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ABSTRACT

Deep learning methods have produced promising results in many tasks in-
cluding biomedical named entity recognition (BioNER). Nevertheless, the
complex structure of biomedical text data is still a challenging aspect for
deep learning models. Additionally, limited annotated biomedical data is
available to train these models that have millions of trainable parameters.
The Single task model (STM) has difficulties in learning complex feature rep-
resentations from a limited amount of annotated data. Producing manually
annotated data is a time-consuming job instead, there are some efficient ways
to train deep learning models on the available annotated data. This work
leverages the performance of the BioNER task by using three different knowl-
edge transfer techniques: the multi-task learning method, transfer learning
method, and knowledge distillation method. The work presents two multi-
task models (MTMs), which learn shared features and task-specific features
by implementing the shared and task-specific layers. Jointly training various
models helps different tasks to transfer their knowledge implicitly using a
shared layer(s).

Due to the implicit feature learning ability of MTM, the MTM is fine-
tuned for a specific dataset to tailor general feature representations to a
specialized feature representation. The MTM is trained for different epochs
as an auxiliary task which is then further fine-tuned for a specific task.

The generalization of MTM is further exploited using knowledge distilla-
tion, where MTM supervises the training of a student model. Deep learning
models learn generic level features to abstract level features layer by layer.
The proposed knowledge distillation approach, therefore, performs knowl-
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edge distillation from different layers of MTM that include a shared layer(s)
and task-specific layer(s). Additionally, an ensemble method has been imple-
mented where logits of the different MTMs are averaged to train the student
model.

The experimental results are analysed using the Friedman’s statistical test
to evaluate the effect of the experiments in terms of statistical significance.
The empirical results and statistical analysis from this work show that these
approaches enhance the performance of an STM.



SOMMARIO

I metodi di Deep Learning hanno prodotto risultati promettenti in molti ta-
sk, incluso il riconoscimento di entità biomediche (Biomedical Named Entity
Recognition, o BioNER). Nonostante ciò, la struttura complessa del testo
biomedico è ancora un aspetto impegnativo per tali modelli. Oltre a que-
sto, per l’addestramento di questi modelli, che hanno milioni di parametri
da allenare, è disponibile solamente una quantità limitata di testi biomedi-
ci annotati. I modelli a singolo task (Single Task Model, o STM) hanno
difficoltà a imparare caratteristiche complesse da una quantità limitata di
dati, la cui produzione è oltretutto molto dispendiosa in termini di tempo.
Esistono tuttavia dei modi per allenare modelli di deep learning in caso di
scarsa disponibilità di dati. Questa tesi migliora le prestazioni per il ta-
sk BioNER usando tre diverse techniche di trasferimento della conoscenza:
l’apprendimento multi-task, il transfer learning, ovvero l’utilizzo di un mo-
dello già addestrato per un altro compito, e la knowledge distillation, ovvero
il trasferimento di conoscenza da uno più grande a uno più piccolo. Questa
tesi presenta due modelli multi-task (MTM) che imparano caratteristiche sia
condivise tra più task che specifiche di uno solo di essi, con l’ausilio di livelli,
anche questi condivisi o specifici. L’allenamento contemporaneamente di più
modelli aiuta il trasferimento di conoscenza, usando i livelli condivisi.

Grazie all’abilità implicita di imparare caratteristiche dei dati del MTM,
successivamente quest’ultimo viene specializzato su un dataset singolo af-
finchè il modello comprenda le sue caratteristiche specifiche. Il MTM è alle-
nato prima su un compito ausiliario e poi specializzato su un task specifico.

La capacità del MTM di generalizzare è ulteriormente sfruttata con la
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tecnica di knowledge distillation, in cui il MTM supervisiona l’addestramento
di un "modello studente". Dato che i modelli di deep learning imparano le
caratteristiche dei dati livello per livello, l’approccio di knowledge distillation
proposto estrae conoscenza dei diversi livelli di MTM, siano essi condivisi o
specifici. Inoltre, è stato implementato un metodo di ensemble, in cui i
risultati di diversi MTM vengono considerati per l’allenamento del modello
studente.

I risultati sperimentali sono stati analizzati usando il test statistico di
Friedman per valutare i diversi esperimenti anche in base alla significatività
statistica delle differenze tra i loro risultati. I risultati empirici e l’analisi sta-
tistica di questa tesi mostrano come questi approcci migliorino le prestazioni
dei STM.



1. INTRODUCTION

1.1 Background and Motivation

Online text data carry valuable information and keep expanding very rapidly.
However, a significant portion of this data belongs to unstructured forms,
and manually dealing with such a large amount of free text is challenging
and problematic. As such, intelligent techniques are required to process
them according to the problem domain. Natural language processing (NLP),
a subfield of artificial intelligence, is used to process the unstructured text
data fulfilling the users’ needs. NLP enables computers to comprehend, in-
terpret, and manipulate human languages and is being applied to various
tasks, including topic discovery and modeling, sentiment analysis, informa-
tion extraction, among others. Information extraction (IE) is a technique
for extracting relevant data from unstructured text. IE comprises various
subtasks, one of which is known as named entity recognition (NER). Named
entities refer to the proper nouns presented in the sentences. NER recognizes
text of interest and labels them into predefined categories such as person, ge-
ographical location, organization, etc. NER is considered a sequence labeling
problem that determines the output tag of the input words presented in the
sentence [2].

The biomedical literature is publishing at an increasing rate, and thus
information extraction has become a critical activity in the biomedical do-
main. Biomedical named entity recognition (BioNER) identifies the medical
concepts and categorizes them into predefined categories such as genes, chem-
icals, diseases, etc., as shown in Figure 1.1
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Fig. 1.1: An illustration of Biomedical Named Entity Recognition Task

Biomedical texts are different from the standard text data (e.g. newspa-
per articles) in several ways, making BioNER more challenging than a stan-
dard NER task. Although there are some conventions for writing biomed-
ical concepts, no strict rules exist for the biomedical domain. With open
and growing biomedical literature, it becomes more challenging to follow the
same naming convention.

First, spelling variations of the entities are found more frequently in
the biomedical literature. For example, N-acetylcysteine, N-acetyl-cysteine,
N-acetyl cysteine, acetylcysteine, and NAcetylCysteine refer to the same
medicine name with minor variations [3, 4]. Similarly, “IL12", “IL 12", or
“IL-12" represent the same entity with different alternative approaches in
the text writing [5]. Furthermore, different synonyms refer to the same en-
tity, e.g., PTEN and MMAC1 both represent the same gene entity. Such
alternative approaches for representing a single entity are dealt with differ-
ently by different independent tokenizers for breaking raw texts into tokens.

Second, there are entities with long compound-word expressions that con-
tain numerous types of characters. For instance, “10-Ethyl-5-methyl-5,10-
dideazaaminopterin" and “12-o-tetradecanoylphorbol 13-acetate" etc., con-
tain alphanumeric and special characters. Different tokenizers produce dif-
ferent outputs for the same entity as they handle these special characters
independently. Similarly, the descriptive entities, e.g. “Pigment epithelium-
derived factor", “Medullary thymic epithelial cells", etc. make it challeng-
ing for entity boundary identification. Nested entities are also found in the



1. Introduction 3

biomedical domain e.g., “CIITA mRNA" symbolizes an RNA mention, how-
ever, “CIIT" refers to DNA [6].

Third, another problematic element of the biomedical literature is acronyms,
which often may refer to different entities. For instance, “TCF" can refer to
“Tissue Culture Fluid" or to “T cell factor" [7]. Similarly, “EGFR” can stand
for “estimated glomerular filtration rate" or to “epidermal growth factor recep-
tor". Since some occurrences of these entities are dependent on the context
of the sentence, training a BioNER system to recognize them becomes more
challenging. Furthermore, different human annotators even with the same
background can sometimes define the exact synonyms with different medical
concepts, e.g., “p53" corresponds to a protein in GENIA corpus. In contrast,
HUGA nomenclature annotates it as a gene “TP53" [8]. Therefore, the cap-
italization feature of the entities in biomedical literature does not provide
valuable information about the entity.

Finally, some of the entities share one head noun along with the disjunc-
tion or conjunction construction, e.g. “91 and 84 kDa proteins" corresponds
to “91 kDa protein" and “84 kDa protein" [9].

In view of the limitations above, as mentioned earlier, the BioNER task
is more challenging compared to the standard NER task. The early BioNER
methods (e.g., dictionary-based and rule-based approaches) are effective but
their performance is still limited against open and growing biomedical lit-
erature. As compared to the dictionary-based and rule-based methods, the
classical machine learning algorithms have shown improved results. The
machine learning algorithms require an extensive hand-crafted feature engi-
neering phase that has direct impact on the performance of the models. The
performance enhances with more discriminating features, while redundant
and irrelevant ones degrade the performance.

The state-of-the-art techniques are based on deep learning methods, which
somehow eliminate the need of hand-crafted features while still producing
desired results. Deep learning (DL) architectures consist of many layers,
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through which these systems learn the complex structure of the data and
features layers by layers. The implicit feature learning ability of the DL
models has been successful in different fields [10, 11, 12]. Moreover, with the
introduction of the distributed representation of the words, also called word
embedding, the performance of these systems has been significantly improved
in natural language processing.

1.2 Contribution of the Thesis

Deep learning models have shown promising results for BioNER. However,
there is still room for improvement due to the peculiar characteristics of the
biomedical unstructured text data. Moreover, deep learning models have
millions of parameters and their performance commonly gets better when
trained on large input data while comparatively only a small quantity of
annotated biomedical text data is available. The process of creating human-
annotated biomedical text data is both costly and time-consuming.

Hence, this thesis addresses these limitations by employing multi-task
learning, transfer learning, and knowledge distillation techniques to pro-
vide supplementary knowledge to the learning model during the training.
In multi-task learning, different datasets are trained jointly. This increases
the amount of training data and also overcomes the overfitting as the multi-
task model (MTM) has to generalize on different datasets. In this research,
two different multi-task models are implemented that have shown improved
performance compared to the single-task model and state-of-the-art MTMs.

The challenges faced in the multi-task learning (MTL) are coped with the
transfer learning approach. Transfer learning is a sequential way to transfer
knowledge, whereas multi-task learning is a parallel way of sharing knowledge
among different tasks. This thesis adopted the transfer learning technique by
utilizing the multi-task learning approach. The MTM is trained for different
epochs as an auxiliary task which is then further fine-tuned for a specific task.
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The purpose is to (first) train the model on general data before tailoring it to
a specific dataset. The results obtained in this thesis show that integrating
the MTL approach with transfer learning improves performance compared
to the MTM and single-task model approaches.

This thesis further utilizes the knowledge distillation technique to leverage
the performance of the single-task model (STM). In knowledge distillation,
the teacher model teaches the student model through its knowledge represen-
tations at different layers. In the proposed knowledge distillation method,
an STM is trained on the feature representation of the MTM at different
layers. In this way, STM learns through actual labels and knowledge repre-
sentations distilled from MTM. This knowledge is distilled at different layers
of MTM, including shared and task specific layers and Softmax probability
distribution.

1.3 Thesis Organization

The chapters of this thesis can be read independently. Chapter 2 gives an
overviews of the previous work in biomedical named entity recognition. The
chapter also describes the primary deep learning networks that are adopted in
the methodology of this thesis. Chapter 3 presents the detailed methodology
in which two multi-task learning models are discussed, along with their de-
tailed results. Chapter 4 presents the transfer learning approach, which is the
second methodology of this thesis. Chapter 5 discusses the last methodology
of the thesis, which is knowledge distillation. While, chapter 6 concludes the
thesis and provides recommendations as well as future research directions.



2. RELATED WORK

The biomedical named entity recognition (BioNER) task recognizes the biomed-
ical concepts and categorizes them into predefined categories, e.g. genes,
chemicals, diseases, etc. It is crucial to develop datasets that can cover
a wide range of biomedical concepts, which can then be used to develop
and evaluate BioNER systems. Many of the biomedical datasets were de-
veloped for shared tasks targeting the BioNER and the relation extraction
task. These datasets are now publicly accepted for evaluating the developed
BioNER systems. This chapter introduces those publicly available datasets
that are used in the experiments of this thesis. Furthermore, word embedding
for a BioNER systems is also discussed in the current part of the research
work. The real-valued word vector representation overcomes the “curse of
dimensionality" in the classical one-hot word input representation. The cur-
rent chapter also discusses different approaches adopted for the development
of BioNER systems. The earlier approaches for BioNER use methods of
dictionary-based, rule-based, and classical machine learning algorithms. The
machine learning strategy has shown performance improvement compared to
the previous two approaches. The machine learning method favorably leans
towards the feature engineering process. The deep learning methods have
overcome the feature engineering limitations, and they are now the state-of-
the-art techniques for BioNER. This chapter presents an introduction of the
selected deep learning methods and of the techniques which will be used later
in the proposed methodologies part.
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2.1 Statistical Analysis of The Experimental Results

Statistical significance determines the reliability of the results delivered by
the experiments whether the obtained results are real or by chance. This
statistical significance is computed with p-value that defines the significance
level of the achieved results e.g., the obtained results at p < 0.05 states
that the effect is observed, whereby the p-value greater than 0.05 indicates
no effect is observed. In other words, this significance level determines the
confidence level for the acquired results. Obtaining results at p-value less
than 0.05 means that if the experiments are repeated over and over again
then there is a 95% probability that we will get the same results. In this
thesis, the Friedman test is performed to determine the statistical significance
of the difference among different models’ results. The Friedman test was
introduced by the American economist Milton Friedman, which is based on
ranks concept, that can be used when three or more comparison needs to
be performed [13]. As this test is performed on the collection of groups,
therefore it is important to precisely underline the pairs of groups that are
statistically significant with each other. This can be done using a post hoc
(in Latin, it means “after this”) analysis where various pairwise comparisons
are carried out. In this thesis, the Friedman test is performed to find out
the statistical significance of the difference between the results of the models
which is followed by a post hoc analysis for multiple pairwise comparisons.

To clarify the application of the Friedman test, an example data1 is pro-
vided in Table 2.1. In this work, the scipy.stats2 and scikit3 python packages
are used to perform the Friedman test and the post hoc analysis. The post

1 source:https://wps.prenhall.com/wps/media/objects/11886/12171343/
OnlineTopics/bbs12e_onlinetopic_ch12-9.pdf

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
friedmanchisquare.html#scipy.stats.friedmanchisquare

3 https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_
posthocs.posthoc_conover_friedman/#scikit_posthocs.posthoc_conover_
friedman

https://wps.prenhall.com/wps/media/objects/11886/12171343/OnlineTopics/bbs12e_onlinetopic_ch12-9.pdf
https://wps.prenhall.com/wps/media/objects/11886/12171343/OnlineTopics/bbs12e_onlinetopic_ch12-9.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html#scipy.stats.friedmanchisquare
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html#scipy.stats.friedmanchisquare
https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_conover_friedman/#scikit_posthocs.posthoc_conover_friedman
https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_conover_friedman/#scikit_posthocs.posthoc_conover_friedman
https://scikit-posthocs.readthedocs.io/en/latest/generated/scikit_posthocs.posthoc_conover_friedman/#scikit_posthocs.posthoc_conover_friedman


2. Related Work 8

Group 1 Group 2 Group 3 Group 4
Block 1 70 61 82 74
Block 2 77 75 88 76
Block 3 76 67 90 80
Block 4 80 63 96 76
Block 5 84 66 92 84
Block 6 78 68 98 86

Tab. 2.1: An illustration for Friedman test.

Fig. 2.1: post hoc Conover Friedman test analysis

hoc analysis is only performed if the output of the Friedman test is statis-
tically significant. Figure 2.1 depicts the results of the post hoc analysis
on Table 2.1, which is found statistically significant based on the Friedman
test. The analysis additionally shows the level of confidence for the pairwise
statistically significance which can be 95%, 99%, or 99.9%. The pairwise
comparison shows that the difference between Group 2 and Group 3 is sta-
tistically significant with p < 0.001 (a confidence level of 99.9%) while for
others, the pairwise results are not found statistically significant (NS).

To find out which models are statistically better than the others, the ranks
of the Friedman test are utilized. The lower rank is assigned to the lowest
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Group 1 Group 2 Group 3 Group 4
Block 1 2 1 4 3
Block 2 3 1 4 2
Block 3 2 1 4 3
Block 4 3 1 4 2
Block 5 2.5 1 4 2.5
Block 6 2 1 4 3
Ranks Total 14.5 6 24 15.5

Tab. 2.2: Output ranks for Table 2.1

Fig. 2.2: Graphical representation of the Friedman test. The arrows show
that the difference between results produced by the different models is statis-
tically significant. Models are shown according to their ranks starting from
best model from left to right.

value in each row (the higher the ranks, the better the model) as shown
in Table 2.2. In this thesis, such comparison is shown using a graphical
representation as shown in Figure 2.2. The models are shown according to
their ranks, the leftmost represents the best result while the rightmost is
the lowest result. The arrow shows that the difference of the results between
Group 2 and Group 3 is statistically significant. While the difference between
other results are found not statistically significant. The use of different colors
for rectangles (models) and arrows (statistical significance) is just for the
readability purpose. The color of the arrow is adapted same as the rectangle
that it belongs to.



2. Related Work 10

2.2 Datasets

There are 15 datasets used in the different experiments of the thesis. The
bio-entities in these datasets are Chemical, Species, Cell, Gene/Protein, Cell
Component, and Disease. Brief descriptions of these datasets are given in
Table 2.3. It is important to note that performing human annotation on
bio-entities is more difficult than normal text data. The biomedical concepts
can be annotated differently depending on the background of the annota-
tors. Considering the annotation of biomedical entities i.e., gene, proteins,
and RNA, the human inter-annotator agreement is 70% for these biomedi-
cal concepts [14]. This thesis uses the pre-processed form of these datasets4

where the sentence is represented in the CoNLL5 column-based format [15].
Each word of the sentence is separated by newline and the first column rep-
resents the word token of the sentence, and the second column is the label
for such token. The sentences are separated by an empty line. The datasets
used in this thesis contain separate training, development, and test sets. The
name of the entities and their distribution in the dataset (percentage-wise)
are reported in Table 2.4. The values in the table represent the percentage of
an individual entity (the O-outside tag is not included) contributing to the
train/dev/test file.

2.2.1 AnatEM

The Anatomical Entity Mention (AnatEM) corpus [16], is an extended ver-
sion of the original Anatomical Entity Mention (AnEM) corpus that also
combines Multi-level Event Extraction (MLEE) corpus as well. The AnEM
comprises 500 randomly chosen PubMed abstracts and full-text that are an-
notated for anatomical entity mentions. On the other hand, MLEE comprises
262 PubMed abstracts on cancer’s molecular mechanisms linking to angio-

4 The datasets can be found at the following link https://github.com/cambridgeltl/
MTL-Bioinformatics-2016

5 https://www.clips.uantwerpen.be/conll2003/ner/

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://www.clips.uantwerpen.be/conll2003/ner/
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genesis. The AnatEM comprises these two corpora and is further extended by
other 100 documents following the AnEM documents selection procedures.
Similarly, additional 350 documents were added related to the cancer topics.
The selection of these additional documents followed the same process im-
plemented in the MLEE. The final version of AnatEM, therefore, consists in
total of 1212 documents.

2.2.2 BC2GM

The BC2GM (BioCreative ‖ Gene Mention) corpus contains a total of 20,000
sentences coming from abstracts of biomedical publications [17]. The BC2GM
covers genes, proteins, and other similar entities. However, they are all com-
bined into a single entity class, i.e. Gene.

2.2.3 BC4CHEMD

The BC4CHEMD, BioCreative IV Chemical and Drug, corpus consists of
10,000 abstracts annotated for the single chemical entity containing chemical
and drug names [18].

2.2.4 BC5CDR

The BioCreative V Chemical Disease Relation (BC5CDR) [19] comprises
of 1500 PubMed articles, of which 1400 articles were selected from 150,000
chemical-disease interactions that were annotated during the Comparative
Toxicogenomics Database-Pfizer (CTD-Pfizer) process. The rest of the 100
articles were newly curated and was included in the test set.

2.2.5 BioNLP09

The BioNLP09 is a 2009 shared event task to extract different events among
different classes [20]. The named entity was performed via the GENIA event
corpus to facilitate the event extraction task. The 10,000 sentences in the
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corpus were annotated for protein and related entities into a single entity
class, Protein.

Dataset Contents Entity counts

AnatEM Anatomy NE 13,701

BC2GM Gene/Protein NE 24,583

BC4CHEMD Chemical NE 84,310

BC5CDR Chemical,Disease NEs Chemical:15,935; Disease:12,852

BioNLP09 Gene/Protein NE 14,963

BioNLP11EPI Gene/Protein NE 15,811

BioNLP11ID 4 NEs
Gene/Protein:6551; Organism:3471

Chemical:973; Regulon-operon:87

BioNLP13CG 16 NEs

Gene/Protein:7908; Cell:3492;

Chemical:2270; Organism:1715; Tissue: 587;

Multi-tissue structure:857;

Amino acid:135; Cellular component:569;

Organism substance: 283; Organ: 421;

Pathological formation:228;

Immaterial anatomical entity:102;

Organism subdivision:98;

Anatomical system:41; Cancer:2582;

Developing anatomical structure:35

BioNLP13GE Gene/Protein NE 12,057

BioNLP13PC 4 NEs
Gene/Protein:10,891; Chemical:2487;

Complex:1502; Cellular component:1013

CRAFT 6 NEs

SO:18,974; Gene/Protein:16,064;

CL:5495; Taxonomy:6868; Chemical:6053;

GO-CC:4180

Ex-PTM Gene/Protein NE 4698

JNLPBA 5 NEs
Gene/Protein:35,336; DNA:10,589;

Cell Type:8639l; Cell Line:4330; RNA:1069

Linnaeus Species NE 4263

NCBI-Disease Disease NE 6881

Tab. 2.3: Datasets description [1].
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Dataset Entities Name Train+Dev Set Test Set
AnatEM Anatomy 7.241 7.865
BC2GM Gene 10.505 10.526
BC4CHEMD Chemical 7.284 7.162

BC5CDR
Chemical
Disease

6.061
5.971

5.622
5.740

BioNLP09 Protein 9.573 10.274
BioNLP11EPI Protein 7.662 7.840

BioNLP11ID

Reulon-operon
Chemical
Organism
Protein

0.047
7.036
4.421
4.575

0.131
0.700
3.801
4.134

BioNLP13CG

Gene_or_gene_product
Cancer
Amino_acid
Simple_Chemical
Organism
Cell
Tissue
Organ
Multi_tissue_structure
Cellular_component
Pathological_formation
Immaterial_anatomical
Organism_subdivision
Anatomical_system
Developing_anatomical_structure
Organism_substance

9.975
2.423
0.088
2.631
1.462
4.464
0.579
0.262
0.818
0.479
0.191
0.075
0.060
0.036
0.018
0.197

9.236
2.896
0.123
2.550
1.209
3.987
0.559
0.328
0.881
0.472
0.241
0.078
0.091
0.049
0.040
0.238

BioNLP13GE Protein 8.100 7.781

BioNLP13PC

Gene_or_gene_product
Simple_chemical
Complex
Cellular_component

13.447
3.272
3.190
0.889

13.268
3.571
3.232
0.879

CRAFT

SO
GGP
Taxon
CHEBI
CL
GO

4.330
4.240
1.280
1.210
1.330
0.960

3.860
4.320
1.160
1.250
1.190
0.990

Ex-PTM Protein 7.967 7.616

JNLPBA

Protein
DNA
Cell_type
Cell_line
RNA

11.190
5.130
3.140
2.780
0.504

9.740
2.810
4.860
1.470
0.300

Linnaeus Species 1.153 1.350
NCBI-Disease Disease 8.220 8.356

Tab. 2.4: Entities percentage distribution in training+development and test
dataset
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2.2.6 BioNLP 2011 Shared Task

The BioNLP 2009 shared task was extended and presented again in 2011. The
BioNLP 2011 shared task covered various tasks including infection diseases
(ID), Epigenetics and Post-translational Modifications (EPI), and exhaustive
post-translational modifications (Ex-PTM). The BioNLP11EPI events tar-
geted the statements covering modifications in protein and DNA, and their
reverse reactions as well, covering 1200 abstracts [21]. Ex-PTM covered more
post-traslational modifications in protein related literature, databases, and
ontologies total of 360 PubMed abstracts [22]. The BioNLP11ID task en-
closed the biomolecular mechanisms of infections that comprises of 30 full
articles [23].

2.2.7 BioNLP 2013 Shared Task

The BioNLP 2013 shared task datasets; Cancer Genetics (BioNLP13CG),
GENIA Event Extraction (BioNLP13GE), and Pathway Curation (BioNLP13PC)
were three tasks out of six tasks in total [24]. The BioNLP13CG task aims
to extract the information associated with cancer, e.g., cellular, tissue, etc.
The BioNLP13CG contains 600 abstracts from PubMed and is annotated
for more than 17,000 events [25], while BioNLP13GE dataset consists of
34 full articles gathered from PubMed Central [26, 27]. The BioNLP13PC
dataset annotated for about 16,000 events and contains 525 PubMed ab-
stracts [28, 29] that were collected covering specific pathway reactions based
on the pathway models from BioModels and Pathway DB [30].

2.2.8 CRAFT

The Colorado Richly Annotated Full Text (CRAFT) corpus contains 67 full-
text articles from PubMed Central Open Access Subset, which were then
manually annotated [31]. These articles accumulate over 21,000 sentences,
over 560,000 tokens, and approximately 100,000 concept annotations that
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contain different biomedical ontologies.

2.2.9 JNLPBA

The JNLPBA corpus was developed for a joint workshop on NLP in Biomedicine
and its Applications, which comprised of 2000 abstracts in the train set,
while 404 abstracts in the test set that make approximately 22,400 sentences.
JNLPBA is developed from the GENIA corpus; however, unlike the GENIA
corpus that consist of 36 classes, the JNLPBA only includes 5 classes [32].

2.2.10 Linnaeus

The Linnaeus corpus contains 100 full-text papers, selected randomly from
the PMC open access set [33]. The entity mentions presented in the corpus
are annotated manually, which are normalized according to the NCBI taxon-
omy. The corpus contains species mentions, however, 72% of these mentions
do not contain direct species information, e.g., patients, child, etc.

2.2.11 NCBI-disease

The NCBI-disease corpus has annotated disease mentions from 793 PubMed
abstracts [34]. The corpus consists of 790 unique disease mentions; 698 from
MeSH (698) while 92 from OMIM. Furthermore, 91% of the unique concepts
are single disease concepts, while the rest contain a combination of concepts.

2.3 Word Vector Representation

In the past, words were represented by a one-hot encoding scheme, where
categorical variables are vectorized differently, as shown in Figure 2.36. The
one-hot encoding is a sparse vector consisting of 0s and a single 1, which
represents the corresponding word. The insertion of a new vocabulary item

6 source: https://speakerdeck.com/marcobonzanini/word-embeddings-for-natural-
language-processing-in-python-at-london-python-meetup?slide=14
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Fig. 2.3: An illustration of one-hot encoded representation.

in this system requires affixing the new number (0/1) to the vector in order to
represent that word. Specifically, the vector size increases with the size of the
vocabulary. With the huge vocabulary, the size of the vector also increases
drastically, which leads to the “curse of dimensionality”. Furthermore, there
is no way to represent the relationships between pair(s) of words. Words
belonging to specific categories cannot be represented close to each other in
one-hot encoding, and 1 is placed at different positions corresponding to the
different words. Such representation does not provide any information, and
therefore, the dot product of any different words yields an output of 0, which
is not a valuable information.

These limitations are overcome by representing a word in the dense vec-
tor. This dense representation, also called distributed word embedding rep-
resentation or simple word embedding, has the ability to store the semantic
meaning of the word in a real-valued vector. Thus, the word embedding dis-
tributes the properties of the word in a low-dimensional real-valued vector, as
shown in Figure 2.4. Such representation gives more beneficial information
about the word. For instance, in Figure 2.4, it can be noticed that the begin-
ning embedding values of capital names have approximately the same values
showing that they represent the same category. A similar representation
can be found for country embedding vectors as well. Additionally, the last
value of the embedding vector represents the connection between these dif-
ferent words. The real-valued embedding vector contains useful information,
and performing some mathematical operations on these vectors yield more
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Fig. 2.4: An illustration of word embedding representation.

valuable information, e.g., Paris+Italy−France ≈ Rome7. Furthermore, the
dimension of the word embedding vector is smaller (usually ranging from 50
to 300) than the size of the vocabulary.

Usually, word embedding is learned by feeding corpus to a feed-forward
neural network that learns the words’ similarity through back-propagation.
The neural network outputs the weight of the first layer as an embedding
of a fixed dimension. Nowadays, there are deep learning APIs that offer
embedding layers for deep learning models, which also learn the word em-
bedding during training. However, these kinds of embedding have limited
usage mostly for the specific experiments. However, there are some avail-
able neural network models that explicitly learn the embedding of the words
trained on massive corpora [35, 36].

2.4 Conditional Random Field

Conditional random fields (CRFs) belong to the discriminative models in
which conditional probability p(y/x) is computed for the given X [37]. For
every Xi corresponding Yi is predicted, where X is the evidence variable
while Y is called the label variable. CRF considers the neighboring states or
contextual information and therefore is best suited for the prediction tasks.

7 source: https://speakerdeck.com/marcobonzanini/word-embeddings-for-natural-
language-processing-in-python-at-london-python-meetup?slide=14
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This may help the learning model to generalize well for the prediction task.
For this reason, in the label sequencing problems, such as NER and PoS
tagging, many of the researchers have preferred CRF over Softmax. For any
input, the Softmax function calculates the output probability distribution
for a specific single input (e.g., single word) ignoring the neighboring inputs
information. As such the Softmax function may omits the useful information
lying within other words.

2.5 BioNER Methods

2.5.1 Dictionary-based Approaches

In a dictionary-based approach, the entities present in the text are extracted
using pre-defined entities gazetteer. The dictionary approach, therefore,
works as a look-up table. Since this approach is simple and effective, it
gives high precision as the text is matched against the entity presented in
the dictionary. However, this approach fails when it comes to matching
synonyms, homonyms (e.g., abbreviations share lexical forms with common
English words), spelling variations (e.g., word order and punctuation), short
name entities, and limited coverage for new entities. Hirschman et al. [38]
utilized pattern matching technique for gene names recognition using Fly-
Base. They achieved a recall of 31% for abstracts, while the recall for full
articles was reported as 84%. They further explained the main reason for
the poor recall that was homonymy, as many lexical forms of the gene names
were also common English words (e.g., by, for, an, and can). Tsuruoka and
Tsujii [39] addressed the spelling variant issue in the dictionary approach.
The authors developed a spelling variant generator that used a probabilistic
technique for insertion, deletion, and substitution of digits and characters.
These operations basically considered the edit distance for the variant of en-
tities. The entities with less or equal edit distance were categorized as a
spelling variant.
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2.5.2 Rule-based Approaches

In this approach, predefined rules are considered for the recognition of enti-
ties. The rules generally comprise naming structures, i.e., utilizing morpho-
syntactic features (e.g., capitalization, word alphanumerical composition,
special nouns of special verbs, the presence of special symbol), or through
using any lexical or orthographic clues. For this reason, the rule-based ap-
proach requires a good understanding of linguistics. Development of the rules
changes from domain to domain and it is also a time-consuming job. Hou and
Chen [40] filtered out false candidates in order to benefit the gene/protein en-
tity recognition. The filtration process is done by exploiting the gene/protein
collocates, which were extracted from biological corpora. Furthermore, to im-
prove the performance, authors combined the results of other available named
entity recognizers. The results showed performance improvement for the
combined approach where filtering techniques along with integrated named
entity systems were used.

Narayanaswamy et al. [41] performed chemical and gene/protein entities
recognition. The suffixes and chemical roots were used for entity recognition
along with other different terms as features. Furthermore, surrounding and
context were also utilized in the entity recognition task. The evaluation was
made on manually annotated Medline for 55 abstracts indicating comparable
results.

Thomas et al. [42] performed protein named entity recognition. They
utilized a cascade of finite-state transducers to perform recognition of even
complex entities in numerous stages. Though, the reported performance was
not satisfactory, the authors claimed that the adaption of their systems to a
new domain could be cost-effective, reliable, and fast.

Ananiadou [43] utilized computational morphological grammar and lexi-
con for medical term recognition. The authors found that most of the medical
terminology involves Latin and Greek words and affixex and suggested four-
level ordered morphology for extracting the entity patterns.
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2.5.3 Machine Learning Approaches

The Machine learning-based approaches have great advantage for their flexi-
ble domain adaption and, at the same time, have depicted promising results
over previously mentioned approaches. The machine learning algorithms use
features to learn the patterns presented in the data. For this reason, these
approaches highly depend on the available features. Therefore, many of the
machine learning approaches are still suffering from the generalization issue.

Collier et al. [44] proposed a bi-gram Hidden Markov model (HMM) that
utilized character and lexical orthographic features for entity recognition of
different classes. The sequence of words presented in the sentence, along with
other features, were used as input to the model. Afterward, the probability
distribution was calculated for each word and its corresponding classes. The
classes with the highest probability for the sequence of words were selected as
the final class label for the word. The evaluation of the 100 Medline abstracts
showed an F1-score of 73%.

Kazama et al. [45] used features like HMM states, affixes, and Part-of-
Speech tags to train their multi-class support vector machine (SVM), model.
This experiment was done on the GENIA corpus resulting F1-score of 50%.

Shen et al. [46] also exploited the suffixes, Part-of-Speech (POS) tags, and
noun heads features for their HMM-based model. They found performance
gain by using POS tags.

Lee et al. [47] proposed a two-phased entity recognition system using
a support vector machine. This methodology consists of the boundary ex-
traction and classification of the entities. For multi-class classification, they
adopted hierarchical classification using ontology. The word, POS, ortho-
graphical characteristics, suffixes were used as features. For boundary iden-
tification, the F-score was reported as 74.8%, while for the classification, the
reported F-score was 66.7%.

Zhou and Su [48] proposed a BioNER model based on HMM and SVM
using the JNLBA dataset. They proposed different features to leverage the
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performance of their base model. The use of in-domain POS feature increased
the F-score of their model from 60.3 to 64.1. Similarly, they extracted cascade
entity features using a rule-based method, which raised the F1-score to 63.4.
When they combined all the features, i.e., in domain POS, cascade informa-
tion, entity dictionaries, name alias resolution, and abbreviation detection
resulted in a best F1-score of 72.5.

Finkel et al. [49] used BioNER system based on maximum entropy Markov
model. Their proposed system used word’s local features along with some
external knowledge including domain-specific gazetteers, parsing and search-
ing the web. During training, the label’s boundaries of the same entities were
merged so that the system can be trained on more examples for each single
class. Their systems achieved F1-score of 70% on JNLPBA dataset.

2.5.4 Deep Learning

Machine learning algorithms have shown performance improvement com-
pared to the rule-based and dictionary-based approaches. However, the
performance of the machine learning algorithms highly relies on the input
representation, which is given in the form of features. The performance
enhances with more discriminative features, while redundant and irrelevant
features can cause performance degradation. Machine learning algorithms
learn the hidden pattern in the data. The development of discriminated in-
put features for machine learning algorithms requires more time and effort.
Deep learning models, however, usually do not require feature engineering
and perform feature extraction implicitly. Deep learning techniques consist
of many layers through which they learn the complex structure of the data
and learn the features layers by layers. This advantage has determined the
success of deep learning algorithms and therefore, they have been adopted
in many different fields. With this great success of deep learning in different
fields, many natural language processing researchers have also adopted deep
learning models and have obtained promising results.
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Habibi et al. [50] proposed a deep learning model that uses long short-term
memory to perform BioNER. The model used word and char information in
the sentences. The embedding information of both inputs was used to train
the model. Furthermore, char embedding was passed through a bidirectional
long short-term memory (BiLSTM) to capture implicit features of the char-
acters. Three different pre-trained word embeddings were used for the word
embedding; PubMed-PMC, Wiki-PubMed-PMC, and the patent one. The
PubMed-PMC embedding was trained on the PubMed abstracts and PMC
articles, whereas wiki-PubMed-PMC was trained additionally along with En-
glish Wikipedia articles. The wiki-PubMed-PMC and PubMed-PMC were
200-dimensional (200d) embedding. The third embedding was trained us-
ing the Gensim embedding toolkit on the coarsely 20,000 European patents
having biomedical topics for a 50-dimensional embedding vector. The inputs
were further processed with a bi-directional long short-term memory to cap-
ture the context of the sentence in both directions. The proposed model used
a conditional random field (CRF) at the output layer. The experiments were
conducted on 33 different datasets that consist of five different categories of
biomedical entities, i.e., Cell lines, Chemicals, Disease, Gene/protein, and
Species. The results of the proposed model were compared with the publicly
available BioNER and the generic CRF model utilizing some NER features.
The proposed model showed performance gain with the wiki-PubMed-PMC
word embedding, and therefore authors used the same embedding for their
further experiments. The proposed model showed a performance gain up to
5% compared to the generic CRF as well as other available BioNER tools.

Zhu et al. [51] used Convolutional Neural Network (CNN) for their pro-
posed model called GRAM-CNN. Their model extracts numerous features
at different levels using different kernel sizes in CNN for the same input.
The CNN helped the model to extract the n-gram features for the input
words, and which is further processed by the filter to represent the word
into a single vector. They used word, character, and part-of-speech tags as
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input for their model. A pre-trained word embedding was used for the word
embedding, whereas character and part-of-speech tags embeddings were ran-
domly initialized and trained during model training. Moreover, to extract the
character-level features, a CNN was used on top of the character embedding.
Three different datasets, BC2GM, NCBI, and JNLPBA, containing numer-
ous categories, were used in the experiments. The results for the datasets
were mixed. For BC2GM and JNLPBA, on the one hand, the proposed
model did not show performance improvement against the ensemble machine
learning approach, but it outperformed some of the (non)ensemble ones and
some deep learning approaches. On the other hand, their approach showed
performance gain for the NCBI dataset.

Yoon et al. [52] proposed a model called CollaboNet that comprises of
numerous BiLSTM-CRF. The idea was to develop a model that can per-
form BioNER for multiple entities and can identify polysemous entities. The
different single BiLSTM-CRF model was trained for each dataset and then
combined during CollaboNet training. The proposed model then exchanges
the inference of other models to help the target-specific model to decide which
is the best entity type for the specific word. If the inference model correctly
labels the input, then the target model does not label that word. The word
and char information were used to train the model. Furthermore, CNN was
further used to capture the orthographic features of the characters; hence the
model is the same used in the [50], where BiLSTM was used to process char
level information. Five different datasets were used during the experiments
consisting of the Chemicals, Disease, Gene/Protein categories. The proposed
approach showed performance improvement compared to some state-of-the-
art models. However, the author trained a separate model for each category,
performing BioNER on a single class. Training on a single category instead
of a whole dataset reduces the ambiguity presented in the dataset due to dif-
ferent categories. This is one of the main reasons that most of the BioNER
fails to achieve better results on a dataset with different categories.
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Crichton et al. [1] proposed a multi-task learning approach for BioNER.
The proposed model used a CNN based deep learning model. The word
embedding information is also processed by the convolution layer, followed
by the fully connected layer, whereas the Softmax layer was used for output
labeling. The model for the single-task learning approach and multi-task
learning approach was the same. For the multi-task learning approach, two
flavors were utilized; in the first approach, the model shared the upper layers
of the model among all the datasets while fully connected layers and Soft-
max layers were kept private. The second approach induced the information
of the auxiliary task where a single-task model is trained on part-of-speech
tags and used its fully connected layer output to train the multi-task and
other datasets. They took advantage of the multi-task learning approach
to train on 15 different biomedical datasets. The results showed a substan-
tial performance gain over the single-task model. However, comparing with
the benchmark results, their results were not very prominent. The possible
reasons could be using only word information for the training of the model.
When the model only considers the word embedding information for train-
ing, the model can trap in the out-of-vocabulary problem where the specific
word is not found in the static word embedding. The general approach to
overcome this issue is to use the character embedding information.

Wang et al. [53] also adopted the multi-task learning approach and used
the same 15 datasets used by Chrichton et al. [1]. The basic model is the same
model used by the [50] and also resembled the model proposed in [52] except
that Wang et al. used BiLSTM to process character embedding information,
whereas in [52] a CNN was used to process the character embedding informa-
tion. The authors adopted different approaches for training the multi-task
model. In the first approach, they shared only the character-level information
among all the tasks, while in the second approach, they shared the word-level
information and BiLSTM, whereas, in the last method, they shared both the
character-level information and the word-level information along with the
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BiLSTM among all the tasks. They found that the last approach showed
performance gain against the first two approaches and compared it to the
other benchmark methods, including the results of Chrichton et al. [1].

Another multi-task approach is adopted by Wang et al. [54] where the
base model is same as presented in [52], utilizing a Character-CNN, BiLSTM,
and CRF. They utilized a different variation in their multi-task learning ap-
proach. This involves using shared layers as well as introducing private layers
at the same level, introducing calculations of different losses at different levels
and also using gated interaction unit (performs element-wise multiplication
and sigmoid function). All these MTM models were trained on a pair of
two datasets. The experiments were performed on the datasets implemented
in [1]. However, they filtered the datasets into main and auxiliary parts. The
primary dataset contains only a single category of the entity, whereas the aux-
iliary dataset contains a different category of entities. For this reason, their
proposed MTMs show some performance gain as the dataset contains a sin-
gle category of entity which does not carry much ambiguity compared to the
dataset having instances of different categories. However, using more than
two datasets in their approach caused performance degradation for many
datasets.

Giorgi and Badar [55] took advantage of the transfer learning where they
partially trained their deep learning model on the silver standard corpora and
then further fine-tuned on the gold standard corpora. The baseline model is
the same as presented in [50]. They collected abstracts from CALBC-SSC-
III-Small corpus targeting gene/protein, chemicals/drugs, living beings, and
diseases. They trained the model on source data with the parameters that
avoid the model from generalizing on the source data. The model was then
generalized with different parameters on the 23 gold standard corpora. These
datasets contain entities belonging to the Genes/proteins, Species, Diseases,
and Chemicals. They noticed a notable increase, with a fine-tuned method,
in the F1-score, compared to the same model trained solely on the target
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datasets. They find out that transfer learning was more advantageous to
those target datasets, with few labels.

2.6 Deep Neural Networks and Techniques

2.6.1 Convolutional Neural Network

Artificial neural networks have been effectively used in different nonlinear
problems. With the availability of huge data and more computational power,
neural networks with more complex structure are proposed called, deep neu-
ral networks. Since then, it has been used in different domain and become
state-of-the-art technique. Different deep neural networks are proposed and
convolutional neural network (CNN) is one them. CNN is a massive break-
through in deep learning. It has proven a most effective neural network
structure in image recognition and classification [10]. CNN is developed for
both extracting features and classification as the dual-task that extracts and
learns features layers by layers. The initial layers learn the low-level features,
whereas complex features are learned as learning process moves towards the
depth of the layers. The CNN basically performs four operations: convo-
lution, activation, pooling, and fully connected layers [56]. The convolution
operation involves application of the filter on the pixels. This is the dot prod-
uct of the pixel with the filter weight. Feature mapping for the original input
image is generated for each filter as filter slide through the data. The output
of the convolution operation is passed through the activation function. The
activation function applied on the convolution output is the Rectified Linear
Unit (ReLU), which is a non-linear function. The activation step is followed
by the pooling (subsampling or downsampling); an operation that reduces
the dimensionality of each feature map trying to keep the salient features.
The final operation consists of the output classification which is performed
by the fully connected layers. Despite that the CNN was mainly developed
for computer vision, it is also used in the natural language processing as well.
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However, instead of pixels, the CNN utilizes the text information, usually in
the form of words or characters, and extracts the hidden features. The ma-
trix of words represents the pixels information just like in computer vision.
However, the NLP problem is different from the aspect of computer vision,
where neighbouring pixels could be semantically associated and sharing the
identical object. In NLP the orders of the words could modify the meaning
of the sentence e.g., adjective changing the noun. Usually the CNN is used
to capture N-gram information of the text. The CNN builds the feature
maps by moving filters across text representation e.g., word embedding or
character embedding.

2.6.2 Recurrent Neural Network and Long Short-Term Memory

The CNN has shown some encouraging results in NLP; however, there are
many limitations using CNN in some of the NLP applications. The CNN
cannot be used in the dynamic length of the sentences. Furthermore, the
neurons in the same layer of the CNN are not connected to each other; thus,
they cannot communicate with each other and only passes the information to
the next layer. In a problem like named entity recognition, it is important to
consider the neighboring words for output labeling of the words. This cannot
be achieved in the CNN, where neurons are not connected at the same layer.
The recurrent neural network (RNN) overcomes this limitation. The RNN
works similarly as we humans do. We listen to the sentence from the first
word till it’s end, to drive the meaning of the sentence.

The RNN also considers the previous word’s information and the current
processing word, thus sharing the features learned at different occurrences of
the word. Figure 2.5 represents the structure of the RNN, where x and y are
the inputs and outputs, respectively. The u, v, and w represent the weights
whereas R is the hidden neural unit of the RNN. The hidden unit calculates
the hidden state, ht = f(Uxt + Wht−1), at time stamp t. It considers the
current input xt and previous hidden state, ht−1, whereas f represents a
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Fig. 2.5: Recurrent neural network and unfolded version during execution.

function that can be linear or nonlinear e.g., tanh or ReLU . While the
output for time stamp t is calculated as yt = V ht.

This helps the RNN to remember the previous word information in the
text. In other words, the RNN uses memory to retain the previous informa-
tion. This enables the RNN to correlate the relationship between different
events that occurred at different time stamps. However, the simple RNN suf-
fers from word dependency, when it comes to the very long sentences where
the last words have a relationship with the beginning ones. Furthermore,
the information in RNN passes sequentially to the next neuron. Propagat-
ing information from many neurons and performing the operation on each
step makes that information shadier. In other words, the RNN embraces the
gradient vanishing problem.

To overcome this limitation, long short-term memory (LSTM), a variant
of RNN, was first introduced by Hochreiter and Schmidhuber [57]. The
LSTM is typically developed to overcome the long dependency problem and
retains the information for a long time. This is accomplished using a separate
memory cell called, cell state, which sequentially passes through all LSTM
units. Furthermore, the LSTM performs more operations, using multiple
neural networks, compared to the simple RNN hidden state.

In general, the LSTM uses three gates to process the information, as
shown in Figure 2.6. The input gate concatenates the previous hidden state
with the current inputs and decides which value of the input that should be
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Fig. 2.6: Structure of long short-term memory Network

used and by how much via using the Sigmoid function. Furthermore, the
weight is also considered for the input which is determined by tanh function.
The forget cell decides which information should be forgotten. It grasps
the previous cell output and current input which is concatenated with the
previous hidden state. This information is process using a Sigmoid function
that decides which information needs to be forgotten. The outputs of both;
the forget gate and input gate are combined to construct the new current
state. Finally, the output gate performs the Sigmoid function on the current
input and previous hidden, multiplying with tanh output of the current cell
state. The calculations can be summarized in the following equations:

Forget Gate ft = σ(Wf .[ht−1, xt] + bf )

Output Gate ot = σ(W0.[ht−1, xt] + b0) and ht = ot ∗ tanh(Ct)

Input Gate it = σ(Wi.[ht−1, xt] + bi)

New Temporary Cell State C̃t = tanh(Wc.[ht−1, xt] + bc)

Current Cell State Ct = ft ∗ Ct−1 + it ∗ C̃t
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The LSTM usually learns from the beginning of the sentence until it’s
end in a forward manner. However, in purpose to get the full context of the
sentence, it is better to look through it in a backward manner too. This is
done using bidirectional LSTM (BiLSTM), where two hidden units are used
to get the information of the sentence in a forward and backward way.

2.6.3 Multi-task Learning

In general, the deep learning model performance highly depends on the
amount of annotated data. The model performs better when a large amount
of data is available. Unfortunately, in different biomedical tasks only a lim-
ited quantity of annotated text data is available and in this case deep learning
models are unable to generalize well. Producing manually annotated data is
expensive and time-consuming job. One solution to such limitation is to take
advantage of other related tasks that share common features. In a single-task
learning approach, related tasks cannot get benefits from the other task. By
using a single-task model we cannot share the training signal with the other
related-task.

Multi-task learning (MTL) is an approach where different tasks share
their knowledge among themselves, thus help to leverage the performance of
another task. MTL is an inductive learning process that learns the gener-
alization by utilizing the knowledge of different tasks [58]. When tasks are
sufficiently related, they can provide an inductive bias that forces models to
learn generally useful representations. In MTL related tasks provide induc-
tive bias which guides model to discover more common representations [59].
Two different methods are used in the MTL approach i.e., hard parameter
sharing and soft parameter sharing, and is shown in Figure 2.7. Hard pa-
rameter sharing is the most common method used in MTL where complete
sharing (i.e., parameters) of hidden layers among different tasks is done. In
soft parameter sharing, separate models are created for different tasks. These
models are then somehow enforced to loosely match parameters of the shared
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(a) Hard Parameters shared MTM
(b) Soft Parameters shared MTM

Fig. 2.7: Hard parameters vs Soft parameters shared MTMs

layers most commonly done by regularizing the parameters of the shared lay-
ers.

The MTM can be seen as an implicit data augmentation technique as
well. Jointly training of various models help them to transfer their knowledge
implicitly using shared layer(s). The MTL strategy, therefore, increases the
size of the data available to the MTM. The MTL also allows model to learn
those features which can be more challenging to learn independently from
any specific task. In other words, the approach of task B to learn rigorous
features can be more complex compared with task A, therefore, the model
learns those features from task A. Training jointly on related tasks helps
the multi-task model to learn common features among different tasks by
using shared layers [60]. The MTL optimizes the model under construction
concurrently that allows the model to generalize well for the related tasks.
In a single-task learning, a model is more prone to overfitting for a specific
task, whereas MTL lowers the chances of overfitting as the model has to learn
the common representation for all tasks. Training more tasks bring more
generalization for MTM. In MTL, model focuses on more relevant features as
some tasks give information about irrelevant and relevant features in a high
dimensional and noisy data. Similarly, the noise presented in the dataset
has less impact in a MTL approach as all the noises are averaged during
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the training. The MTL also guides the model to narrow-down the shared
representation supported by many tasks which might be efficient when the
purpose is to use the model to learn novel tasks if they are from the same
environment [61]. In the MTL approach, some of the layers in the model
are shared among various tasks while keeping some layers task-specific. The
task-specific layers learn features that are more related to the current task.
Training related tasks together help the model to optimize the parameter’s
value.

2.6.4 Transfer Learning

Transfer learning involves transferring the knowledge from one domain to
another [62]. Usually, the model is trained on a task in one domain which is
then re-used on another related domain or related task [11]. The MTM can
also be seen as transfer learning but in MTM the tasks are learned simulta-
neously. In contrast, in the transfer learning tasks are learned sequentially.
The transfer learning is done in two stages: pretraining stage and domain
adaptation stage. The pretraining stage involves training of the base model
which is then reused on the target task in the adaptation phase. The pre-
training phase, although, is expensive but is usually required to perform
once. Therefore, it is best practice to choose the source task that can exhibit
general representations for many target tasks.

In transfer learning, the model is trained on an auxiliary task which is
then re-used on the main task. Similarly, the model can be trained on a source
domain which can then be re-used on the target domain. For instance, the
model can be trained on the book reviews and then re-used on hotel reviews,
in this case source and target domains are different but source and target
tasks are the same. Similarly, the source and domains can be same while
the source and target tasks are different e.g., the object detection model can
be used for image classification. In a third case, both domains as well as
both tasks are different e.g., spam classifier is used for radiology text report
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classification.
In transfer learning, the pre-trained model can be used as feature extrac-

tor or model weight’s initialization. The feature extractor works similar to
the feature engineer process, however, this process is done by a deep learning
model instead of performing manually as seen in the general machine learn-
ing approaches. In a fixed feature extraction mechanism, the output of the
pre-trained layers are used in the main task. In this case, the weights of the
pre-trained layers are kept frozen and usually layers before the final output
layer are used. This can be perceive as input features to the new model.
The feature extraction is useful when the tasks used in the transfer learning
are similar to each other. The feature extraction method is required when
the purpose is to learn the features once for all tasks and, therefore, saves
the time as it is not necessary to compute the features again for the new
tasks. These features are mostly the low-level features e.g., dots or lines in
an image.

The transfer learning could involve a fine-tuning method, where weights
of the pre-trained layers are used in the main task model and then the whole
model is fine-tuned. In this case, the weights of the layers are not kept frozen.
The idea is to re-learn new features rather than learning from scratch. The
naive example could be to learn the numbers after five instead of learning
numbers again from one. The fine-tuning method actually fine-tunes the
general-purpose representation to task specific representation. This method
is convenient when the purpose is to implement the pre-trained model for
many different tasks.

Yosinski et al. [11] performed experiments to compare the feature extrac-
tor and the fine-tuning techniques. They found that for the feature extractor,
the performance of the main task model depends on where the layers are cut.
Researchers concluded that keeping top layers’ weight frozen can be helpful
for similar tasks. The frozen weights of the middle layers show performance
degradation because of the complex co-adaptations they learn. At last, keep-
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ing the weights of the lower layers do not show much performance degradation
as these layers are more general. While investigating the fine-tuning method,
they found it useful without any strict constraint of layers cut at any level
of the base model.

2.6.5 Knowledge Distillation

In transfer learning, the learned representation from the source domain is
utilized in another related domain. In contrast, the objective of knowledge
distillation is to train a model with the knowledge learned by another model.
The idea of knowledge distillation is to train a simple (student) model on the
knowledge learned by the complex (teacher) model. More specifically, the
knowledge distillation approach addresses how to transfer the generalization
of one model, usually a complex model (teacher), to another model, usually a
simple model (student). The complex models or ensemble approaches usually
produce better results than the simple single-task model, but it is computa-
tionally expensive to train them. The knowledge distillation approach helps
the simple model (student) to produce better results than the stand alone
single model and the ensemble models. In this way the student model can be
trained on fewer training examples since it will also consume the knowledge
learned by the teacher model during training. The idea is that the complex
model has already been generalized on the data during its training. This
helps the student model to achieve or nearly achieve the generalization of
the teacher model. The student model not only learns through the gradient
of itself but also though the gradient of another knowledge.

Transferring knowledge from a teacher model is usually done in the shape
of the probabilities predicted by the teacher model. The objective of any
learning model is to predict the correct class for the input example and
assign a high probability to that class whereas allocating small probability
values to the rest of the classes. Associating the probabilities to the rest
of the incorrect classes is not performed randomly. These side probabilities



2. Related Work 35

also carry information which depicts how a specific model has generalized
the classes presented in the dataset. For instance, there is very little chance
of miss-classifying a motorbike image into a car image but the probability
would still be higher for miss-classifying it into the truck image. The Softmax
activation function outputs the probability distribution of the possible classes
for the specific instance. The sum of these Softmax probability distributions
sums to 1.

These Softmax probabilities give more information compared to the one-
hot “hard labels". For instance, the Softmax probabilities, [0.7, 0.2, 0.1],
show ranking of the classes. Such information cannot be examined in the
hard labels e.g, [1, 0, 0] where we cannot extract any such information. The
posterior probabilities can pass an extra useful signal to the student model
during its training. However, training the student model to match these
probabilities could not be so much useful as the student model can only pay
more attention to the highest probability value. To overcome this barrier, it is
better to soften these final Softmax output probabilities through normalizing
them [12]. The normalized probabilities represent soft labels which provide
some knowledge distillation to the student model [63]. The student model
then pays attention to other values as well along with the highest probable
class. Hinton et al. [12] proposed a tunable-parameter term temperature, τ ,
to soften the posterior probabilities as given in the Equation 2.1.

Introducing this new, τ , parameter normalizes the output probabilities
e.g., setting the value of τ = 3, for the above Softmax output will now yield
[0.375, 0.317, 0.307]. It can be notice that, though, the output probabilities
are become more soften but the ranking of the potential classes are still un-
changed. Furthermore, the student model will pay attention to other values
apart from the highest probable class. The large value of τ more softens
the Softmax output and enhances the non-target class output probability
[64]. Keeping τ = 1 makes it standard Softmax function. The large value of
τ more softens the Softmax output and enhances the non-target class out-
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put probability [64]. On the downside, it also reduces the probability value
of the target class. Therefore, it is vital to choose the right value for the
temperature parameter.

Softmax(zi) =
exp(zi/τ)∑
j exp(zj/τ)

(2.1)

2.7 Ensemble Methods

An ensemble method is a method that applies several models and then com-
bines their output to yield a single result. Ensemble approaches, therefore,
generally produce more accurate results than a single model [65]. Neural net-
works can learn nonlinear relationships present in the data. However, this
nonlinear behavior is sensitive to the noise present in the data and the initial
random weights of the model layers. For this reason, these models produce
a different prediction every time they are trained as they produce a different
final set of weights each time. This causes a high variance in the predic-
tions. In order to reduce that variance, numerous neural network models are
trained which are then combined in an ensemble approach to generate a sin-
gle prediction. This also overcomes the likely absence of distinctive features
representation in any single model as various models can learn different sets
of features, and therefore reduces the the generalization error [66].

The final prediction can be performed using majority voting, average,
or weighted voting/average schemes. In the majority voting scheme, a final
prediction represents the most voted prediction for a specific class by various
models whereas, in the averaging method, all models contribute equally in the
final prediction. The weighted vote/average is the extension of the previous
schemes where the output from different models is weighted individually and
combined for the final prediction.

The ensemble approaches have been utilized by many researchers for
BioNER. Zhou et al. [67] combined three classifiers consisting of two discrim-
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inative Hidden Markov models and a single support vector machine. Their
ensemble approach used simple majority voting strategy and showed perfor-
mance improvement for gene/protein BioNER in BioCreAtIvE task 1A. Torii
et al. [68] proposed BioTagger-GM based on an ensemble approach where
outputs from different systems are combined and a voted scheme is used for
the final gene/protein names recognition from literature. Their system re-
sulted best score in the BioCreAtIvE || challenge. Doan et al. [69] aggregated
recognition from three different classifiers i.e., support vector machines, con-
ditional random fields, and a rule-based approach and used different voting
schemes for the final entity recognition. The proposed system used clinical
text and showed that the ensemble approach achieves better results compared
to the single classifier.



3. BIONER USING MULTI-TASK LEARNING

The traditional approaches for BioNER use classical machine learning meth-
ods like Conditional Random Fields (CRFs), Support Vector Machine (SVM),
and Hidden Markov Models (HMMs) [70]. These methods have shown promis-
ing results; however, they are highly dependent on handcrafted features [71].
Additionally, adopting machine learning techniques to a new domain would
be difficult and requires extra effort to perform domain-specific feature engi-
neering.

To tackle these limitations, deep learning methods have been deployed
in the sequence labelling problem. They represent the state-of-the-art tech-
niques used in the BioNER systems, which helped to get rid of the manual
feature engineering step and at the same time are able to produce promising
results simultaneously. Nevertheless, such methods are still facing challenges
due to the complex structure of the biomedical text data. Training deep
learning models also need large amounts of input data. In contrast, a compar-
atively small quantity of annotated biomedical text data is available to train
these systems with millions of parameters. Manually annotating biomedical
text data is an expensive and time-consuming job. One solution to such a
limitation is to take advantage of other related tasks that share common fea-
tures. Such knowledge sharing can be accomplished with techniques such as
multi-task learning and transfer learning.

Multi-task learning (MTL) is an approach where different related tasks
are trained simultaneously. In the MTL approach, some of the layers in the
model are shared among various tasks while keeping some layers task-specific.
Training jointly on related tasks helps the multi-task model (MTM) to learn
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common features among different tasks by using shared layers [60]. This also
allows the model to generalize well for the related tasks while the task-specific
layers learn more associated features to the current task. Training related
tasks together helps MTM to optimize the parameters value. In this manner,
MTL optimizes the MTM under construction concurrently. Moreover, the
MTL lowers the chances of overfitting as the MTM has to learn the common
representation among all tasks.

The MTL has been widely applied in many different domains e.g., com-
puter vision [72], speech recognition [73], and drug discovery [74]. Collobert
and Weston [75] used CNN-based MTM and trained multiple NLP tasks
jointly such as POS tagging, NER, chunking etc. Bollmann and Søgaard [76]
showed that, using the MTL approach, their model increased the perfor-
mance for historical spelling normalization. Peng and Dredze [77] used the
MTL approach for different domains, i.e., Chinese word segmentation and
named entity recognition. Plank et al. [78] used an auxiliary loss function
for rare words and the primary loss function for the POS tagging task, tar-
geting 22 languages including Finnish, French, and English. Yang et al. [79]
used the MTL approach to perform different tasks simultaneously, including
POS tagging, chunking, and NER in English, Dutch, and Spanish. Zhang
and Weiss [80] used POS tagging as a regularizer of input representation for
dependency parsing. Johansson [81] performed parsing of multiple treebanks
in a shared features representation approach and used one treebank as input
to another treebank. Søgaard and Goldberg [82] demonstrated that auxiliary
tasks should be used at innermost layers so that the main task can effectively
learn from a shared representation. Hashimoto et al. [83] used a hierarchical
model to learn different NLP tasks at successively deeper layers jointly.

In this chapter, two different MTMs are proposed to improve the per-
formance of the BioNER. The first proposed model, the multi-task model
with convolutional neural network (MTM-CNN), uses two stacked BiLSTMs
where one BiLSTM is shared among various tasks, while the second BiLSTM
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is task-specific. The MTM-CNN utilizes the word, character, and ortho-
graphic features of the input sentences. It is found that the MTL approach
is not always effective, and therefore, this research applies different techniques
to improve MTM-CNN. Results show that MTM-CNN learns better when
trained with additional dissimilar auxiliary (e.g., POS tagging, Chunking)
tasks other than the same (BioNER) auxiliary tasks. The second proposed
model, the multi-task model with character and word input (MTM-CW),
uses the character and word input representation of the input sentences and
tries to overcome the catastrophic interference [84]. In MTM-CW, the in-
put representation propagates along with the middle layers information to
the subsequent layers. This chapter also evaluates both proposed models
using the Friedman statistical test [85], which assigns ranks to the models
according to their outputs.

3.1 MTM-CNN

In this section, the multi-task model (MTM-CNN) is proposed that consists
of a Convolutional neural network (CNN) layer and BiLSTM layers as shown
in Figure 3.1. The proposed MTM-CNN model differs from the model pre-
sented by Wang et al. [53] in three ways. First, in the proposed approach
an orthographic-level representation of a word is used. Many studies have
exploited word’s orthographic-level information for their models [86, 87, 88].
The orthographic-level information of the word provides some explicit in-
formation to the model, which can enhance the model performance where
deep learning models implicitly learn orthographic-level features. This can
also help the conditional random field (CRF) whose output highly depends
on hand-crafted features [89]. In MTM-CNN, the orthographic-level infor-
mation is used, speculating that it helps MTM-CNN to extract more infor-
mation about the entities. In this chapter, the orthographic-level feature is
referred to as case-level features and both terms can be used interchangeably.
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Fig. 3.1: The proposed MTM-CNN (circles represents embeddings). Inner-
most depicts the task is trained without task-specific BiLSTM. Outermost
represents the task is trained with task-specific BiLSTM.

The orthographic-level (case-level) representation in MTM-CNN considers
the structure-level information of the word. The case-level features consid-
ered in the experiments include the capitalization features of the word e.g.,
whether all letters in the specific word are capital or small, or if the specific
word starts with a capital or small letter, whether the word contains digits
or all alphabetic letters etc.

Subsequently, the proposed MTM-CNN utilizes CNN (represented by cir-
cled 1 in Figure 3.1) instead of BiLSTM, differently to the Wang et al. [53], to
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extract character-level features. Many of the state-of-the-art approaches use
CNN at character-level [90, 91] due to its unique feature extraction ability.
CNN learns global-level features from local-level ones. This enables CNN to
extract more hidden features.

Third, MTM-CNN implements stacked layers of BiLSTMs. Using stacked
BiLSTMs helps hidden states of BiLSTM to learn the hidden structure of
the data presented at different time stamps. This helps BiLSTM to learn
features at more abstract level. The first innermost BiLSTM layer (marked
by circled 2 in Figure 3.1) is shared among all the tasks while the second layer
of BiLSTM (shown by circled 3 in Figure 3.1) is task-specific. The MTM-
CNN implements CRF (represented by circled 4 in the figure) at the output
layer for final sequence labeling. The CRF performs tagging of the current
token by considering neighboring tags at a sentence level [88]. Yang et al. [92]
performed experiments comparing CRF with Softmax and found that CRF
produces better results compared to the Softmax. The experiments in this
chapter also show that the performance of the MTM-CNN dropped when
Softmax is used instead of CRF at the output layer.

Furthermore, two dissimilar auxiliary tasks (other than BioNER) are also
introduced that are: GENIA-POS tagging and CoNLL chunking, to investi-
gate their impact on MTM-CNN. The auxiliary tasks are trained in a same
manner as other BioNER task i.e., with a task-specific BiLSTM layer (outer-
most). In the MTL approach, different tasks provide a supervision signal to
other tasks. It is important to inspect the proper supervision that can be at
any level. Following this hypothesis, the auxiliary tasks are trained at inner-
most (shared) BiLSTM layer without task-specific BiLSTM. Assuming that
training an auxiliary task at the innermost layer makes the shared BiLSTM
a complete features representation of that task, which may propagate more
useful signals to the task-specific BiLSTM. The same hypothesis is applied
on the auxiliary BioNER tasks where they are trained without task-specific
BiLSTM.
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During the MTM-CNN training, each task is defined with its optimizer,
and therefore, the loss function related to the specific task is optimized.
It means that the shared layers’ parameters and the task-specific ones are
changed during the training for the particular task. Optimizing shared layers’
parameters for all tasks allows the model to find standard features among
different tasks.

3.2 Experimental Settings

The experiments are performed on the 15 datasets mentioned in section
2.2, which are also used by Crichton et al. [1] and Wang et al. [53] for their
MTMs. The experimental configuration is the same as adopted by the Wang
et al.1 and [93, 94], which use both train and development datasets for
training the model.

Moreover, to represent words, a domain-specific pre-trained word embed-
ding is used since the general one can cause a high rate of out-of-vocabulary
words. In particular, the WikiPubMed-PMC word embedding is utilized.
The WikiPubMed-PMC word embedding is trained on a large set of the
PubMedCentral(PMC) articles, PubMed abstracts and English Wikipedia
article [55]. Whereas character embedding is initialized randomly and the
case embedding is represented by the identity matrix, where each diagonal 1
represents a word’s orthographic feature.

The maximum number of epochs is set to 50 with an early stop set to 6.
Moreover, each experiment is run 10 times, if not specified otherwise, and
the average F1-score is reported in this chapter.

1 https://github.com/yuzhimanhua/Multi-BioNER

https://github.com/yuzhimanhua/Multi-BioNER
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Datasets STM MTM-CNN
AnatEM 85.89 86.99
BC2GM 80.90 80.82
BC4CHEMD 88.60 87.39
BC5CDR 85.66 87.85
BioNLP09 87.03 88.74
BioNLP11EPI 81.48 84.75
BioNLP11ID 83.21 87.65
BioNLP13CG 81.27 84.25
BioNLP13GE 73.36 79.82
BioNLP13PC 86.33 88.84
CRAFT 83.84 83.15
Ex-PTM 72.70 80.95
JNLPBA 74.48 74.05
linnaeus 87.38 87.79
NCBI-disease 84.11 85.66

Average 82.42 84.58

Tab. 3.1: STM vs MTM-CNN

3.3 Results and Discussions of MTM-CNN

As a first step, a single-task model (STM) is implemented for all 15 datasets
mentioned in section 2.2. Afterward, MTM-CNN is trained with all 15
datasets in a MTL approach. The best results are shown in boldfont while
second best is represented by Italic style. Table 3.1 depicts the comparison
between the results of MTM-CNN and its counterpart STM. Each experiment
is run 10 times, and the average F1-score of those 10 runs is reported in this
chapter.

It can be seen that for most of the datasets, the results are improved
markedly by using MTM-CNN, showing the importance of the MTL ap-
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Datasets Wang et al. Crichton et al. STM

AnatEM 85.30 81.55 85.89
BC2GM 80.00 72.63 80.90
BC4CHEMD 88.75 82.95 88.60
BC5CDR 86.96 83.66 85.66
BioNLP09 84.22 83.90 87.03
BioNLP11EPI 77.67 77.72 81.48
BioNLP11ID 74.60 81.50 83.21
BioNLP13CG 81.84 76.74 81.27
BioNLP13GE 69.30 73.28 73.36
BioNLP13PC 85.46 80.61 86.33
CRAFT 81.20 79.55 83.84
Ex-PTM 67.66 68.56 72.70
JNLPBA 72.17 69.60 74.48
linnaeus 86.94 83.98 87.38
NCBI-disease 83.92 80.26 84.11

Average 80.40 78.43 82.42

Tab. 3.2: Single task model results comparison

proach in BioNER. The BC2GM, BC4CHEMD, CRAFT, and JNLPBA show
performance degradation with the MTL approach. One possible reason could
be the size of these datases. The size of these datasets is big compared to
the rest of the other datasets. For this reason, a performance increase is
noticed for those datasets that have a small number of entity annotations.
This can be seen for Ex-PTM which has a small number of entities and shows
a noticeable improvement with the MTL approach. The results suggest that
MTM-CNN leverage the performance of those datasets, which do not have
many examples. The results illustrate that the MTM-CNN can learn complex
features that are difficult to learn in a STM.

Furthermore, Table 3.2 shows the comparison between the results of dif-
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ferent state-of-the-art STMs. It can be seen that, on most datasets, STM
yields better performance compared to others while the model proposed by
Wang et al. [53] performed well on four of these datasets. The proposed
model by Crichton et al. [1] is unable to show improvement on any dataset.
The model proposed by Crichton is CNN-based and does not consider the
character-level information and may have resulted out-of-vocabulary error.
This might be the reason that their model is unable to show performance
gain compared to the results of Wang et al. and MTM-CNN.

Table 3.3 represents the comparison of different MTMs. It can be seen
that for all the datasets, the MTM-CNN model outperforms the one proposed
by Crichton et al. [1] with a notable difference of F1-score up to 4%. Whereas
compared to the multi-task model presented by Wang et al. [53], MTM-CNN
attained better results for most of the datasets, while for the rest, the results
are comparable.

3.3.1 Effects of Different Inputs Representations of a Sentence

As previously described, Wang et al. [53] do not use case-level information
while MTM-CNN includes it. To see the impact of the case-level information,
the MTM-CNN is run with different input representations. To differentiate
between different representations, MTM-CNN is modified with various labels
i.e., MTM-CNN, MTM-CNNch, and MTM-CNNca. The MTM-CNN contains
word-level, character-level, and case-level representations and is the origi-
nally proposed model. The MTM-CNNch contains word-level and char-level
input representations, whereas MTM-CNNca contains word-level and case-
level input representations. Table 3.4 reports the results of input representa-
tions, where MTM-CNN and MTM-CNNch have outperformed MTM-CNNca

, while MTM-CNNca shows improvements only for BC2GM, CRAFT, and
Ex-PTM. It is also noted that using only case-level information and word-
level information (MTM-CNNca) shows a performance gain for few datasets
compared with the MTM-CNN and MTM-CNNch. It is interesting to note
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Datasets Wang et al. Crichton et al. MTM-CNN
AnatEM 86.04 82.21 86.99
BC2GM 78.86 73.17 80.82
BC4CHEMD 88.83 83.02 87.39
BC5CDR 88.14 83.90 87.85
BioNLP09 88.08 84.2 88.74
BioNLP11EPI 83.18 78.86 84.75
BioNLP11ID 83.26 81.73 87.65
BioNLP13CG 82.48 78.90 84.25
BioNLP13GE 79.87 78.58 79.82
BioNLP13PC 88.46 81.92 88.84
CRAFT 82.89 79.56 83.15
Ex-PTM 80.19 74.90 80.95
JNLPBA 72.21 70.09 74.05
linnaeus 88.88 84.04 87.79
NCBI-disease 85.54 80.37 85.66

Average 83.79 79.70 84.58

Tab. 3.3: Results comparison for different multi-task models

that MTM-CNNch shows an increase in the F1-score for ten datasets com-
pared to the MTM-CNNca. However, when the case-level information is
embedded into MTM-CNNch (the model becomes MTM-CNN), the perfor-
mance degradation is noted for few datasets. Abstractly, including only word
and char level information in the proposed architecture can also show better
results. However, simply using only case-level information and word-level
information causes performance degradation as excluding character-level in-
formation causes out-of-vocabulary problem.

3.3.2 Effects of Different Sequence Labeling Functions

We have also modified MTM-CNN using Softmax instead of CRF to deter-
mine the impact of Softmax and CRF in the proposed model. Table 3.5 shows
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MTM-CNN MTM-CNNch MTM-CNNca

Datasets (word, char, case) (word, char) (word, case)
AnatEM 86.99 86.86 86.43
BC2GM 80.82 81.00 81.01
BC4CHEMD 87.39 87.66 87.21
BC5CDR 87.85 88.08 87.93
BioNLP09 88.74 88.67 88.64
BioNLP11EPI 84.75 85.17 84.66
BioNLP11ID 87.65 87.28 87.01
BioNLP13CG 84.25 84.39 84.09
BioNLP13GE 79.82 80.44 80.42
BioNLP13PC 88.84 89.02 88.59
CRAFT 83.15 83.12 83.94
Ex-PTM 80.95 80.83 80.97
JNLPBA 74.05 73.93 73.99
linnaeus 87.79 87.45 87.88
NCBI-disease 85.66 85.38 85.07

Average 84.58 84.62 84.52

Tab. 3.4: Results comparison for all MTM-CNN models

the results comparison for Softmax and CRF. It can be seen that MTM-
CNNSoft only shows performance gain for the linnaeus dataset compared
with the CRF-based MTM (MTM-CNN). The performance degradation of
the Softmax function could be due to the ambiguous entities present in the
data. The Softmax function produces the output probability distribution for
any specific word and ignores the information of the neighbour words. In
contrast, CRF considers the whole sequence for output labelling considering
neighbouring words information.
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Datasets MTM-CNN MTM-CNNSoft

AnatEM 86.99 85.84
BC2GM 80.82 78.71
BC4CHEMD 87.39 84.40
BC5CDR 87.85 86.78
BioNLP09 88.74 88.00
BioNLP11EPI 84.75 83.29
BioNLP11ID 87.65 87.34
BioNLP13CG 84.25 82.98
BioNLP13GE 79.82 79.69
BioNLP13PC 88.84 87.79
CRAFT 83.15 80.98
Ex-PTM 80.95 79.60
JNLPBA 74.05 71.52
linnaeus 87.79 88.37
NCBI-disease 85.66 84.17

Average 84.58 83.30

Tab. 3.5: Results comparison of proposed MTM-CNN with CRF and
Softmax(MTM-CNNsoft) at the output Layer.

3.3.3 Effects of Different Auxiliary Tasks

In the previous experiments, all the auxiliary tasks are the same i.e., perform-
ing BioNER task for another dataset during MTM-CNN training. In order
to see the effect of different tasks in the MTL approach, the experiments are
extended with various tasks and the same BioNER task but at a different
level of layers in MTM-CNN.

In this regard, three different approaches are adopted; in the first ap-
proach (MTM-CNNF), during the training of MTM-CNN two additional
but different auxiliary tasks are introduced: that are GENIA-POS tagging
and CoNLL chunking. In a second approach, MTM-CNNFin , these auxiliary
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Datasets MTM-CNN MTM-CNNF MTM-CNNFin MTM-CNNin

AnatEM 86.99 87.14 87.35 86.69
BC2GM 80.82 81.48 81.37 81.26
BC4CHEMD 87.39 88.64 88.47 87.95
BC5CDR 87.85 88.10 88.35 88.01
BioNLP09 88.74 88.78 88.76 88.92
BioNLP11EPI 84.75 84.65 84.94 84.53
BioNLP11ID 87.65 88.04 87.61 87.52
BioNLP13CG 84.25 84.47 84.59 84.61
BioNLP13GE 79.82 79.41 80.09 80.01
BioNLP13PC 88.84 88.78 89.06 88.74
Ex-PTM 83.15 81.49 81.57 81.13
CRAFT 80.95 83.66 84.17 83.50
JNLPBA 74.05 72.44 72.63 72.48
linnaeus 87.79 88.97 88.36 88.49
NCBI-disease 85.66 85.72 86.01 85.77

Average 84.58 84.78 84.89 84.64

Tab. 3.6: Results comparison of proposed multi-task learning approach with
different auxiliary tasks. MTM-CNNF is trained along with GENIA-POS
and CoNLL Chunking. MTM-CNNFin the GENIA-POS and CoNLL Chunk-
ing auxiliary tasks are trained in the innermost layer. MTM-CNNin the
BioNER auxiliary tasks trained in the innermost layer.

tasks, GENIA-POS tagging and CoNLL chunking, are trained at the inner-
most layer. This eliminates the task-specific BiLSTM (layer denoted by 3
in Figure 3.1) for these two auxiliary tasks. Using auxiliary tasks at the in-
nermost layer helps the outermost layer (circled 3) to learn from a complete
representation of the auxiliary tasks. The second approach illustrates the
performance improvement compared to the first approach, which motivated
the third approach of auxiliary tasks of this section.

In the third approach (MTM-CNNin), the auxiliary tasks are the same
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BioNER task used in the simple proposed MTM-CNN but this time the auxil-
iary tasks are trained at the innermost layer (without task-specific BiLSTM)
and the main task is used at the outermost layer (having shared BiLSTM
layer). If MTM-CNNin is trained for AnatEM then the rest of the datasets
(BC2GM, BC4CHEMD etc.) are treated as auxiliary tasks for AnatEM, and
do not have task-specific BiLSTM. More specifically, in both the second and
third methods, the auxiliary tasks do not have the task-specific BiLSTM
layer, while the main tasks have the task-specific BiLSTM layer.

Table 3.6 shows the results of the different approaches using auxiliary
tasks. It can be seen that introducing GENIA-POS and CoNLL chunk-
ing auxiliary tasks, the results (MTM-CNNF) are improved for ten datasets
against MTM-CNN. However, when these tasks are used at the innermost
layer (do not have task-specific BiLSTM), it is noticed that the results of
the model, MTM-CNNFin , are improved for twelve datasets compared to the
proposed MTM-CNN. Similarly, when the same BioNER auxiliary tasks are
used at the innermost layer (last column) as in the proposed MTM-CNNin,
the results are improved for nine datasets. Conclusively, the MTM-CNN is
found more effective when trained with auxiliary tasks other than the same
BioNER tasks.

3.3.4 Statistical Analysis of MTM-CNN

To statistically evaluate the performance of the proposed MTM-CNN, the
Friedman test is applied to the different models’ outputs. The Friedman test
is used when three or more comparisons are drawn [13, 85]. The Friedman test
ranks the values in the column and uses these rank values to find the signifi-
cance of the data. Figure 3.2 shows that the results produced by the proposed
models and their variants are statistically significant. All MTMs results are
statistically better than STM at the confidence level of 99.9%. However,
MTM-CNNsoft is the only MTM which is not able to produce statistically sig-
nificant result against STM. It can also be seen that the different approaches
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Fig. 3.2: post hoc pairwise analysis with Nemenyi of Friedman test for MTM-
CNN.

Fig. 3.3: Graphical representation of the Friedman test for MTM-CNN. The
arrows show models that are statistically significant with each other. Models
are shown according to their ranks starting best model from left to right.

of input representation MTM-CNN,MTM-CNNch, MTM-CNNca do not pro-
duce a statistically significant result with each other. All MTMs resulted in
statistically significant results w.r.t Softmax-based MTM (MTM-CNNsoft)
with confidence level of 99.9%. The result of MTM-CNNFin (GENIA-POS
and CoNLL chunking used at the innermost layer) is found statistically sig-
nificant w.r.t to all approaches except for MTM -CNNF (GENIA-POS and
CoNLL chunking used at the outermost layer).
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The output ranks of the Friedman test are considered to analyse which
models are statistically superior to other model(s). Figure 3.3 shows the
models according to their statistical ranks where the left most represents the
best model which decreases from left to right. The arrows represent the sta-
tistical significance between the different models. For ease of understanding
the figure, different colors are used for the rectangles and arrows. For a spe-
cific rectangle (model), the arrows have the same color of the rectangle. It
can be seen that the proposed MTM-CNNFin is statistically better than the
rest of the approaches. Using the auxiliary tasks at the innermost layer is
found most effective producing statistically significant results w.r.t most of
the other approaches. It is also noticed that the proposed method, MTM-
CNNch, with only word and character input representation of the sentence is
better than the word and case input representation (MTM-CNNca).

3.4 MTM-CW

The MTM-CNN [95] presented in section 3.1 comprises the stacked layers of
BiLSTM. However, moving towards a deep LSTMs network can cause the
gradient vanishing problem as well [96]. Furthermore, using a very deep archi-
tecture for some of the tasks could also lead to the catastrophic interference.
In the catastrophic interference, the neural network starts forgetting what it
has learned. To tackle these issues, a new model MTM-CW is proposed in
this section. The proposed multi-task model with character and word input
representations (MTM-CW) propagates input embedding information along
with the outputs of different shared layers to the subsequent layers as shown
in Figure 3.4. This helps successive layers to learn the complex structure
from inputs embeddings and encoded representation of the previous layers to
overcome the gradient vanishing problem and the catastrophic interference
in stacked LSTMs. The skip connections (circled 5 and 6) are represented
with dashed arrows in Figure 3.4 and these skip connections make this model
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Fig. 3.4: Proposed MTM-CW Model where dashed arrows show skip connec-
tions. Circles represents embedding.

different from our previous proposed model. Additionally, the results of sec-
tion 3.3.1 demonstrated that case information does not improve the results
significantly. For this reason, MTM-CW does not use case-level information
of the word.
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3.5 Results and Discussions of MTM-CW

In Table 3.7, we compare the results produced by MTM-CW with previous
approaches [53, 95]. A substantial improvement can be observed in the F1-
score for MTM-CW compared to these models. The MTM-CW elevates the
F1-score for twelve and eleven datasets compared with [53] and MTM-CNN,
respectively. However, to observe whether skip connections (connections from
previous layers) have truly contributed to the performance of the model, the
skip connections (layers numbered with 5 and 6) are dropped (refer to Figure
3.4). MTM-CW without skip connections (MTM-CWw/o) makes it similar
to MTM-CNN (section 3.1) but with two shared BiLSTMs. The effect of
such variation is reported in Table 3.8, where it can be observed that few
datasets show moderate performance increase, while for most datasets the
performance drops. This supports the intuition of proposing the MTM-
CW, where by propagating the information to the lower layers using skip
connections positively impacts the model. Moreover, it is interesting that,
even after dropping those skip connections, the MTM-CWw/o is still able to
perform better compared to state-of-the-art models. This implies that, with
the increasing size of training examples, more layers of LSTM should be
considered [96]. For this reason, the proposed model has shown performance
improvement compared to [53].

3.5.1 Effects of Different Input Representation and Sequence Labeling
Functions

The experiments are extended by introducing the case-level information of
a word in MTM-CW. In this work, the case-level feature includes the same
information of the word that is considered for the MTM-CNN section 3.3.1
i.e., the capitalization features of the word, whether the word is only numeric,
or whether the word contains digits, etc.

A variant of MTM-CW is also proposed where CRF is replaced with
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Datasets Wang et al. [53] MTM-CNN [95] MTM-CW
AnatEM 86.04 86.99 87.50
BC2GM 78.86 80.82 81.57
BC4CHEMD 88.83 87.39 89.24
BC5CDR 88.14 87.85 88.54
BioNLP09 88.08 88.74 88.52
BioNLP11EPI 83.18 84.75 85.36
BioNLP11ID 83.26 87.65 87.19
BioNLP13CG 82.48 84.25 84.94
BioNLP13GE 79.87 79.82 80.91
BioNLP13PC 88.46 88.84 89.16
CRAFT 82.89 83.15 85.23
Ex-PTM 80.19 80.95 81.72
JNLPBA 72.21 74.05 72.10
linnaeus 88.88 87.79 88.12
NCBI-disease 85.54 85.66 85.07
Average 83.79 84.58 85.01

Tab. 3.7: Multi-task models comparison where CW represents character and
word respectively.

Softmax at the output layer to understand the impact of both methods on
predicting the output label of the entities. Table 3.8 depicts the comparison of
both approaches, MTM-CW with case-level information (MTM-CWca) and
MTM-CW with Softmax (MTM-CWsoft). The increase in performance is
noted for eight datasets when the case-level information is considered against
MTM-CW. Comparing the results of MTM-CWca with the MMT-CWw/o, a
performance gain is noted for eleven datasets. The Softmax-based model
(MTM-CWsoft), again yields the low F1-score against the CRF-based model
(MTM-CW). This is also observed in section 3.3.2. This concludes that CRF
is more suitable for the sequence labelling problem compared to Softmax.
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Datasets MTM-CW MTM-CWw/o MTM-CWca MTM-CWsoft

AnatEM 87.50 86.94 87.37 86.36
BC2GM 81.57 81.29 81.66 80.04
BC4CHEMD 89.24 87.44 89.13 86.88
BC5CDR 88.54 88.11 88.64 87.39
BioNLP09 88.52 89.31 88.61 88.18
BioNLP11EPI 85.36 85.01 85.04 84.16
BioNLP11ID 87.19 88.16 87.76 87.28
BioNLP13CG 84.94 84.61 84.86 84.00
BioNLP13GE 80.91 82.28 80.16 80.49
BioNLP13PC 89.16 89.04 89.26 88.37
CRAFT 85.23 83.44 85.04 82.86
Ex-PTM 81.72 82.40 81.50 80.64
JNLPBA 72.10 72.02 72.21 70.31
linnaeus 88.12 88.69 88.74 88.33
NCBI-disease 85.07 85.12 85.56 84.36
Average 85.01 84.92 85.04 83.98

Tab. 3.8: Comparison between the results of different variants of the proposed
model.

3.5.2 Statistical Analysis of MTM-CW

To statistically evaluate the results obtained by the proposed MTM-CW [97]
models, the Friedman test is performed [85]. Figure 3.5 shows the post-hoc
Conover Friedman test where it can be seen that the difference between re-
sults produced by all the models is statistically significant with confidence
level of 99.9% (p < 0.001). The proposed model (MTM-CW) is only sta-
tistically significant with the MTM-CWsoft (the proposed MTM-CW with
Softmax function). The results of different variants of MTM-CW are statis-
tically not significant with each other.

The statistical analysis is also extended with the pairwise comparison of
different models to see which model is statistically better than the others.
The graphical representation of the pairwise comparison is shown in Figure
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Fig. 3.5: post hoc pairwise analysis with Nemenyi of Friedman test for MTM-
CW

Fig. 3.6: Graphical representation of the Friedman test for MTM-CW. The
arrows show models that are statistically significant with each other. Models
are shown according to their ranks starting best model from left to right.

3.6. It can be seen that MTM-CWsoft is statistically worse compared to the
other models. The MTM-CWca is found statistically better than the rest of
the approaches on its right side.

The statistical analysis of MTM-CNN vs MTM-CW is summed up in
Figure 3.7. It can be noticed that MTM-CWca is statistically significant with
MTM-CNN and its variants. The MTM-CW is also statistically significant
against MTM-CNN and its variants except for MTM-CNNFin .

The comparison of MTM-CNN and MTM-CW based on the Friedman
test ranks is shown in Figure 3.8. The arrow lines show that the models are
statistically significant with each other or group of models. It can be noticed
that MTM-CWca and MTM-CW are statistically better than the rest of the
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approaches. More specifically, MTM-CWca is statistically superior to the
rest of the models.

Fig. 3.7: post hoc pairwise analysis with Nemenyi of Friedman test for MTM-
CNN vs MTM-CW

Fig. 3.8: Graphical representation of the Friedman test for MTM-CW vs
MTM-CNN. The arrows show models that are statistically significant with
each other. Models are shown according to their ranks starting best model
from left to right.



4. BIONER USING TRANSFER LEARNING

The results of chapter 3 have demonstrated that MTM can achieve signif-
icant improvements over STM in BioNER. However, for some datasets the
performance has dropped, when trained with MTM. This indicates that some
data may confine the learning process of the MTM. Additionally, the results
of MTM-CNNFin and MTM-CNNin (section 3.3.3) advise that there is a hi-
erarchical learning from standard representations of various tasks in MTM.
It is not easy to find the underlying hierarchical relationship between the
auxiliary task and the main task.

This chapter seeks to overcome the MTM limitations using transfer learn-
ing. In transfer learning, a model is trained (usually partially) on an auxil-
iary task which is then re-used on the main task. Similarly, the model can be
trained on a source domain which can then be re-used on the target domain.
The deep learning models are generally initialized with random weights be-
fore training. However, for many tasks, these models fail to produce the
desired results due to the absence of prior knowledge for that task. In other
words, it is better to guide the new model by initializing it with pre-trained
weights. This supervised signal also shortens the training time of the learning
algorithm. Transfer learning, however, can produce poor results when nega-
tive knowledge is transferred [98]. The transfer learning approach has been
used in many deep learning tasks, e.g., many natural language processing
tasks have benefited from the BERT (Bidirectional Encoder Representations
from Transformers) model using the mentioned approach [99, 100]. Howard
and Ruder [101] fine-tuned a pre-trained long short-term memory (LSTM)
language model for new tasks in different ways. This included unfreezing
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various layers step-by-step and also introducing distinct learning rates for
different layers. Radford et al. [102] fine-tuned a pre-trained transformer-
based language model for task-specific input transformations during an MTL
approach. Oquab et al. [103] trained a model on a huge dataset to ex-
tract the features for the dataset with few training instances. Al-Stouhi
and Reddy [104] empirically showed that the performance of the model can
be leveraged using transfer learning for imbalanced labels’ dataset. Yang
et al. [105] used a pre-trained POS tagging model for word segmentation.
Zoph et al. [106] used high-resource language pair to pre-train a machine
translation model, which was then applied to a low-resource language pair.

In this chapter, we fine-tune the pre-trained MTM for a specific target
dataset. The MTM is trained on various datasets to learn common features
which is the starting point for a STM (MTM→STM). This allows a model
to learn in a guided way and at the same time learn the features specific to
the target dataset.

4.1 Multi-task Model with Transfer Learning

The proposed approach uses multi-task learning with transfer learning. The
MTM model is similar to the one proposed in [53, 107] but is extended with
task-specific BiLSTM as shown in Figure 4.1. The MTM uses word and
character representations of the sentence and is trained on all 15 datasets
that are mentioned in Section 2.2. It is used as a base model and is reused as
the starting point of an STM (MTM→STM). The auxiliary task involves
the training MTM on various datasets whereas the main task is the training
of a STM for each specific dataset that is initialized by the pre-trained MTM.
For transfer learning, the auxiliary task and the main task model remain the
same. More specifically, the base MTM is fine-tuned for a specific dataset
(MTM→STM). In particular, neither new layer(s) is introduced or cut-off
during fine-tuning of the base MTM. In fact, adding new task-specific layer(s)
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Fig. 4.1: Our proposed model used for fine-tuning (MTM→STM).

and initializing them with random weights could degrade the performance of
the model during fine-tuning as the model can face a lack of guidance for the
new task [108].

Indeed, our purpose is to keep the general representation of the features
that are learned from different tasks in the training phase of MTM [109].
The purpose is to learn the common features among all the datasets and
so generalize the parameters of the model, which then will be further fine-
tuned for the specific target dataset; the idea is to move from a generalized
model (MTM) to a specialized model (STM). Yosinski et al. [11] performed
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experiments to compare the feature extractor and the fine-tuning techniques.
They found that, for the feature extractor, the performance of the main task
model depends on where the layers are cut. While investigating the fine-
tuning method, they found it useful without any strict constraint of layers
cut at any level of the base model.

4.1.1 Experimental Settings

Most of the experimental setups is the same as indicated in subsection 3.2.
The character embedding is initialized randomly whereas for word embedding
Wiki-PubMed-PMC [55] is used. The experiments are conducted for three
variants of the proposed method where MTM is trained for a specific number
of epochs and then transfer learning is applied, where the MTM is fine-tuned
for a specific dataset. In the first experiment (MTM

10→STM), theMTM
10 is

trained for ten epochs to learn the standard features representation of various
tasks and then fine-tuned on a specific dataset. In the second experiment
(MTM

20→STM), the MTM
20 is trained for twenty epochs followed by fune-

tuning it for a specific dataset. In the last experiment, theMTM
cmp is trained

until the early stop occurs or the total number of epochs is exhausted (the
early stop is used for earlier experiments as well) and then fine-tuned for a
specific dataset (MTM

cmp→STM). The reported F1-scores represents average
score of 10 runs.

4.2 Results and Discussions for Fine-tuned MTM
(MTM→STM)

Table 4.1 summarizes the results of the experiments. The best F1-score is
shown with boldface text while Italics font style shows the second best
F1-score. In the table, a performance increment can be observed for MTM
in most of the datasets compared to STM; whereas, a decrease of F1-score
for BC2GM, BC4CHEMD, BC5CDR, and CRAFT is also noticed. This



4. BioNER Using Transfer Learning 64

Datasets STM MTM MTM
10→STM MTM

20→STM MTM
cmp→STM

AnatEM 86.74 87.59 87.91 88.01 88.01

BC2GM 81.77 81.69 82.15 82.21 82.06

BC4CHEMD 90.40 89.01 89.99 90.47 90.46

BC5CDR 88.54 88.40 88.88 89.00 89.13

BioNLP09 87.89 89.03 88.54 88.71 88.56

BioNLP11EPI 83.16 85.28 85.34 85.57 85.44

BioNLP11ID 86.31 87.53 87.63 87.82 87.94

BioNLP13CG 83.13 84.93 84.95 85.23 85.19

BioNLP13GE 76.47 80.39 80.11 80.10 80.25

BioNLP13PC 87.76 89.23 89.34 89.27 89.36

CRAFT 84.77 84.26 84.92 85.36 85.09

Ex-PTM 74.04 82.14 81.76 82.09 81.82

JNLPBA 72.25 72.80 73.00 72.13 71.94

LINNAEUS 87.62 88.47 88.82 88.27 88.84

NCBI-disease 84.91 86.24 86.24 85.94 86.29

Average 83.72 85.13 85.31 85.35 85.36

Tab. 4.1: Results comparison of our different fine-tune approaches of MTM
(MTM→STM).

indicates that MTM does not always manage to enhance the performance of
the STM.

From Table 4.1, it can be seen that fine-tuning, (MTM
10→STM), pro-

duces an increase in performance for all datasets compared to STM, except
for BC4CHEMD. BC4CHEMD is a single entity dataset that contains a
large number of chemical entities reducing the sparsity presented in the data.
Therefore, (MTM

10→STM) learns features more distinguishable compared to
the MTL approach; furthermore, comparing it with the MTM, a performance
increase is observed for all datasets except for BioNLP09, BioNLP13GE, and
Ex-PTM. Observing the results of STM and MTM for these three datasets
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shows a substantial performance gain with MTM approach. This indicates
that it is difficult to learn complex feature from these datasets independently
in a STM and can be learn in a MTM. The training of MTM10 extracted
useful features for these datasets but might start to forget such features, or
the noise presented in these datasets might have caused a performance drop.

Continuing the experiments, the MTM model trained for 20 epochs,
(MTM20), is fine-tuned (MTM

20→STM) for each specific dataset. Com-
prehensively, it can be noticed that JNLPBA is the only dataset, out of
15 datasets, where (MTM

20→STM) fails to show an increase in performance
compared to the STM, and in fact, a small decrease in performance is noticed.
An overall performance increment can be observed for nine datasets com-
pared with MTM, while for six datasets a decrease in performance is noticed.
Furthermore, comparing with (MTM

10→STM) approach, a performance im-
provement can be seen for ten datasets, while performance decrease is noticed
for five datasets. Comparing F1-score with MTM, the (MTM

20→STM) fails
to achieve better results for some protein datasets (BioNLP09, BioNLP13GE,
Ex-PTM) while for BioNLP11PEI a performance gain is noticed. In the
JNLPBA dataset, which contains a large number of examples for the protein
class, also shows a decrease in performance. The decrease in performance for
the LINNAEUS dataset might be due to the absence of a sufficient number of
examples for the entity class. This suggests that these datasets are more fea-
sible with the MTL approach. It can also be seen that (MTM

20→STM) has
achieved better results compared to the STM and MTM on BC4CHEMD.
It is also worth noting that the F1-score of MTM on BC4CHEMD is worse
than the STM one.

In a third experiment, a fully trained MTM (MTMcmp) is fine-tuned for
each dataset. It is observed that ( MTM

cmp

→STM) improved the results
for 11 datasets compared to the MTM whereas comparing it with the STM,
the JNLPBA is the only dataset (out of 15 datasets) where a performance
decrease is noticed. Furthermore, comparing it with (MTM

10

→STM), the
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method yields a performance increment for thirteen datasets whereas com-
paring with (MTM

20→STM), a performance increment is noticed for seven
datasets while for AnatEM the performance does not change. Furthermore,
likewise in (MTM

20→STM) and (MTM
10→STM), the (MTM

cmp→STM) per-
forms worse for Protein datasets (BioNLP09, BioNLP13GE, Ex-PTM, and
JNLPBA) compared to the MTM. However, unlike in (MTM

20→STM), a
performance improvement can be seen for LINNAEUS and NCBI datasets
compared to MTM. The (MTM

cmp→STM) achieves the best F1-score for
BC4CHEMD where MTM performs worse with respect to STM. Comparing
it with the (MTM

10→STM) method, the JNLPBA is the only dataset where
(MTM

cmp→STM) fails to achieve a performance gain. Moreover, comparing
with the (MTM

20→STM), a performance decrease is noticed for BC2GM,
BioNLP09, BioNLP11EPI, BioNLP13CG, CRAFT, Ex-PTM, and JNLPBA
whereas for AnatEM and BC4CHEMD the difference is negligible. It is
speculating that the reason for the drop in F1-score is related to the shared
layer in (MTM

cmp→STM) which has learned features that became more task
specific and therefore favoring only specific datasets.

The proposed method, (MTM→ STM), is compared with the STMs
presented in [53] and in section 3.1 and is shown in Table 4.2. The table il-
lustrates that the proposed method outperforms the previous approaches [53,
95], explaining their proposed STMs may have lacking the distinct features.
In the case of fine-tuned models (MTM→STM), the common features are
transferred from pre-trained MTM.

The results of the proposed method are compared with the state-of-the-
art MTMs as well and are represented in Table 4.3, where it can be observed
that our proposed fine-tuned models (MTM→STM [110]) have shown an
increase in performance compared to other methods.

The proposed MTM-CW (section 3.4) has increased in performance for a
single dataset while proposed MTM-CNN 3.1 has shown a performance gain
for only two datasets compared to all fine-tuned models.
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Datasets STM [53] STM [95] MTM
10→STM MTM

20→STM MTM
cmp→STM

AnatEM 85.00 85.89 87.91 88.01 88.01

BC2GM 80.00 80.9 82.15 82.21 82.06

BC4CHEMD 88.75 88.6 89.99 90.47 90.46

BC5CDR 86.96 85.66 88.88 89.00 89.13

BioNLP09 84.22 87.03 88.54 88.71 88.56

BioNLP11EPI 77.67 81.48 85.34 85.57 85.44

BioNLP11ID 74.60 83.21 87.63 87.82 87.94

BioNLP13CG 81.84 81.27 84.95 85.23 85.19

BioNLP13GE 69.30 73.36 80.11 80.10 80.25

BioNLP13PC 85.46 86.33 89.34 89.27 89.36

CRAFT 81.20 83.84 84.92 85.36 85.09

ExPTM 67.66 72.70 81.76 82.09 81.82

JNLPBA 72.17 74.48 73.00 72.13 71.94

linnaeus 86.94 87.38 88.82 88.27 88.84

NCBI 83.92 84.11 86.24 85.94 86.29

Average 80.38 82.42 85.31 85.35 85.36

Tab. 4.2: Results comparison of proposed MTM→STM method with state-
of-the-art STMs

4.2.1 Statistical Analysis of MTM→STM

The results are evaluated using Friedman’s statistical test as presented in
Figure 4.2. The figure shows that all the variants of MTM→STM have pro-
duced statistically significant results against the counterpart STM and MTM.
The results are statistically significant with previously mentioned approaches,
MTM-CNN [95] and MTM-CW [97]. Nevertheless, the MTM→STM have
not generated significant results with each other.

The models are also shown according to their Friedman statistical ranks
and are given in Figure 4.3. For the readability purpose, large blue rectangle
is used to group all the models that are found statistically significant based on
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Datasets MTM-CNN [95] MTM-CW [97] MTM
10→STM MTM

20→STM MTM
cmp→STM

AnatEM 86.99 87.50 87.91 88.01 88.01

BC2GM 80.82 81.57 82.15 82.21 82.06

BC4CHEMD 87.39 89.24 89.99 90.47 90.46

BC5CDR 87.85 88.54 88.88 89.00 89.13

BioNLP09 88.74 88.52 88.54 88.71 88.56

BioNLP11EPI 84.75 85.36 85.34 85.57 85.44

BioNLP11ID 87.65 87.19 87.63 87.82 87.94

BioNLP13CG 84.25 84.94 84.95 85.23 85.19

BioNLP13GE 79.82 80.91 80.11 80.10 80.25

BioNLP13PC 88.84 89.16 89.34 89.27 89.36

CRAFT 83.15 85.23 84.92 85.36 85.09

ExPTM 80.95 81.72 81.76 82.09 81.82

JNLPBA 74.05 72.10 73.00 72.13 71.94

linnaeus 87.79 88.12 88.82 88.27 88.84

NCBI 85.66 85.07 86.24 85.94 86.29

Average 84.58 85.01 85.31 85.35 85.36

Tab. 4.3: Results comparison of MTM→STM with state-of-the-art MTMs

their results toMTM
cmp→STM , MTM

20→STM , andMTM
10→STM . The fig-

ure presents that all the fine-tuned models have produced higher Friedman
statistical scores. The MTM

cmp→STM has generated the highest statisti-
cal rank indicating that this model has covered a wider range of features,
benefiting datasets suitable for both the MTL and STL approaches. The
MTM

10→STM has produced the lowest ranks among the fine-tuned mod-
els, which shows that the base model (MTM10) for that experiment has not
learned distinct features, and therefore, using that model as a starting point
for STM has not benefited the model.
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Fig. 4.2: post hoc Conover Friedman test output for MTM→STM.

Fig. 4.3: Graphical representation Friedman test ranks produced byMTM→
STM . The arrows show models are statistically significant with each other.
Models are shown according to their ranks starting best model from left to
right.



5. BIONER USING KNOWLEDGE DISTILLATION

The transfer learning technique has shown a performance improvement for
those datasets that do not have enough training examples. However, trans-
fer learning also faces limitations, for instance, catastrophic forgetting or
catastrophic interference problem [84]. In catastrophic forgetting, the deep
learning model starts to forget what it has learned from the previous domain.
Failing to remember previously learned source information happens even if
both source and target domains are heterogeneous [111]. It is also an empir-
ical dilemma to choose the number of new layers in the base or target model
that is to be used on the target dataset. Similarly, the layers that need to
be frozen in the base or target model as it is applied on the target dataset.
As a result, the transfer learning approach is not always a feasible solution
for transferring the previous knowledge to a new task. Another issue related
to the deep learning models is their complex structure. In many fields, deep
learning models have produced state-of-the-art results, but the structure of
these models is very complex and requires extensive computational power for
training. Sutskever et al. [112] proposed a model that comprised of 4-layers
of LSTMs and each layer had 1000 hidden units. Similarly, the model pre-
sented by Zhou et al. [113] had multi-level LSTMs and each layer comprised
of 512 hidden units. These deep learning models have millions of parameters
and training such models is challenging. These cumbersome models also re-
quire more storage space, making them unsuitable to deploy with real-time
data. One example is to use them on a cell phone where limited storage and
computational power is available. As a result, it is necessary to compress
these complex models while preserving the generalization they have learned.
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In other words, without jeopardising the performance of these deep learn-
ing models. In this case, the knowledge distillation approach is utilized, in
which the cumbersome model is compressed into the simple model which
makes it feasible to set up in the end devices [114]. This chapter proposes
the distillation knowledge approach to leverage the performance of the deep
learning models. Instead of compressing the model, this research aims to
maximize the efficiency and performance of models. For this reason, this
chapter presents different approaches to boost the performance of the deep
neural network models.

5.1 Proposed Knowledge Distillation Approach

The proposed knowledge distillation approach [115] is shown in Figure 5.1.
The teacher model is an MTM that uses the word and character input rep-
resentations of the sentences. The upper layers, shown in the black round
rectangle, of the MTM are shared among all datasets. The bottom lay-
ers, represented by the red round rectangle, are dataset-specific, whereas the
Softmax function is used for output labelling. Training jointly on the related
tasks allows MTM to learn common features among different tasks by using
shared layers [60]. Training related tasks together helps the model to opti-
mize its parameters for different tasks. This lowers the chances of overfitting
for any specific task. The task-specific layers learn features that are more
related to the current task.

Such behaviour of MTM can also be transferred to the student model with
the help of knowledge distillation approach. Thus, MTM (right side of Figure
5.1) is a teacher model used in the later experiments presented in this chapter
(section 5.2). Furthermore, the aim of this research is to perform knowledge
distillation at the token level. For this reason, the proposed approach em-
ploys Softmax function which produces probability distribution at the token
level. The token level knowledge distillation is not possible with conditional
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Fig. 5.1: Proposed Knowledge Distillation Approach (colored circles show
embedding)

random fields (CRFs) as they predict the labels for the whole sequence. The
CRF-based model labels the sequence by considering the association between
neighboring labels. This confines the knowledge distillation from the teacher
models [116]. To verify this hypothesis, two different teacher MTMs are uti-
lized, one using CRF at the output layer and the other using the Softmax
function.

The student model is in fact a counterpart STM of the MTM. As such,
STM is a student model but trained without knowledge distillation approach.
Therefore, the structure of both models is same. The proposed approach uti-
lizes different layers of MTM for knowledge distillation. Deep learning model
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comprehends complex features from generic level to abstract level, layers by
layers. Inferring that, different intermediate layers of the teacher model are
used for knowledge distillation. This includes a shared BiLSTM layer, a
task specific BiLSTM layer, and a hidden layer logits (refer Figure 5.1). As
such, the student model is trained in a guided way at different levels, spec-
ulating this will increase the performance of the student model. The layers’
knowledge is integrated from logits’s layer to different layers’ step by step in
different experiments to observe the effects of each integration. The logits
(input to the Softmax layer [117]) carry values that can range in [−∞,+∞],
are unmasked information, and therefore the features representation at this
level is more beneficial and refined. The Softmax function uses logits to
produce a probability distribution of class labels, which causes to loss of
hidden knowledge present in the logits’ layer. Considering that, this chap-
ter also contains the experiments, where a student model is trained on the
logits of the MTM (section 5.2.1). However, to validate this hypothesis, the
knowledge distillation is also performed at the Softmax layer using soft labels
where the output probability distribution of the teacher model is softened by
a tunable parameter τ .

This chapter also explores the advantages of ensemble methods in two
different ways. In the first way, logits (input to the Softmax layer [117]) of
different MTMs are combined to train the student model. The MTMs used
in the ensemble approach have the same architecture, but initialized with
different seed values, which causes MTMs to have different trained weights.
The combined logits are averaged which are then used to distill knowledge to
the student model. In the second method of the ensemble approach, logits of
the CRF-based and Softmax-based MTMs are averaged to train the student
model (SM). The rationale behind this approach is that different MTMs learn
different features set, and therefore, the SM is trained on a wider range of
the features.

During the training, the SM considers the true labels as well as the
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distillation loss, which depends by matching the outputs of the teacher
model (MTM). For the intermediate layers’ knowledge distillation loss, mean-
squared-error (MSE) is calculated which aims to minimize the loss between
the student predictions and the teacher predictions at different layers. On
the contrary, when soft labels are considered then cross entropy loss is used.

5.2 Experimental Settings

As a first approach, the MTM, shown in the right side of Figure 5.1, is trained
separately. This MTM is then used to distill the knowledge to the student
model (SM). When the knowledge distillation is performed using the logits
of the hidden layer, Equation 5.1 is used to compute the loss of the SM. The
knowledge distillation loss is the MSE of the teacher and the student logits.
Here, x represents the input, W represents SM’s parameters, H is the cross-
entropy loss whereas y corresponds to the true labels. The σ is the Softmax
function applied on the teacher logits, zs, and student logits, zt. The α and
β are hyperparameters to quantify each loss.

The experiments are conducted for different values of α i.e.,[0, 0.5, 1]

whereas β = 1 − α. The hyperparameter tuning for α and β is not done,
instead the values are selected in a simple straightforward way. If α = 0,
then the SM learns with only distillation loss, while keeping α = 0.5 makes
equal use of both student loss and distillation loss. Finally, α = 1 only allows
the SM to consider the student loss. It should be noted that for α = 1, the
SM becomes a single task model (STM). The SM, however, still considers
the logits of the teacher model during its training phase. This helps the SM
to learn and modify the weights of layers during the back propagation phase.

When the knowledge distillation is carried out at the task specific BiL-
STM layer along with the logits of the hidden layer, the loss is computed
using Equation 5.2. The new parameter, γ = [0, 0.5, 1], weighs the matching
loss at the task specific BiLSTM layer. The hyperparameters tuning is per-



5. BioNER Using Knowledge Distillation 75

formed to select best value for α, β and γ. When knowledge of the shared
BiLSTM is incorporated along with the above layer’s knowledge, then loss
is calculated using Equation 5.3. The MSE error of the task specific BiL-
STM is controlled using the new parameter, κ = [0, 0.5, 1]. For Equation 5.3,
hyperparameter tuning is performed for β, γ, and κ to select the best value
from [0, 0.5, 1] for each parameter. While α is kept constant to 1. When
the knowledge distillation is carried out using soft labels, the Equation 5.4 is
used to calculate the loss. The α and β parameters retained to 0.5 while τ
and is fine-tuned for each dataset. The F1-scores reported are based on the
10 runs.

L(x;W ) = α · H(y, σ(zs, zt)) + β ·MSElogits (5.1)

L(x;W ) = α · H(y, σ(zs, zt)) + β ·MSElogits + γ ·MSETaskSpecific (5.2)

L(x;W ) = α·H(y, σ(zs, zt))+β·MSElogits+γ·MSETaskSpecific+κ·MSEShared

(5.3)

L(x;W ) = α · H(y, σ(zs, zt)) + β · H(y, σ(zs/τ, zt/τ)) (5.4)

5.2.1 Knowledge Distillation Using Logits of the Teacher Model

Table 5.1 presents the results comparison of the SMsψ with STM and MTM
(a teacher model). The SMsψ have outperformed for most of the datasets
compared with the STM except for BC4CHEMD and CRAFT. Observing
the results of MTM for BC4CHEMD and CRAFT, it is noticed that MTM is
not able to improve the results for these datasets. This might be the reason
that the SMsψ are not able to learn sufficient knowledge from the MTM. It
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Datasets STM MTM
SMsΨ

α = 0 α = 0.5 α = 1

AnatEM 86.63 86.75 87.32 87.35 87.46
BC2GM 81.12 79.82 80.98 81.09 81.35
BC4CHEMD 90.19 86.71 89.35 89.44 89.48
BC5CDR 88.06 87.38 87.84 88.12 88.19
BioNLP09 87.49 88.35 88.77 88.59 88.72
BioNLP11EPI 82.66 84.49 84.33 84.57 83.75
BioNLP11ID 85.65 87.25 86.99 86.95 86.41
BioNLP13CG 82.11 83.91 83.07 83.49 82.91
BioNLP13GE 75.51 79.67 77.60 77.92 76.60
BioNLP13PC 87.03 88.37 88.05 88.17 87.72
CRAFT 84.32 82.14 83.29 84.00 84.16
ExPTM 73.28 80.80 76.09 76.43 75.16
JNLPBA 70.82 70.37 71.35 72.14 71.58
linnaeus 87.66 88.34 88.51 88.50 88.23
NCBI 84.15 84.74 84.91 85.03 84.44

Average 83.11 83.94 83.90 84.12 83.74

Tab. 5.1: Results comparison of the SMψ trained with logits of the Softmax-
based teacher MTM.

is still worth noting that SMsψ have improved the results by 2.5% for these
two datasets compared with the MTM, showing the benefits of the knowledge
distillation approach. The SMψ(α = 0.5) trained with both, the student loss
and the distillation loss, has been found more effective, yielding an average
F1-score of 84.12 followed by the SMψ(α = 0) trained with only knowledge
distillation loss resulting an average F1-score of 83.90.

The statistical analysis is also performed on the results of Table 5.1 using
Friedman test, where the results are found statistically significant with p <
0.05. Figure 5.2 depicts the graphical representation of the model based
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Fig. 5.2: Graphical representation of the Friedman test for Table 5.1. The
arrows show models that are statistically significant with each other. Models
are shown according to their ranks starting from best model from left to
right.

on the ranks generated by the Friedman test. For better understanding,
different colors are used for the rectangles and arrows, where the arrow has
the same color as of the rectangle to which it belongs to. The SMψ(α = 0.5)

produces the best results and is statistically significant w.r.t to all other
models except for the SMψ with (α = 1). This is the only SMψ that
generates statistically significant results w.r.t to its teacher model (MTM).
The results of SMψ with (α = 0) are found worse among the SMsψ that is
unable to produce statistically significant results against STM.

5.2.2 Knowledge Distillation Using an Ensemble Approach

In machine learning, ensemble approaches have been found more effective
than the single machine learning model approach. Deep learning models are
nonlinear, and therefore produce a different set of weights each time a single
model is trained. The initial weights can also cause different predictions,
resulting in high variance in the predictions. In order to reduce such variance,
various neural network models can be trained and combined to generate a
single prediction. Furthermore, the single model might not necessarily learn
distinctive features present in the data. This limitation can be tackled in the
ensemble approach where feature representations from different models are
combined in a single ensemble model. The predictions from different models
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can be combined using different methods including voting, average, weighted
voting/average schemes.

This section introduces two types of ensemble methods where different
predictions are combined using a weighted average scheme. In this scheme,
predictions from different models are averaged and combined according to
their estimated performance. In this section feature representations at the
logits layer are combined from various models, which enhances the learning
ability of the SM to learn from a wide range of feature representations. The
MTMs used in the ensemble approach have the same architecture, but they
are initialized with different seed values, resulting in different predictions.
In the first proposed approach, the SMsφ use the weighted averaged logits
from different MTMs to train the SMφ. The averaged logits of these MTMs
are used to train the SMφ. In the second ensemble approach, the weighted
averaged logits of Softmax-based MTMs and CRF-based MTMs are used to
train the SM §.

Table 5.2 represents the first ensemble approach where the results are
improved over the previous single teacher distillation approach. The perfor-
mance improvement is also noted for the BC4CHEMD and CRAFT datasets,
as these datasets have shown a performance drop, when trained with the log-
its of a single MTM (section 5.2.1). The increase in performance is also noted
for BioNLP11ID, BioNLP13CG, and BioNLP13PC against the MTM.

The results of the second ensemble approach are presented in Table 5.3.
The logits of CRF-based MTM (MTMCRF ) are used in conjunction with the
logits of Softmax-based MTM, where the average sum of both logits are
used to train the student model. This makes both models a teacher model
for the student model, and therefore, the given table also contains the re-
sults of CRF-based MTM (MTMCRF ) for comparison. The CRF-based MTM
(MTMCRF ) has shown the best F1-score for most of the datasets even com-
pared with the Softmax-based MTM. However, when knowledge distillation
is performed using the same MTMCRF and MTM, the performance of the
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Datasets STM MTM
SMsφ

α = 0 α = 0.5 α = 1

AnatEM 86.63 86.75 87.94 88.04 86.99
BC2GM 81.12 79.82 81.93 82.19 81.02
BC4CHEMD 90.19 86.71 88.87 90.58 90.18
BC5CDR 88.06 87.38 88.54 88.80 88.35
BioNLP09 87.49 88.35 89.44 89.08 87.28
BioNLP11EPI 82.66 84.49 84.95 85.00 82.58
BioNLP11ID 85.65 87.25 87.71 87.63 85.37
BioNLP13CG 82.11 83.91 83.78 84.06 82.40
BioNLP13GE 75.51 79.67 77.93 78.03 75.80
BioNLP13PC 87.03 88.37 88.80 88.76 87.22
CRAFT 84.32 82.14 83.80 84.96 84.10
ExPTM 73.28 80.80 77.23 76.78 73.27
JNLPBA 70.82 70.37 71.96 72.74 71.18
linnaeus 87.66 88.34 89.66 89.57 87.96
NCBI 84.15 84.74 86.20 86.08 84.25

Average 83.11 83.94 84.58 84.82 83.20

Tab. 5.2: Results comparison of the SMφ trained with logits of the ensemble
teacher Softmax-based MTMs.

SMs§ does not improve for most of the datasets. The reason could be that
the CRF based model labels the sequence globally considering the association
between neighboring labels. Therefore, this limits the distilling knowledge
from the teacher models [116]. This might be the possible reason of the per-
formance degradation of the corresponding SMs. Comparing the SMs§ with
MTM, the results are improved for most of the datasets. The SM §(α = 0)

shows a performance gain for 10 datasets compared with the MTM. The
SM §(α = 0.5) yields result improvement for 12 datasets while SM §(α = 1)

gives the worse performance with a performance gain for only 6 datasets.
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Datasets STM MTM MTMCRF SMs§

α = 0 α = 0.5 α = 1

AnatEM 86.63 86.75 87.59 87.56 87.72 87.32
BC2GM 81.12 79.82 81.69 80.95 81.55 81.27
BC4CHEMD 90.19 86.71 89.01 89.22 90.14 90.20
BC5CDR 88.06 87.38 88.40 88.16 88.46 88.31
BioNLP09 87.49 88.35 89.03 88.84 88.84 88.19
BioNLP11EPI 82.66 84.49 85.28 84.40 84.58 83.88
BioNLP11ID 85.65 87.25 87.53 87.48 87.26 86.52
BioNLP13CG 82.11 83.91 84.93 83.50 83.67 82.93
BioNLP13GE 75.51 79.67 80.39 77.98 77.95 76.78
BioNLP13PC 87.03 88.37 89.23 88.27 88.42 87.78
CRAFT 84.32 82.14 84.26 83.67 84.63 84.51
ExPTM 73.28 80.80 82.14 76.52 76.23 74.80
JNLPBA 70.82 70.37 72.80 71.03 72.14 71.59
linnaeus 87.66 88.34 88.47 89.16 88.97 88.28
NCBI 84.15 84.74 86.24 85.57 85.31 84.85

Average 83.11 83.94 85.13 84.15 84.39 83.81

Tab. 5.3: Results comparison of the SM § trained with the logits of the
Softmax-based MTM and CRF-based MTM (MTMCRF ).

The statistical results reported in the Table 5.2 are graphically presented
in Figure 5.3. The SMφ(α = 0.5) set up the best rank and produces statisti-
cally significant results as compared to the rest of the models including other
variants of SMsφ(α = 0 and α = 1). The SMsφ(α = 0.5 and α = 0) achieved
better score against the teacher model (MTM) whereas SMφ(α = 1) does
not produce significant results even compared with the STM.

Figure 5.4 illustrates the Friedman test ranks for the models presented
in Table 5.3. It can be seen that none of the SMs§ have produced statisti-
cally better results compared with the MTMCRF . However, the SMs§(α =
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Fig. 5.3: Graphical representation of the Friedman test for Table 5.2. The
arrows show models that are statistically significant with each other. Models
are shown according to their ranks starting best model from left to right.

Fig. 5.4: Graphical representation of the Friedman test for Table 5.3. The
arrows show models that are statistically significant with each other. Models
are shown according to their ranks starting best model from left to right.

0.5 and α = 0) have statistically performed well against MTM. Conclusively,
all SMs§ are found statistically better than STM.

5.2.3 Knowledge Distillation Using Intermediate Layers of Teacher Model

To extract more knowledge from the teacher model, the knowledge distillation
is performed at different levels of the intermediate layers. Different layers
learn different feature representations and training SM on the diverse features
can be effective. The output of both shared and task specific BiLSTMs (refer
to Figure 5.1) is used for knowledge distillation along with the logits of the
hidden layer, and the results are depicted in Table 5.4. The MSE is computed
for the output of the teacher’s BiLSTM and student’s BiLSTM. The SM ††

with a task specific BiLSTM shows remarkable improvement in all datasets
compared with the STM, whereas comparing against MTM, the increase in
performance is noted for nine datasets. Likewise, the previously proposed
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Datasets STM MTM SM†† SM†F

AnatEM 86.63 86.75 87.84 87.83
BC2GM 81.12 79.82 81.82 81.63
BC4CHEMD 90.19 86.71 90.52 90.57
BC5CDR 88.06 87.38 88.89 88.83
BioNLP09 87.49 88.35 88.39 88.37
BioNLP11EPI 82.66 84.49 84.08 84.39
BioNLP11ID 85.65 87.25 86.64 86.80
BioNLP13CG 82.11 83.91 83.69 83.64
BioNLP13GE 75.51 79.67 77.60 77.99
BioNLP13PC 87.03 88.37 88.29 88.39
CRAFT 84.32 82.14 85.15 85.07
ExPTM 73.28 80.80 75.02 74.51
JNLPBA 70.82 70.37 71.77 71.69
linnaeus 87.66 88.34 89.18 88.44
NCBI 84.15 84.74 85.51 85.58

Average 83.11 83.94 84.29 84.25

Tab. 5.4: Results comparison of the proposed Softmax-based SM. SM ††

trained with task specific intermediate BiLSTM layer of Softmax-based
MTM. SM †F trained with Shared and task specific intermediate BiLSTM
layer of Softmax-based MTM.

SMs, SM †† fails as well to leverage the performance for most of the protein
datasets. With the introduction of the shared BiLSTM layer along with the
task specific BiLSTM layer (SM †F), the performance of the model increased
for some datasets compared to the task specific SM ††.

Further analysing the results using Friedman test as shown in Figure 5.5,
it is found that results of both SMs (SM †F and SM ††) are not statistically
significant with each other. However, they are statistically better than the
MTM and STM.
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Fig. 5.5: Graphical representation of the Friedman test for Table 5.4. The
arrows show models are statistically significant with each other. Models are
shown according to their ranks starting best model from left to right.

5.2.4 Knowledge Distillation for CRF-based Student Model

In the above experimentations, the SMs use Softmax at the output layer.
This section uses the SM that utilizes CRF at the output layer while the rest
of the architecture and approaches remain same. The results used for the
CRF-based SMF are the average F1-score of five runs. For fair comparison,
the results of other models (STM and MTM) are also based on five runs.
As discussed earlier, the SM is in fact STM but is trained with external
knowledge. For this reason, the STM with CRF (STMCRF ) at the output
layer is selected for the comparison. Table 5.5 depicts the results of the
CRF-based SMF trained on the logits of the CRF-based MTM. The results
of the SMsF drops noticeably against teacher MTM. This demonstrates
that the performance of the SMsF is confined when CRF-based teacher
MTM (MTMCRF ) is used for knowledge distillation. However, it is quite
interesting that the SMsF still gives high F1-score against the counterpart
STM. All the variants of the SMF demonstrate a performance improvement
for ten datasets compared with the STM.

In another experiment, the CRF-based SMFφ is trained with the log-
its of Softmax-based MTM and results are presented in Table 5.6. The
average scores of the SMsFφ indicates distinguishable increase in F1-score
compared with the SMsFφ. This increase in performance illustrates that
Softmax-based teacher MTM distills more knowledge in comparison of CRF-
based teacher MTM (MTMCRF ). The SMFφ(α = 0) achieves F1-score for
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Datasets STMCRF MTMCRF
CRF-based SMF

α = 0 α = 0.5 α = 1

AnatEM 86.83 87.70 87.66 87.67 87.62
BC2GM 81.82 81.68 80.17 80.23 80.34
BC4CHEMD 90.43 89.10 90.23 90.10 90.07
BC5CDR 88.68 88.45 88.31 88.38 88.29
BioNLP09 87.88 89.08 88.03 88.09 88.03
BioNLP11EPI 83.41 85.28 84.09 83.94 83.97
BioNLP11ID 86.21 87.66 86.84 87.10 86.76
BioNLP13CG 83.18 84.70 83.42 83.39 83.25
BioNLP13GE 76.65 80.93 77.04 76.88 76.94
BioNLP13PC 87.69 89.35 88.17 88.06 88.29
CRAFT 85.11 84.49 84.38 84.41 84.37
ExPTM 73.54 82.44 76.02 76.06 75.95
JNLPBA 72.26 72.84 71.41 71.20 71.22
linnaeus 87.86 88.32 88.86 89.50 88.92
NCBI 84.85 86.00 84.97 85.07 84.99

Average 83.76 85.20 83.97 84.01 83.93

Tab. 5.5: Results comparison of the proposed CRF-based SM. SMF trained
with CRF-based teacher MTM.

nine datasets compared with its counterpart STM. While the SMsFφ(α =

0.5 and α = 1) show an increase in performance for ten datasets against
STM.

Figure 5.6 depicts the statistical analyses of the CRF-based SMs. The
MTMCRF and STMCRF represent the models with CRF at the output layer
unlike other MTM and STMwhere Softmax is used at the output layer. It can
be noticed that CRF-based SMs are statistically worse compared with their
corresponding teacher MTMCRF . However, the Softmax-based SMs produce
statistically better results compared with their corresponding teacher MTM.



5. BioNER Using Knowledge Distillation 85

Datasets STMCRF MTM
CRF-based SMFΦ

α = 0 α = 0.5 α = 1

AnatEM 86.83 86.78 87.48 87.59 87.49
BC2GM 81.82 79.68 81.26 81.36 81.20
BC4CHEMD 90.43 86.80 89.81 89.71 89.78
BC5CDR 88.68 87.49 88.33 88.31 88.30
BioNLP09 87.88 88.40 88.94 88.79 88.75
BioNLP11EPI 83.41 84.56 83.92 84.40 84.38
BioNLP11ID 86.21 87.26 86.82 86.66 86.69
BioNLP13CG 83.18 83.83 83.12 83.31 83.36
BioNLP13GE 76.65 80.06 77.89 77.80 77.97
BioNLP13PC 87.69 88.17 88.33 88.25 88.28
CRAFT 85.11 81.96 84.10 84.35 84.32
ExPTM 73.54 80.69 76.08 76.08 76.38
JNLPBA 72.26 70.40 71.82 71.89 71.72
linnaeus 87.86 88.32 88.94 89.67 88.78
NCBI 84.85 84.50 85.33 85.37 85.54

Average 83.76 83.93 84.14 84.50 84.20

Tab. 5.6: Results comparison of the proposed CRF-based SM. SMFΦ trained
with Softmax-based teacher MTM.

Fig. 5.6: Graphical representation of the Friedman test for Table 5.5 and
Table 5.6. The arrows show models are statistically significant with each
other. Models are shown according to their ranks starting best model from
left to right.
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While no SM is able to produce statistically better results against another
SM. However, SMsFφ trained with Softmax-based MTM are statistically
better compared with CRF-based and Softmax-based STMs, whereas SMsF

failed to produce statistically different results against STMCRF .

5.2.5 Knowledge Distillation Using Soft Labels

So far the SMs discussed in the above subsections are trained on the true
labels along with the feature representations of the teacher model’s inter-
mediate layers. This subsection presents the SM¶ that is trained on the
soft labels of the teacher model simultaneously. The soft labels are in fact
the output probability distribution of the Softmax function. However, they
are normalized by a constant temperature hyperparameter τ as discussed in
section 2.6.5.The cross entropy loss is calculated for soft labels just as cross
entropy is used for true labels. Both losses, cross entropy loss of true labels
and cross entropy loss of soft labels, are considered equally. Table 5.7 depicts
the results of the SM¶ where it can be seen that the SM¶ shows a slight
performance gain for some datasets compared with the STM. While compar-
ing with the MTM, the SM¶ is relatively found better for those datasets,
for which STM has shown high F1-score e.g., BC2GM, BC4CHEMD, and
CRAFT. This indicates that the learning behaviour of the SM¶ resembles
more towards STM. By analyzing the results, it can be concluded that logits
pass more knowledge to the student model (section 5.2.1) compared to the
Soft labels.

The output of the Friedman test is shown in Figure 5.7 where it can be
seen that SM¶ performs statistically worse than the MTM. The SM¶ is also
not able to produce significant results compared with the STM.
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Datasets STM MTM SM¶

AnatEM 86.63 86.75 86.82
BC2GM 81.12 79.82 81.12
BC4CHEMD 90.19 86.71 90.18
BC5CDR 88.06 87.38 88.20
BioNLP09 87.49 88.35 87.57
BioNLP11EPI 82.66 84.49 83.03
BioNLP11ID 85.65 87.25 85.58
BioNLP13CG 82.11 83.91 82.24
BioNLP13GE 75.51 79.67 75.00
BioNLP13PC 87.03 88.37 87.09
CRAFT 84.32 82.14 84.38
ExPTM 73.28 80.80 73.05
JNLPBA 70.82 70.37 71.00
linnaeus 87.66 88.34 87.63
NCBI 84.15 84.74 84.02

Average 83.11 83.94 83.13

Tab. 5.7: Results comparison of the SM¶ trained with soft labels of teacher
MTM.

Fig. 5.7: Graphical representation of the Friedman test for Table 5.7. The
arrows show models that are statistically significant with each other. Models
are shown according to their ranks starting best model from left to right.



6. CONCLUSION

This thesis has explored different knowledge transfer techniques to leverage
the performance of the BioNER task. The first approach presented in this re-
search is based on the multi-task learning (MTL) approach. Jointly training
various models helps multiple tasks to transfer their knowledge implicitly us-
ing a shared layer(s). MTL, therefore, increases the size of the data available
to the multi-task model (MTM). MTL also allows the model to learn those
features, which can be more challenging to learn independently from any
specific task. In this thesis, two different MTMs are proposed: a multi-task
model with a convolutional neural network (MTM-CNN) and a multi-task
model with character and word input (MTM-CW). Based on the results pre-
sented in this thesis, we find that MTM indeed leverages the performance of
the BioNER task over a single task model (STM).

The proposed MTM-CNN is trained with the same BioNER task and
with dissimilar auxiliary tasks: GENIA-POS tagging and CoNLL chunking
(section 3.3.3). The results from this work showed that MTM learns complex
features more proficiently when trained with dissimilar auxiliary tasks. The
results also showed that the main task comprehends complex features from
auxiliary tasks if they are trained at the lower layers (innermost) of MTM.
This suggests that some tasks learn from other tasks in an expected order in
the MTM. In this way, some tasks may provide supervision to other tasks in
a more efficient way.

The MTM-CW propagates the input embedding information along with
the outputs of different shared layers to the subsequent layers. This allows
successive layers to learn the complex structure from the encoded represen-
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tation of the previous layers. MTM-CW yields high F1-score and Friedman
output ranks, compared with the MTM-CNN and MTM-CWw/o (the MTM-
CW without prior encoded representation of the preceding lower layers).

We also modified the MTM-CNN and MTM-CW at the output layer,
where Softmax is used instead of the conditional random field (CRF). The
CRF-based MTMs achieve better results and are statistically superior than
the Softmax-based MTMs (section 3.3.2, section 3.5.1). The performance
degradation with Softmax could be due to the ambiguous entities present in
the data. The Softmax function produces an output probability distribution
for a specific word and ignores the information of the neighbour words.

Another method used in the thesis is based on the transfer learning tech-
nique. The transfer learning is applied on the pre-trained MTM. The MTM
is trained for different epochs as an auxiliary task which are then further
fine-tuned for a specific task. The objective is to produce a generalized base
model which is then specialized for a specific dataset. The results show a
performance gain compared to the MTM-CNN, MTM-CW, and other state-
of-the-art approaches including STM. The experiments showed that training
the base model on dominant data could lead to a performance drop when
fine-tuned on similar data, speculating this causes the target model to be
stuck in a local minimal. The statistical analysis depicts that the proposed
transfer learning approach produces statistically significant results against
MTM-CNN, MTM-CW, and STM.

The last method presented in this thesis is based on the knowledge dis-
tillation approach. The MTM has the ability to generalize well by learning
common features among various tasks which has been seen in the results
reported in the thesis. In order to transfer the generalizations of the MTM,
the proposed knowledge distillation method utilizes MTM as the teacher
model. The Deep learning model learns from generic level features to ab-
stract level features, layers by layers. The proposed approach, therefore, per-
forms knowledge distillation from different layers of the MTM that include
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shared BiLSTM, task specific BiLSTM, and a hidden layer.
Additionally, an ensemble method is also implemented where logits of

the different MTMs are averaged to train the student model. In another
ensemble approach, the logits of the Softmax-based MTM and CRF-based
MTM are averaged to teach the student model. The distillation and student
losses are controlled by their tunable parameters. The results show that
the values of these hyperparameters could depend on the structure and the
size of both teacher and student models. However, a performance gain is
noted for student models when both, true labels loss and distillation loss, are
considered equally. The results from this thesis also revealed that distilling
knowledge from the Softmax-based MTM is more favorable for knowledge
distillation compared with the CRF-based MTM.

For future work, the MTL approach will be extended by combing different
auxiliary tasks with BioNER. This can include biomedical relation extrac-
tion, biomedical question answering tasks, etc. The underlying relationship
between auxiliary tasks and main tasks will be explored to understand the
selection of auxiliary tasks for the main task and this can also help to remove
the training data that causes a bottleneck during MTM training. The results
of section 3.3.3 have showed that auxiliary tasks trained at the innermost
layer consistently produced better results. In future work, this hierarchical
relationship between main and auxiliary tasks will be further investigated
with more auxiliary tasks trained at different levels of layers.

The knowledge distillation will be extended for semi-supervised learning
where MTM will be used to produce soft labels for the large amount of
unlabeled data. These soft targets will then be used to train a student model.
Additionally, the training of the student model can be combined with noisy
data and soft labels to investigate its effect on the performance of the student
model. The knowledge distillation approach will also be extended for model
compression, where the complicated model will be utilized to teach a simpler
student model.
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