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Abstract: Glycosaminoglycans (GAGs) are linear polysaccharides. In proteoglycans (PGs), they
are attached to a core protein. GAGs and PGs can be found as free molecules, associated with the
extracellular matrix or expressed on the cell membrane. They play a role in the regulation of a wide
array of physiological and pathological processes by binding to different proteins, thus modulating
their structure and function, and their concentration and availability in the microenvironment.
Unfortunately, the enormous structural diversity of GAGs/PGs has hampered the development of
dedicated analytical technologies and experimental models. Similarly, computational approaches (in
particular, molecular modeling, docking and dynamics simulations) have not been fully exploited
in glycobiology, despite their potential to demystify the complexity of GAGs/PGs at a structural
and functional level. Here, we review the state-of-the art of computational approaches to studying
GAGs/PGs with the aim of pointing out the “bitter” and “sweet” aspects of this field of research.
Furthermore, we attempt to bridge the gap between bioinformatics and glycobiology, which have
so far been kept apart by conceptual and technical differences. For this purpose, we provide
computational scientists and glycobiologists with the fundamentals of these two fields of research,
with the aim of creating opportunities for their combined exploitation, and thereby contributing to a
substantial improvement in scientific knowledge.

Keywords: molecular modeling; molecular docking; molecular dynamic simulations;
glycosaminoglycans; heparin; heparan sulfate

1. Introduction

In 1902, Hermann Emil Fischer, a German chemistry professor, was awarded the
Nobel Prize in Chemistry for his studies on sugar and purine synthesis. Since then, many
other scientists have been awarded with the Nobel Prize for glycobiology-oriented studies,
including Karl Landsteiner in 1930 for the discovery of human blood groups and Luis F.
Leloir in 1970 for the characterization of carbohydrate biosynthesis. Currently, the number
of glycobiology-oriented studies is exponentially increasing, showing that sugars are being
found to be involved in a growing number of physiological and pathological processes.

Among the various classes of sugars, glycosaminoglycans (GAGs) are linear polysac-
charides that can attach to core proteins to form proteoglycans (PGs). GAGs and PGs
are widely distributed in the bodily fluids, and can be found to be associated with the
extracellular matrix (ECM) or expressed on the cell membrane. They are endowed with a
mind-boggling diversity of structures, providing a high level of variety and specificity to a
wide array of biological functions. Considering the huge amount of data on the functional
involvement of GAGs/PGs in physiological and pathological processes, relatively little
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progress has been made towards truly understanding the molecular mechanism(s) by
which GAGs/PGs bind and “tweak” proteins. This is possibly due to the complexity of
the structure of GAGs/PGs that has so far prohibited the development of appropriate
analytical technologies and experimental models for their study.

This problem is well exemplified by considering the “omics” branch of science (ge-
nomics, proteomics, lipidomics, glycomics and interactomics) aimed at characterizing
and quantifying large pools of biomolecules and their interactions, and at translating this
information into structures, functions and dynamics. Over the last 30 years, glycomics
has not been able to keep up with the rapid progress in genomics and proteomics. Only
recently have we witnessed significant advances in new and powerful omics methods that
have improved our knowledge of glycomics [1–3], and of “glycosaminoglycanomics” and
“proteoglycomics” in particular [4–6].

Among the computational methods that can boost the understanding of how GAGs/PGs
bind to proteins, particularly promising are molecular modeling, docking and molecular
dynamics (MD) simulations. In effect, by working in a virtual environment, these method-
ologies benefit from a high resilience and potential for high throughput [7–10]. Briefly,
molecular modeling uses molecular mechanics models to construct three-dimensional
molecular structures; molecular docking gives favorable arrangements of molecules in
complexes (e.g., GAG/protein complexes); MD simulations reproduce the dynamic behav-
ior of individual molecules or complexes. Put in simple terms, the relationship between
molecular modeling and MD simulations is similar to that existing between photography
and cinematography: the former describes the structure of a molecular system, usually at
an atomic detail level, in a “static” way. The latter instead allows the description of the
dynamic behavior of a molecular system through the solution of Newton’s equations of
motion using the classical laws of physics. In this way, MD simulation acts as a “com-
putational microscope” that provides a “real-time visualization” of phenomena such as
peptide folding, protein conformational changes and protein–protein interactions consider-
ing the flexibility of the molecules and the possible conformational changes induced by
mutations or by the perturbation of the environment (e.g., modification of the pH or of the
salt concentration [11,12]).

Many reviews have been published on GAGs/PGs [13–16] and on the latest develop-
ments in computational studies on GAGs/PGs [7–9]. In this review, we attempt to bridge
these two fields of research that have so far been kept apart by conceptual and technical
differences, meaning that computational approaches have not yet been fully exploited
for studying GAGs/PGs. We aim to provide computational biologists and glycobiolo-
gists with the fundamentals of the two different fields of research, while emphasizing the
opportunities for computational approaches to the study of GAGs/PGs.

2. Fundamentals of GAGs and PGs

The first reported study on a GAG dates back more than 80 years [17]. How-
ever, much remains to be learnt, especially from “omics” approaches that have become
mandatory for a comprehensive understanding of the structure/function relationships of
biological macromolecules.

2.1. Structure, Biosynthesis and Distribution of GAGs

GAGs are highly heterogeneous, negatively charged polysaccharides. Different combi-
nations of different hexuronic acids and amino sugars result in five main classes of GAGs,
distinguishable by the composition of their disaccharide units [13,18]: hyaluronic acid
(HA) [19], chondroitin sulfate (CS) [20], dermatan sulfate (DS) [21], keratan sulfate (KS) [22],
and heparan sulfate (HS)/heparin [14] (Figure 1A).
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Figure 1. (A) Chemical structures of the disaccharide units composing the five main classes of GAGs.
In red, “R” indicates potential points of sulfation. (B) Schematic representation of the distribution of
GAGs/PGs inside the cell, on its surface, in the ECM or in body fluids.

HA is assembled at the plasma membrane, is not linked to core proteins, and remains
unsulfated [18]. In contrast, the biosynthesis of all the other GAGs occurs at the Golgi
apparatus where they undergo a sequential process consisting in linking to a core protein
(to form PGs), chain elongation (mainly catalyzed by glycosyltransferases encoded by the
tumor suppressor EXT family genes [23]) and finally, chain modifications (mainly catalyzed
by sulfotransferases [24], which introduce sulfated groups in the disaccharide units of all
the GAGs except HA) (Figure 1A).

CS, DS and HS contain a common tetrasaccharide (4-mer) linker that is O-linked
to specific serine residues in core proteins. KS can instead have three different linkers,
either N-linked to asparagine or O-linked to serine/threonine residues in core proteins [15].
Multiple linkers can be attached to a core protein. Then, GAGs are elongated, leading to the
synthesis of chains composed of 10–200 repeating disaccharide units linked by glycosidic
bonds. Importantly, the core protein of a PG is synthesized in a template-driven manner,
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but its GAG chains are subsequently added in a non-template-driven synthetic process,
thus contributing to the broad heterogeneity of the GAG chains composition (Table 1).

Table 1. List of the features that contribute to the high structural heterogeneity of GAGs/PGs.

GAGs/PGs

Combinations of hexuronic acids and amino sugars
Length of the saccharide chain

Positions of sulfated groups (sulfatase activity)
Degree of sulfation (sulfatase activity)

Distinctive expression profiles in different cell types
Distinctive expression profiles in different tissues

Changes of expression profile during cell differentiation
Changes of expression profile from physiology to pathology

Localization in intra- or extracellular compartments
Action of different glycosidases on the GAG chain

PGs

Different core proteins
Variable number of GAG chains attached to the core protein
Type of association of the core protein to the cell membrane

Action of different proteases on the core protein

The process of sulfation of GAGs is of importance to determine their structural hetero-
geneity and interaction potential (further discussed in Section 2.2). It has been extensively
studied for heparin and HS, where 2-O- and 6-O-sulfation occur only after C5 epimerization
(that in turn requires prior N-deacetylation/N-sulfation). Consequently, the distribution
of 2-O- and 6-O-sulfate groups is restricted to N-sulfate regions [25]. The modification
process in heparin is more complete than in HS. As a result, the heparin structure is more
homogeneously composed of regular trisulfated disaccharide sequences made up of alter-
nating, α-1,4-linked residues of iduronic acid (Ido)A2S and N,6-disulfate D-glucosamine
(GlcN). These regular sequences are occasionally interrupted by nonsulfated uronic acids
(either glucuronic (GlcA) or IdoA) and by undersulfated hexosamines (GlcNS, GlcNAc,
GlcNAc6S). The less extensive modifications that occur during the biosynthesis of HS lead
to GAG chains characterized by a low IdoA content, low overall degree of O-sulfation and
a heterogeneous distribution of the sulfate groups. Eventually, disaccharides containing
GlcNAc or GlcNS may form clusters ranging from 2 to 20 adjacent GlcNAc-containing
disaccharides and 2–10 adjacent GlcNS-containing disaccharides. However, about 20–30%
of the chains contain alternate GlcNAc and GlcNS disaccharide units [26]. As these modifi-
cations are incomplete in vivo, not all of the sugar residues are modified, thus contributing
to the structural heterogeneity of GAGs (Table 1).

Once assembled, PGs can remain segregated into intracellular granules, or become
exposed on the plasma membrane, secreted in body fluids or deposited in the ECM
(Figure 1B). Interestingly, besides their direct synthesis, the free forms of GAGs and
PGs can result from cleavage of the polysaccharide chains or of the core protein of PGs,
respectively, by glycosidases or proteases [27,28], further adding to the structural and,
hence, functional complexity of GAGs/PGs (Table 1).

PGs are divided into four major classes, depending on their extracellular and in-
tracellular localization. The only intracellular PG is serglycin, which carries heparin as
the polysaccharide chain and is segregated in the granules of mast cells. Importantly,
the heparin chains of serglycin can be depolymerized by endoglycosidases to obtain
free heparin that is then released to mediate a long list of biological activities [29]. At
the cell surface and in ECMs, the most represented PGs are those carrying HS chains
(heparan sulfate proteoglycans, HSPGs). They can associate with the cell membrane at
concentrations of 105–106 molecules/cell either via a transmembrane core protein or via a
glycosyl-phosphatidyl-inositol (GPI) anchor. Syndecans are the most represented family
of transmembrane HSPGs [30], and their cytoplasmic domain can interact with the cy-
toskeleton and can transduce a signal inside the cell upon binding with their extracellular
ligands [31]. Glypicans are instead GPI-anchored HSPGs whose main function is to facili-
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tate and/or stabilize the interaction of different cytokines and growth factors with their
receptors and to transport cargoes into and through cells for their recycling [32]. Perlecan
and agrin are the two most prevalent PGs in the basement membranes, but they can be
also found at the cell surface, anchored to integrins or other receptors [16]. Extracellular
PGs represent the largest PG family. This family includes small leucine-rich PGs (SLRPs)
and hyalectans (e.g., aggrecan and versican), key structural components of cartilage, blood
vessels and the central nervous system, which bind HA and thereby form supramolecular
complexes of high viscosity [16].

The composition of GAG/PGs changes during cell differentiation [33], and their ex-
pression profile can be significantly different among differentiated cell types [34]. Moreover,
the length, sequence, sulfation degree, membrane association, extracellular shedding, and
levels of expression of GAGs/PGs themselves and of glycosidases undergo pronounced
modifications in pathological conditions such as inflammation [35] or cancer [36,37], with
some PGs even being used as markers for prognosis [38]. All these modifications further
add to the structural and functional heterogeneity of GAGs/PGs (Table 1).

2.2. Biological Functions of GAGs and PGs

Despite the great variability of their structures and distribution in nature, GAGs/PGs
share a high interaction potential, both in terms of the type and the amount of ligands that
they can bind. GAGs/PGs have been demonstrated to bind to each other (e.g., hyalectans
and HA mentioned above) and lipids (as occurs in synovial joints to allow lubrication [39]).
More importantly, they bind a wide array of proteins, including growth factors, cytokines,
proteases, coagulation enzymes, and proteins of the ECM [28,40,41]. These interactions
usually occur between the negatively charged groups present on the polysaccharide chain
(either COO− groups in HA or SO3

− groups in all the other sulfated GAGs) (Figure 1A) and
stretches of cationic amino acid residues (mainly arginine and lysine) present in proteins
and referred to as “basic domains” or “heparin-binding domains”. Basic domains can
consist of either linear amino acid sequences or conformational domains formed by non-
contiguous basic amino acid residues. Multiple basic domains can sometimes be found in
the same protein, conferring a higher capacity to bind to GAGs. In general, GAG/protein
binding is electrostatic in nature, with relatively low affinity (ranging from low µM to high
nM) compared to specific ligand/receptor or antigen/antibody interactions (ranging from
low nM to pM) [42,43].

In general, the long saccharide chains of GAGs/PGs allow multiple bindings with
several copies of a protein, inducing effects such as the increase in protein concentration
in the microenvironment and the protection from proteolysis and thermal degradation.
Additionally, the multivalent binding of a protein to GAGs/PGs can induce its oligomeriza-
tion [44] and/or allosteric effects [28], that, in turn, can facilitate the binding of the protein
to its actual receptor (Figure 2).

By these mechanisms, GAGs/PGs exert functions that range from relatively simple
mechanical support functions (mainly when present in the ECMs) to more intricate effects
on cellular processes such as cell proliferation, differentiation, adhesion and migration
(when associated with the plasma membrane), with consequences in different physiologi-
cal processes, including development and tissue homeostasis. They are also involved in
important pathological processes, such as tumor neovascularization, growth and metas-
tasis, neurodegeneration and viral infection. Finally, GAG/PGs regulate inflammation
and the immune responses [16,41,45,46]. On the basis of their involvement in pathological
processes, GAGs/PGs have been considered as therapeutic targets or as templates for
the development of heparin-like HSPGs-antagonists able to bind and sequester patho-
logical proteins hampering their interaction with HSPGs co-receptors with therapeutic
benefits [43,47,48].
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Figure 2. Consequences of GAG/PG interactions with proteins. Upon their binding, GAGs/PGs
exert different effects on proteins that impact various cellular functions.

In conclusion, the characterization of the chemical structures of GAGs/PGs and of
their binding modes to protein partners is mandatory for the comprehension of biological
processes involving GAGs/PGs. Furthermore, it is a necessary basis for the design of new
drugs aided by molecular modeling, docking and MD simulations.

3. Fundamentals of Molecular Modeling, Docking and MD Simulations in Glycobiology

The term “molecular modeling” is commonly understood to comprise all the methods
used to model and simulate the behavior of molecules in silico, including molecular
docking and MD simulation. Here, we will consider a narrower definition and discuss the
three methods separately.

3.1. Molecular Modeling of GAGs

The aim of the molecular modeling is to construct models of the three-dimensional
structure(s) of molecule systems considering physico-chemical features, such as geometry,
energy, and electrostatic potential. Such structures may be determined by experimental
techniques including X-ray crystallography (Figure 3), nuclear magnetic resonance spec-
troscopy (NMR), cryogenic electron microscopy (Cryo-EM), small-angle X-ray scattering
(SAXS), small-angle neutron scattering (SANS), quasielastic neutron scattering, dynamic
light scattering, solution scattering, fiber diffraction, electron paramagnetic resonance and
Förster resonance energy transfer and made freely available in data banks (Table 2).

Nevertheless, collecting such structural data for GAGs alone or complexed with
proteins remains a challenging task, since GAGs tend to assume a wide distribution
of conformational states that make them refractory to X-ray or cryo-EM crystallization.
Moreover, NMR, which performs well in the case of flexible structures, has some limits
when used to solve long structures such as GAG polysaccharidic chains alone or complexed
to proteins.
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Figure 3. Heparin (PDBid 1HPN) [49] and HA (PDBid 1HYA) [50] crystal structures depicted in
sphere and stick representations and colored by elements (carbon, oxygen, nitrogen and sulphur
atoms in grey, red, blue and yellow, respectively).

Table 2. Web-based tools for computational studies of GAGs. Accession date for all the links reported
in the table: 12 April 2021. FF: force field.

Name Description (Website) Ref.

Databases

PDB Bio-macromolecular structures. (http://www.rcsb.org/pdb/) [51]

PubChem

Open chemical database containing the structures of small and
large molecules including GAGs with their respective
annotations (chemical structures, identifiers, physical

properties, biological activities, patents, safety and toxicity
data). (https://pubchem.ncbi.nlm.nih.gov)

[52]

KEGG
GLYCAN

Collection of experimental GAG structures taken from
CarbBank or from recent publications and present in KEGG

pathways. (https://www.genome.jp/kegg/glycan/)
[53]

Zinc
Curated collection of commercially available chemical

compounds in ready-to-dock, 3D formats.
(https://zinc.docking.org)

[54]

DrugBank
Detailed drug properties (chemical, pharmacological and

pharmaceutical features) and target information (sequences,
structures and pathway). (https://go.drugbank.com)

[55]

EMBL-EBI Collection of various tools and data from different sources
(including those listed in this table) (https://www.ebi.ac.uk) [56]

GAG-database
Comprehensive resource for 3D-structures of GAGs,

oligosaccharides and their complexes with proteins (140
curated entries). (https://www.gagdb.glycopedia.eu)

[57]

monosaccharides
database

Comprehensive resource for monosaccharides. (776 entries).
(http://monosaccharidedb.org) [58]

Tools to Build a GAG

CarbBuilder
Builds GAG 3D-structures with CHARMM FF from

pre-calculated glycosidic linkage torsions.
(https://people.cs.uct.ac.za/~mkuttel/Downloads.html)

[59]

Chemsketch
Converts 2D drawings into 3D structures using a modified

molecular mechanics approach.
(https://www.acdlabs.com/resources/freware/chemsketch/)

[60]

http://www.rcsb.org/pdb/
https://pubchem.ncbi.nlm.nih.gov
https://www.genome.jp/kegg/glycan/
https://zinc.docking.org
https://go.drugbank.com
https://www.ebi.ac.uk
https://www.gagdb.glycopedia.eu
http://monosaccharidedb.org
https://people.cs.uct.ac.za/~mkuttel/Downloads.html
https://www.acdlabs.com/resources/freware/chemsketch/
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Table 2. Cont.

Name Description (Website) Ref.

GLYCAM-Web
GAG Builder

Models GAG 3D-structures with GLYCAM06 FF using the
AMBER MD package in an automated system.

(http://glycam.org/gag)
[61]

CHARM-GUI
Glycan Modeller

In silico N-/O-glycosylation of proteins; modeling of GAG-only
systems. (http://www.charmm-gui.org/?doc=input/glycan) [62]

Amber-tleap Models GAG 3D-structures with the GLYCAM06 FF using the
AMBER MD package. (https://ambermd.org) [63]

MOE

Models GAG 3D-structures with MMFF94, AMBER, CHARMM
FF and semi-empirical energy functions (PM3, AM1, MNDO).

Conformational analysis using either a systematic or a
stochastic search using random rotation of bonds.

(https://www.chemcomp.com/MOE-Molecular_Modeling_
and_Simulations.htm)

[64]

PRODRG Models GAG 3D-structures with the ffgmx GROMACS FF.
(http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg) [65]

Macromodel
Models GAG 3D-structures with MM2, MM3, AMBER,

AMBER94, MMFF, MMFFs, OPLS, OPLS_2005 and OPLS3 FF.
(https://www.schrodinger.com/products/macromodel)

[66]

Software for Molecular Docking

Autodock Stochastic local search and Lamarck genetic algorithm and
empirical scoring function. (http://autodock.scripps.edu/) [67]

Autodock-Vina
Gradient-based local search, iterated local search algorithm and

empirical scoring function.
(http://vina.scripps.edu/index.html)

[68]

Glide
Search algorithms include the modes of extra precision,
standard precision and a high-throughput virtual filter.

(https://www.schrodinger.com/products/glide)
[69]

Dock Step-by-step geometric matching strategy; AMBER FF,
empirical scoring function. (http://dock.compbio.ucsf.edu) [70]

Gold Genetic algorithm. (https://www.ccdc.cam.ac.uk/solution/
csd-discovery/components/gold/) [71]

HADDOCK
Encodes information from identified or predicted interfaces in

ambiguous interaction restraints.
(https://wenmr.science.uu.nl/haddock2.4/library)

[72]

ClusPro
Fast Fourier Transform-based algorithm and molecular

mechanics energy function for scoring.
(https://cluspro.bu.edu/login.php)

[73]

VinaCarb

Carbohydrate intrinsic-energy functions implemented in
AutoDock Vina software.

(http://glycam.org/docs/othertoolsservice/download-docs/
publication-materials/vina-carb/)

[74]

GlycoTorc-Vina
Based on the VinaCarb program; uses QM-derived scoring

functions to improve GAGs docking.
(http://ericboittier.pythonanywhere.com/)

[75]

GAG-dock Modification of DarwinDock method for sulfated GAGs. [76]

FFs for GAGs

GLYCAM_06
Set of parameters and quantum mechanical data for a collection
of minimal molecular fragments and related small molecules
for GAGs simulation. (http://glycam.org/docs/forcefield/)

[77]

http://glycam.org/gag
http://www.charmm-gui.org/?doc=input/glycan
https://ambermd.org
https://www.chemcomp.com/MOE-Molecular_Modeling_and_Simulations.htm
https://www.chemcomp.com/MOE-Molecular_Modeling_and_Simulations.htm
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
https://www.schrodinger.com/products/macromodel
http://autodock.scripps.edu/
http://vina.scripps.edu/index.html
https://www.schrodinger.com/products/glide
http://dock.compbio.ucsf.edu
https://www.ccdc.cam.ac.uk/solution/csd-discovery/components/gold/
https://www.ccdc.cam.ac.uk/solution/csd-discovery/components/gold/
https://wenmr.science.uu.nl/haddock2.4/library
https://cluspro.bu.edu/login.php
http://glycam.org/docs/othertoolsservice/download-docs/publication-materials/vina-carb/
http://glycam.org/docs/othertoolsservice/download-docs/publication-materials/vina-carb/
http://ericboittier.pythonanywhere.com/
http://glycam.org/docs/forcefield/
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Table 2. Cont.

Name Description (Website) Ref.

CHARMM FF for
carbohydrates

Hierarchical parametrization of model compounds containing
the key atoms in GAGs. (http://www.charmm.org/charmm/

resources/charm-force-fields/#charmm)
[78]

GROMOS
53A6glyc

Refined potential parameters for the determination of
hexopyranose ring conformations by fitting to the

corresponding quantum-mechanical profiles.
(https://www.biomatsite.net/software)

[79]

As mentioned above, the lack of appropriate GAG structural data has delayed the
exploitation of molecular modeling, docking and MD simulations in glycobiology. How-
ever, to compensate for the lack of GAG experimental structures, an increasing number of
popular web-based tools with dedicated features for in silico modeling of glycans have
been developed and released in the few last years (Table 2).

Although only recently released, web-based tools for in silico GAG modeling have
quickly gained prominence with respect to experimental approaches (53% from computa-
tional modeling vs. 48% from experiments of all the GAG models reported in the literature
since 1990, Figure 4).
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Figure 4. Experimental and computational methods used to generate models of GAGs alone or
in complex with their binders. Each bar reports the percentage of papers in which the indicated
experimental (black bars) or computational (grey bars) methods were employed. For the software
grouped under “others”, see Table 2. db: database. For further details on the bibliographic research
strategy, see Appendix A.

Among the experimental methods, X-ray crystallography has been the prime method
to solve the structures of short GAG/protein complexes, due to the stabilizing effect exerted
by the protein on the GAG, which would otherwise be too flexible to be crystallized. The
12-mer heparin model obtained by NMR (PDB id 1HPN, Figure 3) is the main starting
structure adopted for subsequent molecular docking and simulations of heparin [49].

Among the in silico molecular modeling software packages, AMBER-tleap, GAG-
builder and MOE are the most frequently used. Significant is also the use of public databases
(PubChem, Zinc, DrugBank, EMBL-EBI, KEGG, GAG-databases, monosaccharides databases)
and in-house libraries, including FDA-approved drugs, pseudo-disaccharide libraries and
LOPAC [80], that provide both 2D and computed 3D structures of GAGs. It must be pointed
out that the molecular modeling of GAGs remains a time-consuming process that still
requires tedious manual refinements [81]. Additionally, although these methods allow the
modeling of long GAG chains [82], the study of their interaction with other biomolecules
remains challenging.

http://www.charmm.org/charmm/resources/charm-force-fields/#charmm
http://www.charmm.org/charmm/resources/charm-force-fields/#charmm
https://www.biomatsite.net/software
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3.2. Molecular Docking of GAGs with Their Targets

It goes without saying that the limitations described for molecular modeling of GAGs
impact their molecular docking to ligands. Molecular docking computes the configuration
of a ligand–receptor complex by calculating the most favorable arrangements. In molecular
docking, each of the two molecules involved in the complex is described by its dihedral
angles, bond lengths and bond angles, which define its geometry and overall structure [83].
Unfortunately, unlike some small ligands that interact with well-defined binding pockets in
proteins, GAGs bind to large protein surfaces primarily through electrostatic interactions,
making the calculation of the optimal arrangements very difficult. Due to their charged
nature, consideration of electrostatic and water-mediated interactions is necessary to un-
derstand GAG binding modes. The main structural features of GAGs that pose difficulties
for molecular docking studies are listed in Table 3.

Table 3. Features that makes computational docking of a GAG to a protein a challenging task.

GAGs

Long length
Structural and chemical heterogeneity

High flexibility
High charge density

Large number of torsional angles between glycosidic bonds
Difficulty to define the impact of solvation/desolvation on GAG structure

Proteins High charge density of GAG-binding sites

GAG/Protein
Complexes

Absence of well-defined GAG-binding pockets on bound proteins
Electrostatic nature of GAG/protein interactions

Weak surface complementarity of GAG/protein interactions
Indispensability of solvent for their interactions

Impact of solvation/desolvation on GAG/protein complexes
Difficulty to reproduce in silico the specific microenvironment and/or

Biological setting in which GAG/protein interactions occur

Other obstacles are the flexibility of the whole GAG chain (depending upon the
1–4 glycosidic linkage between the monosaccharide units), that of the functional groups
on the monosaccharides, and the structural instability of GAG binding sites on the protein
partner that can undergo conformational changes (“induced fit”) upon interaction with the
GAG. Thus, computational docking of GAGs to proteins remains extremely challenging [84].

The main docking software program used to compute the interaction of small GAGs
with proteins is Autodock (Figure 5). Even though it was originally written to compute the
interactions between macromolecules and small ligands, its parametrization is suitable for
docking small GAGs to proteins. It is, however, limited by the number of free torsions that
can be considered in the ligand (up to 32). This is an important limitation if we consider
that a small 4-mer heparin contains 28 torsions. Such constraints have surely contributed to
the fact that the majority of computational studies on GAGs has been performed with short
saccharide chains (further discussed below). Besides Autodock, other docking programs
used to compute GAG/protein interactions include Autodock-Vina, Glide, Dock, Gold and
HADDOCK (Table 2). Other docking software programs specifically dedicated to sugars
have been released recently (e.g., VinaCarb, Glycotorc-Vina and GAG-dock (Table 2 and
Figure 5)).

Nevertheless, all that glitters is not gold. Indeed, even though the quality of the FFs
by which GAGs are described has improved, the length and the number of free torsions of
longer GAGs still impact the computation time, confining the predictions of GAG/target
interactions to short saccharide chains. Notably, novel approaches have been proposed to
overcome the “free torsion-limitation” issue, including an incremental docking method
in which small GAGs are flexibly docked and connected following a pre-defined path
and the final long-GAG/target complex is refined by MD simulation [44], an automated
fragment-based approach in which trimeric GAGs are flexibly docked on a protein binding
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site assembled and refined by MD simulations [81], the use of mono/disaccharide probes
to identify heparin-binding sites at which to perform local docking of longer GAGs by
Autodock/DOCK [85] and the possibility to introduce solvent into the binding site prior to
docking [86].
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3.3. MD Simulations of GAGs and GAG/Target Complexes

The history of MD simulations started more than 60 years ago, when Alder and
Wainwright carried out the first simulation of a phase transition in a system of hard
spheres [87]. However, we needed to wait until 1977 for the first MD simulation of a
protein [88] and until 1985 for that of heparin [89].

Then, slowly, the groundwork that made MD simulations a reliable process resulted
in the 2013 Nobel prize being given to Karplus, Levitt and Warshel for the development of
multiscale models for complex chemical systems [90]. From then on, MD simulations have
gained popularity in glycobiology, due to the increased number of available structures in
the PDB, to the release of software specifically dedicated to GAGs (Table 2), and to the
implementation of computer technologies such as high-performance computing, that allow
easier use of the techniques and decrease the computing time. Although the MD simulation
of GAGs remains burdened (see Table 3), the interest in the field is increasing. A growing
amount of work is mainly devoted to the comprehension of the dynamic behavior of GAGs
(which are characterized by an ensemble of conformations rather than a single secondary
or tertiary structure). Additionally, there is an increased focus on the characterization
of the conformational changes occurring in GAGs and proteins following their mutual
interaction [9].

The classical all-atom MD simulation method is mainly used to study GAGs/PGs
and consists of numerically solving coupled equations of motion for a system in which the
atoms move at defined velocities. The result of these calculations consists of a series of
trajectories of the biomolecules, from which thermodynamic and dynamic properties of
the system can be extracted. Importantly, the reliability of the prediction of the behavior
of a system depends on the assumptions used to describe the interactions within it. Thus,
the parameters chosen to describe the systems must be as realistic as possible, considering
not only temperature and pressure, but also other relevant features, such as water models,
pH and salt concentration of the solution, that are particularly relevant when working
with GAGs [91]. The prediction of how atoms and molecules interact with each other in
conditions reproducing the biological environment as closely as possible is the main goal
of MD simulations. Relevant to this point, the potential energy of molecules is described
by an empirical FF that is parametrized to reproduce experimental data and that represents
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the starting point for computing in silico the potential energy surface of the system and
calculating the forces for propagating dynamic systems.

Many FFs have been developed over the last few years (Table 2). GLYCAM repre-
sents the most widely adopted FF. GLYCAM, CHARMM and GROMOS have been used
to perform about 90% of the MD simulations reported since 1990 (Figure 6). The popu-
larity of GLYCAM and CHARMM is in part due to the automation of the procedure of
model parametrization.

Biomolecules 2021, 11, x 12 of 23 
 

to the implementation of computer technologies such as high-performance computing, 

that allow easier use of the techniques and decrease the computing time. Although the 

MD simulation of GAGs remains burdened (see Table 3), the interest in the field is increas-

ing. A growing amount of work is mainly devoted to the comprehension of the dynamic 

behavior of GAGs (which are characterized by an ensemble of conformations rather than 

a single secondary or tertiary structure). Additionally, there is an increased focus on the 

characterization of the conformational changes occurring in GAGs and proteins following 

their mutual interaction [9]. 

The classical all-atom MD simulation method is mainly used to study GAGs/PGs and 

consists of numerically solving coupled equations of motion for a system in which the 

atoms move at defined velocities. The result of these calculations consists of a series of 

trajectories of the biomolecules, from which thermodynamic and dynamic properties of 

the system can be extracted. Importantly, the reliability of the prediction of the behavior 

of a system depends on the assumptions used to describe the interactions within it. Thus, 

the parameters chosen to describe the systems must be as realistic as possible, considering 

not only temperature and pressure, but also other relevant features, such as water models, 

pH and salt concentration of the solution, that are particularly relevant when working 

with GAGs [91]. The prediction of how atoms and molecules interact with each other in 

conditions reproducing the biological environment as closely as possible is the main goal 

of MD simulations. Relevant to this point, the potential energy of molecules is described 

by an empirical FF that is parametrized to reproduce experimental data and that repre-

sents the starting point for computing in silico the potential energy surface of the system 

and calculating the forces for propagating dynamic systems. 

Many FFs have been developed over the last few years (Table 2). GLYCAM repre-

sents the most widely adopted FF. GLYCAM, CHARMM and GROMOS have been used 

to perform about 90% of the MD simulations reported since 1990 (Figure 6). The popular-

ity of GLYCAM and CHARMM is in part due to the automation of the procedure of model 

parametrization. 

 

Figure 6. FFs used for MD simulations of GAGs alone or in complexes with targets. Each bar re-

ports the percentage of papers in which the indicated FFs have been employed. For the FFs 

grouped under “others”, see Table 2. For further details on the bibliographic research strategy, see 

Appendix A. 

Shifted text 

Figure 6. FFs used for MD simulations of GAGs alone or in complexes with targets. Each bar reports
the percentage of papers in which the indicated FFs have been employed. For the FFs grouped under
“others”, see Table 2. For further details on the bibliographic research strategy, see Appendix A.

Shifted text
In conclusion, while molecular modeling and docking provide structures of GAG-

protein complexes (Figure 7A,B), the more elaborate MD simulations provide the move-
ments of the molecules (alone or in complex) over time. This type of information is best
visualized bymovies, but it can also be shown in a static way, by superimposing the
structures in the most important frames (Figure 7C).
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Figure 7. (A) Crystal structure of a 12-mers heparin (PDBid 1HPN) shown in stick representation
colored by elements with green carbons. (B) Structure of a 31-mers heparin obtained with the
incremental docking method [44] and docked to the spike protein of SARS-CoV2 virus shown as
electrostatic potential surface to highlight the basic path to which heparin binds. (C) Superimposition
of 20 snapshots from 1 µs of MD simulation of the 31-mers heparin/spike complex showing the
cloud of conformations adopted by heparin on the protein surface (adapted from Paiardi et al.
https://arxiv.org/abs/2103.07722, accessed on 12 April 2021).

The full potential of molecular modeling, docking and MD simulations can be achieved
by following the line of sequential queries schematized in Figure 8. The full set of infor-
mation that can be retrieved relates not only to the 3D structure of GAGs, but also to their

https://arxiv.org/abs/2103.07722
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binding modes to targets, their binding thermodynamics and kinetics, possible allosteric
effects and mechanistic insights.
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Figure 8. Flowchart schematizing the series of queries in an application of computational approaches
aimed at a comprehensive characterization of a GAG or a GAG/target complex.

4. Computational Studies of GAGs: What has been Done So Far

As mentioned above and summarized in Table 1, there are several reasons for the
structural and functional heterogeneity of GAGs/PGs. As a result, GAG sequencing and
the development of appropriate computational models have lagged behind the application
of these approaches to proteins and DNA. Besides heterogeneity, other structural features
of GAGs have hampered their computational modeling (Table 3). Despite all these limits, in
the last ten years, we have experienced an exponential increase in the number of published
papers containing GAG computational studies (Figure 9).
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Interestingly, some of these papers report multiple computational studies performed
on very large libraries of GAGs or GAG-mimetics, supporting the high-through put poten-
tial of computational approaches to the study of GAGs and their interaction with proteins,
so important in the “omics age”. Here are some examples:
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(i) a whole set of MD simulations has been performed for a library of HA chains of
different lengths complexed to hyaluronan lyase [92];

(ii) a large array of heparin chains of different lengths has been studied in silico for
their capacity to bind up to 20 different viral, animal or human proteins including
sulfotransferase, heparinase, immune system-related proteins, protease inhibitors, cell
adhesion proteins, blood clotting components, growth factors and their receptors [93];

(iii) different GAGs (heparin and CS) of different lengths in complex with different gly-
cosidases, chemokines, cell surface receptors and angiogenic growth factors have
been subjected to computational studies [86];

(iv) the in silico combinatorial library screening technology consisting of the automated
construction of virtual GAGs has been employed to generate a library of heparins
spanning from 2- to 8-mers that have been screened for their binding to thrombin and
antithrombin [94];

To deal with the important issue of GAG length, which still represents a bottleneck
and a challenge, different approaches have been described:

(i) the coarse-grained modeling approach, that has been applied to a library of heparin
chains spanning from 6- to 68-mers [95];

(ii) dedicated algorithms have been developed to generate a library of non-sulfated
chondroitin spanning from 10- to 200-mer which were compared to MD-generated
ensembles for internal validation [84];

(iii) the same approach was applied to libraries of HA and non-sulfated dermatan, keratan
and heparan [96].

Despite some important technical progress in computational studies of GAGs (re-
viewed in [9] and listed in Table 2), up to 89% of GAG computational studies so far reported
deal with short polysaccharide chains (from 10-mers down to 1-mer) (Figure 10).
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Although the study of short GAG chains may be a deliberate choice in many instances
(as in the case of pharmacologically-oriented studies of the interaction of anticoagulant
heparin fragments with antithrombin), in all the other biologically oriented studies aimed
at characterizing the physiological or pathological functions of GAGs/protein interactions
(Figure 11), this represents a strong limit to the translation of computational predictions to
biological processes, since natural GAGs can reach a length of 200 disaccharide units and
GAG length is of great importance in processes such as protein homo-oligomerization [44],
the formation of multimeric protein complexes [43] and cooperative binding [97], all
processes that cannot be reproduced computationally and experimentally with short
GAG chains.
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Some other important observations can be extracted from Figure 11: about 82% of
all the computational studies considered deal with the interactions of GAGs with pro-
teins, while, of the remainder, 12% deal with GAG structures alone (see [84,95,96,98]
for some examples). Among the three remaining categories, one deals with the interac-
tions of GAGs with drugs or other inorganic or synthetic compounds (accounting for
4% of the total) [99–101]. Another corresponds to analyses of GAG interactions with
lipids/membranes (2% of total), mainly focused on HA binding to phospholipids [102,103].
Surprisingly, we found only one computational study of a GAG–GAG interaction (namely,
the anomalous interactions of HA with CS) [104].

Among the large category of GAG interactions with proteins, those with microbial pro-
teins account for 8% of the total. Viruses are the main type of microorganism taken into con-
sideration, with particular attention focused on those proteins exposed on the virus surface
that act as determinants of infectivity by interacting with host cell HSPGs [42]. Accordingly,
HS and its structural analogue, heparin, are the subjects of almost all these analyses.

Regarding human proteins, very few (less than 1% of the total) of the computational
studies concern the linking of GAG chains to the core proteins of syndecan [105], glypi-
can [106] and serglycin [107], whereas a large amount of work has been carried out for
GAGs interacting with angiogenic growth factors, consistent with the great interest in the
development of heparin-based antiangiogenic compounds to treat cancer [28]. Regarding
the study of GAG interactions with components of the coagulation cascade, almost all of the
computational analyses deal with the binding of short heparins (mainly from 4- to 8-mers)
to antithrombin for the development of low-molecular weight anticoagulant heparin [108].
Worth mentioning are the computational studies of the interaction of enzymes involved in
GAG metabolism, with a prevalence for degrading enzymes (e.g., heparinase/heparinase,
chondroitinase, hyaluronidase) over biosynthetic enzymes (e.g., sulfotransferases), consis-
tent with the involvement of the former in the pathogenesis of important diseases including
cancer [109].

Last but not least, an important perspective from which to look at the whole body
of computational studies of GAGs is their distribution with respect to the type of GAG
considered (Figure 12).
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Not surprisingly, almost half of the computational studies concern heparin. This is
easily understandable, given the large array of biological functions played by heparin and
the importance of the design of heparin-like drugs for the treatment of coagulation disor-
ders, abnormal inflammatory or immune responses and angiogenesis-dependent diseases.
Additionally, the heparin structure is more homogeneous than that of the other GAGs and
it is more easily available. Thus, heparin is frequently used as a structural analogue of
HS/HSPGs, both in computational and experimental studies. This has surely lowered
the number of computational studies of HS, resulting in the number being significantly
lower than that of studies of CS, despite the former being more biologically relevant than
the latter.

5. Future Perspectives and Conclusions

A series of features hindered computational studies of GAGs with respect to those of
other biological macromolecules (Table 3). In effect, for a long time, computational studies
of GAG/protein interactions have mostly been approached in “too dry” (without modeling
solvent) and/or “too rigid” (without considering structural flexibility) ways [110]. Recent
advances in hardware and software technologies in this field (Table 2) have gradually
allowed these neglected aspects to be included in simulations of GAG/protein interactions.
Unfortunately, as in a 110-meter hurdles race, once one obstacle has been overcome, another
occurs. Indeed, the increased number of parameters to be considered in GAG/protein
systems has forced researchers to limit their computational studies to reasonably short
GAG chains, usually no longer than 5–10 saccharide units (see Figure 10) and shorter than
the significantly longer natural GAGs. This further, arduous obstacle must be overcome to
unleash the full potential of computational studies of GAGs and their exploitation in the
comprehension of the biological processes mediated by GAGs.

MD simulation has applications as a molecular docking-coupled technique, exploring
induced fit mechanisms of GAG–protein binding, evaluating complex stability, and refin-
ing and rescoring docking poses [111]. It follows that accurate and high-throughput MD
simulations of GAG–protein interactions of biological relevance require the development
of suitable docking protocols with GAG models of suitable length. Unfortunately, experi-
mental structures of long GAGs are scarce. Computational studies with long GAG chains
have, however, been successful by employing GAG fragmentation, semi-flexible docking
of the fragments into the binding site and subsequent chain assembly [44,81]. Although
successful, these manual procedures remain laborious and time-consuming, calling for
appropriate software for their automation. On this point, an automatic chain assembly
method has been described that may guide the further refinement of such automated
approaches for long GAG chains and their wide application in computational studies of
GAGs [81].
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Another remaining obstacle in the field is the absence of well-defined GAG-binding
pockets on bound proteins (Table 3). In effect, dedicated computational methods to identify
binding pockets in proteins have been developed that work well for small ligands [112] and
short polysaccharide chains, but not for long GAG chains, whose binding is electrostatic
in nature, is characterized by weak surface complementarity and is mediated by large
binding surfaces (Table 3). Algorithms and software specifically dedicated to GAG–protein
interactions that are able to overcome this obstacle are eagerly awaited. Databases and
tools that help to evaluate GAG accessibility to proteins could speed up docking protocols.
As examples, procedures involving GAG-DOCK methods [76] and electrostatic potential
isosurfaces [113] have been reported that demonstrate the potential of such an approach.

In conclusion, molecular modeling, docking and MD simulation of GAGs are being
actively pursued but still face challenges due to the length, flexibility and heterogeneity
of GAGs. Once exploited at full potential and suitably integrated with biochemical and
biological models, computational studies will contribute to a virtuous circle aimed at the
deep comprehension of biological and pathological processes involving GAGs (Figure 13).
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Appendix A

For the purposes of this review, thorough bibliographic research based on PubMed
(https://pubmed-ncbi-nlm-nih-gov.proxy.unibs.it/?otool=itserpelib, accession date 15
March 2021) was performed by using all the possible combinations of the following key-
words: computational studies, molecular modelling, molecular docking, molecular dy-
namics, glycosaminoglycans, proteoglycans, heparin, heparan sulfate, chondroitin sulfate,
hyaluronic acid, dermatan sulfate, keratan sulfate. The interval of time considered was
from 1985 to the date of the original manuscript submission (14 April 2021). The bib-
liographic research produced a total of 413 references that were screened and used to
provide the data reported in Figures 4–6. Some of the 413 papers taken into consideration
reported multiple molecular modeling, docking and/or MD simulations of different GAGs
and proteins, correspondingly increasing the number of computational analyses that are
considered in Figures 9–11.
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