies on model of the
cranes with constant length of the cable. This implies not only that the
cable length is considered as constant along the predictive horizon, but that
it is also kept constant along the various control periods.
In industrial applications, overhead cranes usually perform manoeuvres that
include simultaneous payload lifting and horizontal displacement, as the
material to be handled must move in a cluttered environment, so that the
assumption of constant cable length is a substantial limitation to the appli-
cation of the already presented MPC approaches on the industrial field.
In order to address and solve this limitation by including the variation of
the length of the cable in the model, two different approaches have been
investigated.

The first solution consists in adopting predictive approaches based on a
nonlinear model of the system, that is, by using Nonlinear Model Predictive
Control (NMPC). For the case study, a nonlinear model that takes into
account the dynamics related to the variation of the cable length is the on
in (2.27).

The second solution consists in approaching the problem with an adap-
tive technique, thus using Adaptive Model Predictive Control (or Gain-
scheduling MPC, [15]). This approach relies on the linear model of the
system in (2.28), which is used to solve the OCP at each control cycle, but
that is updated with the current value of the cable length at every control
cycle. In this sense, the system can be seen as a linear parameter-varying
system.

Both models describe the dynamics of the system by considering the
acceleration of the cart as the input of the system. The velocity of the
cart is easily obtained by integration of the input, so that the PID velocity
control of the cart can again be exploited, and the control scheme is the
same as in Figure 2.51.
With respect to the previously proposed MPC-PID approach, where the
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linear dynamic model (2.22) was used, the use of the kinematic model allows
for a simplification of the matrices and a reduction of the needed parameters,
as the cart and payload masses do not affect model (2.28).
The approach to the definition of the OCP is similar to the methods already
proposed. While the velocity reference of the payload can be defined as in
(2.85), the lengthening velocity of the cable can be defined similarly as

l̇1 :=


β if downward button is pressed,
−β if upward button is pressed,
0 if no buttons are pressed,

(2.103)

where β ∈ R+ is the desired absolute value of the lengthening velocity at
steady state.

The control of the length of the cable is not considered as being an
issue, as it is generally easy to control, and it is thus assumed as perfectly
controlled.

The OCP can be defined, for both approaches, as

minimize

p∑
i=1

(
y(k + i)−w1(k)

)2
+

+ λ2

p∑
i=1

(
θ(k + i)−w1(k)

)2
+ λu

c∑
i=1

(
ẍ(k + i− 1)

)2
subject to ẋmin ≤ ẋ(k + i) ≤ ẋmax ∀i ∈ {1, . . . , p}

ẍmin ≤ ẍ(k + i) ≤ ẍmax ∀i ∈ {1, . . . , p}

(2.104)

In the most relevant case for industrial applications, that is, with op-
erators manoeuvred cranes (OIL cranes), the evolution of w1 and l̇1 along
the predictive horizon can not be known in advance, as it strictly depends
on the operator real time decisions which, on the other hand, depend on
a multitude of factors such, for examples, the obstacles in the cluttered
environment. For this reason, assumptions must be made regarding their
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evolution. As already done in the methods presented in the previous sec-
tion, the velocity reverence w1 is kept constant and equal to the current
velocity reference along the predictive horizon, that is,

w1(k + i) = w1(k), ∀i ∈ {1, . . . , p}.

Different assumptions can instead be made regarding the evolution of the
cable length. Depending on the choice made, different MPC approaches can
be applied.

ADAPTIVE MPC
One option is to consider the length of the cable as constant along the
predictive horizon, while updating its value at every control cycle, that is,

l(k + i) = l(k), ∀i ∈ {1, . . . , p}.

In this case, the MPC approach can exploit the linear model at every con-
trol time, while updating the model parameters at every control time. For
this reason, this approach can be referred to as an Adaptive MPC approach.

NMPC with constant cable length
If the length of the cable is kept constant along the along the predictive
horizon, in the same way as done for the case of the Adaptive MPC, the
nonlinear model (2.27) can be exploited on the optimization process by
setting

l̇(k + i) = 0, ∀i ∈ {1, . . . , p}.
As the optimization process is based on a nonlinear model, this is by all
means a NMPC approach.

NMPC with constant cable lengthening velocity
The last option is to consider, at every control cycle, the lengthening velocity
of the cable as constant and equal to its current value, that is, by setting

l̇(k + i) = l̇(k), ∀i ∈ {1, . . . , p}.
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In this case, a Nonlinear MPC approach based on model (2.27) can be
exploited.

MIL validation

For comparison purpose, the approaches of Adaptive MPC and Nonlinear
MPC with both constant and varying cable length along the predictive hori-
zon have been validated using the scheme in Figure 1.4, with the controllers
running on Simulink and the nonlinear model of the crane running on Sim-
center Amesim, as shown in Figure 2.40. Moreover, as a term of comparison,
the proposed approaches are compared with the technique proposed in [24],
which does not take into account the variation of the cable length.
The mass of the cart has been set to mC = 600 [kg], the mass of the payload
tom1 = 100 [kg], the viscous friction of the cart and of the cable to Cc = 0.1

Ns/m and C1 = 0.01 [Nms/rad] respectively. The cable has been charac-
terized with stiffness and viscous friction Kl = 1 · 106 [N/m] and Cl = 1000

[Ns/m] per meter of cable.
The control part has been developed using Simulink, with a cycle time

Ts = 0.02 [s], chosen to consider the slow dynamics of the system and the
presence of already velocity and position control loops for the relatively fast
dynamics of the cart. The weights of the MPC controller have been ob-
tained through trial and error and have been set to λ1 = 1 and λu = 0.2,
and control and prediction horizons Nc = 10 and Np = 100 respectively.
The Simulink controller and the Simcenter Amesim model run in cosimula-
tion.
The manoeuvre that the crane has to follow can be divided into horizontal
and vertical reference. At time t1 the travelling button is pressed, setting
the horizontal velocity reference to α = 1 [m/s]. At time t2, the payload
is lifted at a constant velocity β = 1 [m/s] for 4 seconds. The travelling
button is released at time t3 and the lowering button is pressed at time t4
and is released after 4 seconds.
Ten different simulations have been analyzed. In order to take into account
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Table 2.7: Time instants for the ten simulations analyzed.

1 2 3 4 5 6 7 8 9 10

t1 1.83 2.20 1.50 1.92 4.37 1.77 1.90 1.68 1.91 2.74

t2 4.21 3.60 3.75 2.24 2.28 1.72 2.53 2.54 3.77 3.67

t3 12.24 14.69 14.65 11.73 14.61 14.91 12.75 11.44 12.03 12.63

t4 12.57 11.51 13.62 12.13 11.40 13.75 13.50 12.20 12.48 12.34

the operator unpredictability in the manoeuvre, the aforementioned time
instants have been chosen in a random fashion, and their value are shown
in Table 2.7.

For the sake of brevity, only Manoeuvre 1 is shown in the following plots,
while the quantitative analysis is performed for all the manoeuvres in Table
2.7.

The trajectories for Manoeuvre 1 are shown in Figure 2.58, and the time
instants t1,...4 are highlighted. In Figure 2.59 the tracking between reference
and payload velocity is shown.
First, Figure 2.59 clearly shows that the linear MPC approach is not able
to cope with varying cable lengths; when the cable is shortened, oscillations
around the reference value are generated due to the difference between the
overhead crane and the predictive model.
Second, it has to be noted that, when the length of the cable is considered
constant along the prediction horizon and equal to the one measured at
each control instant, adaptive and nonlinear MPC provide almost exactly
the same performance. In fact, in this case, the only difference between the
two approaches is the approximation for small sway angles introduced by
the linearization. As the sway angles during industrial cranes manoeuvres
are indeed small, the results do not differ significantly.
On the other hand, when the length of the cable is considered to vary dur-
ing the prediction horizon with the velocity measured at the present control
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Figure 2.58: Length of the cable and payload horizontal velocity reference
over time.
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Figure 2.59: velocity reference and payload velocity tracking performance
with the simulated MPC approaches.

instant, only NMPC can be exploited. Nonetheless, as the cable length does
not vary significantly along the prediction horizon of 1 second (∆l = ±1 m),
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Figure 2.60: Acceleration of the cart resulting with the simulated MPC
approaches.

the effect of this variation does not influence the performance of the control
in a significant way, so that the NMPC with constant cable velocity along
the prediction horizon results to be comparable with the adaptive MPC.
On the other hand, the adaptive MPC can rely on a simpler model of the
crane, as the nonlinearities introduced by the varying length do not have to
be addressed.
In Figure 2.60 the manipulated variable (acceleration of the cart) is shown
for the simulated techniques. The constraint of s̈max = 5 [m/s2] is always
satisfied. In order to quantify the performance of the simulated techniques,
two indices have been computed: the total Integral Absolute Error (IAE)
and the position overshoot after the travelling button is released. Results
show that the technique presented in Section 2.4.2.1 yields an unsatisfac-
tory performance when dealing with simultaneous travelling and hoisting
manoeuvres, as its IAE always exceeds the ones of the other techniques.
Moreover, it is also not effective in containing the position drift of the pay-
load after the operator releases the travelling button.
NMPC effectively reduces the IAE and the position drift with respect to the
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Figure 2.61: Integral Absolute Error during the ten manoeuvres with the
compared techniques.
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Figure 2.62: Position overshoot after the release of the travelling button for
the ten simulations analyzed.
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other two techniques which consider the cable length as invariant along the
prediction horizon. Nonetheless, the performance of adaptive, NMPC and
NPMC with constant cable length is very similar in all the ten simulations.

On the implementation of MPC in industrial hardware

With the aim of validating the presented MPC approaches on the HIL setup
of Figure 1.6, the necessary code has been written using IEC 61131-3 Struc-
tured Text directly on the hardware. In order to do so, some complications
had to be overcome.
Gefran ADV200 industrial drive does not allow neither programming lan-
guages external to IEC61131-3 standard, nor the import of external libraries.
For this reason, the multiplications between matrices had to be managed by
ad-hoc parts of the program. This constitutes a significant computational
burden for the CPU. Moreover, although it is possible to obtain the MPC
matrices in a closed, parametric form, these matrices can not be updated
at every control cycle with the values of the current parameters (nominally,
the length of the hoisting cable) as it would require an excessive burden
for the CPU. The testable approaches were therefore reduced to the ones
relying on linear time-invariant systems. The fastest reachable cycle time
for the control on the ADV200 drive was limited to 0.024 [s] due to the high
computational burden required by the solution of the OCP.
While testing the approaches on the HIL setup, when comparing the ob-
tained MPC matrices with the ones computed using Matlab, minor numeri-
cal errors where present, due to the computational accuracy of the ADV200
CPU, which was limited by single-precision floating-point computations.
These numerical errors where propagated along the predictive horizon, and
the resulting optimal input vector was distorted by the propagated error.
For this reason, while good results were obtained during the MIL validation
of the proposed MPC approaches, under the same conditions HIL tests re-
sulted in divergent and unstable results.
This attempt of implementing MPC approaches directly in an industrial
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drive shows that it is necessary to improve further the computational capa-
bility of modern industrial drives if advanced control techniques have to be
implemented without the use of external hardware such as PLCs.
On the other hand, the obtained implementation of the MPC approaches
have been demonstrated, by means of extensive simulations, to work in
practice. As the only obstacle for the application of this approach have
been identified as the presence of numeric errors that occurs when using
single-precision computation, it can be easily overcome by implementing
double-precision computations on the drive. On the contrary, while dif-
ferent fast nonlinear MPC solutions are present in literature (e.g. [35]),
their implementation with IEC61131-3 industrial programming languages is
not feasible, as they strongly rely, for the online optimization, on complex
mathematical libraries which are not compatible with industrial standard
solutions. For this reason, the solutions presented in this section represent
a step in the direction of a practical industrial implementation of Model
Predictive Control for industrial mechatronic systems.

2.5 Conclusions and contributions

In this chapter, different techniques for the open-loop and closed-loop con-
trol of cranes have been presented and developed.
All the techniques have been described in details, with a particular focus on
the aspects that are relevant in industrial applications, such as robustness,
performance in terms of manoeuvre time consumption, implementability in
standard industrial hardware and immediacy in the tuning of the required
parameters. For all the techniques, MIL validation tests have established
the correctness of the methods when applied to a nonlinear simulated model
of a generic overhead crane. All the techniques have then been implemented
in standard industrial drives, except for MPC techniques, for which the in-
dustrial drive has been demonstrated to have inadequate performance for
this advanced approach.

Therefore, the contribution of this chapter can be summarized as follows:
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• A new methodology for the open-loop control of double-pendulum
cranes, based on the input-output inversion approach, have been pro-
posed and tested. The main advantage of this new approach is the
possibility to dynamically tune the robustness and, thus, the total
delay introduced in the manoeuvre, with a single tuning parameter
τ . With respect to input shaping, input-output inversion can vary
its robustness in a continuous way, while input shaping presents a set
of available filters of fixed robustness. Moreover, it is theoretically
possible to decrease at will the introduced delay, which is τ , assuming
that the model of the system is perfectly known. With respect to
notch filtering, input-output inversion only tuning parameter τ has a
clear physical meaning (the amount of delay introduced), while notch
filtering tuning parameter â could result as being hard to tune by an
inexperienced operator.

• A library containing all input shaping techniques as easy-to-use func-
tion blocks have been implemented in IEC 61131-3 Structured Text.
This solution makes the techniques available over a wide range of
standard industrial drives.

• A library for the input-output inversion technique have been imple-
mented in IEC 61131-3 Structured Text. This technique has never
been used in industrial applications, and the simplicity of its tuning
motivate the need for its implementation with an industrial standard
coding language.

• A library containing the notch filter function block has been imple-
mented in IEC 61131-3 Structured Text.

• Full state feedback has been demonstrated to be an effective and easy-
to-implement option for the closed-loop control of overhead cranes.

• Different MPC approaches to the control of overhead cranes have been
proposed. Nonetheless, the implementation on the ADV200 Gefran
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drive demonstrated the need for a more powerful computational capa-
bility and a more flexible control environment if such advanced tech-
niques have to be implemented in industrial drives.





Chapter 3

Autotuning techniques for
mechatronic systems

In this chapter a set of techniques for the automatic tuning of motion con-
trol systems is presented.
The techniques presented in this chapter address the problem of automatic
tuning of the motion control loops in mechatronic systems by considering
different case studies, such as the presence of rigid or elastic shafts and/or
transmissions, the availability of pre-existent control loops or their absence.
The chapter is structured as follows: Section 3.1 introduces the chapter
by motivating the need of scientific research in the field of new techniques
for the automatic commissioning of velocity and position control loops and
reviews the available literature on the subject; Section 3.2 formulates the
problem and the structure of a general autotuning procedure; Section 3.3
introduces the first autotuning procedure, based on the open-loop identifica-
tion of generic mechatronic systems, and presents the tuning of the control
loops for both velocity and position control; Section 3.4 presents an auto-
tuning procedure for the velocity loop tuning basing the identification phase
on a closed-loop test; Section 3.5 presents the built operator interface that
allows for an easy use of the presented techniques; Section 3.6 concludes the
chapter.
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3.1 Introduction

As mentioned in the introduction of this thesis, modern industrial mecha-
tronic systems constantly need for increased performance in terms of both
robustness and bandwidth. This increase in performance is not compatible
neither with a generic tuning of the control parameters, nor with a very
generic control scheme, as this generality yields non-optimal control perfor-
mance. On the other hand, the main requests for industrial mechatronic
systems are the immediate usability of the system with short installation
times, together with high flexibility. These requests are hardly compatible
with long and time-consuming manual modeling and control tuning tasks.
For this reasons, one of the major difficulties that technicians have to face
during the commissioning of mechatronic systems is linked to the calibra-
tion of the control parameters for motion control. In fact, each mechatronic
system is different from the others and therefore, in order to obtain the
required performance, its controller must be correctly adjusted considering
its peculiarities. The correct tuning of the control parameters produces an
increase in overall production quality and, at the same time, a significant re-
duction in costs. At the control level, the answer to the demanding requests
from the industrial field can therefore be found thanks to the development
of techniques for the automatic tuning of control systems.
An autotuning procedure can in fact be used when the machinery is in-
stalled, in order to find good control parameters automatically without the
intervention of expert operators. In this context, a methodology capable
of automatically optimizing the parameters of the controller of a generic
mechatronic system can reduce commissioning times. Moreover, automatic
procedures for the tuning of control parameters can, in theory, help to ob-
tain the required performance by taking into account the specific behaviour
of the system.
Furthermore, the request for flexibility of the systems makes it inconvenient
to have to find new control parameters manually every time the system con-
figuration varies (e.g. changes in the load inertia) while, with an automatic
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calibration procedure, the reconfiguration and subsequent re-calibration of
the system does not require the presence of operators with experience and
knowledge in the field of control.
The performance of mechatronic systems often degrades over time, and even
when the system configuration is not changed, a re-tuning of the control sys-
tem may still be necessary. Finally, an automatic calibration of the control
loops also allows the identification, characterization and compensation of
phenomena that compromise the performance of mechatronic systems, such
as the presence of static friction and elasticity that entail unwanted reso-
nances.
Most of the control schemes for the control of mechatronic systems are
based on PID controllers. The tuning (and autotuning) of PID controllers
is a topic of active research: many publications can be found on the autotun-
ing procedures for PID controllers in the field of process control [4]. On the
contrary, only a few of them can be found on the tuning of PID controllers
for motion control applications so that it is even more essential to increase
the focus on the topic [12]. In fact, it is rarely possible to extend auto-
tuning procedures tailored on process control applications to mechatronic
systems due to a number of differences between the two fields. In particu-
lar, mechatronic systems are characterised by hard constraints on physical
values like torque, acceleration and velocity that strongly depends on the
application, on the available setup, or both. Furthermore, mechatronic sys-
tems are characterized by a series of nonlinearities (e.g. viscous and static
friction, backslash) which not only have to be taken into account, but that
must be identified and compensated in order to reach the performance that
are required by modern applications. Lastly, most of the available tuning
procedures and tuning rules for process control are explicitly based on First
Order Plus Dead Time (FOPDT) or, sometimes, Second Order Plus Dead
Time (SOPDT) approximations of the system. In mechatronics, the sys-
tem itself lack of the delay, and the delays introduced by the control are,
most of the time, negligible with respect to the dynamics of the system, so
that those kinds of models (and therefore, tuning rules) are not suitable for
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mechatronic systems.

For defining a complete autotuning procedure, as will be explained in
detail in the next session, three important phases need to be addressed:
the excitation phase, the system identification phase and the tuning phase.
While the excitation phase and the system identification phase differ from
each other, as the former addresses the definition of the input to the system
and the latter the processing of the resulting signals, they can be treated as
complementary phases. For this reason, various research results for the
excitation and identification procedures have been proposed in the last
decades, and a small part of them specifically addressed mechatronic sys-
tems. Pseudo-Random Binary Sequence (PRBS) is a binary signal which
exhibits quasi-random behaviour. Variations of PRBS signals have been ap-
plied as input torque to mechatronic systems in [5, 76, 78], as their random
behaviour helps in exciting all their frequencies. Alternatively to a PRBS
signal, a swept sine signal can be exploited, as it is also able to excite all
the frequencies of interest for control purposes. In [30, 32] an identification
methodology based on the use of swept sine waves deals also with measure-
ment noise and nonlinearities. The Frequency Response Function (FRF) of
the system is then generally obtained by applying the Fast Fourier Trans-
form (FFT) to the input and output signals, or the more accurate Welch
method [76].
While the works cited solved the problem of computing, with various ap-
proaches, the FRF of the system, the FRF of the system is not a straight-
forward tool for control purposes, as it cannot be easily expressed with
an analytical form. Another approach is to identify the system using pa-
rameters identification by defining a parametric model of the system and
estimating the value of those parameters using, for example, Least Mean
Squares or Nonlinear Optimization approaches. In [36] the so-called Opti-
mal Bandwidth Search Method is used to identify the inertia of the system,
and in [79] the autotuning procedure identifies the physical parameters of
the system in order to tune the PID controllers for the current, velocity and
position control loops. Nonetheless, none of the approaches explicitly ad-
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dresses the presence of oscillations and vibrations in the system dynamics;
moreover, they do not take into account the physical limits of the system
during the identification phase, so that they are suitable only for uncon-
strained systems.

Once the system has been identified, the controller parameters have
to be tuned. Most of the proposed approaches relies on well-known PID
controllers based cascade schemes for the velocity-position control of the
system. In [10] an optimization procedure is used for the tuning of the PID
parameters. In [31, 80] the presence of oscillations is explicitly addressed
during the tuning of the PID controllers. In [17], several methods for the
compensation of oscillations on the systems are compared. Most of them are
based on filtering the command signal with low-pass, notch or bi-quadratic
filters, while the others rely on the presence of an external observer.

In this chapter, different autotuning procedures specifically tailored for
mechatronic systems are proposed. The proposed techniques explicitly take
into account the physical limits of the system in terms in maximum torque,
maximum velocity and maximum position. The ability of including the re-
spect of the limits during the identification procedure is crucial, as for many
applications overstepping the bounds could result in serious consequences
and, in some cases, in the complete machine breakdown. Resonances and an-
tiresonances are identified and compensated for by introducing opportunely
tuned biquadratic filters inside the control scheme. Moreover, particular
attention was paid to the implementability of the proposed approaches in
standard industrial systems, and the related issues (reduced memory capa-
bility, reduced computation power, etc.) have been addressed.

3.2 Problem formulation

The aim of an autotuning procedure can be expressed as finding the best
values for the control scheme while satisfying some common requirements,
such as the minimum involvement of the operator (who, ideally, should not
be involved at all in the procedure) and a minimum execution time, in order
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Figure 3.1: Two-inertia system with rigid shaft.

to reduce the overall commissioning costs.
The definition of autotuning procedures for mechatronic systems should
start by the definition of suitable model for a generic mechatronic system.
A general mechatronic system can be modelled, in a first approximation,
as a two-inertia system, as shown in Figure 3.1, where Jm is the inertia of
the motor, JL is the inertia of the load, τm the torque on the motor and
ωm and ωL the motor and load velocity respectively. If the two bodies are
connected together by means of a rigid shaft, it results ωm = ωL.
The dynamics of the system in Figure 3.1 can be described by the following
system of differential equations:

θ̈ = 1
Jtot

[
τm −Kf sgn(θ̇)−Bmθ̇

]
θ̈L = iθ̈

˙τm = 1
te

(τ − τm)

(3.1)

where i is the transmission ratio, Jtot = Jm + JL/i
2, τm is the real torque

acting on the motor, τ is the torque reference, te is the time constant of the
current loop and Bm is the dynamic friction coefficient.
The system in (3.1) can be expressed, by neglecting the effects of static
friction, in the form of a transfer function between the torque on the motor
τm and the velocity of the load ωL as

GR(s) =
1

Jms+Bm

1

tes+ 1
(3.2)
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Figure 3.2: Two-inertia system with elastic shaft.

which can be further simplified by the assumption of a high-bandwidth
current loop in

GR(s) =
1

Jms+Bm
. (3.3)

The neglection of the effects of the static friction is motivated by the fact
that such effects can be compensated by identifying the static friction coef-
ficient Kf with feedforward actions.

In most applications, the approximation of the shaft as a rigid body is
not sufficient, as the dynamics described by (3.1) is not able to describe the
oscillatory dynamics that affects the load. For this reason, a more accurate
model can be obtained by introducing an elasticity in the shaft, as shown in
Figure 3.2, where K is the elastic constant and C is the damping coefficient
of the shaft. The dynamics of the system in Figure 3.2 is described by the
following system of differential equations:

θ̈ = 1
Jm

[
τm −Kf sgn(θ̇)−Bmθ̇ − K

i dθ − C
i dθ̇
]

θ̈L = K
i dθ + C

i dθ̇

τ̇m = 1
te

(τ − τm)

(3.4)

where dθ =
(
θ
i − θL

)
, dθ̇ =

(
θ̇
i − θ̇L

)
.

By neglecting the electric pole, which typically has a very fast dynamics, the
system in (3.4) can be expressed in the form of a transfer function between
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the torque acting on the motor τm and the load velocity ωL as

GE(s) =

Cs+K

JLJms3 + (JLBm + CJL + CJm)s2 + (CBm + JLK + JmK)s+KBm
.

(3.5)

Most of the industrial mechatronic applications lacks for sensor on the load
side, as they would increase the overall cost of the system. Instead, the
standard approach is to control the motor in closed loop and relying on the
rigidity of the shaft in order to have good performance also on the load
side. It is therefore useful to divide transfer function (3.5) in two different
transfer function as

G(s) = M(s)L(s) (3.6)

where

M(s) =

JLs
2 + Cs+K

JLJms3 + (JLBm + CJL + CJm)s2 + (CBm + JL ∗K + JmK)s+KBm
(3.7)

and
L(s) =

Cs+K

JLs2 + Cs+K
(3.8)

where M(s) is the transfer function between the torque of the motor τm
and the velocity of the motor ωm and L(s) is the transfer function between
the velocity of the motor ωm and the velocity of the load ωL.
The aim of an autotuning procedure is to find good tuning parameters for a
predefined control scheme in order to enhance the overall performance of the
system. Autotuning procedures can generally be divided into three different
phases, which will be explained in the following sections. Another phase,
which is not present in all autotuning procedures but which is included in
the proposed algorithms, is the static friction identification. A correct static
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friction identification allows a compensation of the static friction on both
the identification phase and on the subsequent closed-loop control by acting
with a feedforward torque signal. The compensation of the static friction
means the cancellation of the main source of nonlinearities of the system,
which in turns allows for a description of the system in the form of (3.5).

Excitation phase

In this phase, the system is excited by means of various signals and trajec-
tories, that can vary depending on the system on which they are applied. If
the system can be excited in open loop, a torque signal has to be designed
in order to fully excite the dynamics of the system at every frequency. If
the system must be moved in closed loop, trajectories in velocity and or po-
sition must be designed in order to move the system between its limits, and
a torque feedforward signal can be used to excite high frequency dynamics
which would be cut off by the close loop bandwidth.
In this phase, it is important to guarantee the respect of the limits of the sys-
tem in terms of maximum position, velocity and torque. This is not trivial
in particular in the case of open-loop excitation experiments, as the system
is generally not known in advance and, in accordance with the autotuning
approach, the operator intervention should be as limited as possible.

Model estimation

From the raw data acquired by the excitation phase, a model of the system
is needed in order to apply analytic tuning for obtaining the control param-
eters needed. One of the possible approaches is to define a parametric form
of the model (e.g. the transfer function in (3.5)) and to obtain the values of
the parameters that better approximate the response in time of the system
to the given input signal by means of optimization algorithms (LMS, RLS,
genetic algorithms, nonlinear optimization...). Another way of approaching
the problem is to convert the obtained signals into the frequency domain
and use control tools directly in the Frequency Response Function (FRF)
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Figure 3.3: Reference I-MECH BB6 control architecture.

of the system or to get a mathematical approximation of the (FRF) (for
example, with a transfer function) and than working on that for defining
suitable control parameters.

Control parameters tuning

Once the model is obtained, the control system parameters must be tuned.
First, it is important to define a suitable control scheme.
The control scheme, shown in Figure 3.3, is a standard cascade control for
the position control of mechatronic systems. The possibility of introducing
filters on both the input of the system and the feedback lines is foreseen.
Taking a cue from the scheme in Figure 3.3, the control schemes used for
the following algorithms are shown in Figure 3.4 for the velocity control and
in Figure 3.5 for the position control of the system. Both the controllers of
the velocity and position loops are standard PID controllers, while F1 and
F2 are two biquadratic filters for the setpoint and for the torque input of
the system respectively.
Once the control scheme has been decided, if resonances and antiresonances
are identified, the filters parameters have to be tuned in order to compensate
for them. Finally, the PID controllers have to be tuned.

Two different algorithms will be presented, each one responding to par-
ticular needs in terms of technique to be used during the excitation phase.
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Figure 3.4: Proposed velocity control scheme: biquadratic filters F1, F2,
PID velocity controller and compensation of the static friction by means of
a feedforward torque signal ff .

Figure 3.5: Proposed position control scheme: biquadratic filters F1, F2,
PID position and velocity controllers C1, C2 and compensation of the static
friction by means of a feedforward torque signal ff .
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3.3 Autotuning with open-loop excitation phase

The first proposed algorithm is focused on the open loop-excitation of the
system and the subsequent calibration of filters and PID controller for both
velocity and position control control.
The proposed algorithm follows the division in phases presented for the
general autotuning procedure, but here an additional step is introduced
for the static friction coefficient Kf identification, so that the nonlinearity
introduced by the static friction can be compensated by acting on the feed-
forward signal ff in Figure 3.4. The operator intervention is limited to the
definition of the desired bandwidth, as an analytical procedure has been
designed for automatically detecting significant peaks in the FRF for the
identification of resonances and antiresonances. The transition from FRF
to transfer function is executed by using an analytical approach first, based
on the identification of key points in the FRF (mechanical pole, resonance
and antiresonance peaks), and subsequently on nonlinear optimization al-
gorithms. Filters are tuned not only to increase the performance on the
motor side, but also to cancel the oscillations on the load side. The algo-
rithm has been implemented on the HIL setup composed by off-the-shelf
industrial hardware described in Chapter 1.4.4, demonstrating its potential
for industrial applications.

The flowchart of the algorithm is shown in Figure 3.6.

Static friction identification

First, with the system idle, the noise on the velocity measurement is char-
acterized for a brief amount of time. In particular, the maximum value of
the signal is stored, as it corresponds to the maximum level of noise too.
Then, a ramp with shallow slope is given as torque input to the signal. The
signal is increased at every sampling period Ts by a measure that depends
on a tunable parameter Nsteps and the maximum available torque τ̄ , so that



3.3. Autotuning with open-loop excitation phase 145

Figure 3.6: Autotuning procedure flowchart.
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Figure 3.7: Torque ramp signal for the identification of the static friction
coefficient Kf .

the increasing on the torque ∆τ can be calculated as

∆τ =
τ̄

Nsteps
. (3.9)

In this way the ramp slope is easily linked to the maximum torque of the
system, which is a parameter that the operator must introduce together with
the maximum position θ̄, maximum velocity ¯̇

θ and maximum acceleration
¯̈
θ of the system.

The torque is continuously increased until the measured velocity reaches
a value equal 2 times the measured noise, that is, when the system moves.
The corresponding value of torque is saved as estimated static friction co-
efficient K̂f .
The torque signal used during the static fiction identification phase is shown
in Figure 3.7.
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Excitation phase

During the excitation phase, the physical limits of the system, introduced by
the operator, must be taken into account. The excitation signal generation
is therefore generated based on the position, velocity and torque limits θ̄, ¯̇

θ

e τmax. The torque signal is computed as follows. Cycles are repeated by
applying random values of torque steps until the total identification time
reaches the value of Tend, which can be modified by the operator as it defines
the frequency resolution of the FRF as

∆f =
1

Tend
. (3.10)

At the beginning of each cycle, a torque value τnew is chosen in a random
fashion in the range that goes from the estimated static friction value K̂f

and the maximum torque τ̄ . Every cycle is composed by four phases, that
bring the system back to the initial position at the end of the cycle:

• positive torque τnew,

• negative maximum torque −τmax,

• negative torque −τnew,

• positive maximum torque τmax.

τnew is applied to the system until condition C1 is satisfied; then the sys-
tem decelerates with the negative maximum torque until condition C2 is
reached; subsequently, the system accelerate in the negative direction as a
negative torque −τnew is applied to the system. Finally, when condition C3

is satisfied, the system is decelerated with the maximum torque τ̄ until con-
dition C4 is satisfied. The computation of the torque signal is schematized
in Figure 3.8.
In particular, condition C1 is satisfied when the velocity of the motor

reaches the maximum velocity ¯̇
θ or when the motor position reaches half of

the maximum position θ̄; condition C2 is satisfied when the motor velocity
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Figure 3.8: Exciting open-loop torque signal generation flowchart.
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is negative, while C3 is the symmetric of condition C1. Condition C4 is
reached when the motor velocity becomes positive. The conditions can be
resumed as follows:

C1 =

TRUE if θ̇ ≥ ¯̇
θ OR θ ≥ θ̄ + θ0

2
− θ0

FALSE otherwise

C2 =

{
TRUE if θ̇ ≤ 0

FALSE otherwise

C3 =

TRUE if θ̇ ≤ − ¯̇
θ OR θ ≤ −

(
θ̄ + θ0

2
− θ0

)
FALSE otherwise

C4 =

{
TRUE if θ̇ ≥ 0

FALSE otherwise

(3.11)

Model estimation

The measured velocity is stored together with the torque signal at which
the static friction is subtracted as

τmod = τm − K̂f sign(θ̇) (3.12)

obtaining the modified torque vector τmod.
The stored signals are then processed with the Welch method [76] using
a Blackman windowing of the signal in order to obtain the FRF. Subse-
quently, the transfer function between motor torque and motor velocity is
estimated using a nonlinear optimization algorithm [48]. The problem of
nonlinear optimization is that, if the starting values of the model parame-
ters are not close enough to the real values, the optimization can converge
to a local minimum which can result in a wrong model of the system. While
the setting the initial parameters could be delegated to the operator, the
intervention of the operator during the autotuning procedure should be min-
imized. For these reason, an analytical approach to the estimation of the
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transfer function like the one proposed in [32] can give a nice starting point
for the following optimization.
The analytical procedure requires three points in the phase and three points
in the amplitude of the FRF. In order to acquire some significant points in
the FRF, the three points are chosen as the mechanical pole, and the reso-
nance and antiresonance peaks. The resonance and antiresonance peaks are
obtained by detecting the most important peak in the phase of the FRF.
To do so, the product of the prominence and the width of the peaks has
been chosen as the yardstick.
Once the phase peak has been identified, the resonance and antiresonance
peaks can be approximately placed at the frequencies corresponding to val-
ues at which the phase is equal to the phase peak minus half of its promi-
nence. The position of the mechanical pole is identified by detecting a
decrease on the FRF amplitude greater than 3dB with respect to the lowest
frequencies amplitudes.
Once the six points have been obtained (3 for the phase, 3 for the ampli-
tude), the analytical method in [32] gives a transfer function in the form

G(s) =
K

s+ p

s2 + 2ξaωas+ ω2
a

s2 + 2ξrωrs+ ω2
r

(3.13)

which can be traced back to (3.5).
Due to the presence of noise in the FRF, the analytical method can return
biased parameters, but that nonetheless can be used as starting parameters
for the Levenberg–Marquardt nonlinear optimization.

Control parameters tuning

Once the model of the system has been obtained, the oscillatory dynamics
caused by the presence of the imaginary poles and zeroes couples in (3.13)
can be cancelled thanks to the use of biquadratic filters. Referring to Figure
3.5, the internal filter F2 can cancel the resonance and antiresonance couple,
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obtaining the normalized filter

F2(s) =
ω2
a

ω2
r

s2 + 2ξrωrs+ ω2
r

s2 + 2ξaωas+ ω2
a

. (3.14)

Defining

K̄ := K
ω2
a

ω2
r

,

the transfer function resulting by joining together the filter and the system
is

G(s)F2(s) =
K̄

s+ p
. (3.15)

The PI velocity controller, in the form

C2(s) = Kp2

(
1 +

1

Ti2s

)
is tuned imposing a phase margin Φm and a crossover frequency ωc to the
closed-loop system. The tuning of the parameters can be expressed in an
analytical form as

Ti2 =
tan

(
φm − π

2 + arctan
(
ωc
p

))
ωc

Kp2 =
Ti2

K̄
√

1 + T 2
i2
ω2
c (ω4

c + ω2
cp

2)

(3.16)

Accordingly to the literature, the external loop of a cascade control
scheme should be in the order of 10 times slower than the internal loop. For
this reason the crossover frequency of the position loop is chosen as

ωcp = 0.1ωcv (3.17)

Considering a proportional position controller in the form

C1(s) = Kp1 ,
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the proportional constant Kp1 is given by

Kp1 =
1

Kp2K̄

√√√√ω4
cpT

2
i2

(P +Kp2K̄)2 + ω2
cp(Kp2K̄ + Ti2ω

2
cp)

2

T 2
i2
ω2
cp + 1

. (3.18)

While with the tuning of the internal filter and the velocity and position
controllers the requests on the performance of the motor can be considered
as met, the load still oscillates due to the effect of transfer function (3.8)
which, being introduced by the presence of the elastic shaft, is outside of
the closed-loop control. Even if it is not possible to directly measure the
transfer function, as no sensor is available on the load side, its form is known
as it is known its dependence on the identified resonance and antiresonance
in (3.13). In fact, (3.8) has a couple of imaginary poles which corresponds
to the couple of imaginary zeros in (3.13), and which cause the oscillatory
dynamic on the load side.
In order to compensate for this oscillation, the imaginary poles can be can-
celled by adding an external filter F1 on the position setpoint

F1(s) =
s2 + 2ξaωas+ ω2

a

s2 + 2ωas+ ω2
a

. (3.19)

Finally, the static friction is compensated by adding the feedforward
torque signal calculated as

ff = K̂f sign(θ̇ref ), (3.20)

where θ̇ref is the velocity reference of the internal velocity loop.

HIL results

In order to validate the effectiveness of the proposed autotuning procedure in
industrial application, it has been implemented on the HIL setup described
in Chapter 1.4.4. The SM react to the movement generated by the MUT
simulating the feedback torque response of the system in Figure 3.2, whose
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Parameter Value Parameter Value

C 0.003 K 1.0
Jm 0.0079 kgm JL 0.0079 kgm
Bm 0.0027 Kf 0.25
θmax 300 rad θ̇max 280 rad/s
τmax 5 Nm

Table 3.1: Parameters values of the simulated system on the HIL setup.

dynamics is described by system (3.4).
The parameters value of the simulated system are shown in Table 3.1. By
substituting the values in (3.7), the transfer function of the system can be
expressed by decomposing the poles as

G(s) =
126.58(s2 + 0.3797s+ 125.9)

(s+ 0.1709)(s2 + 0.9304s+ 253.1)
. (3.21)

As the maximum torque of the motor is τmax = 5 [Nm] and the cycle
time of the control is Ts = 0.001 [s] the tunable parameters for the static
friction identification is set to Nsteps = 300000, in order to have an accurate
estimation of the static friction coefficient. The result of static friction
identification phase, shown in Figure 3.9, is the estimated coefficient K̂f =

0.2603 [Nm].

The excitation signal is executed for a total time Tend = 80 [s], which
gives a frequency resolution of

∆f =
1

Tend
= 00125 [Hz].

The sapling time of Ts = 0.001 [s], for the Nyquist theorem, guarantees a
maximum identifiable frequency of fmax = 500 [Hz]. Nonetheless, for the
system under analysis, resonances and antiresonances are not expected to
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Figure 3.9: Static friction identification phase. The maximum static friction
torque is identified as the torque given to the system when the velocity ex-
ceeds the limits (dashed red line), which value is calculated as the maximum
value of the noise on the velocity multiplied by a safety factor of 5.
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Figure 3.10: Trajectory of the system during the autotuning procedure. The
limits of the system are shown in dashed red line.

be at high frequencies, and it is reasonable to expect a digital filter with
bandwidth not higher than 100 [Hz] running on a control system cycling
at Ts = 0.001 [s]. For these reasons, the analysis is limited in the range
[0.0125, 100] [Hz].
The trajectory of the system during the excitation phase is shown in Figure
3.10. It can be seen that, while the limits are always respected, the values of
position, velocity and torque span over the whole range between the limits.
The FRF is then computed by applying the Welch method to the stored
signals of torque and velocity, obtaining the results in Figure 3.11. The six
points needed for the analytical transfer function approximation procedure
of [32] are highlighted with red boxes on Figure 3.11.
The transfer function parameters resulting from the analytical transfer

function approximation are then used as starting parameters for the nonlin-
ear Levenberg-Marquardt procedure, which returns the estimated transfer
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Figure 3.11: Bode diagrams of the system. The theoretical transfer function
G(s) (yellow dashed line), the spectral density obtained with the Welch
method (blue stars), the three points for the analytical identification (red
squares) and the identified system after the optimization (black solid line).
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function

Ĝ(s) =
92.724(s2 + 0.6957s+ 125.9)

(s+ 0.1996)(s2 + 0.3407s+ 258.5)
, (3.22)

which is also shown in Figure 3.11. The estimated transfer function Ĝ(s) is
a good approximation of the theoretical transfer function G(s).

Once the transfer function of the system has been identified, the crossover
frequency ωcv of the velocity loop and its phase margin Φm are set to
ωcv = 30 [rad/s] and Φm = 85. The parameters of the PI controller are
give by (3.16), and the controller results in

C2(s) = 0.6614

(
1 +

1

0.3539s

)
(3.23)

while the filters, given (3.14) and (3.19), result in

F1(s) =
s2 + 0.6957s+ 125.88

s2 + 22.44s+ 125.88

F2(s) =
0.487s2 + 0.1659s+ 125.9

s2 + 0.6957s+ 125.9
.

(3.24)

The position proportional controller results from (3.17) and (3.18) in

C1(s) = 3.1646. (3.25)

In order to verify the performance of the control loops tuned with the
proposed autotuning procedure, the system is tested with a series of steps
in the position reference. It has to be noted that, for the position control of
mechatronic systems, the use of steps in the position reference is generally
avoided, as it generates saturations in the actuators, while other typologies
of trajectories are preferred (e.g. 7-traits trajectories). Nonetheless, the use
of steps is here motivated as the step response is a standard yardstick for
the performance assessment of control systems.
The response of the system with the tuned controllers activated and the
filters deactivated is shown in Figure 3.12. While the motor reacts as ex-
pected, the elastic transmission introduces a series of oscillations on the
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Figure 3.12: Step response of the closed-loop system with the tuned PID
controllers. Setpoint signal (black dotted line), motor position (blue dashed
line) and load position (red solid line). The corresponding torque is shown
in green solid line, along with the torque limits in dashed red line.

load side. The response obtained by activating the tuned filters is shown
in Figure 3.13. The filter acting on the setpoint slightly reduce the perfor-
mance on the motor side in favor of the absence of oscillations on the load
side.

The autotuning procedure here described, along with the presented ex-
perimental results, has been published firstly in [22] an then extended in
this final form in [26]
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Figure 3.13: Step response of the closed-loop system with the tuned PID
controllers and the internal and external filters F1 and F2. Setpoint signal
(black dotted line), motor position (blue dashed line) and load position (red
solid line). The corresponding torque is shown in green solid line, along with
the torque limits in dashed red line.
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3.4 Autotuning with closed-loop excitation phase

Algorithms 1 and 2 are both characterized by an open-loop excitation phase.
While they are able to respect the imposed constraints in terms of position,
velocity and torque, as demonstrated by the presented tests in both SIL and
HIL, the respect of these constraints is strictly linked with the assumptions
that have been made on the system and on the effects of non-modelled non-
linearities.
For example, while the assumption made in the excitation phase of Chapter
3.3 on the inertia of the load is based on good practice [28], the true value
of the load can differ significantly. An error in the estimation of system in-
ertia can bring significant deviations in the trajectory during the excitation
phase, thus potentially bringing system position and/or velocity over the
imposed limits.
In order to increase the robustness during the excitation phase, a closed-
loop control of the system would be requested. Nonetheless, the presence of
a pre-existent controller cannot be taken for granted, and tuning the param-
eters of a controller from scratch without a deep knowledge of both system
and application is not trivial. Moreover, both trajectory and feedforward
signals must be specifically devised, as the feedback loop changes the way
in which the FRF must be computed.
This third algorithm deals with the problem of devising an autotuning pro-
cedure based on closed-loop control of the system in every phase, to ensure
the respect of imposed limits also in the case of errors in the model param-
eters and unmodelled nonlinearities.
Also in this case, the resonances introduced by the elastic shaft are detected
and suppressed by means of appropriately tuned biquadratic filters.
The proposed method is shown in Figure 3.14.

Generally, the velocity control of a mechatronic system can be schema-
tized as in Figure 3.15. The loop is closed on the motor side, as sensors on
the load side are rarely available. For this reason, the system can effectively
be divided into two different parts: the closed-loop part, represented by
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Figure 3.14: Flowchart of the closed-loop autotuning procedure.
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Figure 3.15: Closed-loop velocity control scheme for a mechatronic system,
with feedback on the motor side.

M(s) in 3.7, which is the transfer function between the torque acting on
the motor and its velocity, and an open-loop part, L(s) in (3.8), which links
the velocity of the motor to the velocity of the load.

The proposed velocity control scheme is the one shown in Figure 3.4
which, with respect to the standard control scheme in Figure 3.15, adds
two biquadratic filters for the compensation of the oscillations generated by
the elastic shaft, and a feedforward signal, used both during the excitation
phase of the autotuning procedure and the static friction compensation once
the newly tuned control is in position.

Here, a controller is assumed to be already in place, and that it needs
to be retuned. The retuning of a controller can be required in a number
of different occasions (e.g. change of the load inertia, change in the static
friction value). It could also happen that no controller is already in place, for
example when commissioning the system; for this case, a method for tuning
a basic controller and adopting this closed-loop autotuning procedure is
presented at the end of the section.

Static friction identification

In order to identify the static friction value, a procedure similar to the one
proposed in Section 3.3 is applied. In this case, as it is unpractical and
sometimes not possible to act directly on the system opening the control
loop, a ramp in the velocity reference is built. The ramp, starting from
θ̇ref = 0, must increase slowly. As the static friction impedes the movement,
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the system will not move instantly. The static friction Kf is identified as
the value of the input torque when a movement of the system is detected.
In order to link the slope of the system with a physical value, the parameter
Nsteps is introduced, so that

∆θ̇ref =
θ̇max
Nsteps

, (3.26)

where ∆θ̇ref is the increase in the velocity reference at each cycle time Ts.

Excitation phase

A velocity reference signal is built taking into account the limits of the
system, which depends on the application and are set by the operator.
The limits are the maximum position θ̄, the maximum velocity ¯̇

θ and the
maximum motor torque τ̄ .
A random value θ̇R is chosen in the range [0.2¯̇

θ; ¯̇
θ]. A velocity step, with

amplitude equal to θ̇R, is set as reference for the velocity loop and is kept
constant for a period of time Tp. Tp is calculated so that the position limit

is respected, thus Tp =
θ̄

θ̇R
. Then, the system is brought back to its initial

position by a step in the velocity reference with amplitude −θ̇R for the same
amount of time Tp. In order to avoid the undesired effects introduced by a
step in the velocity reference, the velocity reference is filtered by imposing
a limit to its slope to a value equal to

∆θ̇refmax =
τmax
Jm

(3.27)

where Jm is the inertia of the motor, which is typically printed on the motor
plate.
It has to be stressed that, by not considering the load inertia JL, the total
inertia of the system is probably greater that the motor inertia Jm so that,
even by limiting the velocity slope with (3.27), the actuators will probably
saturate. Nonetheless, with no information on the load, limiting the slope as
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done in (3.27) helps to at least reducing the effects of protracted saturations
(e.g. integral windup in PID controllers).

This procedure is iterated, modifying the value of ¯̇
θ in a random fash-

ion, for a total time of Ttot which is chosen based on the required spectral
resolution, as the spectral resolution is given by

∆f =
1

Ttot
. (3.28)

A total excitation time of Ttot = 80 [s] is sufficient for most mechatronic
applications, giving a spectral resolution (and a minimum frequency for the
FRF analysis) of 0.0125 [Hz].

In order to enrich the frequency components on the input torque signal,
a feedforward chirp signal (or sweep signal) is given to the system along
with the steps in the velocity reference. The chirp signal is build in order
to be linear in the logarithmic scale, and it can be expressed as a function
of the total time Ttot and the initial and final frequency f0 and f1 as

ff(t) = A sin

(
2πf0

kt

log(k)

)
(3.29)

with

k =

(
f1

f0

) 1

Ttot . (3.30)

f0 and f1 are chosen based on the total time Ttot and the sampling period
Ts; given the frequency resolution in (3.28) and the Nyquist theorem, the
frequencies are given by 

f0 =
1

Ttot

f1 =
0.5

Ts

(3.31)

The amplitude A of the feedforward sweep signal is set to 20% of the max-
imum torque τ̄ .
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Model estimation

For the computation of the Frequency Response Function, due to the pres-
ence of the feedback loop, it is not possible to use the same approach as in
Section 3.3. For this reason, the Ljung method is here used for the FRF
computation [18]. Starting from the velocity reference signal, the torque
feedforward, the motor torque and the motor velocity, computes a high
order transfer function of the system. The so found high-order transfer
function is hardly manageable for control purposes, and must therefore be
reduced to a simplified transfer function in the form 3.7.
This step is made possible by the use of the analytical procedure used in
Section 3.3, that is, by finding the mechanical pole as the frequency de-
creases more that 3dB under its lowest frequency value, and by detecting
the resonance and antiresonance peaks by comparing the product of the
prominence and the width of the peaks in the phase. The difference with
respect to the approach in Section 3.3 is that the frequency data are now
computed by sampling amplitude and phase of the high order transfer func-
tion obtained with [18], and not directly from the computed FRF data.
Once the six points have been identified (two points for every identified
frequency, one in the phase and one in the amplitude), the method in [32]
returns a set of six parameters identifying a transfer function in the form

M(s) =
a1

s+ a2

s2 + a3s+ a4

s2 + a5s+ a6
. (3.32)

This set of parameters can then be used as a starting set for a nonlinear
Levenberg–Marquardt optimization [48].

Control parameters tuning

Once the model of the system has been obtained in the form (3.32), the
oscillatory dynamics must be cancelled in order to enhance the control per-
formance. To do so, the biquadratic filters of the scheme in Figure 3.4 are
tuned. The internal biquadratic filter cancel the resonance/antiresonance
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couple in (3.32), obtaining the normalized filter

F1(s) =
1
a6
s2 + a5s

a6
s+ 1

1
a4
s2 + a3

a4
s+ 1

. (3.33)

The filtered system is therefore given by

M(s)F1(s) =
a1a4

a6(s+ a2)
(3.34)

A PI controller, with analytical form

C(s) = Kp

(
1 +

1

Tis

)
(3.35)

is tuned imposing a phase margin Φm and a crossover frequency ωc. These
parameters are set by the operator depending on the application perfor-
mance requirements.
The controller results from the parametric computation of its parameters,
which can be expressed as

Ti =
tan

(
φm − π

2 + arctan
(
ωc
a2

))
ωc

Kp =
Ti2

a1a4

a6

√
1 + T 2

i2
ω2
c

(
ω4
c + ω2

ca
2
2

) . (3.36)

While closed-loop control alone can entail goo performance on the motor
side, the open-loop transfer function L(s) in Figure 3.4, which corresponds
to the transfer function that links the motor velocity with the load velocity,
present two complex poled. This poles, which are due to the presence of the
elastic transmission, are responsible for important oscillations in the load
dynamics, even when the motor is under control, as L(s) acts outside of the
closed-loop.
In order to cancel the oscillatory dynamics in L(s), the external filter is
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tuned so that its zeros cancel the imaginary poles of L(s). While it is true
that L(s) cannot be estimated directly, due to the lack of sensors on the
load side, it can be obtained by (3.7), (3.8) and (3.32).
As the poles of L(s) are indeed equal to the zeros in M(s), the zeros of the
filter are set to

numF2(s) = s2 + a3s+ a4; (3.37)

the poles p1, p2 of the filter are set at a frequency equal to the one of the
zeros, but real in order not to introduce other oscillatory dynamics, so that

p1 = p2 = −1

2

√
a2

3 +
∣∣a2

3 − 4a4

∣∣. (3.38)

The normalized filter results from (3.37) and (3.38) in

F2(s) =
1
a4
s2 + a3s

a4
+ 1

1
p21
s2 + 2

p1
s+ 1

. (3.39)

The feedforward signal in Figure 3.4 is used to compensate for the static
friction, and is set as

ff = K̂f sign(θ̇ref ). (3.40)

Controller pre-tuning

In the case of the commissioning of a new mechatronic system, the presence
of a controller is not obvious. Nonetheless, in some cases a closed-loop iden-
tification is a requisite, as the system could not be moved in open loop (e.g.
for robustness problems, for the acceleration gravity contributes etc. . . ).
In this case, a first controller to be used during the excitation of the system
can be tuned as follows. Given the motor inertia Jm, which is typically
printed directly on the motor plate, and the viscous friction Bm, a pro-
portional controller is tuned, considering the system as described by the
simplified transfer function (3.3).
As the static friction can be supposed to have already been identified (with
the method proposed in section 3.3), the controller parameter Kp of the
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proportional controller C(s) = Kp can be set so that a value in the velocity
reference equal to the maximum velocity ¯̇

θ would give a motor torque

τm = 2K̂f . (3.41)

While this probably results in a very conservative control, by setting the
controller gain with (3.41) the movement of the system is guaranteed, and
there is no risk for the torque to get stuck under the static friction value.

Subsequently, a step with value equal to

θ̇ref =
¯̇
θ

is given as reference to the system, for a period of time calculated based on
position limits, thus

Tp =
θ̄
¯̇
θ
.

The last values of motor velocity θ̇m and motor torque τm before time Tp
are used for estimating the value of Bm. It is supposed that, by that time,
the motor velocity has reached its steady state value.
he value of Bm can therefore be calculated as

Bm =
τm − K̂f

θ̇m
. (3.42)

Then, knowing that the steady state error of the loop composed by a pro-
portional controller and the first order system (3.3) is given by

ess = 1− Kp

Kp +Bm
, (3.43)

the proportional gain of the controller can now be retuned based on the
desired steady state error during the excitation phase.
As a sluggish controller is sufficient during the autotuning, an error equal
to 0.1 times the reference is acceptable. Given that, the proportional gain
of the controller can be set equal to

Kp = 9Bm = 9
τm − K̂f

θ̇m
. (3.44)
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Table 3.2: Limits and parameters of the simulated system for HIL valida-
tion.

Parameter Value Parameter Value

C 0.003 Nms/rad K 1.0 Nm/rad
Jm 0.0079 kgm JL 0.0079 kgm
Bm 0.005 Nms/rad Kf 0.3 Nm
θmax 400 rad θ̇max 150 rad/s
τmax 5 Nm

HIL results

The autotuning algorithm has been validated directly on the HIL setup
described in Chapter 1.4.4 and shown in Figure 1.6. Limits and parameters
of the simulated system are shown in Table 3.2. With the parameters shown
in Table 3.2, the transfer function of the motor, calculated as (3.7) and
reduced into pole-zero representation becomes

M(s) =
129.7(s2 + 0.9193s+ 124.2)

(s+ 0.3719)(s2 + 1.104s+ 257.5)
. (3.45)

With an initial PI controller defined by the control parametersKp = 0.05

and Ti = 2.0, the performance of the system are shown in Figure 3.16. This
performance is unsatisfactory, both due to the sluggish step response and
the oscillations affecting motor and load, thus a retuning is required.

The static friction is identified, and the estimated value is K̂f = 0.28

[Nm]. The total execution time for the identification trajectory is set to
Ttot = 80 [s], giving a frequency resolution of

∆f = fmin =
1

Ttot
= 0.0125 [Hz]. (3.46)

With a sampling period Ts = 0.001 [s], the Nyquist theorem sets a maxi-
mum identifiable frequency of fmax = 500 [Hz]. Nonetheless, the frequency
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Figure 3.16: Performance of the system with the initial PI controller. Ve-
locity reference (black dotted line), motor velocity (blue dashed line) and
load velocity (red solid line). On the graphic below, the corresponding
torque acting on the motor (green solid line), with the torque limits shown
in dashed red lines.
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analysis has been limited 100 [Hz], as no interesting dynamics are expected
at higher values of frequency. The excitation trajectory is executed, and
the data of motor velocity, motor torque, feedforward torque and velocity
reference are stored and analyzed. It must be noted that, during the iden-
tification trajectory shown in Figure 3.17, the imposed limits have always
been respected.

The collected data are then analyzed through the Ljung method, which
results in a high order transfer function. The mechanical pole is identified,
together with the resonance and antiresonance peaks, as shown in Figure
3.18.
The analytical method and the subsequent nonlinear optimization result in
the low order estimated transfer function

M̂(s) =
129.7(s2 + 0.9193s+ 124.2)

(s+ 0.3719)(s2 + 1.104s+ 257.5)
. (3.47)

In Figure 3.18 the theoretical transfer function of the system is compared
with the high order transfer function of the system resulting from the Ljung
method and the low order transfer function after the analytical method
and the nonlinear optimization. It can be seen that the identified transfer
function reflects with good approximation the real transfer function.

For the tuning of the PI velocity controller, the phase margin Φm and
the crossover frequency ωc are set to Φm = 80 and ωc = 20 [rad/s], obtaining

C(s) = 0.3196

(
1 +

1

2.6892s

)
. (3.48)

In Figure 3.19 the performance of the system is shown for the case with
the tuned controller, but without the introduction of biquadratic filters.
It can be seen that, while the performance on the motor side is greatly
increased, significant oscillations affect the load side. For this reason, it is
necessary to introduce the biquadratic filters, which are tuned as

F1(s) =
0.003884s2 + 0.004288s+ 1

0.008049s2 + 0.0074s+ 1
(3.49)
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Figure 3.17: Motor torque, velocity and position during the identification
phase. The velocity reference is the black dashed line, while the limits are
shown as red dashed lines.
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Figure 3.18: Bode plot of the transfer function (3.21) (dashed black line), of
the high-order transfer function obtained using the Ljung method (orange
dotted line) and of the reduced-order transfer function (blue solid line). The
three points necessary for the analytic order reduction are shown with green
circles.
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Figure 3.19: Performance of the system with the obtained PI velocity con-
troller, without the biquadratic filters. Load velocity (red solid line), motor
velocity (blue dashed line), velocity reference (black dotted line) and torque
(green solid line). The torque limits are shown in red dashed line.
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Figure 3.20: The performance of the control system with tuned PI con-
troller, biquadratic filters and feedforward compensation of the static fric-
tion. Velocity reference (dotted black line), motor velocity (dashed blue
line), load velocity (solid red line) and motor torque (solid green line). Lim-
its on the torque are shown with dashed red lines.

and

F2(s) =
0.008049s2 + 0.0074s+ 1

0.008049s2 + 0.1794s+ 1
. (3.50)

The performance of the control system, with tuned PI controller, bi-
quadratic filters and feedforward compensation of the static friction is shown
in Figure 3.20.
With respect to the detuned system in Figure 3.16, both motor and load

have increased their step response performance. With respect to the use of
only the tuned PI controller, the performance in Figure 3.20 are increased.
In fact, while the filters reduce the promptness of the step response on the
motor side, the load follows the motor without oscillating.

The procedure of this algorithm and the obtained results are published
in [27].
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3.5 Operator interface

The different algorithms developed have been implemented and included
on a Matlab/Simulink library. This allows for a consistent interoperability
between different industrial systems, as Matlab environment provides for
interfaces towards a number of different industrial communication proto-
cols. Moreover, the entire library can be exported thanks to the Matlab
auto-coding toolbox.
In order to ease the usability of the autotuning algorithms for industrial op-
erators, a Graphic User Interface (GUI) has been developed, which collects
all the operator inputs required by the autotuning procedure and allows for
the expert user intervention during the tuning phase.
The information that are available on the GUI are the following:

• maximum and minimum torque during the autotuning procedure

• maximum and minimum velocity during the autotuning procedure

• maximum and minimum position during the autotuning procedure

• maximum and minimum torque during the normal application execu-
tion

• maximum and minimum velocity during the normal application exe-
cution

• sensors position (load side / motor side)

• velocity closed-loop enabling

• position closed-loop enabling

• sampling time

• phase margin

• control bandwidth
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• encoder resolution

• ...

Figures 3.21-3.24 show in details the autotuning user interface built
with Matlab Appdesigner. The interface directly connects with the drive
by means of modbus communication. The use of Matlab Appdesigner for
the user interface does not limit its applicability in general industrial sys-
tems, as it is possible to export the whole application together with Matlab
runtime to an executable file. The interface use is straightforward. The op-
erator must select the limits in terms of torque, velocity and position, the
type of control (velocity, position with or without cascade control) and, if
needed, the tuning requirements such as phase margin and bandwidth, and
then launch the automatic procedure. The interface interactively shows the
status of the autotuning procedure, as it constantly communicates with the
drives by means of modbus communication. The identification trajectory
is shown, and the FRF of the system is shown as well together with the
identified transfer function of the system. An expert operator can choose
to include a filter in the control scheme, in the case where relevant reso-
nance peaks are identified. The tuning parameters are computed, and the
controller can be validated as the found tuning parameters can then be
uploaded directly to Gefran ADV200 drives.

This approach is viable in industrial field. In fact, the presence of a sim-
ple user interface, together with valid autotuning procedures, can speed up
the commissioning process of mechatronic systems. The operator can tune
the controllers directly on-site with his own PC, as the communication be-
tween the drives happens directly via a standard industrial communication
protocol such as modbus.
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Figure 3.21: HMI for the application of the autotuning solutions, estimation
window. The torque, velocity and position limits that must be respected
during the excitation phase can be defined by changing the values inside the
red box. The data for the excitation (e.g. max. and min. chirp frequencies)
are defined by the values in the green box. The commands are given by
means of the buttons inside the orange button, where it is possible to launch
different identification procedures (e.g. low frequencies identification, full-
range frequencies identification). The results are then shown in the graphs
of the blue box.
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Figure 3.22: Tuning phase interface. The Bode plot of the identified esti-
mated transfer function is shown in the graph of the red box. The desired
requirements, in terms of phase margin and bandwidth, can be specified in
the green box, where the tuning procedure can be started. It is also possible
to insert a manually tuned biquadratic filter by selecting the appropriate
parameters in the blue box.
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Figure 3.23: Validation interface. The tuned control is graphically shown
in the scheme inside the red box, where the various filters can be switched
on and off. The validation tests can be launched acting on the buttons
inside the blue box, and the resulting performance can be compared to the
expected ones by checking the graphs inside the green box.
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Figure 3.24: Autotuning procedure interface. While the other interfaces are
accessible only in expert operator mode, the completely automatic tuning
procedure can always be launched. The constraints on the system are set
in the red box. The automatic procedure can then be launched from the
button inside the green box. The tuned control parameters are shown inside
the blue box after the identification and tuning phase. The operator must
push the button to apply the found parameters to the controller. The
performance of the tuned can finally be validated by checking the various
available graphs inside the orange block.
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3.6 Conclusions and contributions

Answering to the needs of industrial mechatronic systems for the increased
performance that can be brought by ad-hoc control schemes and parame-
ters tuning, this chapter has investigated the implementability of automatic
procedures for the tuning of the control parameters and the suppression of
oscillatory dynamics.
The proposed algorithms, differently from the solutions present in literature,
explicitly take into account the limits of the system, which are set by the op-
erator depending on the specific application on which the tuning procedure
must be applied. The constraints that are possible to include are position,
velocity and torque limits. Not only these constraints are respected during
the algorithm identification phase, but the trajectory executed during this
phase also brings the system near its limits, resulting in identified model
that takes into account data spanning from all over the system workspace,
resulting in a more accurate model of the system.

Moreover, differently from the procedures present in literature, all the
proposed algorithms directly address the presence of oscillatory dynamics
due to the presence of non-rigid shafts. These dynamics degrade the overall
performance of the system, in particular in the case where only sensors on
the load side are available. In this case, a high-bandwidth control of the
motor is possible, but it could even result in a worsening of the positioning
performance on the load side if the dynamics introduced by the elastic
shaft is not taken into account, as demonstrated by the experiments in
Section 3.4. The classical solution in presence of oscillatory dynamics is
to lower the bandwidth of the controlled system, decreasing the overall
performance of the system. Instead, the proposed algorithms are based on
the identification and compensation of the oscillatory dynamics by means
of properly calibrated biquadratic filters. The cancellation of the oscillatory
dynamics is performed not only on the motor control loop, but also on the
load in an open-loop fashion. The fact that this is possible by analyzing
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data acquired only on the motor side, as it is the standard for industrial
mechatronic systems, is an important step forward compared to classical
autotuning techniques.

These improvements have been included in control techniques that act,
at the operator’s choice, both with open-loop and closed-loop control sys-
tems. This possibility of choice makes it possible to apply the proposed
techniques to virtually all industrial applications.
The techniques have been demonstrated both through simulations in the
Simulink/Matlab environment, and by using an experimental setup based
on industrial hardware, effectively verifying the applicability of the approach
in the industrial sector through implementation on Hardware-In-the-Loop
(HIL) setup.
The results of this work were provided to the partners of the I-MECH
project as part of Building Block 6 (BB6), respecting the requests for in-
teroperability with the other BBs of the project and providing a clear and
complete description of the functionality of the algorithms and of the in-
terface, with particular focus on the delineation of the inputs necessary for
the self-calibration block, the selectable parameters and the subsequent out-
puts.
The use of the algorithms presented through an intuitive and effective user
interface (GUI) has also been made available. This allows the operator to
quickly calibrate the control system during system commissioning, but it
also allows the expert operator to access additional parameters for a more
precise calibration, which obviously requires the intervention and is reserved
to expert personnel.

Finally, it is necessary to underline how the techniques proposed in this
area have been implemented and tested on an experimental setup composed
entirely of industrial type hardware (ADV200S drive and Gefran brushless
motors). This makes them immediately integrable in different industrial
applications.





Chapter 4

Iterative and repetitive control

Each industrial mechatronic system, during its operation, is affected by
different types of disturbances which affect the performance of the system.
These disturbances can come from the outside, or they can be intrinsic to the
system itself (for example caused by eccentric bodies in rotation, by oscillat-
ing effects generated by electric motors, etc.). In general, if the disturbances
come from the outside, these are not known, while if the disturbances are
generated by the system itself (due, for example, to unbalanced rotating
masses) these are or can be known. If the disturbances are known and have
a periodic or repetitive character, they can be compensated thanks to the
use of particular controllers, to be added to the feedback control structure,
which allow, in the ideal case, the perfect tracking of the reference by com-
pletely compensating for these disturbances [72].
In this chapter, different repetitive and iterative control strategies are de-
scribed, and their implementation in standard industrial control hardware
is addressed and validated. These strategies allow the complete or partial
suppression (or attenuation) of periodic or repetitive disturbances affecting
generic mechatronic systems.

4.1 State of the art

The suppression of repetitive and/or periodic disturbances is a much dis-
cussed topic in the control field, and various repetitive or iterative controllers
have been proposed in the last 30 years [77].

The repetitive controller is usually applied independently of the used
feedback control [16]. This type of control ensures very high control gain



186 Chapter 4. Iterative and repetitive control

at the frequency of the noise. However, the performance of the method
drops dramatically if the disturbance period is not perfectly known, or if
this period varies over time [70] such as in the case of position-dependent
disturbances [14].
Different approaches have been used to try to solve the problem of the vari-
ation of the disturbance period. These approaches are divided substantially
into two groups according to the applied methodology:

• approaches based on the variation of the relationship between the
disturbance period and the control period, approximating this rela-
tionship to the nearest integer [37, 73];

• approaches based on the variation of the control period, keeping the
relationship between the disturbance period and the control period
constant by approximating this value to the nearest integer [3, 11, 33,
70, 71, 73].

However, the performance of these approaches is effective only when the
variation of the disturbance period is not excessive, and especially if its
variation is not too rapid. An excellent survey on repetitive control can be
found in [34].

Iterative learning control, a more recent approach with respect to repet-
itive control, can be applied both to improve the transient response of the
systems and to suppress repetitive and/or periodic disturbances, especially
in cases where the system continuously repeats the same operations [47].
The concept behind iterative control is simple: at each repeated cycle, the
controller modifies its control action in order to minimize the control error.
The main advantage of the classic iterative control lies in the fact that it
is not necessary to have a precise mathematical model of the system to be
controlled [8], even if, in some cases [41], the system model can be useful in
order to keep into consideration any constraints and find optimal learning
solutions.
Just like the classic repetitive control, iterative control is usually applied
independently of the feedback control. Iterative control, in fact, is used for
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the compensation of repetitive errors, while the feedback control on top of
which it works is used to compensate also generic disturbances acting on
the system. For an insight on repetitive control, consider [2].

The main difference between iterative controllers and repetitive con-
trollers lies in the fact that while the repetitive controllers are suitable for
continuous and non-varying operations (e.g. movements at constant speed),
iterative controllers can also be employed for discontinuous operations (such
as the movements of industrial robots). This difference can be seen as re-
siding in the conditions of the two methods. The initial conditions of the
repetitive controllers, at each cycle, depend on the final conditions of the
previous cycle, while the initial conditions of the iterative controllers are
always the same for each cycle [44].

The main contribution of this chapter is the implementation and testing
of state-of-the-art techniques in the field of iterative and repetitive control
directly in industrial drives. The implemented technique are validated on a
HIL testbed composed by industrial hardware, demonstrating the effective-
ness of the approach.

4.2 Repetitive Control (RC)

Repetitive control in the time domain [16, 34, 77] is a type of control based
on the principle of the internal model [19] which aims at the perfect tracking
of the reference, in steady state, in the presence of periodic or repetitive
disturbances [72]. The general scheme of a repetitive controller is shown in
the area surrounded by the red line in Figure 4.1.
The internal model of a repetitive controller, which is basically a periodic
signal generator, corresponds to the scheme within the area surrounded by
the green dotted line. This model allows adding to the current input of the
controller the input of the controller at a certain previous instant. Block
D, in fact, represents a definite time delay

D(s) = e−Ls, (4.1)
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Figure 4.1: Repetitive control scheme in the time domain. Orange arrow:
load disturbance. Black arrow: disturbance on the output.

which, in a discrete form, becomes

D(z) = z−(N+d−1) (4.2)

where N = round(TN/Ts) with TN the disturbance period, Ts is the sam-
pling period of the repetitive controller and d an adjustment parameter that
allows taking into account possible delays within the feedback control loops.
The H(s) function represents a generic stability filter, which is a low pass
filter which allows cutting down high frequency noises and can be written
in the form

H(s) = Kr
1

τfs+ 1
(4.3)

where τf is the time constant of the filter and Kr is the gain of the repetitive
controller. The G(s) function, on the other hand, has the task of correctly
phase-shifting and amplifying the output signal from the internal model in
order to ensure the suppression of the noise on the output in the correct
manner. Indeed,

G(s) =
1

F (s)
, (4.4)
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where
F (s) =

C(s)P (s)

1 + C(s)P (s)
(4.5)

represents the transfer function between the repetitive controller input and
the system output, where C(s) is the transfer function of the controller
while P (s) is the transfer function of the system to be controlled.

4.2.1 MIL validation

RC control has been validated by means of MIL testing.
The simulated and co-simulated results were obtained considering a

generic mechatronic system with the following characteristics:

• total inertia J = 0.3 [kg/m2];

• static friction c0 = 0.2 [Nm];

• viscous friction c1 = 0.02 [Nms/rad];

The linear model of the system can be obtained by not considering the
effects of the static friction, thus obtaining the transfer function

P (s) =
1

Js+ c1
=

1

0.3s+ 0.02
. (4.6)

The PI controller used has been calibrated with the following parame-
ters:

• proportional gain Kp = 5.0 [Nms/rad];

• integral time constant Ti = 1.0 [s];

• sampling interval Ts = 0.001 [s].

The transfer function of the controller is

C(s) = kp

(
1 +

1

tis

)
= 5.0

(
1 +

1

1.0s

)
. (4.7)
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Figure 4.2: Generic form of the disturbance used in simulations and co-
simulations.

The disturbance used in the simulations and co-simulations has the form
shown in Figure 4.2.

For the MIL validation, the approach has first been tested with both
the controller and the system running on Simulink. Later, the model of the
system, together with the external disturbances, have been implemented on
Simcenter Amesim, and the controller was run on Simulink in co-simulation.

The repetitive controller parameters used are:

• repetitive controller gain Kr = 0.4;

• cutoff frequency of the stability filter ωfc = 490 [Hz];

• delay adjustment parameter d = −2.

The simulated disturbances, positioned at the input and output of the sys-
tem, with reference to Figure 4.2, have been created with the following
characteristics:
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• input disturbance period T iN = 1.0 [s];

• input disturbance duty cycle dCid = 10.0 [%];

• input disturbance amplitude Aid = 10.0 [Nm];

• output disturbance period T uN = 1.0 [s];

• output disturbance duty cycle dCud = 10.0 [%];

• input disturbance amplitude Aud = 1.0 [rad/s].

The stability filter H(s) used in the simulations, in accordance with the
data listed above, has a transfer function

H(s) = Kr
1

τfs+ 1
= 0.4

1
1

490 ·2 ·πs+ 1
. (4.8)

The G(s) function, in the simulations of the repetitive control, is given
by

G(s) =
1

F (s)
, (4.9)

where
F (s) =

C(s)P (s)

1 + C(s)P (s)
(4.10)

represents the transfer function between the repetitive controller input and
the system output.

In Figure 4.3 the Simulink scheme used for the simulations is shown. As
can be seen, two sub-schemes are simulated in parallel. The sub-diagram in
the centre of the Figure 4.3 (blue area) simulates a standard controller in
feedback, while the sub-scheme in the bottom of the Figure 4.3 (orange area)
simulates a standard controller aided by a repetitive controller activated by
the command "RC_start".

These simulations were carried out to understand if the repetitive con-
troller could give benefits on generic mechatronic systems; in addition they
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Figure 4.3: Simulink scheme used for MIL tests.

served to verify the correctness of the implementation of the repetitive con-
troller.

Figure 4.4 shows the performance comparison between the output of
the simulated system using a single feedback controller (upper graph) and
the output of the simulated system using a feedback controller aided by a
repetitive controller activated after 10 seconds of simulation (lower graph).
Shortly after the activation of the repetitive controller, its effects begin to
be relevant and the output remains much more adherent to the desired
output (blue line). This is shown in Figure 4.5, where control errors are
compared. In blue the error obtained using a single feedback controller,
in red the error obtained using the feedback controller supported by the
repetitive controller. In Figure 4.6 the respective control actions in the two
cases are shown.

In Figure 4.7 the Simulink scheme used for co-simulations with Amesim
is shown. The sub-scheme at the centre of Figure 4.7 (blue area) simulates
a standard controller in feedback, while the sub-scheme in the lower part
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Figure 4.4: Output controlled with a PI controller (upper graph) and output
controlled with a PI controller with the addition of the repetitive controller
activated after 10 seconds (lower graph). The reference in both cases is set
constant equal to 20.
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Figure 4.5: Comparison between the control error obtained with a PI con-
troller (blue line) and the control error obtained with a PI controller and
the addition of the repetitive controller activated after 10 seconds (red line).
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Figure 4.6: Comparison between the control action calculated with a PI
controller (blue line) and the control action calculated with a PI controller
and the addition of the repetitive controller activated after 10 seconds (red
line).
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Figure 4.7: Simulink scheme used for MIL tests done in Simulink / Amesim
simulation.

of the Figure 4.7 (orange area) simulates a standard controller aided by a
repetitive controller activated by the command "RC_start".

Figure 4.8 shows the comparison of performance between the output of
the simulated system with Amesim using a single feedback controller (upper
graph) and the output of the simulated system using a feedback controller
aided by a repetitive controller activated after 10 seconds of simulation
(lower graph). As can also be seen in the co-simulation, shortly after the
activation of the repetitive controller its effects begin to be relevant and the
output of the system simulated with Amesim remains much more adherent
to the desired output (blue line). This data is shown in Figure 4.9, where
the control errors are compared. In blue the error obtained using a single
feedback controller, in red the error obtained using the feedback controller
supported by the repetitive controller. In Figure 4.10 the respective control
actions in the two cases are shown.
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Figure 4.8: Output controlled with a PI controller (upper graph) and output
controlled with a PI controller with the addition of the repetitive controller
activated after 10 seconds (lower graph). The reference in both cases is set
constant equal to 20.
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Figure 4.9: Comparison between the control error obtained with a PI con-
troller (blue line) and the control error obtained with a PI controller and
the addition of the repetitive controller activated after 10 seconds (red line).
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Figure 4.10: Comparison between the control action calculated with a PI
controller (blue line) and the control action calculated with a PI controller
and the addition of the repetitive controller activated after 10 seconds (red
line).
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4.2.2 HIL validation

In order to validate the implementation of the technique in industrial servo
drives, the technique has been implemented in the ADV200 Gefran drive of
the HIL setup described in Section 1.4.4.
The parameters of the HIL setup shown in Figure 1.6 have been identified
as

• total inertia J = 0.032 [kg / m 2] ;

• static friction c0 = 0.245 [Nm] ;

• viscous friction c1 = 0.03 [Nms / rad].

The SM has been used only for introducing the repetitive disturbance, as
the HIL setup already presented an ideal test bench for the application of
RC and ILC approaches.

The transfer function of the HIL setup is, therefore,

P (s) =
1

Js+ c1
=

1

0.032s+ 0.03
. (4.11)

The PI controller used has been calibrated with the following parame-
ters:

• proportional gain kp = 0.1 [Nms/rad]

• integral time constant ti = 1.0 [s]

• sampling interval Ts = 0.001 [s].

The transfer function of the controller is

C(s) = kp

(
1 +

1

tis

)
= 0.1

(
1 +

1

1.0s

)
. (4.12)

In order to use common industrial drives with a reduced memory ca-
pability, the sampling period of the repetitive and iterative controllers has
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been modified in order to obtain memory vectors of a maximum predefined
length (in the cases under examination 200 elements). To do this, the ratio
between the disturbance period and the control period was kept constant
at a value of 200:

N =
TN
Ts

= 200. (4.13)

The disturbance, introduced by the SM motor, has the same form as the
one shown in Figure 4.2.

The parameters of the repetitive controller used were:

• repetitive controller control period Ts = 0.01 [s];

• repetitive controller gain Kr = 1.0;

• cutoff frequency of the stability filter ωfc = 30 [Hz];

• delay adjustment parameter d = −2.

The simulated disturbance is a square wave on the system input, was created
with the following characteristics:

• input disturbance period T iN = 1.0 [s];

• duty cycle of the input disturbance dCid = 50.0 [%];

• input disturbance amplitude Aid = −2.0 [Nm].

The stability filter H used in the experimental tests of the repetitive control
is a first-order low-pass filter with transfer function

H(s) = Kr
1

τfs+ 1
= 1.0

1
1

30 ·2 ·πs+ 1
. (4.14)

The G function, in the experimental tests of the repetitive control, is
given by

G(s) =
1

F (s)
, (4.15)



202 Chapter 4. Iterative and repetitive control

0 5 10 15 20 25
0

20

40

60
us

ci
ta

 (
P

I)

0 5 10 15 20 25

tempo [s]

0

20

40

60

us
ci

ta
 (

P
I+

R
C

)

Figure 4.11: Controlled output on the test bench with a PI controller (upper
graph) and controlled output with a PI controller with the addition of the
repetitive controller activated after 5 seconds (lower graph). The reference
in both cases is set constant equal to 50.

where

F (s) =
C(s)P (s)

1 + C(s)P (s)
(4.16)

represents the transfer function between the repetitive controller input and
the system output.

Figure 4.11 shows the performance comparison between the output of
the physical test bench using a single feedback controller (upper graph) and
the output of the physical test bench using a feedback controller aided by a
repetitive controller activated after 5 seconds of acquisition (lower graph).

The results obtained with the HIL validation of the RC method are
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Figure 4.12: Iterative control scheme. Orange arrow: load disturbance.
Black arrow: disturbance on the output.

compatible with the ones obtained during the MIL validation.

4.3 Iterative Learning Control (ILC)

The idea behind iterative learning control consists in the fact that the per-
formance of a system which repeatedly faces the same task, while facing the
same disturbance, can be improved by learning from the conditions already
faced in the previous cycles [8]. Its basic scheme is shown inside the area
surrounded by the red line in Figure 4.12.
ILC behaves differently than other types of learning controllers such as

adaptive controllers, neural networks or repetitive controllers. ILC, in fact,
does not modify the parameters of the feedback controller (as, for example,
occurs in the case of adaptive controllers), but directly modifies the control
action [46].

Iterative learning controllers work in the following way: at each instant
k of the cycle j the control action u to be given to the system is formed by
the sum of the control action of the feedback c and by the action of control
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provided by the iterative controller w

ujk = cjk + wjk. (4.17)

The control action provided by the ILC controller at the instant k of the
current cycle j (wjk) depends on the total control action at the instant k
of the previous cycle (uj−1

k ) and from the control error instantly k of the
previous cycle (ej−1

k ) combined considering the learning functions Lf and
the stability filter Q in the formula

wjk = Q
[
ej−1
k Lf + uj−1

k

]
. (4.18)

The learning function Lf allows modifying at each cycle the control action
provided to the previous cycle in order to minimize errors on the output,
while the stability filter Q stabilizes the system.
The blocks MEM represent a definite time delay

MEM(s) = e−Ls, (4.19)

which, in the discrete domain, becomes

MEM(z) = z−(N+d−1) (4.20)

where N = round(TN/Ts) with TN the cycle period, Ts the sampling period
of the ILC controller and d is an adjustment parameter that allows taking
into account possible delays within the feedback control loops.

The transfer function of the block Q, which represents a generic stability
filter, is

Q(s) =
1

τfs+ 1
(4.21)

where τf is the time constant of the filter. The transfer function of the
learning function Lf can be set to

Lf (s) =
Kl

s
(4.22)

where Kl represents the learning gain of the iterative controller.
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4.3.1 MIL validation

As done for the validation of the RC approach, the MIL validation of ILC
has first been tested with both the controller and the system running on
Simulink; later, the model of the system, together with the external distur-
bances, have been implemented on Simcenter Amesim, and the controller
was run on Simulink in co-simulation. The mechatronic system parameters
are the same ones used for the MIL validation of the RC method.
In the case of the simulations and co-simulations for the testing of ILC
control, the following control parameters have been used:

• iterative controller gain Kl = 0.4;

• cutoff frequency of the stability filter ωfc = 490 [Hz];

• delay adjustment parameter d = −2.

The simulated disturbances have been constructed as square waves at the
input and output of the system with the following parameters:

• input disturbance period T iN = 1.0 [s];

• duty cycle of the input disturbance dCid = 10.0 [%];

• input disturbance amplitude Aid = 10.0 [Nm];

• output disturbance period T uN = 1.0 [s];

• output disturbance duty cycle dCud = 10.0 [%];

• output disturbance amplitude Aud = 1.0 [rad/s].

The transfer function of the Q block, according to the data listed above,
is

Q(s) =
1

τfs+ 1
=

1
1

490 ·2 ·πs+ 1
(4.23)
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Figure 4.13: Simulink scheme used for the MIL validation of the ILC
method.

while the transfer function of the learning function Lf is

Lf (s) =
Kl

s
=

0.4

s
. (4.24)

In Figure 4.13 the Simulink scheme used for the simulations is shown.
As can be seen, two sub-schemes simulate in parallel. The sub-scheme in
the centre of the Figure 4.13 (blue area) simulates a standard controller in
feedback, while the sub-scheme in the lower part of the Figure 4.13 (or-
ange area) simulates a standard controller aided by an iterative controller
activated by the command "ILC_start".

In Figure 4.13 the Simulink scheme used for the simulations is shown.
These simulations were carried out to understand if the ILC controller could
give benefits on generic mechatronic systems, also they served to verify the
implementation of the ILC controller. Figure 4.14 shows the performance
comparison between the output of the simulated system using a single feed-
back controller (upper graph) and the output of the simulated system using
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Figure 4.14: Output controlled with a PI controller (upper graph) and
output controlled with a PI controller with the addition of the iterative
controller activated after 10 seconds (lower graph). The reference in both
cases is set constant equal to 20.

a feedback controller aided by an iterative controller activated after 10 sec-
onds of simulation (lower graph). Shortly after the activation of the iterative
controller its effects begin to be seen and the simulated output deviates less
from the desired output (blue line) when compared to the standard feed-
back approach.
In Figure 4.15 the control errors are compared. In blue the error obtained
using a single feedback controller, in red the error obtained using the feed-
back controller supported by the iterative controller. In Figure 4.16 the
respective control actions in the two cases are shown.
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Figure 4.15: Comparison of the control error obtained with a PI controller
(blue line) and the control error obtained with a PI controller and the
addition of the iterative controller activated after 10 seconds (red line).
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Figure 4.16: Comparison between the control action calculated with a PI
controller (blue line) and the control action calculated with a PI controller
and the addition of the iterative controller activated after 10 seconds (red
line).



210 Chapter 4. Iterative and repetitive control

4.3.2 HIL validation

For the HIL testing of ILC controllers, the HIL hardware in Figure 1.6 has
been used. The parameters of both the system and the feedback controller
are the same ones as in the case of the HIL validation of the RC method
described in Chapter 4.2.2.

The parameters of the iterative controller used are:

• control period of the iterative controller Ts = 0.005 [s];

• iterative controller gain Kl = 0.00002;

• cutoff frequency of the stability filter ωfc = 50 [Hz];

• delay adjustment parameter d = −2.

The simulated disturbance, a square wave on the system input, was created
with the following characteristics:

• input disturbance period T iN = 1.0 [s];

• input disturbance duty cycle dCid = 50.0 [%];

• input disturbance amplitude Aid = −2.0 [Nm].

The transfer function of the Q block, according to the data listed above,
is

Q(s) =
1

τfs+ 1
=

1
1

50 ·2 ·πs+ 1
(4.25)

while the transfer function of the learning function Lf is

Lf (s) =
Kl

s
=

0.00002

s
. (4.26)

It is important to underline that, in order to use common industrial
drives with a reduced memory capability, the sampling period of the iter-
ative controller has been modified in order to obtain memory vectors of a
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maximum predefined length (in the cases under examination 200 elements).
To do this, the ratio between the disturbance period and the control period
was kept constant at a value of 200:

N =
TN
Ts

= 200, (4.27)

where TN is the disturbance period and Ts is the sampling period of the
iterative controller.

Figure 4.17 presents a performance comparison between the output of
the physical test bench using a single feedback controller (upper graph) and
the output of the physical test bench using a feedback controller aided by
an iterative controller activated after 5 seconds of acquisition (lower graph).
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Figure 4.17: Controlled output on the test bench with a PI controller (upper
graph) and controlled output with a PI controller with the addition of the
iterative controller activated after 5 seconds (lower graph). The reference
in both cases is set constant equal to 50.
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4.4 Position domain Repetitive Control (Pos-RC)

The repetitive control in the position domain here presented allows the
suppression of disturbances that depend on the position of the system.
The scheme of a repetitive controller in the position domain is similar to
that of a repetitive controller in the time domain, and is shown in Figure
4.18.

The internal model of a repetitive controller in the position domain,
which corresponds to a periodic signal generator in position, is the scheme
within the area surrounded by the green dotted line. This model allows the
addition of the controller input to the current position with the controller
input corresponding to the same position of the previous instant. Block
Dp, in fact, represents a position delay. As in the case of the repetitive
controller in the time domain, the function H represents a generic stability
filter, which is a low-pass filter which allows reducing any noise in high
frequency

H(s) = Kr
1

τfs+ 1
(4.28)

where τf it is the time constant of the filter and Kr is the gain of the
repetitive controller in the position domain. The function G, as in the case
of the repetitive controller in the time domain, has the task of correctly
phase-shifting and amplifying the output signal from the internal model in
order to guarantee the suppression of the disturbance on the output in the
correct way:

G(s) =
1

F (s)
, (4.29)

where

F (s) =
C(s)P (s)

1 + C(s)P (s)
(4.30)

represents the transfer function between the repetitive controller input and
the system output. C(s) is the transfer function of the controller while P (s)

is the transfer function of the system to be controlled.
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Figure 4.18: Repetitive control scheme. Orange arrow: load disturbance.
Black arrow: disturbance on the output.

The block Dp, which as mentioned represents a position delay, can be
implemented as a vector of predefined length Np in which each position
interval corresponds to an element of the vector. By analogy with respect
to the case of the standard repetitive control, where the sampling period of
the repetitive controller can be made to vary by keeping constant the ratio
between the period of the disturbance and sampling period of the controller,
that is

N =
TN
Ts

= constant. (4.31)

in the case of repetitive control in the position domain, the sampling is
performed based on the position of the system:

Np =
Pd

∆Pd

= constant (4.32)

where Pd is the periodicity of the position and ∆Pd represents the sampling
interval of the periodicity of the position.

The output of the internal model u of the repetitive controller in the
position domain (area surrounded by the dashed green line in Figure 4.18)
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corresponding to the position interval ∆Pd of the current cycle j, i.e. uj∆Pd
,

depends on the control error on the range of position ∆Pd of the current
cycle, i.e. ej∆Pd

, added to the control error at the position interval ∆Pd of

the previous cycle (ej−1
∆Pd

) filtered by the stability filter H. Its formulation
can therefore be expressed as

IMj
∆Pd

= ej∆Pd
+H ej−1

∆Pd
. (4.33)

The output w of the repetitive controller in the position domain will then
be

wj∆Pd
= G IMj

∆Pd
. (4.34)

4.4.1 MIL validation

For the MIL validation of the proposed position repetitive control, the con-
sidered mechatronic system and the corresponding feedback controller are
the same one described in Chapter 4.2.1.

The parameters of the repetitive controller in the position domain, for
both the simulations running on Simulink and for the co-simulation cases,
are:

• gain of the repetitive controller in the domain of the positionKr = 1.0;

• cutoff frequency of the stability filter ωfc = 490 [Hz];

• length of the memory vector Np = 500;

• periodicity of position Pd = 2π [rad].

The simulated disturbance, acting on the system output, was created as the
sum of three sinusoidal signals in the position domain:

d(t) = A1 sin (ωt) +A2 sin (2ωt) +A3 sin (4ωt) (4.35)

with the following characteristics:
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• first sinusoid amplitude A1 = 0.33 [Nm];

• frequency of the first sinusoid corresponding to the output speed of
the system;

• second sinusoid amplitude A2 = 0.33 [Nm];

• frequency of the second sine wave corresponding to twice the system
output speed;

• third sinusoid amplitude A3 = 0.33 [Nm];

• frequency of the third sine wave corresponding to four times the sys-
tem output speed.

The stability filter H used in repetitive control simulations in the posi-
tion domain is a first order low pass filter with transfer function

H(s) = Kr
1

τfs+ 1
= 1.0

1
1

490 ·2 ·πs+ 1
. (4.36)

The G function, in the simulations of repetitive control in the position
domain, is given by

G(s) =
1

F (s)
, (4.37)

where
F (s) =

C(s)P (s)

1 + C(s)P (s)
(4.38)

represents the transfer function between the repetitive controller input and
the system output.

Figure 4.19 shows the Simulink scheme used for the simulations; two
sub-schemes simulate in parallel. The sub-diagram in the centre of the
Figure 4.19 (blue area) simulates a standard controller in feedback, while
the sub-scheme in the bottom of the Figure 4.19 (orange area) simulates a
standard controller aided by a controller repetitive in the position domain.
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Figure 4.19: Simulink scheme used for MIL tests.

These simulations were carried out to understand if the repetitive con-
troller in the position domain could give benefits on generic mechatronic
systems. Figure 4.20 shows a performance comparison between the output
of the simulated system using a single feedback controller (top graph) and
the output of the simulated system using a feedback controller aided by a
repetitive controller in the domain position (lower graph). The effects of the
repetitive controller in the position domain are significant. The improved
performance brought by the use of the position RC approach are also vis-
ible in Figure 4.21, where control errors are compared. In blue the error
obtained using a single feedback controller, while in red the error obtained
using the feedback controller supported by the repetitive controller in the
position domain. In Figure 4.22 the respective control actions in the two
cases are shown.

The position repetitive controller has then been validated by means of
co-simulation between Simulink and Amesim, as shown by the scheme in
Figure 4.23. The sub-scheme in the centre of the Figure 4.23 (blue area)
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Figure 4.20: Output controlled with a PI controller (upper graph) and
output controlled with a PI controller with the addition of the repetitive
controller in position (lower graph). The reference in both cases is made to
vary specifically to have different periods of disturbance over time.
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Figure 4.21: Comparison of the control error obtained with a PI controller
(blue line) and the control error obtained with a PI controller and the
addition of the repetitive controller in position (red line).
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Figure 4.22: Comparison between the control action calculated with a PI
controller (blue line) and the control action calculated with a PI controller
and the addition of the repetitive controller in position (red line).



4.4. Position domain Repetitive Control (Pos-RC) 221

Figure 4.23: Simulink scheme used for MIL tests done in Simulink/Amesim
co-simulation.

simulates a standard controller in feedback, while the sub-scheme in the
lower part of the Figure 4.23 (orange area) simulates a standard controller
aided by a repetitive controller in the position domain.

These co-simulations were carried out to understand if the repetitive
controller in the position domain could give benefits on generic mechatronic
systems modeled through the Amesim software.
Figure 4.24 shows the performance comparison between the output of the
simulated system with Amesim using a single feedback controller (upper
graph) and the output of the simulated system using a feedback controller
aided by a repetitive controller in the position domain (lower graph). As can
also be seen in the co-simulation, the effects of the repetitive controller in the
position domain are significant, as shown by Figure 4.25, where the control
errors are compared. In blue the error obtained using a single feedback
controller, while in red the error obtained using the feedback controller
supported by the repetitive controller in the position domain. In Figure
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Figure 4.24: Output controlled with a PI controller (upper graph) and
output controlled with a PI controller with the addition of the repetitive
controller in position (lower graph). The reference in both cases is made to
change specifically to have different periods of disturbance over time.

4.26 the respective control actions in the two cases are shown.

4.4.2 HIL validation

The proposed position repetitive control has finally been validated by im-
plementing it on the HIL testbed shown in Figure 1.6. The parameters of
both the system and the feedback controller are the same ones as in the
case of the HIL validation of the RC method described in Chapter 4.2.2.
The parameters of the RC position controller are as follows:

• gain of the repetitive controller in the domain of the positionKr = 1.0;
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Figure 4.25: Comparison of the control error obtained with a PI controller
(blue line) and the control error obtained with a PI controller and the
addition of the repetitive controller in position (red line).
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Figure 4.26: Comparison between the control action calculated with a PI
controller (blue line) and the control action calculated with a PI controller
and the addition of the repetitive controller in position (red line).
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• cutoff frequency of the stability filter ωfc = 490 [Hz];

• length of the memory vector Np = 500;

• periodicity of position Pd = 2π [rad].

The stability filter is the same one described in (4.36).
The introduced disturbance on the load side is defined by function (4.35)
and the values for A1, A2 and A3 have been choose as in Chapter 4.4.1.

The comparison between the tracking performance between with the
closed-loop PI approach with and without the use of the RC position con-
troller are shown in Figure 4.27. Due to the presence of external distur-
bances, the use of a PI controller alone cannot suppress the effect of distur-
bances, while the use of the RC position controller increase the performance
at both the setpoint velocities. On the contrary, the RC position controller
introduces an overshoot when the velocity reverence is changed. This over-
shoot can be avoided by turning off the RC controller during drastic changes
in the velocity reference.
The improvement in performance is underlined by Figure 4.28, where the
velocity error is shown.
On the other hand, while the improvement in terms of performance are evi-
dent, the inclusion of the RC controller in the control scheme entails a more
aggressive approach, as shown by the comparison of the control actions of
the two control schemes in Figure 4.29.
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Figure 4.27: Comparison between PI control (orange line) and PI plus po-
sition RC control (yellow line). The reference is shown in blue line.
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Figure 4.28: Velocity error with PI (blue line) and PI plus position RC
control (orange line).
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Figure 4.29: Control action with PI (blue line) and PI plus position RC
control (orange line).
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4.5 Conclusions and contributions

In conclusion, in this chapter various approaches to the control of mecha-
tronic systems subject to repetitive disturbances have been analyzed. With
a special focus on their implementability on industrial hardware, the tech-
niques presented have firstly been implemented on Matlab/Simulink envi-
ronment and tested. All the proposed techniques have been also imple-
mented on a standard industrial drive (ADV200S series by Gefran S.p.a.)
and validated on the HIL testbed described in Chapter 1.4.4, demonstrat-
ing their ability in compensating repetitive disturbance, both in time and
position domain.

The reduced memory necessary for the implementation of the proposed
techniques, which require storing vectors of only 200 elements, is motivated
by the need of implementing the techniques directly into the drives, without
the need for an external PLC. Therefore, the techniques can be implemented
also in industrial hardware with reduced memory capability.

In addition, an innovative repetitive controller methodology was de-
veloped and tested in simulation and co-simulation in the domain of the
position suitable for application in common industrial controllers (Section
4.4).

The tangible result of this chapter is a library, written in IEC 61131-3
Structured Text language, containing plug-and-play function blocks which
implement the presented ILC, RC and position-based RC algorithms. As
the function blocks are written with a IEC 61131-3 coding language, they
are easily exported into virtually every industrial control system.



Conclusions

This thesis has presented practical solutions for the most common problems
affecting industrial mechatronic systems.

An in-depth study of the available control approaches for highly under-
damped mechatronic systems (such as industrial cranes) and the study of
tailored control techniques in Chapter 2 has yield to the implementation and
testing of various approaches. Both studies regarding the robustness and,
in general, the performance of the single techniques as well as comparative
studies have been performed, in order to outline a guideline for the choice
of the correct approach for the control of a specific industrial application.
In particular, a novel approach for the control of cranes which exhibit
double-pendulum dynamics has been proposed, implemented and tested.
This novel approach differs from input shaping and notch filtering ap-
proaches as it is characterized by only one tuning parameter, with a clear
physical meaning (the total manoeuvre time τ), which can be directly set
and changed by the operator depending on level of robustness required by
the operator.

Different autotuning procedures have been devised in Chapter 3. De-
pending on the specific application, the devised autotuning approaches can
cope with open or closed-loop identification phases and parameters tuning
procedures are available both for velocity-driven and position-driven appli-
cations. The novelties of the proposed approaches are the explicit use of
the system constraints (in terms of maximum torque, velocity and position)
during the definition of the trajectory for the identification phase, and the
automatic tuning of bi-quadratic filters for the compensation of oscillations
generated by elastic transmissions between motor and load. These features
allow an increase in the achievable bandwidth, an increase in the perfor-
mance as oscillations are reduced, and the active control of the achievable
constraints.

Solutions for the compensation of repetitive disturbances on mechatronic
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systems have been studied and implemented. In addition to well-known
solutions for the control of repetitive disturbances in the frequency domain,
a new approach for the suppression of disturbances that depend on the
position of the system has been validated.

All the studied solutions have been tested and validated following the
rapid prototyping paradigm, and even when the implementation of the avail-
able HIL testbed has not be achieved (as in the case of MPC approaches for
the control of industrial cranes), the result has been an indicator of the spe-
cific limits of modern industrial hardware which should be pushed further
in the next generations.

Moreover, the techniques have been implemented and collected in li-
braries coded with languages from the IEC 61131-3 standard, so that the
solutions can be easily implemented over a wide range of industrial appli-
cations.

The approach of testing and implementing on standard industrial hard-
ware both techniques already present in literature and new is online with
the purpose of the I-MECH project, which is to bring novel solutions to
industrial applications by bridging the gap between latest research results
and industrial practice. The validation of the presented techniques on in-
dustrial pilots finally demonstrates the soundness of the approach for its
application in standard industrial mechatronic systems.
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