


  

Sommario 

Il presente lavoro di tesi ha riguardato lo sviluppo di un sistema interattivo di comando per 

manipolatori robotici, basato su una comunicazione tramite gesti delle mani riconosciuti da 

prototipo di interfaccia uomo-robot che possa rendere 

manipolatori, sia industriali che collaborativi, semplice e intuitiva anche per utenti non esperti. 

Questo permette di interfacciarsi al sistema robotico a prescindere da dove esso si trovi (nella 

cella robotica se industriale o in un ambiente condiviso se collaborativo), utilizzando un 

sistema comune a prescindere dal brand del robot adottato.  

 

Questo concetto, già parzialmente previsto dal paradigma Industria 4.0, è il primo passo verso 

una collaborazione reale tra operatori e macchine, dove i due possono lavorare uniti come un 

team grazie alla definizione di un sistema di comunicazione (i) naturale da usare per gli umani 

e (ii) semplice da interpretare per i sistemi meccatronici. Rispetto alle soluzioni che la 

letteratura e il mercato offrono, questo tipo di collaborazione permetterà la creazione di 

stazioni di lavoro da me battezzate Meta-Collaborative . Questi sistemi sono progettati per 

essere una via di mezzo tra le attuali stazioni completamente automatizzate che impiegano 

robot industriali e quelle denominate collaborative che impiegano Cobot. 

 

Il lavoro di ricerca si è concentrato inizialmente sulla definizione del metodo di comunicazione. 

In base alla letteratura e alle caratteristiche degli ambienti industriali, ho deciso di utilizzare 

un linguaggio basato sui gesti delle mani realizzato ad hoc. Grazie ai recenti sviluppi nel campo 

Learning adatti allo 

scopo, in grado di riconoscere i gesti presenti nelle immagini con bassi tempi di inferenza e 

alti valori di accuratezza di riconoscimento. Con questo obiettivo in mente ho progettato il 

linguaggio a gesti in modo da renderlo semplice da usare e intuitivo, pur mantenendolo 

sufficientemente robusto da essere riconosciuto con buone performance dal modello di Deep 

Learning adottato. Tramite tre campagne sperimentali, 

dottorato, ho definito il dataset completo di gesti statici implementato nel prototipo finale. 



  

Esso costituisce il dizionario dei gesti dal quale gli utenti possono selezionare gesti singoli 

 per costruire, tramite una logica binaria che sfrutta la 

presenza di entrambe le mani contemporaneamente, comandi personalizzabili. Il modello di 

Deep Learning adottato è un R-FCN Object Detector pre-allenato sul famoso dataset COCO; 

pertanto, utilizzando il dataset sperimentale, ho eseguito una procedura di fine-tuning per 

allenarlo sui miei dati, ottenendo una accuratezza di riconoscimento dei gesti superiore al 

90%. 

 

La seconda parte del lavoro si focalizza sulla struttura del software di programmazione 

realizzato, denominato MEGURU (MEta-collaborative GestUre-based Robot program bUilder), 

e sulla sua valutazione sperimentale in due diversi scenari. Questo ha permesso di ricavare le 

 pendant sullo stesso task. Dai risultati si evidenzia come, 

soddisfatti delle sue prestazioni, mostrando in diversi casi tempi di risposta complessivamente 

inferiori rispetto ai corrispettivi ottenuti usando il teach pendant. 

 

Hands-Free

par -effector del manipolatore robotico 

utilizzando la skeletonizza  tramite il software open-

source OpenPose.  una 

videocamera RGB: in questo modo, a seconda di dove si trovi  area di 

lavoro definita a priori (user workspace), è possibile muovere -effector nel 

il robot opera (robot 

workspace -

volti a ricavare il contributo dei diversi errori introdotti dai vari passaggi di calibrazione e 

conversione del software. Ciò ha evidenziato come la scelta della videocamera e la sua 

calibrazione siano fondamentali per ottenere una corrispondenza tra metri e pixel il più 

possibile precisa. 

  



  

Abstract 

This thesis work concerned the development of an interactive command system for robotic 

manipulators, based on the establishment of a natural communication by means of hand 

gestures recognized by an intelligent vision system.  to realize a first 

human-machine interface prototype able to ease both the programming and their use, 

making it simple and intuitive even for non-expert users. This allows the operators to 

communicate and operate any robotic system, regardless of where the manipulator is located 

(i. e. in the robotic cell if it is an industrial robot or in a shared environment if it is a 

collaborative one) and by using the same system regardless of the robot  brand.  

 

This concept, which was partially foreseen by the Industry 4.0 paradigm, is the first step 

towards a real collaboration between operators and machines, where the two can work 

together as a team thanks to the definition of a communication system, which is (i) natural to 

use for humans and (ii) easy to interpret for mechatronic systems. Compared to the solutions 

offered by the literature and the market, this type of collaboration may allow the creation of 

workstations, which I baptized Meta-Collaborative . These workstations are 

designed to be halfway between the current fully automated workstations, which adopt 

industrial robots, and the so-called Collaborative ones, which adopt Cobots. 

 

The research work initially focused on the definition of the communication method. According 

to the literature and to the characteristics of industrial working areas, I choose to adopt a 

tailor-made hand-gesture language. Thanks to the recent advances in the field of Artificial 

Intelligence, I identified some Deep Learning models suitable to recognize the gestures in the 

image frames with low inference times and high recognition accuracy. With this objective in 

mind, I designed the hand-gesture language in order to make it easy to use and intuitive, while 

also being robust enough to be recognized with good performances by the Deep Learning 

model of choice. Through three experimental campaigns carried out during my three years of 

Ph. D. I defined the complete dataset of static gestures implemented in the final prototype. 

This resulted in the creation of a gestures dictionary from which users can pick single-hand 



  

 to build customizable commands leveraging a binary logic 

that exploits the presence of both hands at the same time. The Deep Learning model adopted 

is an R-FCN Object Detector pre-trained on the famous COCO dataset; therefore, using the 

experimental dataset I performed a fine-tuning procedure to train it on my data, obtaining a 

gesture recognition accuracy over 90%. 

 

The second part of the work focuses on the structure of the developed programming software 

called MEGURU (MEta-collaborative GestUre-based Robot program bUilder), and on its 

experimental evaluation in two different campaigns. From the first one, carried out during the 

Meet me Tonight event of 2019, I obtained (i) the users  to evaluate the user 

experience and (ii) their response times to determine the intuitiveness of the system. From 

the second one, carried out in collaboration with the STIIMA group of CNR Milan, I compared 

the performances of MEGURU and of the teach pendant in the same assembling task, to 

evaluate if the developed system may be a suitable substitute to traditional programming 

methods, if not better. The results show that, although MEGURU  interface leaves room for 

improvement, users are generally satisfied with its performance, showing in several cases 

response times overall lower than those obtained using the teach pendant. 

 

Finally, the last part of the thesis presents the first expansion module developed for the 

system, called Hands-Free . This module, which can be used as a stand-alone package or as 

an expansion module of MEGURU, allows to teleoperate the robotic manipulator end-effector 

using ation obtained by the open-source software OpenPose. The 

hand images are acquired in real time by an RGB camera: in this way, depending on where the 

index finger is inside a pre-defined user working area (user workspace) it is possible to move 

the end-effector to the corresponding point inside a second working area where the robot 

operates (robot workspace). In order to evaluate the performance of Hands-Free  three 

experiments have been carried out, aimed at obtaining the contribution of the different errors 

introduced by the various software calibration and conversion steps. This highlighted how the 

choice of the camera and its calibration are fundamental to obtain a correspondence between 

meters and pixels as precise as possible. 
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Chapter 1. Industry 4.0 and Industrial Robotics 

Industry 4.0 refers to the fourth industrial revolution that the world is experiencing, which 

started in Germany in 2014 and gradually spread to the USA and Asia. 

 

The first industrial revolution, dating back to the second half of the 1700s, introduced 

automatic machines to replace manual work and, thanks to them, began low-cost mass 

production, especially in the textile and metallurgical sectors. The second industrial revolution, 

dating back almost a century later around 1870, refers to the introduction of electricity, 

chemicals, and oil into industrial production. It was with the third industrial revolution, dated 

around 1970, that information technologies such as computers, microprocessors and 

telecommunications systems began to be introduced into the world of factory production.  

 

What we are experiencing today, however, is a further step forward. Industrial machines and 

systems are "smart", capable of controlling the process to which they are dedicated 

independently. But what triggered this idea? Differently from the past, the new revolution 

started thanks to the consumer end world. In fact, the technologies that digitalized the 

 were absolutely alien for the industrial world, which still used technologies 

adopted during the third industrial revolution. This clear separation between the two worlds 

could not continue to exist, creating an almost alienating separation between the two. 

Therefore, in 2014, the Industry 4.0 paradigm (I4.0) was proposed. 

1.1 The Industry 4.0 paradigm 

1.1.1 The main objectives 

The main objectives of the paradigm as it was defined in 2014 are summarized below 

according to [1]. These are key points that the new industrial revolution aims to achieve or 

solve using modern technologies and strategies. They are: 
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 Short development periods: the time needed to innovate a product and the time needed 

to produce it must both be reduced. This ensures the company to be on the market 

immediately (short "time to market"). 

 Individualization on demand: today the customers themselves define the purchase 

conditions of a certain product, imposing strict specifications on the supplier. This implies 

that each customer will want a product substantially customized to his needs. Therefore, 

the production will no longer be batch size one

production; in other words, tailor-made on the customer. 

 Flexibility: considering the characteristics of the batch size one production, it is necessary 

to have a flexible production line to be able to manage the different requests of the 

customers. 

 Decentralization: organizational hierarchies must be reduced in size to achieve faster 

decisions on the production line, thus ensuring a short production time. Decentralization 

means the ability of a system to identify itself and connect to a more powerful centralized 

system, to which it will communicate its position and status. In this way, the computational 

power can also be in a different place, not necessarily all on board. This is where Cloud 

Computing and Big Data management intervene to better manage communication 

between systems. 

 Resource efficiency: better management of the raw materials and energy needed for 

production (electricity, heat, fuel, etc.) not only saves money but also considerably 

reduces the environmental impact of their use. 

 

To achieve these objectives, the authors of [1] proposed four approaches, which may be 

adopted individually or jointly. Although these were proposed in 2014, a high number of 

companies has not yet transformed their production plant to this day, making these four 

fundamental actions still necessary steps. These are: 

 Increase industrial automation: more technologically advanced machinery must be 

introduced in industrial plants. They must be "smart", meaning they must autonomously 

manage their processes, making them more versatile. 
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 Digitalization and Networking: industrial sensors and digital devices in general must be 

used more intensively (data digitalization), interconnecting them within the factory to 

ensure fast and efficient data management (networking). As a result, production processes 

can be managed quickly and with reliable data. This is also where simulation technologies, 

data management systems, cybersecurity protocols and advanced techniques such as 

augmented reality are used as means to digitize processes as much as possible. 

 Miniaturization: compared to when computers, in the third industrial revolution, were 

introduced in the industrial world, today's computers occupy a very small space and 

possess an incredibly greater computational capacity. This makes it possible to create even 

smaller computers, called embedded technologies, which occupy the same space as a 

microcontroller. The use of these technologies would allow for even better space 

management and better industrial logistics. 

 Better integration: this refers to a better integration between sensors and digital 

technologies within the factory structure, and also to a better integration between various 

research branches and economic sectors to improve production  

1.1.2 Cyber Physical Systems and Cyber Physical Production Systems 

In particular, the paradigm aims to create Cyber Physical Systems (CPS) and Cyber Physical 

Production Systems (CPPS) [2] [3].  

 

A CPS is a "smart" physical object that has embedded software that provides it suitable 

computational power. These devices are specifically designed for a certain task, which they 

can carry out autonomously thanks to their limited self-managing capabilities.  

A CPPS is a manufacturing equipment made powerful by the specific hardware and software 

it has on board that grants it a high computational power. CPPSs know their internal status, 

their processing capacity, and their internal configurations, allowing them to make their own 

decisions depending on the task they are completing and the specific situation they are in. 

These machines are the key to achieving true batch size one production, because each of them 

can be used flexibly to create the desired product, either alone or in combination with other 

CPPSs.  
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Using a combination of CPSs and CPPSs will create a highly interconnected and multi-agent 

industrial environment. The idea is that manufacturing production will become decentralized: 

a production line where CPPSs are able to carry out their tasks independently by 

interconnecting with other CPPSs and self-organizing. 

Obviously, even if both technologies possess potential and several positive aspects, they also 

pose several unresolved problems and open challenges. The most troublesome are the 

following: 

 Time management issues in IT networks related to when the information will be correctly 

received with respect to the real time the information has been sent, creating dangerous 

delays that may harm the production line and the equipment itself. 

 The necessary standardization of CPSs/CPPSs is complicated because different IT 

technologies are involved with different standards and requirements. 

 Safety issues related to the wellbeing of both people and physical equipment and 

cybersecurity issues related to software and data protection. 

 CPPSs must be at least partially autonomous systems, requiring different methods to 

provide them with the ability to be context and surrounding aware, meaning they should 

be able to perceive and interpret the environment and the physical objects that interact 

with them. 

 CPPSs must be cooperative, meaning that they must be able to work with each other, 

learn collectively and recognize the environment and the different events that may 

happen in a distributed way. 

 They must manage the scheduling of operations in a robust way with respect to 

unforeseen disturbances and/or errors during production. 

 Intuitive and smart Human Machine Interfaces (HMIs) must be developed to allow human 

operators to operate the devices in the best possible way. 

 

These are still activities on which research is currently working on, especially in recent years. 
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1.1.3 The enabling technologies 

To reach the paradigm goals, a set of technologies must be adopted. These are called 

researchers and manufacturers to adopt them in industrial plants safely [4]. The study 

proposed in [5] describes the enabling technologies considered necessary in 2019, which are 

the following: 

 Industrial Internet of Things (IIoT): a computer network between physical objects 

(sensors, machines, buildings, etc.) that allows interaction and cooperation between them 

to exchange useful information. 

 Additive Manufacturing (AM): innovative process of creating products using a 3D printer. 

The CAD model of the product to be made is realized by joining layers of material one on 

top of the other. It allows to create truly customized objects with different technological 

features depending on the material used for printing. 

 Big Data and Advanced Analytics (BD/AA): the digital devices of an Industry 4.0 company 

are interconnected and exchange a large amount of data (BD), which must therefore be 

managed and processed in order to be effectively used to improve the production process 

(AA). Using analysis techniques to filter, correlate and evaluate data, users can 

immediately take decisions on the production. This can be done either on board of the 

device or within a management and analysis software that accumulates data from all 

devices and analyzes it. 

 Virtual and Augmented Reality (VR/AR): VR allows to create a simulated environment 

with which the user, who is completely immersed in it, can interact in three dimensions 

and where each element that is part of it has a perceptible spatial dimension. The 

interactions allow the user to control the objects in the virtual world in a realistic way and 

in real time. On the other hand, AR refers to those advanced human-computer interaction 

techniques that allow the user to insert data and virtual functionalities inside real objects 

belonging to the physical world. The user, using suitable devices, can see and interact with 

the virtual data belonging to the physical object and obtain effects on the real world. 

 Cloud Manufacturing (CM): closely related to the use of BD and AA, CM refers to the ability 

to keep and process the large amount of data no longer on high-performance and 
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expensive devices on site but in the cloud, simply paying the use of the service to the 

provider. This also allows the company to connect to its suppliers and eventually to its 

customers, providing them with a digital support service. 

 Collaborative Robotics (CR): a robotic system or a machine that complies with technical 

and safety specifications to work effectively with human beings, without risking the safety 

of both human being . Humans and 

machines can therefore collaborate and interact physically with each other in a shared 

environment. 

1.1.4 Integrated and Intelligent Manufacturing 

As shown in [6], the modern trend in manufacturing is called i2M. The concept expands the 

classic definition of CPSs and CPPSs and better defines the two key points behind it: 

integration and intelligence. 

 

Today, Mechanical and Digital devices are considered as one under the name of Computer-

Integrated Manufacturing Systems (CIMS). Thanks to the development of the Industrial 

Internet of Things, these systems now also comprehend information, required to truly 

connect, and integrate the different devices of the plant. CIMS can acquire and process high 

volumes of data in real time, a processing that is achieved using three types of integration 

between devices: 

1. Vertical integration: it addresses the issue of seamless connectivity among all the 

elements that are included in the product life cycle within an organization. Activities in 

marketing, design, engineering, production, and sales are all closely integrated. 

Technologies such as the manufacturing execution system (MES) and the computer-aided 

process planning (CAPP) can thus be better utilized to support information and knowledge 

sharing within the company. In this way, resources within the company, including but not 

limited to information, data, capital, and human resources, can be used more effectively 

and efficiently. 

2. Horizontal Integration: it occurs when a company is closely integrated with its suppliers 

and partners. Modern industry has already adopted supply-chain management 
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technology, such that a horizontal value network has been established in many industry 

sectors. However, challenges still exist in terms of efficiency, intellectual property 

protection, the establishment of common standards and knowledge sharing. With the 

implementation of an advanced knowledge base and an Industrial Internet, those barriers 

can potentially be removed. A common knowledge network platform with practical 

protocols and standards is needed to further enhance the effectiveness and quality of this 

type of integration. 

3. End-to-End Integration: this is probably the most active area in the new age of 

manufacturing. In this case, machine-to-machine integration is provided so that machines 

are truly an integral part of the production line. The second key aspect is that the 

integration of customers into the manufacturing system is now possible, thus allowing 

engineers to obtain feedback from customers easily and quickly. Product-to-service 

integration is also possible, allowing the manufacturer to monitor the condition of the 

product in use. This adds value to the customer service of the product and builds a close 

relationship between customers and suppliers. 

 

Since all the units of a manufacturing system have been integrated into a common system, 

process decisions become difficult because of the impressive amount of data to be processed. 

Therefore, the concept of intelligence is required to analyze and use the information acquired 

from the integrated system. 

Intelligence is related to sensing, decision-making and action. If sensing can be achieved by 

using smart sensors, it is not as easy to automatically process the data and obtain as a result 

a valid and suitable decision about a certain situation or action to be taken. In this sense, Big 

Data Analytics, Machine Learning & Artificial Intelligence Techniques and Cloud Computing 

are technologies extremely important and useful to develop a true intelligent system. 

 

Thanks to Big Data Analytics, information can be automatically extracted from the high 

volume of data acquired by sensors, uncovering hidden clusters and correlations unseen by 

the humans. This is usually achieved by adopting Machine Learning techniques especially 

designed to process data. 
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Artificial Intelligence techniques are necessary to give machines a touch of intelligence, 

making them able to carry out their tasks autonomously or even learn by their own how to 

work and/or adapt to the environment. 

 

Finally, Cloud Computing provides all these technologies with the necessary computational 

software as a service

(SaaS). The Cloud is accessible by every device of the company thanks to IIoT connectivity, 

allowing them to share knowledge in real-time. This is also true for human knowledge, that 

can be shared and accessed easily thanks to the Cloud platform. By combining the two types 

of knowledge sharing it is possible to obtain a marketplace for software and information 

platform as a service  

1.2 How the world supported the Industry 4.0 evolution 

Although the official name of the new industrial revolution has been created in 2014 in 

Germany, the Industry 4.0 idea started taking form before that, when the IoT technology 

(which was mostly aimed at consumer end devices) and CPSs started to be popular. Their 

popularity gained the interest of different Governments and industries worldwide, which 

acted to benefit in time from the new digital revolution they were foreseeing [7]. 

1.2.1 Governments plans and actions outside Europe 

 U.S.A. (2011): the Government began a series of discussions, actions and 

Advanced Manufacturing Partnership (AMP)  since 2011. The 

aim was to prepare the nation to lead the next generation of manufacturing [8]. 

 South Korea (2014): the Innovation in 

Manufacturing 3.0 which emphasizes four propulsion strategies and assignments to 

innovate Korean manufacturing [9]. 

 China, 2015: Made in China 2025

Plus  to prioritize ten fields of manufacturing to accelerate the digitalization and 

industrialization of the country [10]. 
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 Japan (2015): 5th Science and Technology Basic Plan

Super Smart 

Society [11]. 

 Singapore (2016): the Government commits 19 billion dollars to the plan Research 

Innovation and Enterprise 2020  Eight key industries have been selected within the 

advanced manufacturing and engineering domain to lead the transformation [12]. 

1.2.2 European Governments plans and actions 

The European commission launched the Digital Transformation Monitor (DTM) website to 

monitor the national initiatives of European States in detail towards the transformation of the 

manufacturing sector according to the I4.0 paradigm. The following information has been 

summarized from the several documents available on the DTM website [13]. 

 Germany (2011): the Government approves the High-Tech Strategy 2020  action plan in 

2012, which annually commits billions of euros for the development of cutting-edge 

technologies. As one of the ten future projects in this plan, the Industrie 4.0  project 

presented in 2011 represents the German ambitions in the manufacturing sector [14]. 

 United Kingdom (2011): 

It was a collaboration program between public and private partners to develop advanced 

technologies for the manufacturing industry. It was only in 2013 that the Government 

presented a long-term picture for its manufacturing sector until the year of 2050, called 

Future of Manufacturing d rebalanced policy for 

supporting the growth and resilience of UK manufacturing over the coming decades [15]. 

 France (2013): La Nouvelle France 

Industrielle r-

priorities [16]. Industrie du Futur

digital transformation of industries. 

 Sweden (2013): Produktion 2030

transform the industry into a sustainable and customizable modern sector, promoting 

services and products of a higher quality level. To obtain this result, they focused on the 

enhancement of digital competences and knowledges of workers and on the funding of 
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several research projects. The program was supported by the local partner VISINNOVA 

(leader in the technology innovation in Sweden) and several other partner industries. 

 Belgium (2013): the Made Different

Factories of the Future

at enhancing the Industry 4.0 technologies awareness of workers and their digital 

competences, adopting customized coaching programs to support the companies in this 

evolution. The program also focused on the adoption of efficient and green technologies 

to reduce waste and production costs. 

 Netherlands (2014): Smart Industry program, focused on 

the people training and skill development both at school and on the job site. As part of 

Field Labs

Universities to develop prototypes and technological devices suitable for the Industry 4.0 

paradigm. 

 Denmark (2014): Manufacturing Academy of Denmark 

(MADE)

industries and 3 Registered Training Organizations take part. The aim is to make the 

creating an ecosystem strongly based on academic research and innovation. MADE project 

has been funded from 2014 to 2019 with both public and private funds. 

 European Commission (2014): the EU Commission lunched the new contractual Public-

Private Partnership (PPP) Factories of the Future (FoF) Horizon 2020 

program that plans to provide nearly 80 billion euros of available funding from 2014 to 

2020 [17]. 

 Spain (2015): Industria Conectada 4.0

the evolution of the industry sector towards the fourth revolution. It promotes the 

development of new technologies and the diffusion of technical skills. Unfortunately, even 

if in 2019 the Government allocated 97 billion of euros for the program, the local private 

initiatives worked better during the years, obtaining faster results closely related to the 

local territory. 
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 Czech Republic (2016): 

local companies to take part in the global supply chains, integrate the Industry 4.0 

paradigm in the national industries and enhance the cooperation between research 

institutes and companies. The goal is to develop software, devices, and patents for the 

manufacturing sector. The project also aims at transferring the know-how from academies 

to industries with training programs for the workers. 

 Portugal (2017): Indústria 4.0

the digitalization of companies and their innovation, as well as on the enhancement of the 

workers know-how. The strategy aims at the proliferation of technological start-ups to 

make the country attractive for international investors both legally and financially. 

 Italy (2017): Industria 4.0

digitalization and technological development in the country by promoting convenient 

investments in venture capitals and technological start-ups. One of the main cores of the 

program revolves around the formation of both the workers and the students on digital 

competences and technical skills suitable for the future of industry. Because of this, they 

focused on training centers and Digital Innovation Hubs, as well as funding Technology 

Clusters and Industrial Ph. D. programs. 

1.2.3 Industrial plans launched by worldwide companies 

Private funding and programs have been started as well alongside the National ones to further 

push the transformation and the scientific research on the enabling technologies required by 

the I4.0 paradigm. 

In 2014, AT&T, Cisco, General Electric, IBM, Industrial Internet 

Consortium (IIC)

the Industrial Internet. Meanwhile, other big companies such as Siemens, Hitachi, Bosch, 

Panasonic, Honeywell, Mitsubishi Electric, ABB, Schneider Electric and Emerson Electric 

invested heavily in IoT and CPS related projects [7]. 
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1.3 Industrial thoughts and reactions to Industry 4.0 

Although the I4.0 paradigm sounds amazing in theory, to make it a reality was not that easy. 

The industrial world was skeptical at first, and only in late years the adoption of I4.0 

technologies has started to become common even for small and medium enterprises (SMEs). 

 

As highlighted in [7] even in 2017 is evident that industrial companies are still skeptical about 

implementing the I4.0 paradigm, both because they are not sure of the real benefits of it and 

because the investments to adopt these technologies are very high. Industries are still a long 

way from scientific research advances: not only they do not even consider it as a mean to 

implement new industrial technologies, but also they rarely get involved in projects related to 

Academic research. Moreover, industries are not willing to adopt the few standards and 

experimental solutions proposed by scientific research. 

1.3.1 Germany concerns in 2014 

Several studies have been conducted to understand people fear and skepticism towards the 

innovation. One of the first ones has been conducted in Germany in 2014 [18] to reveal the 

reasons for the adaptation and refusal of I4.0 technologies and practices from a managerial 

point of view. The authors conducted face-to-face interviews with managers from both local 

companies and consulting business.  

 

One of the most important problems that haunted German managers in 2014 was the 

dilemma between scale and scope of the production. Back then, this issue was primarily 

addressed by establishing product families to incorporate flexibility into mass production [19], 

but remained one of the main concerns. In fact, the product design and development 

represent only 5-10% of the production process but determines more than 80% of the actual 

cost of the product. This means that the desired flexibility of a product family must be 

determined at a very early stage but, at the same time, the flexibility benefit is not easy to 

quantify, hence it is often not included in a classical investment analysis of new machinery 

[20]. 
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Adding flexibility means to produce customized products as well as standardized ones, hence 

the problem of warranties and certification of these customized products arise. In fact, to 

properly certificate a product, extensive tests have to be carried out, which is not a practical 

nor economical procedure, especially if it had to be done on each customized product instead 

of on the few needed to certify a whole batch. In this regard, manufacturers still lacked 

knowledge and experience in terms of product safety and component failure, meaning that a 

reliable customized product was extremely difficult to produce. This led the production to still 

be heavily characterized by mass production instead of customized. 

 

One of the main reasons that determined the low implementation of I4.0 technologies in 2014 

was the lack of powerful IT systems and the absence of a true integration between each 

other, as well as the inadequate employee knowledge of both production processes and 

digital skills. For these reasons, most companies did not adhere immediately to the changes 

introduced by the paradigm. 

 

Another concern was on the topic of autonomous systems. The general thought was that they 

could be extremely effective to better the production but at the same time, they were not 

reliable enough to be used at their full theoretical potential, still requiring heavy human 

intervention. Even if the idea of self-organizing machinery had great potential, there were 

considerable obstacles to overcome to effectively surpass traditional production methods and 

technologies. 

 

One of the main revolutions introduced by the paradigm was about information sharing 

throughout both the company devices and whole the value chain. In the first case, the 

technology was not yet ready to successfully adopt interconnected CPSs, while in the second 

case the concept poses the problem of disclosing sensible information about the company 

production process to partners. In fact, most of German companies still refused to do it, also 

because information sharing was a cost which neither the company nor its partners were 

willing to bear. 
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The adoption of advanced simulation and modeling tools for virtual production strongly 

depends on the industry and company size. This unfortunately means that SMEs often could 

not afford expensive workstations for simulation and modeling purposes, let alone the 

required knowledge to properly use them. 

1.3.2 Global trend in 2018 

In 2018, the enabling technologies defined by the paradigm were starting to become a reality, 

thanks to the efforts of both IT industries and academic research. This transformation, 

however, was not mirrored by most firms worldwide that still refused to adopt advanced I4.0 

technologies or where unable to embrace this transformation fully due to the technology 

costs and the unavailability of the required know-how. As a 2018 study claims [21], the real 

question at that point was how manufacturers would have made the transition from their 

doubts, the idea presented by the authors was to propose a roadmap useful to define short, 

medium, and long-term approaches to evolve the industry. 

 

In fact, it was common knowledge that the benefits introduced by I4.0 would outweigh the 

costs, but that was particularly true for excellent manufacturers that (i) had the necessary 

experience and human labor to create and implement the technology trends and (ii) had 

adequate support from stakeholders to invest in innovation. Moreover, carefully planning the 

I4.0 transition to balance its risks and possible issues was the best strategy big companies 

adopted to successfully embrace the digitalization. 

 

Unfortunately, that was not the case for most of the industries, which still are of medium-

small size. Not to mention that the manufacturing indu typical

manufacturers that cannot see the whole picture, investing blindly into new technology 

without carefully assessing which could really contribute to their company improvement. 

SMEs where usually not competent enough to digitize their whole production, hence 

limitedly invested in the digitalization to transform only some of their production processes 

or their warehousing.  
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However, to fully benefit from the I4.0 transformation, SMEs must better comprehend both 

their new technologies and their own production chain, which is something that cannot be 

achieved in short times. 

1.4 The Italian perspective in 2019 

1.4.1 Global Competitiveness of Italy 

The Global Competitiveness Index 4.0 (GCI 4.0) [22] provides guidance on what matters for 

long-term growth and can inform policy choices; help shape holistic economic strategies and 

monitor progress over time. In this case, competitiveness  stands for the attributes and 

qualities of an economy that allow for a more efficient use of factors of production, hence the 

meaning is closely related to productivity. The concept is anchored in growth accounting 

theory, which measures growth as the sum of growth in the factors of production (labor and 

capital) and of total factor productivity (TFP), which measures factors that cannot be explained 

by labor, capital or other inputs. The GCI measures what drives TFP since productivity gains 

are the most important determinant of long-term economic growth.  

 

The framework places a bonus on factors that will grow in significance as the Fourth Industrial 

Revolution (4IR) gathers pace, namely human capital, agility, resilience, and innovation. It is 

organized into 12 main drivers of productivity, or pillars , namely: (i) institutions; (ii) 

infrastructure; (iii) ICT adoption; (iv) macroeconomic stability; (v) health; (vi) skills; (vii) 

product market; (viii) labor market; (ix) financial system; (x) market size; (xi) business 

dynamism and (xii) innovation capability.  

 

For each pillar, a set of indicators are present to address specific areas of the main topic of the 

variable number of sub-subcategories as well depending on the topic. For each pillar, the total 

score achieved by a country is calculated as the mean of the different subcategories scores, 

which are in turn calculated as the mean of the different sub-subcategories scores. Finally, the 

overall GCI 4.0 score is calculated as the average of the scores of the 12 pillars. 
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Table 1 shows the 2019 top-ranking country for each pillar. It is worth noting that for two 

pillars (Macroeconomic Stability and Health) multiple countries achieved the best score. 

The top ten countries ranked according to their 2019 GCI 4.0 score are reported in Figure 1, 

while the European Union countries ranking is shown in Figure 2.  

 

Italy achieved a total score of 71.5 points, which makes it the 30th country of the world and 

the 12th European Union country. A visual representation of the European Union GCI 4.0 

scoring is shown in Figure 3. 

 

Table 1. Pillars best performing countries and top values achieved. 

Pillars Best performer Value 

Institutions Finland 81/100 

Infrastructure Singapore 95/100 

ICT Adoption Republic of Korea 93/100 

Macroeconomic Stability Multiple (33 countries) 100/100 

Health Multiple (4 countries) 100/100 

Skills Switzerland 87/100 

Product Market Hong Kong 82/100 

Labor Market Singapore 81/100 

Financial System Hong Kong 91/100 

Market Size China 100/100 

Business Dynamism United States 84/100 

Innovation Capability Germany 100/100 
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Figure 1. Bar plot of the top ten countries according to their GCI 4.0 score. 

Figure 2. Bar plot of European Union countries ranked according to their GCI 4.0 score.  
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Figure 3. Map of Europe where European Union countries are colored according to their GCI 

4.0 score. 

 

Figure 4 shows the scores of Italy on the different pillars. It is worth noting that values are 

approximated in excess, which explains why Italy Health rank is shown as 100/100 even if it is 

not a best performer (actual score: 99.6). Italy achieves the best worldwide rank in a set of 

sub-subcategories, which are shown in Table 2.  
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Figure 4. Italy performance overview taken from 2019 GCI 4.0 report. 
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Table 2. Italy top scores in sub-subcategories, divided by main pillar. 

Pillar Subcategory Value 

Institutions Energy efficiency regulation 89.2/100 

Infrastructure Railroad density 100/100 

Infrastructure Electricity access 100/100 

Infrastructure Exposure to unsafe drinking water 100/100 

ICT Adoption Mobile telephone subscriptions 100/100 

Macroeconomic 

Stability 
Inflation 100/100 

Financial System Insurance premium 100/100 

Financial System Credit gap 100/100 

Innovation Capability State of cluster development 74.9/100 

Innovation Capability Scientific publication score 100/100 

 

 compared to 2018, increasing in score by 0.7 and 

moving up one rank to reach the 30th performance in 2019 is driven 

mainly by small advances in the financial system (+3.3 points, 48th), where non-performing 

loans are being gradually absorbed ( 2.7% this year), and access to finance to both SMEs and 

venture capital are slightly improved (+4.5 and +4.8, respectively), though starting from a low 

base (119th and 111th, respectively). Similarly, the efficiency of the legal framework has 

recorded slightly higher scores (+5.1 points, yet again from a low base, 132nd), and ICT 

adoption (+4.2, 53rd) and Infrastructure (+1, 18th) have gradually improved over the past few 

years. At the same time, Italy maintains competitive advantages in terms of Innovation 

capability (65.5, 22nd) and Health standards (99.6, 6th).  

 

Yet some bottlenecks are still hinder high public debt 

(132% of GDP) represents a looming risk and a burden for economic policy; the labor market 

(56.6, 90th) remains to a large extent dual (too rigid in some segments and too precarious in 

others), despite some recent reforms; taxes on labor are high by international comparison 

(130th); and talent is not sufficiently rewarded (103rd).  
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Institutional quality (58.6, 48th) attains a mixed result, combining some positive factors and 

some areas for improvement. While Italy is a relatively safe country, with one of the lowest 

homicide rates in the World (0.7 cases per 100,000 people, 20th) the 

to adapt to changes is limited (28.9, 128th) and there is insufficient administrative efficiency 

(45.3, 96th). 

1.4.2 Italian Manufacturing 

In Italy, Manufacturing is the most important sector and accounts for 88% of total production. 

The biggest segments within Manufacturing are: (i) metallurgy and fabricated metal products 

(14% of total production); (ii) machinery and equipment (12%); (iii) food, drink and tobacco 

(10%); (iv) rubber and plastics products and non-metallic mineral products (9%); (v) textile, 

clothing and leather (8%); (vi) transport equipment (7%); (vii) and other manufacturing, repair 

and installation of machinery and equipment (7%) [23]. 

 

The Italian Flagship Project Factories of the Future ( La Fabbrica del Futuro  Piattaforma 

manifatturiera nazionale ) is one of the 14 Flagship Projects that started in January 2012 and 

lasted till December 2018 with a total funding of 10 million euro. The Flagship project defined 

five strategic macro-objectives for factories of the future to be pursued thanks to the 

development, enhancement, and application of key enabling technologies. The strategic 

macro-objectives took inspiration from the research priorities identified at international level, 

while considering the evolution of the global industrial contexts and, above all, the 

peculiarities of the Italian manufacturing context [24]. 

 

Five strategic macro-objectives were defined for Factories of the Future: 

1. Evolutionary and Reconfigurable Factory: to stay competitive in dynamic production 

contexts, Italian factories need to react and evolve by exploiting flexibility, 

reconfigurability, changeability, and scalability. These changes affect both the 

organizational structure and the production process at the same time. 

2. Sustainable Factory: green production has a strong impact on the global scenario. Green 

products are characterized by a limited environmental impact during their life cycle, 
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including the production phase. This means that factories need to change their production 

processes to guarantee limited energy consumption and waste, exploiting green energy, 

innovative natural materials and resources, and energy cogeneration and re-utilization. 

Sustainable production also means to support the local economy by integrating worker 

skills and dedicate time and resources to improve them. Furthermore, there is the need 

to manage the final stages of the product life cycle by implementing product de-

manufacturing, re-manufacturing, reuse, recycling, and recovery. This will lead to a new 

de-production factories  

3. Factory for the People: human workers are the core of industrial production. Considering 

the societal and demographic changes of late years, Italian manufacturing must integrate 

into their production structure not only young employees but also workers with relevant 

accumulated knowledge. Moreover, operators must be trained in a multidisciplinary way 

to flexibly manage the planning and execution of complex production plants. This also 

means that technologies, machinery, and workplaces must be designed and adapted to 

cope up with these changes according to the I4.0 paradigm. In fact, robotics and 

automation technologies will make human-machine interaction even more relevant in the 

future of manufacturing. New forms of interactions must be investigated to better exploit 

human-machine cooperation in a shared and safe manufacturing environment, with a 

focus on safety of both humans and machines and ergonomics. 

4. Factory for Customized and Personalized Products: according to the I4.0 paradigm, 

manufacturing production will be less focused on mass production and more focused on 

batch size one production, meaning personalized products and services that are difficult 

to replicate. The Italian manufacturing industry is traditionally focused on meeting the 

customer requirements by exploiting process and product know-how together with an 

attitude for innovation, a concept which is particularly relevant in sectors such as textiles, 

wearing apparel, footwear, glasses and accessories, luxury goods, and furniture. This 

tailor- customer-driven

production processes by using modern technologies and approaches. 

5. Advanced-Performance Factory: to increase factory performance, it is of utmost 

importance to minimize the inefficiencies related to external logistics, management of 



Towards true Human-Machine collaboration: the concept of Meta-Collaborative workstations and a first software prototype 

Cristina Nuzzi  26 

inter-operational buffers, transformation processes and their parameters, management 

and maintenance policies, software and hardware tools, quality inspection and control 

techniques. This innovation requires to adopt smart sensors, innovative mechatronic 

components, and ICT platforms, as well as the adoption of Advanced Analytics tools to 

identify beforehand failures, anomalies, and disturbances, moving the industry to an 

adaptive production model with reduced production delays. 

 

The main enabling technologies considered to be relevant for the macro-objectives of the 

Flagship are: 

 Artificial Intelligence, digital twins, and digital factory technologies for intelligent 

factories 

 Production technologies 

 De-Manufacturing and Material Recovery technologies 

 Factory Reconfiguration technologies 

 Control Technologies of Production Resources and Systems 

 Resource Management and Maintenance technologies 

 Technologies for Monitoring and Quality Control 

 Human-Machine Interaction technologies. 

1.4.3 The level of digitalization in Italy 

The research presented in [5] in 2019 support the claim described in Section 1.3.2. In the 

study, Italian SMEs were interviewed to comprehend the level of adoption of a certain 

technology compared to the level of knowledge of the same technology. The results were 

disappointing yet not surprising: most of the respondents showed limited to none knowledge 

of the enabling technologies except for the IIoT, which was the first to gain popularity during 

the years and the most close to the consumer-end world. The study shows that bigger 

companies intensively adopt I4.0 technologies and methods; hence, the level of knowledge of 

their employees is higher compared to SMEs, which present the opposite trend. 
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Surprisingly, IIoT adoption is less than Additive Manufacturing adoption despite the former 

being more known among employees. As for Big Data, Advanced Analytics, Augmented and 

Virtual Reality and Collaborative Robotics, the adoption level is low and reflects the level of 

knowledge of workers. The research also shows that SMEs have not activated any new 

technology-related project, while larger companies have at least activated one. This finding 

probably relates to the resources availability of SMEs, which is very limited compared to large 

companies. Finally, if the IT role is strategic and not only operational, a substantial difference 

can be found in the adoption and on the coverage of IT infrastructure, even for companies 

that do not adopt a I4.0 technology yet. 

 

Even if I4.0 involves all areas of production, starting from the production line up to managerial 

and business roles, for Italy the fourth revolution is still a technological one rather than 

organizational. This highlights how Italy is still at the early stage of the transformation, both 

because the Government actions happened later compared to other countries and because 

companies have limited resources to access technologies quickly, hence sticking to traditional 

manufacturing organizations and production processes. It is also worth noting that financial 

and tax aids from the Government are still lacking, hence slowing the transformation of SMEs.  

 

The knowledge level of workers is also one of the barriers that limited Italian digitalization, 

since technical roles such as Data Scientist, IIoT expert, AR and VR software engineer, and 

similar figures are extremely rare even today. The absence of a digital expert for the different 

enabling technologies means that the company, even if it is willing to invest in I4.0, cannot do 

it or benefit from it in full. 

 

It is also interesting to note that companies that have already adopted at least one technology 

perceive higher benefits from it compared to companies who have not adopted any. This is 

not surprising: digitalization completely changes the face of manufacturing production, thus 

enhancing both the general feeling towards I4.0 and the tendency to adopt more 

technologies. The more technologies have been adopted, the more the company is willing 

to invest in I4.0. 
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1.5 Robots in industry 

The most famous definition of a robot has been given by the Robot Institute of America in 

1979: A robot is defined as a reprogrammable, multifunctional manipulator designed to 

move material, parts, tools, or specialized devices through various programmed motions for 

the performance of a variety of tasks. It is made evident that robots are reprogrammable, 

autonomous and multi-purpose machines, hence they are very different from traditional 

industrial machines that are usually designed and programmed to perform only one task and 

cannot be adapted to suit different ones. In this sense, robots are more similar to humans 

than to simple machines, combining the best of the two worlds: on one hand, the flexibility 

and autonomous capabilities of a human being and, on the other hand, the precision and 

repeatability of a machine [25]. 

 

Robots evolved during the years generations  [26].  

1. First generation (1950-1967): robots were stationary non-programmable 

electromechanical devices with no sensors, unable to control the modality of task 

execution and to communicate with the external environment. They mostly used 

pneumatic actuators and logic gates as automatic regulators; hence, they produced a lot 

of noise when active. 

2. Second generation (1968-1977): robots were basic programmable machines with limited 

possibilities of self-adaptive behavior and elementary capabilities to recognize the 

external world. They used servo-controllers to perform point-to-point movements and 

continuous paths as well. Their intelligence was made of Programmable Logic Controllers 

(PLCs) which are widely used even nowadays. They were not versatile; hence, they were 

usually application-specific devices because a substantial modification of their controller 

was difficult to be made in a timely manner. 

3. Third generation (1978-1999): In this generation, the main characteristic was the ability 

to interact with both operators and environment by using complex interfaces such as 

vision or voice. They had high computational power intelligence in the form of both 

microcontrollers and computers to control both the actuation and the several sensors they 
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had on board. Their programming method was more structured and allowed high-level 

programming and simulation software. 

4. Fourth generation (2000-present): starting from the fundamentals laid out by the 

previous generation, robots evolved again and became smarter. The on-board sensors and 

intelligence are now high-performing, actuators are mostly electrical and optimized for 

both electrical and thermal efficiency and their capabilities of interacting with human 

workers has been further enhanced to mimic humans as much as possible. In this 

generation, I4.0 robots have been developed under the name of Collaborative Robots 

(Cobots) [27] [28]. 

1.5.1 Industrial and Collaborative robots 

Industrial robots of today are heavy-duty robots with high payloads that can tackle 

dangerous, repetitive, and heavy applications. These robots are commonly used for parts 

assembly, pick-and-place, and palletizing in many different industries. Cobots, on the other 

hand, are designed to work alongside humans in a shared environment, according to one of 

the main principles of I4.0. This creates a clear separation between the two types, which 

mainly revolves around the concept of safety. In fact, Industrial robots are kept behind safety 

cages to protect humans from any harm, because they are usually built to be oblivious of the 

possible interactions with the world (humans included) and hard programmed. On the other 

hand, Cobots are designed to safely work around humans; hence, they do not require a 

protective cage to separate them from the employees. This is made possible by their design: 

the sensors they possess give them a certain degree of understanding of the surrounding 

environment, making them capable to detect collisions in advance and prevent them. It is 

worth noting that, even if Cobots are generally safe to be used around humans, it still depends 

on the end effector they are using. If a dangerous tool is mounted on their tip, a protective 

barrier must be adopted to ensure the safety of the human operators [29] [30] [31]. 

 

Another difference revolves around their programming intuitiveness. Cobots are easier to 

program because they are designed to be user-friendly, hence their programming time and 

complexity is highly reduced compared to Industrial robots. In addition, they often have a 
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manual guidance mode, where users teach the robot the trajectories of the program simply 

by guiding its end effector manually. It is worth mentioning that, even if Industrial robots are 

traditionally more complex to program, the market is now changing, opting for more intuitive 

interfaces also for this category. 

 

However, companies still prefer to buy Industrial robots instead of Cobots. Why? The reason 

is mostly due to productivity. Even if Industrial robots are more expensive, they can produce 

a very high amount of units in a short period compared to Cobots, not to mention their 

capability of handling heavy objects, a skill that it is impossible to achieve for Cobots. This 

productivity issue is reflected on their power consumption, which is higher (therefore more 

expensive) in the former case compared to the latter [32] [33]. 

 

In conclusion, both categories are useful and have different pros and cons, which means that 

both may be required in a structured I4.0 factory depending on the application. Intensive 

production requires Industrial robots, while careful assembling or human-assisting operations 

require a Cobot instead.   
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Chapter 2. Deep Learning for visual data 

 

As stated in Chapter 1, advanced technologies and research objectives required to properly 

 

Historically, humans have always tried to give machines the ability to think, that is, to create 

Artificial Intelligence (or AI). In the early days of this research field, scientists tried to solve 

problems that were intellectually difficult for humans but easy for computers. These problems 

could be described by a list of mathematical or logical rules; hence, they were straightforward 

to solve for computers. The true challenge was to solve tasks that were easy for people to 

solve but hard to describe formally; problems that humans solve intuitively, automatically. For 

example, it is extremely easy for humans to recognize voices or faces, but it is not as easy for 

a computer. Why? Because human intelligence is based on experience. Humans learn 

concepts in a hierarchical way from the day of birth to the day of death, building their 

intelligence block after block, starting from easy concepts up to complex and abstract ones. 

This allows us to gather knowledge intuitively without formally specify complex concepts [34]. 

This is the idea behind Deep Learning. Building a deep structure composed of concepts of 

Figure 5 shows 

a graphical example of how visual data are elaborated by such models: basic concepts such as 

edges and color spots are learned in the first layer of the structure, allowing to recognize 

complex patterns such as the ones in the upper layer. 

 

Artificial Intelligence comprehends several research fields. A simple subdivision is shown in 

Figure 6 that shows how Deep Learning is a part of Machine Learning (ML), which is, in turn, 

part of AI. Since to obtain a true Artificial Intelligence it is first necessary to develop a way for 

machines to learn, Machine Learning is the research field that focuses especially on learning 

from data of any kind in an automatic way. [35] provides a famous definition of what a learning 

a A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E  
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Figure 5. Example of a Deep Learning structure composed of layers of incremental complexity 

[36]. 

 

 

Figure 6. Subdivision of macro research areas of Artificial Intelligence. 

A simple example using this definition is the process of learning how to walk. Children learn 

this by first watching other people walk, and then try themselves in a process of trial and error 

that slowly builds their muscles and confidence during the walk. In this example, the task T is 

experience E is obtained one attempt after the other. It is obvious how E 

increments efficiently starting from the previous amount of experience gathered, building a 

solid ability because of the incremental difficulty of the experiments or attempts completed 

by the child. However, to be able to assess the improvements of the child, we must define a 

measure P. In the example, P may be a set of indicators describing stability, speed, and 

balance. 
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Machine Learning models (hence, for extension, Deep Learning models) are based on these 

provided by a suitable set of data, for example images representing the categories. Finally, the 

model performs. 

 

Three approaches are usually adopted in ML algorithms: 

1. Supervised learning: in this type of learning the focus is on teaching the algorithm the task 

by showing it examples of inputs matched with the corresponding correct output (called 

lassification tasks are usually solved by supervised learning algorithms, where 

training images are labeled with the corresponding tag. 

2. Unsupervised learning: the algorithm itself learns a suitable representation from the 

provided input data and extracts categorizations or information according to patterns 

learnt during training with no supervision. This kind of algorithms is especially useful to 

perform a first subdivision of data according to patterns invisible to the human eye 

(clustering). 

3. Reinforcement learning: this kind of algorithms strongly differs from the previous ones. 

The concept of learning is explored by a 

environment after a certain action has been completed and how this action contributes to 

t

name to this type of algorithms. 

 

DL models and algorithms are of utmost importance. This Chapter will first briefly show the 

evolution of this technology through the years and the key factors that sparked it, making DL 

in more detail: Convolutional Neural Networks and Object Detectors. Both are used to extract 

information from images in different ways according to the specific model adopted, and are 
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importance for a smart device and it is the first step towards collaboration with humans. Albeit 

other senses may be exploited to achieve it, vision has been considered the most important 

one by the research community for years, especially because the huge amount of data 

available allows these models to be properly trained with low effort. Furthermore, when 

considering a smart device for industrial plants vision still plays a key role compared to other 

senses such as hearing. In fact, even if remarkable advances in the field of speech recognition 

and understanding have been made recently, voice communication between humans and 

machines (and sometimes even between humans and humans) is not robust enough due to 

the disturbing noises that may be present on the production line. These considerations 

motivated me to focus more on vision in the development of this thesis project. 

2.1 History pills: the evolution of Deep Learning 

dates back more than fifty years before. Following the subdivision in [34] where the authors 

evolution of Deep Learning mainly for visual data and the key concepts that characterize each 

era. 

2.1.1 Cybernetics Era (1940  1980) 

In this period, the concept of Intelligence was closely related to how the biological brain of 

intelligent creatures works. Scientists worked with neuroscientists and psychologists to find 

neuron  

[37]. 

 

The first to be presented was the McCulloch-Pitts Neuron in 1943 [38]. The idea was simple: 

given a set of inputs  it is possible to associate them to a certain output  by using 

weights , hence building a linear model . 
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This idea was further expanded thanks to the Perceptron [39], developed in 1958. It was a 

small mathematical unit able to learn by itself the necessary weights . This learning 

was possible thanks to learning algorithms of the same type we still use today, called 

Stochastic Gradient Descent (SGD). Although linear models are still the most used Machine 

Learning algorithms, they have several limitations that made them not suitable for advance 

the research quest towards intelligence [40]. 

 

In 1965, the first general, working learning algorithm for supervised deep feedforward 

multilayer perceptrons was published [41] and, in 1971, the same author described what 

would be later on called a deep network  with 8 layers [42]. Given a training set of input 

vectors with corresponding target output vectors, layers are incrementally grown and trained 

by regression analysis, then pruned with the help of a separate validation set. Regularization 

is used to weed out superfluous units, thus learning better and better internal representations 

of the data. The numbers of layers and units per layer can be learned in problem-dependent 

fashion [43]. 

2.1.2 Connectionism (1980  1990) 

The approach used by scientists in this era tackled the problem from a different perspective. 

In fact, the central idea, which inspired the name of this era, was that a large number of 

computational units networked together could achieve intelligent behavior. 

Compared to the Perceptron, who was a single unit able to learn extremely simple 

representations, the idea introduced by the Cognitron [44] (1975) first and by the 

Neocognitron [45] (1980) second suggested the adoption of such a network; the very first 

Artificial Neural Network (ANN). This model architecture was inspired by how mammals 

process image data in their biological visual system and became the basis for modern 

Convolutional Neural Networks (CNNs) developed in 1998 with the name of LeNet [46]. 

 

Today we still use one of the key concepts introduced by the Cognitron: the Rectified Linear 

Unit (ReLU). The version we used today has changed through the years thanks to different 
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viewpoints by both neuroscientists and engineers, which simplified its structure. Thanks to 

this activation function, the values elaborated by it are mapped according to (1): 

 (1) 

Which is a simple nonlinearity function that computes the maximum and speed up the 

convergence of the training process of a network. 

 

Another central achievement in this era is the idea of distributed representation: each input 

to a system should be represented by many features and each feature should be involved in 

the representation of many possible inputs [47] (1986). To comprehend why this concept is of 

utmost importance for Deep Learning, let us make a simple example. Considering a model 

that processes images as inputs, we want the model to learn simple features first and complex 

ones later. To differentiate between inputs, we may consider the color and the shape; hence, 

we need our network to learn different colors and different shapes. To do this, we may use as 

many neurons as many combinations of colors and shapes exists in our dataset. For example, 

if we consider three colors and three shapes, we will end up with nine possible combinations, 

hence nine neurons that learn each combination perfectly. The final output would be 

determined by which of the nine neurons activated the most. 

 

Another way to do this, however, is to use only six neurons: three will learn the different colors 

and three will learn the different shapes. In this case, the final output will be determined by 

the combination of the two neurons that mostly activated during the inference phase. This 

concept allows the network to learn specific features from a wider range of inputs, because 

 red images, no matter the shape; while 

 star-shaped images no matter the color [34]. 

 

The final and fundamental accomplishment of this era is the definition and successful 

application of the Back-Propagation algorithm [48] in 1986. This algorithm is still used today 

to learn the weights of the network propagating backwards the gradients of each neuron of 
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2.1.3 Modern Deep Learning (1990  present) 

At the end of the Connectionism era, scientists stopped creating algorithms and models 

inspired by biological brain functions, favoring instead a more mathematical approach to the 

problem, inspired by different fields. Modern networks, in fact, were able to see the light 

because scientists stopped trying to create intelligence in the same way human intelligence is 

built, opting for more realistic achievements that revolved around the machine capabilities of 

the time. From this separation two fields have been born: Computational Neuroscience, which 

tries to build more accurate models of how the brain actually works, and Deep Learning, which 

focuses on building computer systems able to successfully solve tasks that require intelligence 

[34]. 

 

By the early 1990s, experiments had shown that deep feedforward or recurrent networks are 

hard to train by backpropagation. The reason, scientists found, is due to vanishing or exploding 

gradients Fundamental Deep Learning problem  [49]. The very first deep 

learning model presented in [50] partially overcame it through a deep recurrent neural 

network (RNN) stack pre-trained in unsupervised fashion to accelerate subsequent supervised 

learning. Furthermore, in 1997 Long Short-Term Memory (LSTM) RNN became the first purely 

supervised very deep learner [51]. 

 

Starting from 2006 with the Deep Belief networks published in [52] the field of AI and Deep 

Learning research attracted more and more attention, making researchers focus on the 

theoretical importance of depth. However, it was only when the world-famous ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) [53] was launched in 2010 that the field 

exploded. This competition, which is still organized each year, was established with the aim of 

propelling Computer Vision research by constructing a big dataset of internet images on which 

new models developed by contestants should be trained. In fact, thanks to the recent advent 

of GPUs, which allowed rapid parallel computation compared to traditional CPUs, and the 

increasing amount of data available on the Internet, CNNs could be effectively used in this 

challenge to achieve good results compared to the ones obtained in the previous years. 
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It was thanks to this competition that, in 2012, the renowned AlexNet model [54] was created, 

achieving impressive results for the time. This success was not only due to the model 

architecture but also especially due to the clever training method adopted, which utilized two 

GPUs at the same time to speed up the training process. 

 

In 2014 VGG net was developed [55], showing that simple yet deeper models achieve even 

better results. In fact, the internal structure of the layers was simplified to ease the training 

process while retaining learning capabilities thanks to the depth structure. That year, though, 

it was GoogLeNet [56] to win the competition, introducing the Inception module and the 

concept layer that was then used by the R-CNN model [57], which was the base model that 

inspired Object Detectors later on. 

 

Starting from the VGG model, in 2015 the ResNet model was developed and won the 

competition of that year [58]. This was an incredibly deep model composed of 152 layers with 

very simple structures, a result achieved thanks to the introduction of the Residual Block 

detailed in [58] [59], necessary to achieve well performing deep architectures. 

2.2 Convolutional Neural Networks 

To teach a computer how to see, a special type of ANN is used called Convolutional Neural 

Network (CNN). The name derives by the convolution operation adopted by the model, which 

is a mathematical operation that describes how the shape of a certain function  is modified 

by another function . 

 

Compared to ANN, the architecture of CNNs is very different. In fact, instead of having a set 

of hidden layers organized in sequence, where a set of neurons are required to elaborate the 

inputs according to a certain activation function (e. g. the ReLU function), CNNs work with 

volumes. Since images are stored as matrixes of pixel intensities inside a computer, it is only 

natural for CNNs to keep the same structure: images are matrixes of data where the  and  

dimensions represent the width and length of the image and the  dimension represent its 

number of channels. For example, RGB images have 3 channels while Depth images only one. 

Each pixel intensity of the image matrix represents a feature of the input; hence, the structure 
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has a high number of parameters and requires a lot of time to be trained to learn them. 

Compared to ANNs, CNNs optimize this aspect reducing the number of parameters needed 

for the overall structure, learning the features, and keeping under control the layer 

dimensions thanks to Convolutional and Pooling layers. Finally, to convert the prediction in 

the desired output (e. g. a class label), Fully Connected layers are adopted. A graphical 

example of a CNN is shown in Figure 7. 

The world-famous architectures of CNNs are AlexNet [54], VGG [55], Inception [56] and 

ResNet [58]. Starting from them, modern versions have been developed in recent years 

achieving state-of-the-art results in the task of image classification. 

2.2.1 Convolutional layers 

This type of layer allows to learn the features of the input by using filters or kernels, which 

are small matrixes that slide across the image and learn features by computing dot products 

(Figure 8). Each filter used learns a specific characteristic of the image, which will then be 

aggregated into a feature map. The convolution operation is carried out by moving the filter 

around the image and executing the activation function chosen (e. g. the ReLU function) to 

transform the data. Feature maps corresponding to each filter adopted are then stacked into 

Figure 7. Example of a CNN structure. Starting from the image (grey block) a sequence of 

Convolutional and Pooling layers learn the features (blue blocks). To obtain the final output, 

the result is flattened in the final Fully Connected layers (orange vectors), that present the 

output in a human-readable way (green circle). 
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a layer called Convolutional layer. It is important to note that the dimension of the resulting 

Convolutional layer depends on the original image size and on the number of filters. For 

example, starting from an image of dimensions  and using 32 filters K of size 

 results in 32 feature maps of size . The step used to slide the filter K 

along the image is called stride: the higher the number, the more rough and quick will be the 

learning, therefore reducing the learning ability of the overall network. The dimensions of the 

Convolutional layer, composed of the stacked feature maps, is . 

 

The output of a Convolutional layer may be the input of a following one, hence further refining 

the learning of the features, starting from simple concepts (e. g. edges) to more complex ones 

(e. g. patterns). 

2.2.2 Pooling layers 

After a convolution operation, is necessary to reduce the dimensionality of the parameters to 

learn. Therefore, Pooling layers are usually adopted after Convolutional layers. Reducing the 

Figure 8. Example showing how a Convolutional layer is built. Starting from the original 

image, several filters K slide across the image performing a dot product between the filter 

values and the image ones, resulting in a series of feature maps according to filter used 

(green and purple filters result in green and purple feature maps). The feature maps are then 

elaborated by a chosen activation function and stacked to form the final Convolutional layer. 
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dimensions helps preventing overfitting, a situation where the model learns extremely well 

the particular task (for example, to recognize cats in images) but does not generalize well 

when adopted to elaborate new data (for example, new images of cats unseen during the 

training phase). Pooling layers down sample each feature map independently by keeping the 

depth of the map intact but shrinking width and length. 

 

Different types of Pooling layers are available, but one of the most famous ones is the Max 

Pooling layer (Figure 9). Using small filters, these layers extract only the maximum value 

detected, which represent the most relevant feature of the region. Pooling layers have no 

parameters: a window slides on the feature map and the value is taken according to the type 

of Pooling layer adopted. 

2.2.3 Fully Connected layers 

These layers represent a mapping from the original network multi-dimensional structure into 

a simple mono-dimensional vector. In fact, the output values of Convolutional and Pooling 

layers have no meaning for humans; hence, they need to be translated according to the labels 

defined. This usually means that the mapping performed transforms the output into a vector 

of probabilities, which are then mapped in text labels according to their positions. 

Figure 9. Example of a Max Pooling layer with a window of 2x2 and stride 2. From each 

window, only the maximum value is passed to the next layer. 
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2.3 Object Detectors 

Traditional CNNs are used to classify images in well-defined classes; hence, the input images 

need to specifically contain the object to be recognized. Object Detectors try to solve a 

different task: given a certain image with different objects represented in it, the aim is to 

detect each object in the image and classify it correctly (Figure 10). 

 

 
 

(a) (b) 

2.3.1 Region-Based CNNs 

Object Detectors date back to when the Region-Based Convolutional Neural Network (R-

CNN) [57] was first developed. The idea behind this model was to propose a certain number 

of boxes in the image and check if inside any of the proposed boxes an object could be found. 

The boxes, called regions, are extracted using a selective algorithm. The procedure carried out 

by the selective algorithm is the following: (i) the original image is segmented, meaning that 

different regions of it are recognized as unique blobs; (ii) regions with a certain degree of 

similarity and closeness are joined together, forming bigger areas (based on color, texture, 

Figure 10. (a) Example of an output image of a CNN. The object is a cat and it is the only 

element clearly present in the scene, hence increasing the classification capabilities of the 

network, which outputs the class label. (b) Example of an output image of an Object 

Detector, where multiple objects are present in the scene. Each of them is precisely located 

in the scene and the corresponding class label is associated to them. Hence, the output is a 

set of Regions of Interest and class labels. 
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size, shape); (iii) these final areas are the region of interest proposed to the algorithm. The 

image areas proposed by the algorithm are then processed by the CNN model adopted to 

extract features. These are then passed to a Support Vector Machine (SVM) model that 

classify the object inside the region according to the features extracted by the CNN. A 

bounding box regression is used to predict the bounding boxes for each positive region (i. e. 

RoIs that contain an object). 

Although the R-CNN model was extremely helpful in advancing the task of Object Detection, 

it had some limitations. In fact, the selective search algorithm required at the start was 

typically ran around 2 000 times, hence making the necessary steps required to extract, 

compute, and elaborate a region, very time and resource consuming. Since the model was 

slow (it took around 40 s to perform a prediction on a single image), it was practically 

impossible to use for very large dataset, especially if the input images were big.  

 

This led to the developing of Fast R-CNN [60]. Instead of running the selective search algorithm 

2 000 times, in this model the regions are extracted after just one run of the selective 

algorithm on the whole image, leveraging the CNN structure. The input is elaborated by a CNN 

first, that extracts the feature maps that are used to automatically extract the RoIs. These 

regions are pre-elaborated, hence they are resized to a fixed dimension and passed to a fully 

connected layer that classifies their content. 

Alas, even Fast R-CNN had some problems. In fact, the selective search algorithm was still 

used, even if only once, hence slowing down the whole prediction model. The inference time 

was around 2 s; an extreme improvement compared to the previous model, but not enough 

to be used in real-life scenarios. 

 

Faster R-CNN [61] solved this issue, finally abandoning the selective search algorithm and 

adopting a Region Proposal Network (RPN) to propose the regions to the CNN. The RPN takes 

the feature maps of the whole image as input and generates a set of object proposals 

accordingly. These, in the form of a map, are passed to the classifier as a whole. The inference 

time obtained with this model is of 0.2 s, another huge improvement compared to the Fast R-

CNN model. It is worth noting that, even if Faster R-CNN is a state-of-the-art model, its 
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structure is a series of network; hence, its final performance heavily depends on how well the 

previous portions of it performed. 

2.3.2 You Only Look Once (YOLO) 

The You Only Look Once (YOLO) [62] framework deals with the Object Detection task in a 

different way. Instead of using regions to localize objects in the image, this model takes the 

entire image as a whole and predicts the bounding box coordinates and classes in one go. This 

makes the algorithm exceptionally fast (around 45 frames per second), albeit its overall 

accuracy may be less than Faster R-CNN. 

YOLO divides the original image into sections according to a grid. Image classification and 

localization are applied to each cell of the grid, hence predicting the bounding boxes and their 

classes. It is important to note that the boxes are calculated according to the grid adopted. 

This is also true for the input labels: training images are passed to the algorithm with the 

bounding box coordinates and labels of each object in them, obtained according to where the 

center of mass of the object is located with respect to grid. 

2.3.3 Region-based Fully Convolutional Neural Network (R-FCN) 

The idea behind the Region-based Fully Convolutional Neural Network (R-FCN) [63] is that 

even if we have a feature map that detects only a portion of an object, that portion should be 

enough to detect the whole object. For example, if only handle of a cup is detected with high 

confidence score, it is reasonable to assume that the whole object is a cup and that the other 

parts of it are probably around the handle itself. 

To achieve this result, the model adopts position-sensitive score maps. These maps allow to 

create a group of feature maps starting from the original one to search for the other cells of 

the map the other components of the object. Each new feature map is specifically trained to 

check for a specific feature that is usually located in that position. Then, for each of these 

regions the model computes a score expressing how much is it likely for the object to be in 

that cell, obtaining a matrix of votes related to the different cells of the feature map. For 

example, if we consider a 3 x 3 matrix as our RoI proposal, the model checks 9 cells of the 
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original feature map according to the proposal position. This process is called position-

sensitive RoI-Pool. The final score of the whole RoI is computed as the average score of the 

ones in its matrix.  

 

With this method, the feature maps of the RoI are trained to check specific portion of the 

object and the final output is a combination of their results. Thanks to this, it is possible to 

increase the RoI positioning without increasing the inference time. In fact, R-FCN has been 

demonstrated to be twenty times faster than Faster R-CNN. 

2.3.4 Single Shot Detector (SSD) 

The Single Shot Detector (SSD) [64] architecture has been developed in 2016 with real-time 

performances in mind. In fact, although Faster R-CNN achieves impressive accuracy results, 

the whole process still runs at around 7 frames per second. SSD reduces this time by removing 

the region proposal network and, to cope up with the resulting accuracy drop, it adopts multi-

scale features and default boxes. 

 

The model works similarly to YOLO, subdividing the image into a grid. It first extracts features 

maps using the famous VGG16 structure, then for each cell four object predictions are made. 

Each prediction is composed of a bounding box and N scores (one for each category plus the 

none  category), from which the model picks the one with the highest score to determine 

the object class. This multi prediction strategy is called multibox. Then, the model computes 

both the bounding box location and class scores using small convolutional filters. To speed up 

the process, SSD detects objects from multiple layers instead of one, a process called multi-

scale feature maps. The model adopts lower resolution layers to detect larger scale objects 

and higher resolution layers to detect smaller objects, where resolution means that the 

adopted grid of the feature map is thicker the higher the resolution value. 

The boundary boxes are determined according to default boxes, which are pre-defined boxes 

of a certain shape and size (e. g. horizontal or vertical rectangles, squares, etc.) defined 

manually by the user. Starting from the default ones, the model adapts them to fit the object. 
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SSD is extremely fast (around 59 frames per second) but performs extremely worse compared 

to Faster R-CNN in terms of accuracy, especially for the detection of small objects. This is 

mostly due to the fact that high resolution layers are the first ones to be extracted by the 

feature map extraction network, hence these layers contain only low-level features like edges 

or color patches, that are less informative for classification. To improve accuracy, the manual 

definition of default boxes is a key aspect. 

2.3.5 Performance comparisons 

Authors of [65] performed several tests to compare famous Object Detectors developed in 

TensorFlow, a popular framework to develop and test Deep Learning algorithms. In the tests, 

they used the MS COCO dataset [66] for training because its composition establishes a 

controlled environment and makes tradeoff comparisons easy. MS COCO is a large-scale 

dataset for object detection and several other tasks related with the detection of objects in 

cluttered scenes. It has around 330 000 images of which more than 200 000 are labeled, 80 

object categories and 91 stuff categories. 

 

It is important to note tha

end-user needs: does the task require speed or accuracy? The study shows that Faster R-CNN 

using Inception Resnet with 300 proposals gives the highest accuracy at the cost of a very slow 

inference time (1 frame per second) and, in general, this is the model with the highest 

accuracy among the tested ones even when changing the parameters, although it requires at 

least 100 ms per image. The fastest models are SSD and R-FCN models at the cost of a reduced 

accuracy; in particular, R-FCN is a good trade-off between a fast model and a high-accuracy 

one, scoring exactly in-between SSD and Faster R-CNN depending on the parameters used. 

For more details about the tests and the results, see [65].  
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Chapter 3. Human-Robot Interaction 

Robots have been considered merely as necessary tools to achieve a goal, but what if they 

could be able to communicate? When humans work together in organized groups everyone 

has a specific task to carry out and, to properly collaborate as a team, the individuals need to 

communicate. For example, by watching a colleague working it is possible to understand if it 

requires assistance (body language); or by asking a colleague for information it is possible to 

better adjust our own work accordingly (voice communication) [67].  

 

If humans work as partners, why robots and humans should not? In fact, human workers have 

unique problem-solving skills, sensory and motor capabilities but are restricted in force and 

precision. On the other hand, robots provide higher speed, repeatability and can manipulate 

heavy objects with ease, but are restricted in flexibility [68]. By establishing an effective 

communication method between the two, it is possible to obtain a human-robot collaborative 

team where human workers do not have to carry out heavy or dangerous tasks while still being 

able to exploit their unique intelligence and knowledge to guide the robot, this time as a 

partner. 

 

Hence, communication is the key to achieve effective collaboration between two individuals. 

Different types of communication may be established between humans and robots according 

to the sensor technology and approach. Generally, interactions may be: 

 Physical: by touching the robot in a certain way it is possible to issue a command. This 

type of communication is not always possible nor feasible if the robot moves at very high 

speed or if it is carrying heavy objects, but it may be the preferred type of interaction for 

companion robots or service robots; 

 Verbal: by using voice it is possible to give information to the robot or issue a command, 

for example to require assistance or to order it to carry out a certain action. This type of 

interaction is based on speech recognition and it is heavily language-dependent, not to 

mention that background noises, usually found in manufacturing plants, could terribly 
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lower the chances of the system to recognize and interpret correctly the user voice 

command; 

 Non-Verbal: body language can be as expressive as voice if properly designed, as the sign 

language communication suggests. Hence, by adopting suitable technologies to acquire 

and interpret body gestures, it is possible to easily communicate with the robot. This 

approach allows communicating regardless of the user language by using a pre-defined 

gesture dictionary. 

3.1 Communicating by gestures 

As discussed in [69], gestures represent a complex type of communication. They can be used 

as part of an utterance to represent a meaning in a complex, holistic way, concurrently with 

speech or as an alternative, serving as a component of a sentence that might otherwise have 

been spoken.  

 

speaker mimics the act of smoking with its hands. In this case, the gesture adds a behavior 

example to the message that enriches the original meaning of the spoken phrase. This also 

happens when gestures are used as substitutes for words or complex meanings. In the phrase: 

the speech interrupts and the speaker stretches out both 

hands fully open with the fingers slightly bended as if to simulate the act of grasping an object, 

moving the hands up and down with a stressed-out facial expression. This complex gesture 

conveys the general idea of over-controlling parents, but at the same time, a broad set of 

meanings linked to this concept that are difficult to explain with words but are immediately 

understood thanks to this simple gesture. Therefore, if in the first case the gesture simply 

added meaning to an already well-built and understandable sentence, in the second case, the 

gesture does not substitute a single word and its presence is necessary to understand the 

original sentence in full. 

 

A different scenario is represented by gestures used as the only communication channel 

between two or more individuals. This is the case of sign language or coded languages in 

general, where the people involved all know how to translate the symbol to a meaning 
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according to a pre-defined symbolism that standardizes the language. These symbols are 

much more like words than anything are, in fact, they are used as building blocks to create a 

complex language structure similar to how spoken language is built. It is interesting to note 

that, considering deaf elementary school children who did not have an already established 

sign language between them, they naturally elaborated a pantomimic gesture form to 

represent something and mutually agreed on that something [70]. For example, the gesture 

to represent their teacher facial appearance became a method to refer specifically to her, by 

even transformed to the gesture that refers to the School Principal. The original gesture is 

freed from the requirement of being a picture of something (the teacher), so it becomes free 

to take a general meaning (a general teacher or the School Principal) and being recombined 

with other forms or participate in compound signs or sentences. These forms emerge during 

their use during interactions; hence, this transformation only happen when a community of 

users is involved and actively uses them. If a gesture is established between two individuals it 

like a secret code. Nevertheless, when the gestures are used to communicate with a broad 

audience, their meaning cannot be private and must be general and understandable: this is 

the process of lexicalization of a gesture. 

 

The author of [71] highlights that gestures are not just movements but are symbols that 

exhibit meanings in their own way. In their experiments, different people described the same 

event with both words and hand gestures and, albeit with some differences, the main 

concepts were expressed by similar gestures. The individually different gestures each subject 

used had a common core of meaning, not because of a code or a gesture language but because 

each subject separately created its own manual symbol of the event. Gestures are linked to 

the words used; in fact, 

were accompanied by a downward movement of the gesture, while 0% of them were 

accompanied with an upward movement of the gesture. Similarly, 73% of the verbs with the 

-occurred with gestures that included left or right movements, while 

only 8% occurred with a downward movement and 17% with an upward movement.  



Towards true Human-Machine collaboration: the concept of Meta-Collaborative workstations and a first software prototype 

Cristina Nuzzi  50 

An interesting analysis concerns two-handed gestures, which can be of two kinds: gestures 

where the hands move in the same pattern but mirrored and gestures where the hands 

perform different movements. The latter are interesting because usually these gestures are 

used to express a fixed reference with one hand and an active motion with the other; hence, 

these gestures have a stronger meaning compared to single-hand gestures. 

3.2 Gesture Recognition 

The term Gesture Recognition refers to a process where the gestures made by a user are 

recognized by a receiver. Gestures are expressive body motions that involve physical 

movements of fingers, hands, arms, head, face, or full body, used to convey information or to 

interact with the environment. Since gestures depend on the language and on the culture of 

the user, (i) the same information may be expressed using a different gesture or (ii) a certain 

gesture could express very different information according to the user, even if a proper 

gestures dictionary has been defined in advance [72]. 

 

Gestures may be: 

 Static: the user assumes a certain pose or configuration with its body; 

 Dynamic: the gesture changes over time, hence there are different phases called pre-

stroke, stroke, and post-stroke. This implies that the gesture has start and end points both 

in space and time, therefore automatic recognition may be difficult or prone to errors 

according to the gestures in the dictionary. 

It is worth noting that different gestures may be (i) hand and arm gestures (e. g. sign language, 

hand poses), (ii) head and face gestures (e. g. direction of eye gaze, emotion recognition) and 

(iii) body gestures (e. g. full body motion for tracking, rehabilitation or behavior monitoring). 

According to [72], the meaning of a gesture typically depends on where it occurs (spatial 

information), what trajectory or path it takes (path information), what sign or symbol it makes 

(symbolic information), and, if it has an emotional quality like for facial gestures, what is it 

(affective information). 

The authors of [68] propose a gesture recognition model based on five steps: 

1. Sensor data collection: the raw data of the gesture is acquired by sensors; 

2. Gesture identification: in each frame, a gesture is located from the raw data; 
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3. Gesture tracking: the located gesture is tracked during the gesture movement. This step 

is unnecessary if the gesture is static; 

4. Gesture classification: tracked gesture movement is classified according to pre-defined 

gesture types; 

5. Gesture mapping: the gesture recognition result is translated into robot commands and 

sent back to the workers. 

 

gestures, different types of sensors can also be adopted. For example, gloves provide high 

precision in the recognition but may cause problems in the working environment due to their 

calibration needs and required cable connections. Band sensors are another type of wearable 

device that adopt electromyogram technology to sense the user movements albeit with less 

precision compared to gloves. Non-wearable devices include radio frequency-based sensors 

that track gestures according to the changes in the signals, even from afar, but the precision 

of the recognition is very low. 

 

As pointed out in [73], there is not a standardized set of gestures suitable for human-robot 

communication. Albeit many gesture recognition works and applications are available in 

literature, these are mostly designed to perform laboratory experiments and test the system 

performance, not to perform tasks in the real industrial environment. Gestures must be easy 

to make, as close as possible to the common use of finger, hand, and arm gestures (i. e. natural 

gestures), clearly distinguishable one from another and easy to remember. They must be 

different from gesticulation and socially acceptable, minimizing the cognitive workload. 

Moreover, even if a sign language like the American Sign Language is rich in syntactic and 

semantic features to the point of not needing the contemporary use of spoken language, it is, 

on the other hand, a quite complicated way to communicate and require a great learning 

workload, making sign languages not suitable to express simple commands for human-robot 

communication [69].  
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Another way to categorize gestures is proposed in [71], following this subdivision: 

 Iconic gestures: they represent images of concrete or abstract entities and/or actions, 

resembling the event or the objects as if they have a semantic connection to them; 

 Metaphoric gestures: related more to the representation of abstract entities or concepts 

rather than concrete objects; 

 Deictic gestures: refer to entities, actions or objects present in the surrounding 

environment where the person currently is but may also be abstract. This type of gestures 

is rent body parts; 

 Beats gestures: this category refers to gestures where the movement of the limb or the 

hand is rhythmic like it is a beating time. Typically, this is what happens with Gesticulation, 

with no semantic correspondence to the speech. 

 

Hence, for human-robot communication iconic and/or deictic gestures are the most suited 

ones to express understandable commands to the robot. 

3.3 The developed gesture language 

3.3.1 Background research 

To effectively communicate with a machine in a natural and intuitive way the communication 

language adopted should be easily learned by the operator and robustly interpreted by the 

robot. The need of a flexible and intuitive programming language for industrial robots has 

been thoroughly investigated in [74], which highlights that not only modern companies need 

a flexible set-up to adjust the production based on market needs, but also that complex robot 

tasks can be decomposed into small and simple actions. The experiments carried out by the 

authors show that skill-based programming performed by different means (such as gesture 

recognition and kinesthetic teaching) greatly speed up the programming time required by the 

operators, regardless of their experience.  

 

As pointed out in [75] and [67], a natural and robust interaction is based on body language, in 

particular on hand gestures. Hand gestures recognition is a topic that has been vastly explored 
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through the years and a plethora of sensors may be used according to the type of 

communication method, for example by using wearable sensors such as haptic gloves or EMG 

or IMU devices [75]. In fact, authors of [76] propose an HRI system based on hand gesture 

recognition, which leverages wearable sensors such as IMUs. They adopted a combination of 

unsupervised segmentation algorithm based on motion and classified afterwards by an 

Artificial Neural Network (ANN) purposely trained for the task. In late years, though, the 

adoption of vision systems to perform hand-gesture recognition has increased also because 

these sensors are contact-less, reliable, and cost-effective, considering that a single camera 

can be adopted in combination with a suitable Computer Vision or Deep Learning algorithm 

to achieve satisfactory results [77]. Furthermore, vision sensors may also be used to monitor 

the scene effectively, allowing the eventual introduction of safety strategies based on human-

robot relative positions [78] [31] in parallel with the human-robot communication system. 

Vision-based methods traditionally involve Computer Vision techniques such as the hand 

segmentation using the skin color or the depth information to accurately find the hand in the 

image frame. A successful example is detailed in [79], where the authors developed an open-

source API to recognize both static hand gestures and dynamic hand gestures combining the 

RGB and depth information provided by a Kinect sensor. They were able to implement in the 

API the full ASL finger-spelling alphabet and a rich set of 16 uni-stroke gestures, using a 

Support Vector Machine (SVM) to classify static gestures based on features extracted from a 

Gabor filtering, and a Hidden Markov Model (HMM) to recognize dynamic gestures based on 

the computed trajectories of the segmented hands. In [80] a flexible system for gesture-based 

HRI is presented, where the authors propose a system based on the recognition of upper arms 

gestures, utilizing a Machine Learning algorithm called Adaptive Naïve Bayes Classifier that 

classifies the gestures by analyzing the pose skeletonization extracted from the depth image 

of the scene. Authors of [81] present a similar system, based on ROS and on the recognition 

of full body poses acquired by a Kinect camera and a Leap Motion sensor. Here, the 

hierarchical representation of tasks allows users to build programs in a flexible and intuitive 

way. Similarly, in [82] a system based on a Gestures Dictionary is used to dynamically build a 

robot program where the adopted gestures are acquired by a Kinect sensor that extracts the 
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human skeleton (static gestures) and by the Leap Motion sensor that tracks the hands 

movements (dynamic gestures). The gestures are designed to move the robot in a modality 

similar to the traditional Jog mode, where the robot end effector position is adjusted by a 

certain pre-defined step according to the direction of the movement (up, down, left, right). 

The experimental results show that even for non-expert users the adoption of body gestures 

to move the robot was more convenient in the case that the accuracy of the positioning was 

not required, and overall this approach was preferable compared to traditional methods. 

 

Compared to those methods, nowadays hand gestures can be easily recognized by using 

convolutional neural networks (or CNNs) [77]: the hands are treated like symbols or objects 

and thus can be easily extracted from single frames with an inference time of 200 ms and 

classified correctly in most cases. An example of this approach is detailed in [83], where the 

authors present a small set of very different single-hand gestures acquired by an RGB camera. 

To ensure a high recognition confidence, they use a solid color background and extract the 

hands in different regions by using a skin model, filtering out non-hand pixels. They also 

perform a calibration of the system, to ensure its capability of recognizing the gestures even 

when they are performed in slightly different poses and orientations. A different solution is to 

adopt an Object Detection model. In this case, the network is composed of two parts, which 

solve two different aspects of the problem: the object localizer, which finds the objects in the 

scene regardless of the background noise, and a CNN-based object classifier, which identifies 

the objects obtained from the previous step. After training, the network localizes the objects 

in a cluttered scene and classifies them correctly. In this way, it is possible to perform the 

recognition of multiple objects in the same scene, reducing the computational complexity of 

the system, speeding it up [84], and avoiding the use of a solid color background, which is not 

a feasible option in industrial environments. Object Detectors are intensely used especially in 

the autonomous driving research, to localize pedestrians, other vehicles, street signs and so 

on [85]. This suggests the idea of applying Object Detectors to recognize human hands, a task 

successfully achieved in [86], where it is demonstrated that Object Detectors can be 

effectively used to localize human hands and to classify the single-hand gestures performed 

in cluttered environment. 
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3.3.2 Evaluation metrics 

To evaluate the performances of a gesture recognition model trained on a certain dataset it is 

common practice to use a set of statistical tools. Let us consider a classification example where 

image, the model should outp  (Table 3). True Positive samples (TP) are obtained 

when the original image represented a cat and the model correctly outputs the correct label 

True Negative samples (TN) are obtained when the original image contained no cat and 

the model correctly False Positive samples (FP) are obtained when 

the original image did not represent a cat, Cat False 

Negative samples (FN) are obtained when the original image represented a cat but is classified 

as  

Table 3. Example of a truth table considering the case of a two-class classification problem. 

In this case, the problem is designed to check for the presence/absence of a single object, 

hence it is a binary problem. 
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Hence, the indexes considered to evaluate the model performances are the following: 

 Positive Predictive Value (PPV, also called Recall): it represents the ratio of correctly 

predicted positive observations out of all predicted class observations. It answers the 
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 True Positive Rate (TPR, also called Precision): it represents the ratio of correctly 

predicted positive observations out of the number of actual class observation. It answers 

what proportion of actual class positive observations is correctly classified?  

 

 Negative Predictive Value (NPV): it represents the ratio of correctly predicted negative 

observations out of all predicted class observations what 

proportion of predicted class negative observations is truly negative  

 

 True Negative Rate (TNR): it represents the ratio of correctly predicted negative 

observations out of all actual class observations what proportion 

of actual class negative observations is correctly classified?  

 

 Recognition Accuracy (RA): it represents the number of total correct classifications over 

the total number of test examples what proportion of 

occurrences both positive and negative were correctly classified?  

 

 F1-Score: it is the harmonic average of TPR and PPV. It is used as a tool to compare 

different classifiers, giving a larger weight to lower values. It is worth noting that this index 

is useful for a quick comparison, but the context of the classification problem must be 

considered. For example, classifying a defective gear as optimal has a different cost from 

classifying an optimal gear as defective, and this should be reflected in the way weights 

and costs are used to select the best classifier for the problem. 
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 Confusion Matrix:  it is a table reporting the number of all the predicted observations of 

each class with respect to their ground truth. It gives a quantitative measure of the ability 

of the model to classify the different classes. When normalized, each value of the table is 

averaged over the total occurrences of the specific class. 

The multi-class case is a little bit trickier. Although the definition of each index is still valid, the 

adopted formula is not the same. Considering the example in Table 4, we have three animal 

-

image is showing a different animal or something unrelated to the three animals in the 

dataset. In this case, to correctly determine the index values it is best to look at the matrix and 

keep in mind the question each index is trying to answer. Hence, the PPV of each class is 

calculated as the number of TP of the class over the sum of predictions of said class (horizontal 

sum), while the TPR is calculated as the number of TP of the class over the sum of actual class 

observations (vertical sum). For the negative values, the same consideration must be 

 

 

Table 4. Example of a truth table considering the case of a three-class classification problem. 
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3.3.3 First approach: four two-hands gestures 

As a first approach to the problem, a very small gesture dataset has been developed and 

tested with only 4 gestures [87] [88]. The idea behind this first test was to choose gestures 

that were easy to remember and perform and that, at the same time, could express suitable 

commands. The focus of this first approach was to experiment with gestures following similar 

examples shown in literature. Simple and easy single-hand gestures were usually adopted, 

such as the ones in [89], and detected using visual techniques like hand segmentation using 

color thresholding and background subtraction. The static gestures adopted in works that 

used the whole body posture where also very simple albeit not natural, a necessary trade-off 

to improve robustness of the recognition. These methods were often combined with the 

skeleton information or by segmenting the human from the colored image thanks to the depth 

frames in order to detect the whole pose correctly [82] [90] [91]. Some works also fuse the 

visual information taken from RGB-D cameras with other sensors such as haptic gloves [92]. 

3.3.3.1 Dataset definition 

Since even the best performing DL algorithms may recognize a gesture wrong, to ensure that 

the hand gesture command is properly recognized and to expand the dictionary of possible 

commands, I choose to build a gesture language with both hands at the same time. A similar 

idea was also explored in [93], where two hands were used to form complex meanings such 

as the action of putting an object over something else. I opted for simpler gestures; hence, in 

this dataset the second hand acts as an anchor

 to force the DL model to recognize the complete gesture only in its presence, 

improving the robustness of the recognition. I choose as anchor  the left hand, which must 

be held close showing the fingers to the camera.  

 

Figure 11 shows the four gestures adopted, briefly described as follows: 

 START: left hand closed (anchor), right hand closed (Figure 11a). 

 STOP: left hand closed (anchor), right hand opened (Figure 11b). 



Towards true Human-Machine collaboration: the concept of Meta-Collaborative workstations and a first software prototype 

Cristina Nuzzi  59 

 RIGHT: left hand closed (anchor), right hand pointing right (palm facing the camera, Figure 

11c). 

 LEFT: left hand closed (anchor), right hand pointing left (back facing the camera, Figure 

11d). 

These were mostly inspired by existing literature regarding gestures in industrial plants, which 

adopt only a few of easy and intuitive commands [82] [94]. 

 
  

 

(a) (b) (c) (d) 

Figure 11. Examples of the four gestures performed by different actors. (a) START gesture, 

performed with both hands closed, (b) STOP gesture, performed with the right hand open, (c) 

RIGHT gesture, performed with the right hand pointing right, (d) LEFT gesture, performed 

with the right hand pointing left. 

The Complete dataset is composed of a combination of four small datasets containing RGB 

images acquired by a Kinect v2 [95] camera in different set ups. The actors moved around the 

test area while performing the gestures, resulting in gestures performed while front facing the 

camera and while being laterally oriented. To ease the training process, each image in the 

datasets has a standard size of 224x224 px. The four datasets are: 

 Base Dataset: it is composed of 609 images containing gestures taken from 15 different 

operators; 

 Light Colors Dataset: it is composed of 383 images containing gestures taken from 5 

different operators. These are taken with operators wearing clothes similar to their skin 

color or similar to the background color, to test the performance of the model in 

problematic conditions; 

 Gloves Dataset: it is composed of 400 images of gestures taken from 5 different operators. 

These are taken with the operators wearing light blue gloves, to create some contrast; 

 Zoom Dataset: it is composed of 710 images of gestures taken from 7 different operators. 

These are basic gestures taken with the camera positioned very close to the operator to 

reduce the disturbances from the background. 
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The combination of these four datasets creates a Complete dataset. It is worth noting that for 

each dataset 80% of the images have been used for training and 20% for testing. To build the 

Complete dataset, the 80% of the images have been selected from each smaller dataset, 

ensuring an adequate contribution from each of them, for a total of 1681 images for training 

and 421 for testing. I also create an extra dataset named Errors dataset composed of 140 

images taken from the Base dataset, 17 images from the Light Colors dataset and 9 images 

taken from the Zoom dataset. These images contain mostly purposely  gestures, which 

represent not allowed gestures and situations where multiple operators not performing any 

gesture are in the scene, and only a few of correct gestures. 

3.3.3.2 Experimental system description 

The model chosen for this first test was a Faster R-CNN model trained in MATLAB without pre-

trained weights. This choice was motivated by the fact that albeit famous DL frameworks such 

as Caffe or TensorFlow were available at the time, they still required the user to fully 

comprehend their structure before being ready for use. MATLAB DL module, on the other 

hand, was a faster alternative to test this first dataset idea and get some results, while still 

following famous model structures such as the one adopted. I chose the Faster R-CNN model 

because it was the best performing one available in MATLAB as an off-the-shelf algorithm, 

allowing me to focus more on the dataset definition and hyperparameters tuning than on the 

whole model structure. 

The four single-hand gestures are individually recognized by the DL model and, after the 

prediction set has been obtained, the constraints are checked to verify if the recognized 

gestures comply with them. In this way, it is ideally possible to build different commands by 

combining single-hand gestures into a two-hand one afterward. This checking procedure is 

carried out by a custom-made filtering function called Custom Prediction Function (CPF) I 

purposely designed for the task. The CPF takes the model output as input, which is a set of 

predictions comprehending the predicted class label, bounding box coordinates and 

confidence score. For each image, only the predictions with a confidence score greater than 

90% are retained; among them, the presence of at least one closed-hand gesture is verified, 
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otherwise the predictions are discarded, and the gesture is classified as . Residual 

predictions are good candidates to represent gestures: the challenge is to combine predictions 

in pairs of single-hand gestures, where one is the left-hand anchor and the other is the right 

hand (closed, open or pointing left or right, depending on the gesture). To this aim, the CPF 

block checks the Euclidean distance of the centroids of each bounding box detected in the 

image. If this distance is inside a threshold (not too close, not too far), the pair is retained. If 

some predictions overlap, only the one with the highest confidence score is retained, no 

matter the class label. Finally, only the pair with the highest total confidence score is retained 

among the residual pairs. The complete procedure is described in detail in [88]. 

3.3.3.3 Performances evaluation 

I trained each dataset in Table 5 individually, obtaining five different models. The results 

relative to each dataset are obtained testing each model on its respective test dataset, while 

the results relative to the Errors dataset are obtained considering the model trained on the 

Complete dataset and tested on the Errors dataset. It is worth noting that the performances 

shown in the Table have been rounded. Considering the results obtained, it is not surprising 

that the Light Colors dataset performs worse than the others do because the skin color of the 

hands is often too light or too similar to the shirt worn by the operator, hence reducing the 

model recognition capabilities. The limited number of images in this dataset is also one of the 

reasons why its performances are very low compared to the other ones. 

Table 5. Test results of the model trained on each dataset. Results have been rounded. 

Dataset PPV TPR NPV TNR F1-Score RA 

Base 91% 83% 20% 100% 87% 84% 

Light Colors 79% 66% 20% 67% 68% 66% 

Gloves 89% 90% 14% 8% 87% 78% 

Zoom 96% 98% 90% 79% 97% 95% 

Complete 92% 93% 81% 72% 93% 91% 

Errors 1% 6% 100% 73% 2% 70% 
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The idea of wearing gloves of a bright color shows interesting results, in fact the Gloves 

dataset, despite having few images, achieves a total recognition accuracy close to 90%. This 

finding suggests that, in industrial scenarios where gloves may be a required gear to wear for 

operators, designing a gesture dataset based on hand gestures with gloves is a feasible 

solution. As expected, the Zoom dataset performs best among the datasets, not only because 

of the high number of images in it but also because the hands are perfectly recognizable and 

occupy a big portion of the image, hence the cluttered background noise is reduced. While 

the Base dataset achieves overall good performances, the real improvement can be seen in 

the Complete dataset, where even the NPV and TNR values are high. The reduction of the 

overall performance values compared to the Zoom dataset is due to the fact that, in this 

dataset, even the difficult images from the Base and Light Colors datasets are considered. 

Figure 12 shows the normalized confusion matrix obtained for the Complete dataset test.  

The performances of the Errors dataset are interesting because, in this case, only the NPV and 

TNR values are informative. The high values achieved show that, when a purposely wrong 

 

From this experiment, it is made evident that four gestures are not enough to properly 

Figure 12. Normalized confusion matrix of the Complete dataset test. 
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command a robot end-effector, but the idea of a two-hand language to boost the recognition 

accuracy of the complete gesture shown promising results.  

3.3.4 Second approach: a big single-hand gestures dataset 

In this second approach I expanded the single-hand gestures dictionary and tested the 

capabilities of the same model (Faster R-CNN model designed and trained in MATLAB) to 

recognize single-hand gestures only in cluttered environments. Some ideas regarding this 

second dataset structure came from the literature. For example, the work detailed in [96] 

shows a successful application of a custom-made Object Detector trained to detect single-

hands gestures. Its robustness is improved by the presence of the human skeleton, used to 

filter out incorrect predictions also according to the performing stance defined by the authors, 

which is with both arms at shoulder length front facing the camera. This combination proved 

to be successful at the cost of a reduced inference time; in fact, the whole human-robot 

interaction may be too slow to be smooth. Furthermore, in a second release of the previous 

work presented in [97], the authors adopted multiple gestures and augmented their dataset 

using artificial backgrounds. 

3.3.4.1 Dataset definition 

The new dataset has been manually acquired using different smartphones: a person moved 

around the actor with the device, acquiring the gestures with different angles. A total of 15 

actors have been registered performing the gestures, 5 females and 10 males (Figure 13). 

Different backgrounds where chosen for each actor, to increase the variability of the dataset 

and prevent the network to learn how to recognize the background instead of the hands. It is 

worth noting that 5 actors presented a solid bright green color background; two of them have 

the hands segmented out from the rest of the body by a green frame (samples (k) and (l) in 

Figure 13). 

 

  

 



Towards true Human-Machine collaboration: the concept of Meta-Collaborative workstations and a first software prototype 

Cristina Nuzzi  64 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

     

(k) (l) (m) (n) (o) 

Figure 13. Examples taken from the dataset for every actor. Actors from (a) to (l) have been 

used for training, while actors from (m) to (o) have been used for testing. 

 

The dataset has been augmented using a random combination of 3 augmenting techniques: 

 Random spatial distortion: applies a virtual zoom to the original HD image and a 

dimensional distortion, thus losing the original aspect ratio. The distorted images have 

been then cropped to the standard size of 224x224 px (samples (a) and (b) in Figure 14); 

 Random color distortion: multiplies the channels of the image for a random numerical 

value. To increase variability, the program selects randomly the color space on which 

perform this distortion (RGB, HSV). Speckle noise is added after-wards with intensity 

randomly chosen (samples (a) and (b) in Figure 14); 

 Artificial background: 5 actors have been purposely acquired with a solid bright green 

color background. This color is easily selected by the program and substituted with a 

random background downloaded from the internet, followed by a low-pass filtering step 

to obtain a more realistic fusion between the actor and the new background (sample (c) 

in Figure 14). 
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The total number of images is 39584 for the training dataset and 5739 for the test dataset, 

both randomly shuffled. The gestures chosen for the experiment are shown in Figure 15. 

 

   

(a) (b) (c) 

Figure 14. Examples of the augmenting techniques. (a) Spatial distortion along the y-axis, 

RGB distortion and speckle noise added on top, (b) spatial distortion along the y-axis, HSV 

distortion and speckle noise added on top, (c) artificial background added, random crop and 

zoom, speckle noise added on top. 

 

       

(a) (b) (c) (d) (e) (f) (g) 

    

 

 

 

(h) (i) (j) (k) (l) (m) (n) 

 

 

 

 

 

 

 

 

 

 
 

(o) (p) (q) (r) (s) (t) (u) 

Figure 15. Experimental gestures proposed. (a) One_FR, (b) Victory_FR, (c) Two_FR, (d) 

Three_FR, (e) Four_FR, (f) Five_FR, (g) Six_FR, (h) Seven_FR, (i) Eight_FR, (j) Nine_FR, (k) 

Rock_FR, (l) Span_FR, (m) Punch_FR, (n) Thumb_R, (o) Ok_R, (p) Vel_R, (q) OneH_FR, (r) 

ThumbH_FR, (s) Collab, (t) XSign, (u) TimeOut. 
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As a first approach, I wanted to understand if the model was able to properly recognize left-

hand and right-hand gestures and, at the same time, back-hand and front-hand gestures. 

Because of this, gestures from (a) to (l) have 4 variants. Gestures from Figure 15(m) to (p) have 

only left and right variants, while gestures from (q) to (r) have four variants since these both 

-hand gestures, 

thus having only one variant. 

3.3.4.2 Performances evaluation 

The first row of  shows the results obtained from a training made by using only back-hand and 

front-hand gestures of the same hand (left or right only). This first experiment highlights that 

back-hand and front-hand gestures are often misclassified with each other by the model, and 

Six Nine

The results for the other variants are supposed to be similar to the abovementioned ones, 

hence were not computed.  

The low performances achieved are not surprising, especially considering the high number of 

gestures in the dataset compared to the four gestures dataset (Section Errore. L'origine 

riferimento non è stata trovata.) and their similarities, not to mention the difficulties 

introduced by the augmenting techniques. Hence, given the low performances obtained, I (i) 

removed almost every back-hand gesture and (ii) used only a limited number of gestures, 

some of which have been merged in a single class even if they were intended as different 

classes or with different meaning with respect to the original one.  

Table 6. Model performances on the two different tests.  

Dataset PPV TPR NPV TNR F1-Score RA 

Test 1 73% 55% 0% 0% 58% 53% 

Test 2 83% 82% 0% 0% 81% 77% 

Thumb

the latter is frequently Two Victory

Punch Span
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Five Four

misinterpreted due to a wrong placing of the bounding box, which cuts off the thumb of the 

hand. This issue may be fixed by adopting a different model (i. e. the R-FCN model, which 

adopts a voting method inside the bounding box to correctly place it around the object of 

Nine Ok

is shown to the camera.  

The selected gestures chosen after this evaluation are: 

 Punch -hand left and right variants, both under the same label name 

(gesture (m) in Figure 15); 

 Thumb front-hand left and right variants, both under the same label 

name (gesture (n) in Figure 15); 

 Two -hand left and right variants, with two different label names to 

differentiate between them (gesture (c) in Figure 15); 

 Three -hand left and right variants, with two different label names 

to differentiate between them (gesture (d) in Figure 15); 

 Span

Both front and back-hand, left and right variants are used under the same label name, to 

increase robustness (gesture (l) in Figure 15); 

 Five -hand left and right variants, with two different label names to 

differentiate between them (gesture (f) in Figure 15); 

 Ok

right front-hand variants are used under the same label name (gestures (j) and (o) in Figure 

15); 

 Collab (gesture (s) in Figure 15); 

 XSign (gesture (t) in Figure 15); 

 TimeOut gesture (u) in Figure 15). 

 

The model has been trained and tested again on these gestures; the results are reported in 

the second row of . For this experiment, both right-hand and left-hand gestures have been 
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used for the selected gestures, for a total of 29542 images for training and 4066 for testing. It 

is worth noting that the number of True Negative samples was zero for both tests, resulting 

in the null TNR value. Figure 16 shows the normalized confusion matrix of this test. As 

expected, the overall performances increased compared to the previous test, while still being 

low with respect to state-of-the-art gesture recognition models. This was probably due to the 

fact that the model was not pre-trained on large datasets and that the Faster R-CNN model 

implemented in MATLAB was not able to properly place the bounding box around the hands, 

as shown in Figure 16 Three Two

There is Background

Punch Span Collab

Background Figure 16 Background

Figure 16. Normalized confusion matrix of the results of Test 2. 
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Thumb Figure 

16). 

3.3.4.3 Experimental system description 

Compared to the approach seen in Section 583.3.3, this second version of the gesture 

language was used to move a real industrial robot in real time thanks to a command software 

based on a State Machine structure. Hence, the gestures are not only gestures but also 

operative commands when elaborated by the developed software detailed in [98]. Similar to 

the first approach, a filtering procedure has been implemented to improve the detection 

robustness and combine single-hand gestures in two-hand gestures accordingly. After the 

detector makes a prediction, the centroid of the predicted box undergoes a checking 

procedure according to several conditions detailed in [98] such as: (i) the confidence score, 

which has to be equal or greater than 80%, (ii) the working zone of the centroids, (iii) the 

operative state of the State Machine, which accepts only a pre-defined subset of gesture 

commands, (iv) the presence of the requested second hand gesture if necessary and (v) the 

number of predictions of the same class around the same centroid position, which must be at 

least 2 on a total count of 4 consequent predictions.  

The working zones are defined by the software according to the centroid position of the 

human operator, found after the initialization step (Errore. L'origine riferimento non è stata 

trovata.). These are: 

 Left zone, where only left-hand gestures can be detected; 

 Right zone, where only right-hand gestures can be detected; 

 Center zone, where only two-hand gestures can be detected. 

  

(a) (b) 
Figure 17. Initialization procedure. (a) Centroid detection, (b) working zones definition.  
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Furthermore, I expanded the number of possible commands by using both single-hand 

gestures and two-hands gestures, obtained as a combination of single-hand gestures. 

Commands are then subdivided by their meaning and usage as follows:  

 Numerical commands: Punch Five

These are performed with a single hand; 

 Interface commands: these are used to confirm, cancel or undo the given commands, thus 

avoiding giving the robot the wrong command by mistake (Figure 18). Each command is 

performed with both hands to create a more robust instruction. To confirm an instruction 

Punch same time. To delete an 

instruction and re- Five

Punch Five

must be performed by both hands at the same time; 

 System commands: these commands are used to send precise instructions to the robot or 

XSign

with the system and for closing t Punch

gesture must be performed with both hands, while to stop it, it is enough to show to the 

Five

Five TimeOut

(i. e. a loop task), that can be re- Collab

Ok

gesture is used to change the robot speed: it is expressed as a percentage, obtained as the 

slope of the segment having the extremes in the centroids of the boxes of the two hands 

Ok  

Figure 18. Example of the Interface commands. When the user is prompted with an Interface 

command request, it is possible to confirm the instruction and proceed with the operation, 

or to delete (thus returning to a previous state and re-enter the command) or cancel the 

operation. 
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Working zones are necessary to filter out incorrect predictions that may be detected on wrong 

body parts (i. e. the head) or on the background. This obviously pose the problem of the 

naturalness of the interaction: albeit no experimental evaluation of the user experience has 

been conducted to determine its impact, it is very likely that it reduces the overall satisfaction 

of the user when using the system. Using working zones proved to be a necessity for this 

system because of both the dataset composition and the model adopted. In fact, using such a 

vast number of gestures and allowing the operator to use only one hand at a time instead of 

two like in the previous approach detailed in Section 3.3.3 required the system to use strict 

constraint. A better model or a better training procedure (e. g. fine-tuning) could improve the 

recognition ability of the network, thus reducing the number of necessary constraints. On the 

other hand, even if the adoption of Interface Commands may seem like another limit to the 

naturalness of the interaction, they are very useful to filter out logic mistakes made by the 

user. For example, when a person accidentally sends a wrong waypoint to the robot it would 

be best to stop it before execution: this can only be made if a confirmation procedure 

intervenes before it, thus improving the overall safety of the system with respect to this kind 

of events. 

3.3.5 Third approach: the gestures dictionary 

Thanks to the findings of the previous approaches, I finally designed the definitive version of 

the proposed gesture language. Single-hand gestures are not enough to create a flexible and 

robust gesture language because, by using only single-hand gestures, the obtained language 

would be unary, thus highly inefficient. Not to mention that Object Detectors are noisy in their 

detections, resulting in wrong predictions because of light, scene, and color conditions as seen 

in the previous tests. Adding the second hand means that the language obtained can express 

more information and is more robust because both right and left-hand gestures must be 

correctly recognized at the same time. This is why in this final approach I defined two-hands 

gestures as Commands, divided in two groups: Static Commands, which represent always the 

same operation or a set of operations with very similar meaning, and Parametric Commands, 

that can be dynamically composed during execution according to the specific value set by the 

user. This is the case of quantities, which can be single-digit or two-digit, and movements, 
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which are represented by a number indicating the robot joint to move and a gesture 

representing the type of movement required. Commands define the gestures dictionary, 

which users must use to communicate with the robot. 

3.3.5.1 Dataset definition 

The HANDS dataset is an improved version of the dataset described in Section 3.3.4. It is 

composed of 15 static hand-gestures represented in Figure 19, which are: 

 Digits from 1 to 9 from (a) to (i), the 0 digit is represented by the gesture in Errore. L'origine 

riferimento non è stata trovata.(j); 

 A Span gesture, shown in (k); 

 A directional gesture pointing left or right accordingly, shown in (l);  

 Two-hand gestures that represent intuitive commands, from (m) to (o). 

 

Gestures from (a) to (k) have two variants: one performed with the right hand and one 

performed with the left hand. Gesture (l) has four variants, according to the direction the hand 

is pointing to and the hand used: right hand pointing left (back facing the camera) and right 

(palm facing the camera), left hand pointing left (palm facing the camera) and right (back 

facing the camera). Gestures performed with both hands have only one variant (from (m) to 

(o)). Thus, considering all the variants, the HANDS dataset comprehends 29 different classes.  

 

To correctly assign the labels to each variant, each class is named after the gesture name (e. 

g. Nine  

 V stands for vertical gesture, while H stands for horizontal gesture; 

 F identifies the front facing camera version of the gesture, while B identifies the back 

facing the camera version; 

  R stands for right hand gesture, while L stands for left hand gesture. 
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Table 7. Static Commands. 

 
    

(a) (b) (c) (d) (e) 

    

 

(f) (g) (h) (i) (j) 

 

 

 

 

 
 

(k) (l) (m) (n) (o) 

Gestures Description 

 

CONFIRM: Punch_VFR and Punch_VFL as in Figure 19 (j) 

 

DELETE: Span_VFR and Span_VFL as in Figure 19 (k) 

 

EXIT: XSign gesture as in Figure 19 (n) 

 

PAUSE: TimeOut gesture as in Figure 19 (o) 

 
OPEN FILE: Collab gesture as in Figure 19 (m) 

Figure 19. Front right-hand gestures variants. (a) One_VFR; (b) Two_VFR; (c) Three_VFR; (d) 

Four_VFR; (e) Five_VFR; (f) Six_VFR; (g) Seven_VFR; (h) Eight_VFR; (i) Nine_VFR; (j) 

Punch_VFR; (k) Span_VFR; (l) Horiz_HFR. (m) Collab; (n) XSign; (o) TimeOut. 
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Table 8. Parametric Commands. 

Gestures Description 

 

SINGLE-DIGIT NUMBER: Punch_VFR as in Figure 19 (j) and 

Number_VFL (gestures from Figure 19 (a) to Figure 19 (i) 

performed with the left hand). The value is calculated as 

0 + N = N. For example, the figure shows number 2. 

 

TWO-DIGIT NUMBER: Number_VFR + Number_VFL 

(gestures from Figure 19 (a) to Figure 19 (i), where the 

right-hand gesture represents tens). For example, the 

figure shows number 37 composed by using number 3 

(Figure 19 (c), right-hand) + number 7 (Figure 19 (g), left-

hand). 

 

JOINT MOVEMENTS: Number (from Figure 19 (a) to 

Figure 19 (i)) + Value (Figure 19 (l) or Figure 19 (e)). In this 

case the order of the hands is not important, so the 

number to represent the robot Joint can be performed 

either using the right or the left hand, and the Value 

gesture with the other hand. To increase the position of 

the robot Joint the user must use the Hand gesture 

pointing to the right (Hand_HBL and Hand_HFR); to 

decrease the position of the robot Joint, the ones 

pointing to the left (Hand_HFL and Hand_HBR). To stop 

the robot in a specific position the Value gesture is the 

Five gesture (Figure 19 (e), VFR or VFL accordingly). 

 

A total of 6 actors have been acquired performing the gestures, equally divided between 

males and females. For each actor, a different background has been chosen to increase the 

variability of the dataset (Figure 20). To speed up both the acquisition and the labelling 

process, the actors were told to perform the same gesture with both hands. The performing 

style of the actors was twofold: actors 1, 2, 5 and 6 performed the gestures standing in the 
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same position front-facing the camera, the hands moving (i) towards the camera, in order to 

acquire different depth values for the hands, and (ii) laterally at shoulder height, carefully 

rotating the hands in order to still be able to recognize the correct gesture. On the other hand, 

actors 3 and 4 performed the gestures while moving randomly in the field of view of the 

camera, also moving the hands towards the camera and laterally. Light conditions in the 

scenes were also different: in the scenes used for actors (a) and (e) only artificial light was 

used, while for the others a combination of artificial and natural light has been used. After 

carefully selecting the most representative images for every gesture and actor, discarding the 

blurred and occluded ones, we selected a total of 150 RGB frames and their corresponding 

150 depth frames per gesture for every actor. This assures that every actor contributes to the 

training in the same way. 

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 20. Examples taken from each actor dataset. It is worth noting that even if gray color 

is always present in the background, around the hands the background can vary in color and 

light conditions. 
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The dataset is composed as follows: 

 Actor 1 (F): 2400 RGB images and their corresponding 2400 Depth images, 150+150 

frames per gesture. Grey uniform background with artificial light only, actor standing still; 

 Actor 2 (M): 2400 RGB images and their corresponding 2400 Depth images, 150+150 

frames per gesture. Cluttered background with artificial light only, actor standing still; 

 Actor 3 (F): 2400 RGB images and their corresponding 2400 Depth images, 150+150 

frames per gesture. Cluttered background with a combination of natural and artificial light, 

actor moving; 

 Actor 4 (M): 2400 RGB images and their corresponding 2400 Depth images, 150+150 

frames per gesture. Cluttered background with a combination of natural and artificial light, 

actor moving; 

 Actor 5 (F): 2400 RGB images and their corresponding 2400 Depth images, 150+150 

frames per gesture. Grey uniform background with artificial light only, actor standing still; 

 Actor 6 (M): 2400 RGB images and their corresponding 2400 Depth images, 150+150 

frames per gesture. Cluttered background with intense natural light from behind, actor 

standing still. 

 

The dataset has been acquired using a Kinect v2 sensor [95] intrinsically calibrated to spatially 

align the Depth and RGB frames. Since the sensor acquires the frames at different times, a 

temporal alignment procedure of the frames has been carried out afterwards. The images 

have been acquired frame by frame at 30 fps using ROS [99], libfreenect2 [100] and 

iai_kinect2 [101] ROS packages. I saved each acquisition into a rosbag and processed 

them afterwards using MATLAB. To achieve the spatial alignment, it is required that the 

sensor used is intrinsically calibrated to properly align the colour information on top of the 

depth information. This procedure has been carried out in advance using the calibration tool 

of the iai_kinect2 package: a chessboard with a grid of 7x6 squares of 120 mm has been 

used to calibrate the sensor (Figure 21). It is also worth noting that the intrinsic calibration 

allows the iai_kinect2 package to correct the camera distortions while acquiring the 

frames: because of this, I acquired the corrected frames with resolution of 960x540 px.  
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To achieve the temporal alignment, each acquisition has been elaborated using MATLAB: 

 To perform the calibration, a reference stream must be identified to which refer the 

others. I selected the reference frame from the list of messages according to which one of 

the two streams contained less messages; 

 Then, I have found the corresponding frame in the other stream that has the minimum 

temporal distance from the selected reference frame; 

 If the temporal distance is less than 66 ms, the couple is valid and properly saved. 

3.3.5.2 Experimental system description 

Thanks to the findings observed in the previous approaches, I decided to change the model 

type and framework as well as the training procedure. In this case, I fine-tuned an R-FCN 

Object Detector [63] pre-trained on the COCO dataset using the TensorFlow Object Detector 

API [65]. Albeit HANDS is composed of both RGB and depth images spatially and temporally 

aligned, I choose to only train the model with the RGB frames. The training lasted 400000 

epochs with a batch size equal to 1 on a machine equipped with a single GPU Nvidia GeForce 

GTX 1060 6GB and 16 GB RAM. To further increase the generalization capability of the model 

Figure 21. The chessboard used to calibrate the Kinect v2 sensor. It was printed and glued 

on a wooden support to move it around easily during the calibration process. 
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and to decrease the influence of the light conditions of the scene, I chose to apply a set of 

augmenting techniques during the training of the dataset. These were chosen from the list of 

available augmenting operations of the API, which are: (i) random scaling of pixels, (ii) random 

scaling of the image, (iii) random conversion of the image to a grayscale image, (iv) random 

adjustments of brightness, hue, contrast and saturation, (v) random color distortion and (vi) 

random application of black patches on the image.  

3.3.5.3 Performances evaluation 

The resulting model described in the previous Section achieves the performances reported in 

Table 9 on the test dataset. The null values of NPV and TNR are due to the lack of purposely 

wrong gestures in the test dataset, resulting in the lack of True Negatives. The performances 

obtained show that the choice of the model as well as the new dataset definition are a 

remarkable improvement compared to the previous approaches, achieving competitive 

results with state-of-the-art models. This is due two main reasons: the fine-tuning procedure 

and the model characteristics, which allow for a precise bounding box positioning around the 

Four Five

the presence of the thumb. Nonetheless, the model shows some recognition faults in the case 

Seven Eight  Six

None Figure 22.  

 

It is worth noting that, even though the HANDS dataset comprehends depth images aligned 

both temporally and spatially with their corresponding RGB images, the former images have 

not been used at the present time but may be used in a fusion network to further improve the 

gestures recognition. 

 

Table 9. Test results of the R-FCN model tested on the HANDS test dataset. 

 

Dataset PPV TPR NPV TNR F1-Score RA 

HANDS 94% 90% 0% 0% 91% 90% 
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Figure 22. Normalized confusion matrix obtained testing the fine-tuned model on the test 

noting that each frame in the dataset contains at least one gesture, resulting in a row of 

 



Towards true Human-Machine collaboration: the concept of Meta-Collaborative workstations and a first software prototype 

Cristina Nuzzi  80 

Chapter 4. The MEGURU System 

As discussed in Chapter 1, the Industry 4.0 paradigm introduced the concept of 

-

bots [28] [27]. Therefore, two types of robotic units populate the production lines of 

manufacturing industries: Industrial robots, which operate at high speed and force and are 

kept inside safety cages to protect humans from any harm, and Collaborative robots, which 

are designed to operate near humans at lower speed and force and possess a safety system 

to prevent dangerous contact and reduce the eventual harmful impacts [32] [33]. These two 

types of robotic units are adopted in two different workstations: fully automated 

workstations, characterized by a high production rate, and collaborative workstations, where 

the robot assists the human and speed up a traditionally slower procedure. 

 

This thesis work proposes a new type of workstation Meta-Collaborative workstation

(MCW), where the robot can operate behind a safety cage, either physical or virtual, and the 

operator can interact with the robot, either Industrial or Collaborative, in an intuitive and 

natural way. To this aim, I developed MEGURU (MEta-collaborative GestUre-based Robot 

program bUilder), an open-source software to easily build robot programs purposely designed 

for MCWs that may be a valid alternative to traditional robot programming methods (e. g. the 

teach pendant). As a further contribution, I made the HANDS dataset (Section 3.3.5) and the 

project code publicly available [102]. 

 

4.1 The idea 

To program a robot, either Industrial or Collaborative, different programming methods can be 

adopted as stated in [103] [104] [105]. Conventional approaches are subdivided in online and 

offline programming methods: in the former case, the robot cell is actively used during the 

programming process, while in the latter the robot cell is not involved in the task definition, 

thus non-productive robot time is kept at minimum. Online teaching methods involve walk-

through programming, where the operator manually moves the robot along the trajectory to 
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be reproduced, and lead-through programming, where the operator defines the robot 

program using only the teach pendant, a method that does not require any contact with the 

robot. Both methods require the operator to have proper knowledge of the robot to be used 

and a suitable programming experience. Offline programming methods require a higher 

knowledge of both programming languages and robotics fundamentals and are usually 

adopted in a simulated environment to build complex robotic cell programs. These methods 

are extremely time consuming and often stress the operator. Collaborative Robots often 

adopt a hybrid programming method combining both typologies: the logic of the program can 

be developed offline in a simulated environment, while the motion instructions and the 

positioning can be programmed online. 

 

As discussed in Section 1.3, key technologies such as virtual/augmented reality and Co-bots 

are not properly known and used by the majority of SMEs, especially in Italy [5]. This may be 

due to the fact that companies do not properly understand the technology or the application 

and that the required hardware and know-how to adopt it is too high or unavailable. Hence, 

a simple, cost-effective and intuitive communication system that can be used by operators 

with limited programming experience may be a strategic choice for small-medium companies 

to move towards the Industry 4.0 revolution. To this aim, intuitive programming methods 

have been proposed by the scientific community to make the robot programming phase more 

intuitive for users, allowing ordinary people to program robots with minimal skills and training.  

Wearable sensors may be an interesting solution: for example, authors of [76] propose an HRI 

system based on hand gesture recognition which leverages wearable sensors such as IMUs. 

is acquired and elaborated by an unsupervised segmentation algorithm based on motion and 

classified afterward by an Artificial Neural Network (ANN) purposely trained for the task. 

 

In late years, vision has become the preferred method to perform a plethora of different tasks, 

including hand-gesture recognition, robot teleoperation, scene monitoring, and scene 

reconstruction. This is due to the fact that these sensors are contact-less, reliable, and cost-

effective, considering that a single camera can be adopted in combination with a suitable 

Computer Vision or Deep Learning algorithm to achieve satisfactory results depending on the 
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task. Adopting vision sensors to monitor the surroundings of the robot allows the definition 

of safety strategies based on human-robot relative positions in parallel with the human-robot 

communication system [78] [31], also adopting mixed reality techniques as shown in [106]. A 

working example of this idea is presented in [107], where the authors developed a framework 

to allow the safe coexistence of humans and robots in the same production cell based on two 

Kinect v2. According to the position of the operator obtained from the depth sensors, the 

robot behavior is modified in real-time to avoid unsafe interactions and any possible collisions. 

A very limited set of hand gestures is used to guarantee a few collaborative interactions, 

recognized by extracting the body skeleton of the user leveraging the sensor built-in 

skeletonization algorithm. 

 

Modern techniques such as (i) multimodal approaches, (ii) virtual reality and (iii) augmented 

reality approaches, which largely use image and speech recognition algorithms, are the most 

promising methods to further simplify robot programming. Among the proposed methods, 

multimodal interfaces for human-robot interaction (HRI) based on speech and/or gesture 

recognition systems have been intensely studied in the last years. In fact, as highlighted in 

[108] HRI is based on cognitive capabilities such as perception, which can be guaranteed by 

adopting and integrating sensors and actuators. Although speech is considered the most 

intuitive method of communication for humans, it is unpractical to adopt in industrial 

environments, traditionally characterized by strong noises. Furthermore, a communication 

system based on speech recognition depends on the user language and accent, forcing the 

adoption of different language models. Hence, gesture and pose recognition methods are a 

more viable solution. In [80] a flexible system for gesture-based HRI is presented, where the 

authors propose a system based on the recognition of upper arms gestures, utilizing a 

Machine Learning algorithm called Adaptive Naïve Bayes Classifier that classifies the gestures 

by analyzing the pose skeletonization extracted from the depth image of the scene. Authors 

of [81] present a similar system, based on ROS and the recognition of full-body poses acquired 

by a Kinect camera and a Leap Motion sensor. Here, the hierarchical representation of tasks 

allows users to build programs flexibly and intuitively. Similarly, in [82] a system based on a 

Gestures Dictionary is used to dynamically build a robot program where the adopted gestures 
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are acquired by a Kinect sensor that extracts the human skeleton (static gestures) and by the 

designed to move the robot in a modality similar to the traditional Jog mode, where the robot 

end-effector position is adjusted by a certain pre-defined step according to the direction of 

the movement (up, down, left, right). The experimental results show that even for non-expert 

users the adoption of body gestures to move the robot was more convenient in the case that 

the accuracy of the positioning was not required, and overall this approach was preferable 

compared to traditional methods. Authors of [97] present an application of a human-robot 

interaction framework based on the recognition of 10 static hand gestures and a finite state 

machine, an approach also adopted in this work. The procedure developed by the authors first 

extracts the human skeleton from the RGB-D frames acquired by a Kinect v2 camera using the 

OpenPose network [109] 

a bounding box around the obtained location and the object inside it is classified by using a 

version of the Inception V3 CNN network fine-tuned to recognize the proposed gestures. The 

main issue of this approach is that the procedure is time-consuming and computationally 

expensive; hence, the recognition system requires at least a dedicated GPU to achieve a 

satisfactory frame rate. 

 

Ubiquitous Computing and Manufacturing (UC and UM) are concepts in which computing may 

be performed everywhere, hence promoting a decentralized computing structure and a 

design anywhere, make anywhere, sell anywhere, and at any time paradigm [110]. Hence, 

since MCWs are designed to be flexible MEGURU has three fundamental characteristics: 

1. Robot Independent: it is based on ROS, hence it can be used regardless of the robot 

manufacturer brand and of the robot type (industrial robots or Co-Bots); 

2. Easy to program: MEGURU adopts an innovative programming method based on hand-

gestures, designed to allow users to create robot programs in an intuitive and easy way. 

As a result, even operators without programming experience can efficiently use the 

software to program a robot operation, reducing the training time required to learn how 

to use the specific robot; 
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3. Flexible production: the programming structure of MEGURU allows users to define tasks 

(e. g. a pick and place task) that can be used as building blocks to build more structured 

operations. This feature allows an easy and fast reconfiguration of the MCW to better 

adapt to a mixed production. 

 

ing 

complexity: 

 Points: these are the base blocks that compose MEGURU programming structure. They 

represent the positions of the robot end effector in the current reference system, 

expressed by (i) cartesian coordinates or by (ii) Joints position. Points are collected by the 

user either using ROS or the robot proprietary software, and are stored in an ordered list, 

, as shown in Figure 23 (a); 

 Actions: these are parametric functions that represent a simple action of the robot (e. g. 

opening and closing a gripper or moving the robot to a certain point). A dedicated Python 

library based on ROS communication functionalities has been developed to (i) guarantee 

the independency of the Actions from the robot manufacturer platform and (ii) allow the 

user to easily define different Actions according to the application needs, as shown by the 

pink blocks in Figure 23 (b); 

 Operations: by using MEGURU, users can build two types of Operations: Simple 

Operations (SOPs), obtained by combining different Actions, and Combined Operations 

(COPs), obtained by joining multiple SOPs. As a result, MEGURU allows users to 

reconfigure the robot tasks in reduced times and to adapt the robot to a mixed production 

minimizing production downtime. An example of a SOP is shown in Figure 23 (b), with 

respect to a Pick&Place task, while examples of the resulting COPs are shown in Figure 23 

(c) and Figure 23 (d). 
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(a) (b) 

  

(c) (d) 

Figure 23. (a) Example of a Points file. Points are represented as green blocks in the file. (b) 

Example of a SOP representing a Pick&Place task. Actions are represented as pink blocks in 

the SOP file, represented as a yellow block. (c) Example of a COP obtained by repeating the 

Pick&Place SOP for 5 iterations. (d) Example of a COP obtained by joining the Pick&Place SOP 

(repeated for 5 iterations) and the Assemble SOP (repeated for 2 iterations). 

4.2 System layout in detail 

The layout of the MEGURU system is represented in Figure 24. White blocks are ROS nodes 

and gray blocks are ROS topics, used to provide the communication between nodes. It is worth 

noting that to effectively communicate with a robot, it is necessary to translate ROS 

commands into operative robot-specific controller instructions. In the current version of the 

system, this is provided in two ways: one is based on the use of ROS-Industrial (ROS-I) [111] 

-It [112]. In both cases, ROS reads 

the joint positions from the /joint_path_command topic and writes the robot joint states 

in the /joint_states topic by using the chosen robot-specific driver. A list of robot drivers 

is available in [113]

e Machine node adopts 

the abovementioned two topics. 
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4.2.1 State Machine node 

The layout of the State Machine is presented in Figure 25. When launched, the State Machine 

is in the initial state, called Ready State. In this state, the State Machine waits for the user 

Commands and can move to (i) the EXIT State (where the program quits) or (ii) to the Home 

State. From this state, the user can access to one out of the following four states (see  

Table 7 and Table 8 for the list of Commands):  

1. SOPs Building State (SB): in this state, the user selects Actions from the Action library and, 

if requested by the Action, selects Points from the Point File. Each single Action results in 

the corresponding robot task and is immediately executed by the robot. Complex tasks 

are implemented as SOPs built by means of a user-machine collaboration that combines 

different Actions and saves them in the corresponding Operation file. 

2. COPs Building State (CB): the State Machine enters in a loop where the user can select, 

for each single SOP, the corresponding Operation file and the number of iterations that 

SOP must be repeated for; then, the State Machine moves to the COPs Launch State (CL) 

where each single Action of the COP is sent to the robot until the whole sequence is 

performed. The ex

Figure 24. Scheme of ROS nodes and their respective topics. Gray blocks with dashed edges 

are the request topics, used by the State Machine node to request a specific Command 

(command_request) or a robot movement (joint_path_command). Gray blocks with a solid 

edge are the response topics, where the recognized Command (command_response) or the 

robot position feedback (joint_states) are contained. 
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. It is also possible to stop the 

, the State 

Machine moves back to the Ready State. 

3. Jog State (J): in this state, users may perform the robot jog mode, which allows to manually 

move the robot joints. It is composed of two states: the Jog Mode State (JM), where 

operators may increment or decrement the position of the gesture-selected robot joint, 

and the Jog Step State (JS), where operators may increase or decrease the default Jog step 

size by changing the parameter in the corresponding file. Users can save a certain position 

 without exiting or pausing the Jog State. 

4. Robot Speed State (RS): in this state, the overall movement speed of the robot can be 

modified. The default speed is set to 100%, but users can decrease it by performing the 

gesture which correspond to a lower percentage of the total speed of the robot (e. g. to 

obtain the 80% of the total speed, the user must perform the instruction which 

corresponds to number 8). It is important to stress that this parameter affects the whole 

Figure 25. Layout of MEGURU State Machine. Dashed edges identify states containing sub-

 and 

orange blocks represent Service States. Gray arrows represent automatic transitions 

between States. 
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Actions equally, meaning that the robot speed does not change dynamically; instead, it is 

the same for the whole SOP until it is changed by the user. This allows the users to modify 

the robot speed parameter according to their needs without the aid of the Teach Pendant. 

For a more precise control of the robot speed or to set it dynamically (e. g. each Action of 

a SOP must be executed at a certain velocity different from the others) this state is not 

enough. 

 

The State Machine has been implemented using SMACH [114], a ROS package for designing 

State Machines. The State Machine node manages the communication using a request-

response system which leverages ROS functionalities. An example is shown in Figure 26: the 

State Machine node sends a Command request in the /command_request topic, to enable 

the Gesture Recognition node detection function. The Gesture Recognition node outputs a 

valid Command in the /command_response topic and, upon receiving the response, the 

State Machine node reads the Command and acts accordingly. To correctly match requests 

and responses, each request has an incremental ID value called request_number, which must 

be the same of the corresponding response. To correctly decode the gestures detected in the 

correct Command value, the request asks for a specific request_type. This field is useful as a 

debug tool for users, as well as the active_state field, which memorizes which state was the 

active one when the request was sent. The time stamp of each message is saved in the header 

portion of the messages, defined as the standard Header message of ROS. 

Figure 26. Example of a request-response exchange between the State Machine node and 

the Gesture Recognition node. 
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A similar communication procedure is carried out between the State Machine node and the 

robot. In this case, the State Machine node sends a JointTrajectory message in the 

/joint_path_command topic. This is a standard message of ROS, and it is used to 

communicate the cartesian position to the robot. The State Machine node waits until the 

ssible 

to read the robot encoder to obtain the current pose of the robot, which is written as a 

JointState message in the /joint_states topic. Hence, to know if the desired 

position has been reached the State Machine checks if the position values in the last 

JointState message received are equal to the desired position values ± 0.01 radians. 

 

To guarantee that the correct Command has been received, the State Machine prompts the 

check interface

is a safety strategy to further enforce the filtering of wrong behaviors of the system, an idea 

that was also adopted in [76]. The check interface behavior is shown in Figure 27: the operator 

moves from the Home State to another state (green block of Figure 27) and selects an 

operative Command from the list of available operative Commands of the State. The check 

interface intervenes, asking the operator if the Command received is the correct one or not. 

f the 

program linked to that operative Command is executed. If the operator deletes the last 

make a new selection from the list of operative Commands of the State. If the operator cancels 

Machine to move from the current State to the previous State. If the current state is the Home 

State, this closes the communication and the State Machine moves to the Ready State. 

Figure 27. Structure of the check interface. By performing the corresponding Command, the 

user can confirm, delete, or cancel the last Command given. 
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4.2.2 Gesture Recognition node 

This node implements the R-FCN Object Detector model detailed in Section 3.3.5 used to 

interpret the gestures according to the proposed gestures dictionary. The detector takes as 

input RGB frames of 960x540 px resolution acquired from the Kinect v2 camera, and outputs 

a set of predictions which comprehend, for each predicted gesture, (i) the class name, (ii) the 

confidence score and (iii) the bounding box coordinates. To improve robustness, the following 

filtering procedure is carried out on the predictions: 

 Single-hand gestures are checked; only valid pairs of gestures are retained, according to 

the request request_type, and are classified as Commands. It is worth noting that left and 

right variants are predicted incorrectly very rarely, and even when this happens, the 

procedure does not accept a Command composed of gestures of the same hand. Hence, 

the label name used to discriminate left and right gestures is used to compose the 

Command: this is an improvement compared to [88], where discriminating the left from 

the right hand is accomplished by calculating the barycenter positions of the boxes, at the 

expense of an increased processing time; 

 Commands must be recognized for a certain number of consecutive frames (chain value) 

to prevent the system from sending erroneous interpreted Commands due to sudden 

environmental disturbances and/or small or incorrect movements of the operator. It has 

been experimentally found that setting the chain value to 7 is a good tradeoff between 

robustness and speed; however, this value can be reduced up to 2 or 3 in case of controlled 

set ups and expert users. 

 

After this filtering procedure, the valid Command is written in the command field of the 

response, which is then published in the /command_response topic. To provide the user 

with a visual feedback, the camera feed is shown on screen. The detected bounding boxes are 

plotted on each frame with their corresponding label name, as well as suitable debug 

information such as the inference time recorded frame per frame, the latest request_number 

received, and the latest Command value published (Figure 28). 
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4.3 Experimental evaluation 

To evaluate the proposed system, two different experiments have been carried out. The first 

one was aimed at evaluating the user experience of people of different age, sex, and 

professional background, while the second one was aimed at comparing the teach pendant 

programming method and MEGURU. 

4.3.1 Evaluating the user experience 

This experiment was conducted during the Meet me Tonight 2019 event held in Brescia. The 

robot used was a Rethink Robotics Sawyer one arm Collaborative Robot without gripper to 

avoid unsafe interactions. A simplified version of ME

 

Section 4.2.1 (Figure 29). The demo functionalities were: 

1. Hello Trajectory: upon entering the state, a pre-defined trajectory is sent to the robot to 

make it wave at the user three times (purple block in Figure 29); 

2. Move Sawyer: users can physically move the robot around exploiting its manual guidance 

feature by pressing the corresponding buttons positioned on the end-effector and build a 

camera. Each Point is stored in the corresponding Points file and, when the user performs 

Figure 28. Screenshot of the MEGURU system in use. On the left, the camera feed with the 

detected boxes drawn on the hands, the inference time, the last request number received, 

and the last Command sent visualized. On the right, the state machine logs with different 

colors, representing different system states and actions. 
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resulting trajectory. An Operation file corresponding to the obtained trajectory is saved 

before exiting the state (blue block in Figure 29);  

3. Launch Trajectory: upon entering the state, the file paths of all the Operation files existing 

in the corresponding directory of the package are loaded into memory and are presented 

to the user as an ordered list of file names. The user can choose which Operation file to 

load by performing the corresponding numerical gesture to the camera. When the 

Operation file is loaded, the robot moves to each Point of the saved trajectory (orange 

block in Figure 29); 

4. Handshake Trajectory: upon entering this state, a pre-defined trajectory is sent to the 

robot to make it perform a handshake-like movement (purple block in Figure 29). 

At the end of each demo, users were requested to fill in a survey. They had to rate the effort 

required to learn gesture language on a scale from Extremely Easy to Extremely Hard; in 

addition, they had to rate the communication language intuitiveness on a scale from 1 star to 

5 stars. A total of 28 Subjects have been interviewed, equally divided between males and 

females, and subdivided in two age groups of equal numerosity (age group 14-30 and 30-70, 

Figure 29. Layout of the demo State Machine. To move to a specific state from the Home 

State the corresponding numerical gesture is used. After the state execution is complete, the 

State Machine automatically moves back to the Home State (gray arrows). 
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14 Subjects per group). In Table 10 and Table 11 the contingency maps are reported, showing 

the number of voters for each value. Figure 30 and Figure 31 present the results graphically: 

the bars show the number of votes given by the participants expressed as a percentage versus 

the proposed rates (left scale), while the dot graphs represent the mean age of the 

participants who expressed the same vote (right scale). 

Table 10. Contingency table about the effort required by the Subjects to learn the gesture 

language. 

Age group Extr. Easy Easy Neutral Hard Extr. Hard 

14 - 30 4 9 1 0 0 

30 - 70 3 7 4 0 0 

Table 11. Contingency table about the gesture intuitiveness rating. 

Age group 1 star 2 stars 3 stars 4 stars 5 stars 

14 - 30 1 0 4 6 3 

30 - 70 1 1 5 3 4 

 

As highlighted by the surveys, people from age group 14-30 were generally satisfied with the 

demo and approached it with enthusiasm, also demonstrating a low effort to properly learn 

the gesture language. In contrast, people belonging to age group 30-70 experienced more 

difficulties using the system, as shown by their response mean time.  

Figure 30. Graph that represents the effort required for each participant to learn the 

gestures language. 
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The response time of a Subject is calculated considering (i) the time elapsing between a 

Command request sent by the State Machine Node to the Gesture Recognition Node and (ii) 

the corresponding Command response sent by the Gesture Recognition Node to the State 

Machine Node (Section 4.2.1). For each participant, the response times have been calculated, 

excluding the ones corresponding to the transition from the Ready State to the Home State 

and the transitions from the Home State to the EXIT. Then, the mean is computed. Figure 32 

 Figure 29), as they were similar 

and were the most used by the participants. If a participant used both functionalities, only the 

lowest response mean time achieved is considered. The pink dashed line in the figure 

represents the reference time achieved by an expert user, corresponding to 3.40 s.  

 

Wrong gesture recognitions are considered in the calculation of the response time in two 

ways: when a wrong prediction occurs, the system (i) does not send a response, because the 

recognized gesture is not an acceptable gesture for the specific state or (ii) sends a response, 

but the user corrects it exploiting the check interface (Section 4.2.1). As a result, the response 

mean time is a parameter useful to measure (i) the user ability to use the system (a more 

skilled user performs the gestures faster and with less faults) and (ii) the system difficulty to 

recognize the user hands properly.  

Figure 31. Graph that represents how much the participants felt the gesture language to be 

intuitive. 
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Considering these results, it is made evident that young people performed better, adapting 

fast to the system interface and language. Subjects of age greater than 40 demonstrated to 

have less patience, in fact, when performing the gestures, they usually did not stand still 

waiting for the system response, violating the chain value filtering parameter (Section 4.2.1). 

This behavior resulted in further increasing their response time. These users expressed the 

opinion that the reaction times of MEGURU should have been decreased.  

4.3.2 Confronting the teach pendant and MEGURU 

The second experiment was carried out in collaboration with the STIIMA group of the National 

Research Center of Milan (CNR). The experiment simulated a manufacturing set-up aimed at 

assembling a moka coffee maker, using a robotic manipulator and a human operator in a 

MCW. The robot manipulator used for the tests was a Universal Robot UR10 equipped with a 

ROBOTIQ 2F-85 Adaptive Gripper. The task was to assemble the moka coffee maker (i) by 

programming the robot using the teach pendant and (ii) by programming the robot using 

MEGURU. The set-up of the experiments is shown in Figure 33: the heating vessel, the filtering 

Figure 32. Response mean time obtained by each participant. The pink dashed line 

represents the response mean time achieved by an expert user, equal to 3.4 s. The solid blue 

line represents the median of the boxplot, while the dashed blue line represents the mean. 
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funnel and the coffee collector of the moka coffee maker are positioned in positions 1-3 

respectively, while position 4 corresponds to the area where the parts must be moved and 

assembled.   

  

(a) (b) 

Figure 33. (a) Set-up of the experiments in top-view. Positions from 1 to 3 are for the moka 

coffee maker parts; position 4 denotes where the robotic manipulator (represented as a blue 

block) must move the objects and perform the collaborative assembling with the operator. 

(b) Image of the experimental set-up. The moka coffee maker parts are shown here: in 

position 1 is the heating vessel, in which the filtering funnel (position 2) must be placed. The 

coffee collector in position 3 must be screwed on top by hand. 

The experiment has been conducted using the following schedule: 

1. Teach Pendant test (TP): 

a. Coarse Programming: build the robot program using the teach pendant and use the 

manual guidance mode or the teach pendant to move the robot; 

b. Fine Programming: check if the robot works as intended and adjust the program for 

optimization. 

2. MEGURU Collaborative test (MC): 

a. Points Acquisition: move the robot in the proper cartesian positions either by using the 

manual guidance of the robot or the ROS interface to move the joints. Save the joint 

coordinates of each Cartesian position in the Points file; 

b. Operation Building: perform the assembling task using the SOPs Building State and the 

Points file as input.  
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Participants were required to carry out the assembling task avoiding input constraints such as 

the number of points to collect or the sequence to follow to assemble the components, to let 

them free of approaching the tests as much naturally as possible. The set of points chosen by 

each participant to complete the robot trajectory in the TP test was the same one used to 

obtain the points elements required by the MEGURU interface, following the process 

described in Section 4.2.1. Subjects 1, 2, 3, 4 and 6 performed the TP test first and Subjects 5 

and 7 performed the MC test first. The number of points chosen by each Subject is shown in 

Table 12. 

Table 12. Results of the second experiment. The lower time for each Subject is highlighted in 

bold. 

Subjects 
Expert user of which modality? 

# points TP total time MC total time 
TP MC 

Subject 1 X - 12 15 min 11 min 

Subject 2 - X 11 12 min 16 min 

Subject 3 - - 12 12 min 9 min 

Subject 4 - - 19 21 min 19 min 

Subject 5 X - 8 12 min 18 min 

Subject 6 - X 10 14 min 12 min 

Subject 7 - - 8 16 min 16 min 

 

Figure 34 shows the time required to complete both the TP and the MC tests: pink and orange 

bars represent the time required to complete the Coarse and the Fine programming phases 

of the TP test respectively; green and blue bars refer to the time required to carry out the 

Point Acquisition and the Operation Building steps of the MC Test respectively; the results are 

reported in pairs for each Subject. From this figure it can be observed that four participants 

(1, 3, 4 and 6) took less time to carry out the MC test than the TP test. Among these, three 

Subjects were non-expert users of the MC modality (1, 3, 4): this suggests that the MEGURU 

interface is easy enough to be used properly even by non-expert users. Subject 4, which was 

a non-expert user of both methods, is the one with the highest values: this can be related to 

the high number of used points (19 points, as seen in Table 12). It is worth noting that the 

time required to complete the MC test depends on the wrong predictions of the gestures. 
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Specifically, the high values of the MC test achieved by Subject 2, 5 and 7 are related to the 

recognition difficulties of the hand-gesture recognition model. 

The map of erroneous predictions observed in the experiment is shown in Figure 35: rows 

refer to the Subjects and columns correspond to the gestures in which errors have been 

observed. Prediction errors are related to three types of situations: 

 Case 1: Gestures correctly recognized by the system but corresponding to wrong Actions 

gesture and reset the correct Action (Subjects 1 and 3). 

 Case 2: Gestures erroneously recognized by the system, as a consequence of the operator 

ability to perform the gestures. In this case, the level of familiarity with the use of the 

gesture-based communication system determined the final time: Subjects 1, 2, 3 and 6 

responded promptly to the instructions of the visual feedback provided by MEGURU, and 

were fast enough to adapt the pose and the orientation of their hands to ensure that the 

right Commands were sent to the State Machine node. Subjects 4, 5 and 7, instead, were 

slower in the interaction, thus having 

Figure 34. Time required by each participant to complete the assembling task. The pink bar 

represents the TP Coarse Programming time, the orange bar represents the TP Fine 

Programming time, the green bar represents the MC Points Acquisition time and the blue 

bar represents the MC Operation Building time. 
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gesture again. In both cases, a time delay was introduced in the communication between 

the ROS nodes. 

 Case 3: Gestures erroneously recognized due to the weaknesses of the recognition chain, 

specifically in the presence of single-hand gesture commands, where the hand dimension 

and the skin color with respect to the background color and to the light conditions 

determined the visibility of the features in the frames. Very slender and pale hands were 

almost invisible for operators wearing light color jerseys, while large, darker hands were 

robustly detected thanks to the increased contrast between the hand color and the 

background. In fact, Subject 2 (a female), had small, pale hands and, although very 

experienced in making gestures and in using MEGURU, reported a high number of 

erroneous predictions, especially whenever the single-hand gesture in Figure 15 (h) 

(Eight_VFR/L) was prompted. On the other hand, Subject 3 hands were large enough to 

be easily detected by the system, and, although he was not an expert user, he showed just 

three wrong predictions. 

Referring to Figure 35, the highest values of incorrect predictions (5 and 10) occurred in 

correspondence of single-hand gestures Four_VFR/L, Eight_VFR/L and Span_VFR/L (Figure 15 

(d), (h) and (k) respectively). This is related to the fact that (i) gesture Four_VFR/L is easily 

confused with gestures Five_VFR/L and Six_VFR/L and (ii) gestures Eight_VFR/L and 

Span_VFR/L require a fine finger mobility that some Subjects lacked, thus leading to incorrect 

predictions.  

Figure 35. Errors made by each Subject. The highest the number, the highest the time lost to 

correct them. 
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After each test, the participants were required to fill in a survey of four questions and to add 

their comments. The results are shown in Figure 36, where for each question a pie plot reports 

the percentage of votes for each rating (possible values: Extremely Easy, Easy, Neutral, Hard, 

Extremely Hard).  

  

(a) (b) 

  

(c) (d) 

Figure 36. Results of the questionnaire. (a) How easy do you think it is to learn the TP 

programming modality? (b) How easy do you think it is to operate using the TP programming 

method? (c) How easy do you think it is to learn the MC programming modality? (d) How 

easy do you think it is to operate using the MC programming modality? 

The answers and the comments collected for each participant highlight that for the TP 

modality the programming part was straightforward to be learnt even by inexpert users, but 

that the real difficulty was that the teach pendant itself was quite heavy and uncomfortable 

to be carried around, often forcing the user to place it on a table to use it properly. To use the 

manual guidance modality, which is the easiest way to obtain a robot position, the operator 

had to keep pushed a button on the back of the teach pendant, thus he/she had to move the 

robot using one hand. This resulted in a very uncomfortable experience for some users, 

especially those who were not strong enough to easily move the robot around (e. g. Subject 
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2). A more comfortable and precise way to take the robot positions was to move the joints 

using the teach pendant interface, but this required a deeper knowledge of the robot 

reference system in order to move it without faults and took more time to reach the desired 

position. In contrast, learning the MEGURU programming method was more difficult for 

inexpert users, since they had to learn the gesture dictionary and how to use the system, but 

they quickly got used to that. In fact, most users reported that using the MEGURU interface 

was very simple and straightforward after only few Commands were practiced, in accordance 

with the results obtained from the first experiment (Section 4.3.1). The only exception was 

Subject 7, which reported a strong difficulty in the gesture execution due to his finger mobility 

issues. In addition, all participants, except for Subject 2, reported pain at both their shoulders 

and arms, since the body posture required to perform the gestures was quite uncomfortable 

and they were not used to it.  
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Chapter 5.  

Despite advances in robotic perception are increasing autonomous capabilities, human 

intelligence is still considered a necessity in unstructured or not predictable environments. 

Typical scenarios concern the detection of random shape objects, manipulation, or custom 

robot motion; hence, human and robots must achieve mutual Human-Robot Interaction (HRI) 

[115]. HRI can be physical (pHRI) or not, depending on the assigned task. For example, when 

the robot works in a dangerous environment or must handle hazardous materials, pHRI is not 

recommended. In such cases, it may be necessary to teleoperate the robot, allowing the user 

to control the robot remotely [116]. A plenty of human-machine interfaces for teleoperation 

have been developed considering a mechanical interface, including exoskeletons [117] or 

gloves [118]. Such systems are particularly helpful to achieve bilateral teleoperation [119], 

where they can transmit or reflect back to the user reaction forces from the task being 

performed. In this case, a high perception with complete haptic feedback [120] [121] is 

achieved. Other types of controllers may be a mouse and keyboard interface, switchboxes, 

touchscreen displays and joysticks. The latter type in particular is usually a better type of 

control device than others are, because the operators identify with the task in a more 

immersive way [122]. On the other side, if bilateral interaction is not required, a vision-based 

interface is preferable because it does not require physical contact with external devices such 

as cables, connectors, and objects outside of the user working area. This grant a more natural 

and intuitive interaction, which is reflected on the task performance: as shown in [123], the 

accuracy of object gripping tasks is improved by mean of a contactless vision-based robot 

teleoperation method.  

 

4.2 is modular and can be easily expanded 

adding standalone functionalities as blocks, the -  module has been developed to 

allow users to teleoperate the robot easily in 2D using their hands and a simple RGB camera, 

hence granting greater operating distance at a reduced price compared to the Leap Motion 

controller [124]. The system is based on the idea that the user moves its hands in a certain 

space, called user workspace, and that its movements are replicated in a second space where 
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only the robot operates, called robot workspace. According to how the two workspaces are 

defined, they may be (i) of different in size, (ii) very distant from each other or (iii) they may 

even be the same workspace, in total accordance with the idea of Meta-Collaborative 

workstations presented in Section 4.1, where the human and the robot workspaces may be 

overlapping or not while still achieving human-robot collaboration. To detect the human 

hands, I used the open-source OpenPose software [125] [109] based on the Deep Learning 

framework Caffe [126]. This software elaborates RGB frames and extracts the  

skeletonization; in this case, only the hands module is used since no other body parts are 

present in the frames. This choice is motivated by the fact that the precise joint positioning of 

the fingers in the image is the fundamental requirement to calculate the position of the 

corresponding robot waypoint. Using the same approach described in Chapter 4 would not be 

enough because from the bounding box surrounding the hand only the centroid of it could be 

extracted, not the finger joints. 

5.1 Set-up calibration and mapping 

In Figure 37 the proposed set-up adopte -

module is represented. Albeit different set-ups may be adopted (i. e. with overlapping 

workspaces or with different orientations of the planes), in this case the user workspace is the 

horizontal green plane defined by reference system  and the robot workspace is the vertical 

purple plane defined by reference system .  

Figure 37. Scheme of the calibration steps. The user workspace is represented by the green 

plane while the robot workspace is represented by the purple plane. In this set-up, the two 

have different orientations: one is horizontal while the other is vertical. According to the set-

up definition, a suitable calibration procedure of both workspaces must be performed to 

-  
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Cartesian points in the user workspace that (i) may be reached by the user hand and (ii) that 

are correctly viewed by the camera, correspond to precise robot end-effector Cartesian points 

in the robot workspace. Hence, to obtain the mapping between the hand positions and the 

robot end-effector positions, it is necessary to perform a set of calibration procedures. 

5.1.1 User workspace calibration 

In the user workspace an RGB camera is used to recognize the hand skeleton in real-time. 

Therefore, it is necessary to properly calibrate the camera relative to the user-defined 

reference system. This procedure is called camera calibration, and it may be easily realized 

following standard procedures such as the one detailed in [127]. 

 

The projection mapping for a generic point  in the camera image plane with 

reference frame  to its corresponding real-world coordinate point  in 

reference frame , is defined by the following formula where homogeneous coordinates are 

used: 

 (2) 

However, since we are looking for the position of point  in frame  by back-projecting a 2D 

point to 3D, it is necessary to invert equation (2): 

 (3) 

The parameters in the equations above are: 

  is the scalar representing the scale factor of the image;  

  is the camera matrix containing the intrinsic parameters of the camera, such 

as focal length and optical center obtained through the calibration procedure; 

  is the rigid transformation matrix containing the extrinsic parameters for 

rotation ( ) and translation ( ) of the camera reference frame  relative to 

the calibration master reference frame .  
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To obtain matrix  it is necessary to perform a calibration procedure. A well-performed 

calibration procedure allows to obtain a satisfactory estimation of the camera parameters. To 

correctly map image points to the corresponding real-world coordinates, the rigid 

transformation matrix must be estimated with respect to the user-defined reference system 

of the calibration master. Thus, if reference frame  changes or the camera frame  moves, 

it is necessary to estimate the correct rigid transformation matrix again. This procedure has 

been automatized by -  software: a calibration script calculates matrix  using a 

set of calibration images acquired by the user, then it takes a new frame from the actual set-

up to estimate the position of reference system . 

 

By using the abovementioned formulas, after each frame is processed by the OpenPose 

network to extract the hand keypoints, it is possible to obtain the real-world coordinates 

corresponding to them during the execution of the software (image frame in Figure 37). 

5.1.2 Robot workspace calibration 

The robot workspace refers to the space in which the robot moves (reference system  of 

Figure 37) with respect to the user workspace (reference system  of Figure 37). In this case, 

the user hand real-world position in reference system  is mapped to the new reference 

system . The mapping between reference system  and reference system  is obtained 

easily if the two workspaces have the same dimension (matrix  is the identity matrix) or 

if one workspace is a scaled version of the other one (matrix  is the identity matrix 

multiplied by the scale factor). 

 

To correctly move the robot in a cartesian position of reference system , it is necessary to 

perform a calibration between reference system  and the robot reference system . This 

procedure has been carried out experimentally by moving the robot (using its manual 

guidance mode) in different Cartesian positions of reference system . The robot correct 

positioning on top of each calibration position has been assured by using a 3D-printed 

centering tool purposely developed for the Rethink Robotics Sawyer robot adopted (Figure 

38). The tool must be centered manually on each calibration marker and secured in place, and 
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then the robot end-effector can be moved on it and carefully positioned inside the purposely 

made circular cavity of the tool. When the positioning is complete, the robot coordinates 

(both in the Cartesian space and in the Joints space) corresponding to that particular marker 

(of which the positioning is known with respect to reference system ) can be extracted using 

ROS or the robot proprietary software.  

When a satisfactory number of calibration positions has been acquired, it is possible to 

estimate the rigid transformation matrix between workspaces  and . It is worth noting that 

the proposed system currently involves only a planar motion; thus, the mapping procedure 

does not consider the  z-axis. 

 

Referring to the calibration example in Figure 39, the plane position of a point  is 

calculated with respect to both frame  ( ) and frame  ( ). The distance between the 

two reference frames is , hence: 

 (4) 

Figure 38. Example of the robot calibration procedure. The calibration pose tool is placed in 

correspondence of a calibration marker, and then the robot end-effector is carefully placed 

inside the tool. The calibration pose tool cavity has been purposely made to fit the robot 

end-effector. 
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By using homogeneous coordinates, it is possible to rewrite the previous equation as matrix 

products: 

 (5) 

Where  is the rigid transformation matrix between the two reference systems 

defined as: 

 (6) 

Hence, by outlining equations from (5), we obtain: 

 (7) 

The aim of the calibration procedure is to calculate  in order to find the correct position 

and orientation of the reference frame  with respect to frame . However, considering only 

one calibration position point , the system in (7) results underdetermined, hence, a 

minimum of  calibration points is required to solve the system. To minimize the 

Figure 39. Calibration master used to calibrate the second user-defined reference system  

with the robot reference frame . The figure illustrates the position of point  in both 

reference frames. To properly calibrate the system, the position of each point is required, 

both for frame  and . In the procedure, 13 calibration points have been acquired. 
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calibration error, I considered points for the calibration; thus, the system in (7) 

becomes an overdetermined system  that has been solved using the least square 

method: 

,  ,  (8) 

The rigid transformation matrix  used to identify the reference frame  from  is defined 

by the components of . Considering the overall scheme in Figure 37, the generic point 

 in the robot reference frame  with respect to the camera frame  is calculated as follows: 

 (9) 

The same point in the robot workspace  is: 

 (10) 

Where  is the scaling factor between the robot and the user workspaces and is 

defined in (3). Finally, considering equations (9), (10) and equation (3), the resulting point in 

the robot reference frame using the camera coordinates is calculated as: 

 (11) 

The space coordinates  are the output of the hand-gesture recognition algorithm, while 

Cartesian coordinates  are the calculated position of the robot end-effector. 

5.2 Hand- -  

The proposed teleoperation method is based on the recognition of the user hands  skeleton.  

Each frame acquired by the RGB camera (in this case a Kinect v2 camera) is processed by the 

software, which leverages the OpenPose hand skeleton recognition network to predict the 

hand skeleton, following the details of [125]. The gesture recognition procedure is based on 

the position of the reference keypoint (red keypoint 0 in Figure 40) and on the position of the 

four knuckles keypoints (blue keypoints 5, 9, 13, 17 in Figure 40). I defined two gestures used 
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to carry out basic teleoperation tasks: the open hand gesture (Figure 40, top-right) and the 

index gesture (Figure 40, bottom-right). 

5.2.1 Gesture recognition procedure 

The gesture recognition procedure is based on the recognition of the fingers, which may be 

opened or closed. The prediction score threshold adopted to determine if a certain keypoint 

 has been correctly predicted by the OpenPose network or not has been set to 40%.  

 

To robustly recognize if a finger is opened or closed, the following procedure is performed to 

output a handmap, representing which finger  is considered open (value 1) and which finger 

is considered closed (value 0). For example, if the thumb ( ) and the pinkie ( ) are opened, 

the corresponding handmap is .  

 

 

Figure 40. Scheme of the hand skeleton predicted by OpenPose neural network. The red 

keypoint is the reference keypoint, the blue keypoints are the knuckles keypoints and the 

pink keypoints are the fingertips keypoints. Examples of correclty recognized gestures: open 

hand gesture (top-right) and index gesture (bottom-right). 
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The procedure is iteratively repeated for each finger  as follows: 

1. Finger keypoints saving: in this step, the procedure checks if all the keypoints of the 

considered finger  have been correctly predicted by the network and saves their position 

(in pixels) in vector . If a certain keypoint is absent, the position of  is saved in its 

place. For example, considering the index finger ( ), the procedure outputs: 

 

where  represents the knuckle keypoint and  represents the fingertip keypoint. 

2. Relative distances calculation: for each value of  the relative distance from reference 

keypoint  ( ) is calculated. In particular, the procedure checks the relative distance of 

the fingertip: if it is equal to zero, the finger is considered closed as a safety measure. The 

fingertip relative distance of each finger is saved in vector . In the abovementioned 

example, the procedure checks the relative distance between  and  ( ). 

3. Overall finger length calculation: to check if the finger keypoints are collapsed around the 

knuckle keypoint, the overall length of the finger  is calculated considering the relative 

distance from  of the fingertip keypoint ( ) and of the knuckle keypoint ( ), 

expressed as a percentage of : 

 

If this distance is less than 10%, the finger keypoints are collapsed around the knuckle 

keypoint, therefore the finger is considered closed. 

4. Index finger superimposing: sometimes, the absence of the thumb finger generates 

wrong skeletonizations of the hand; hence, the index gesture may be incorrectly detected. 

To compensate this effect, the procedure checks which fingertip relative distance is the 

maximum in vector : if the maximum distance corresponds to the index finger, then the 

second value of the handmap is changed to 2. For example, a resulting handmap 

corresponding to the index gesture is . It is worth noting that with 

this method it is sufficient to have value 2 as the second element of the handmap to 

recognize the index gesture, reducing its recognition error. 
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5.2.2 Moving the robot end-effector: positioning procedure and filtering 

Considering the calibration procedure detailed in Section 5.1, a certain position of the index 

finger  in the image frame  as calculated by OpenPose corresponds to a real-world index 

finger position  in the user workspace  which, in turn, corresponds to a certain robot end-

effector position in the robot workspace . Hence, to move the robot end-effector in 

position using - , the users must: 

1. place their hand in position  (corresponding to position ), using the real-time 

visualization of the software as guidance; 

2. perform the open hand gesture to allow the coordinate extraction; 

3. perform the index gesture by carefully pointing the index finger to position . 

 

It is worth noting that, since the hand skeleton is obtained by a neural network that estimates 

the joints coordinates frame per frame, their position in consecutive frames may vary. 

Therefore, - filtering procedure, which, referring to Figure 37, extracts 

 different pixel coordinates of  from  consecutive index gestures 

recognized in consecutive frames. The average coordinates are extracted to reduce 

positioning errors introduced by the hand skeleton recognition network; hence, the final point 

 is obtained as: 

 (12) 

The higher the value of , the higher the error reduction, at the cost of a higher delay before 

 coordinates are extracted. In particular, setting  has proven to be a good trade-off 

between robustness and speed of the recognition. After a position  is obtained, the 

corresponding real-world position  is calculated using Equation (3). Then, the 

corresponding robot position is calculated using Equation (11) and the robot is moved on 

it using the ROS interface. To move the robot again, the positioning procedure must be 

repeated from the start. 
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5.3 Experimental evaluation 

A reliable teleoperation system is obtained if the robot moves to the desired position with a 

low positioning error. In the proposed set-up, the positioning error is obtained as a sum of 

different errors, as shown in Figure 37. First, when the user points the index finger to a 

Cartesian point in workspace , OpenPose neural network estimates the index position in the 

image as point  in pixel coordinates (corresponding to keypoint 8 in Figure 40) 

which, according to the index finger filtering procedure detailed in Section 5.2.2 corresponds 

to  as detailed in Equation (12). In matrix notation: 

 (13) 

Since the hand skeleton is an estimate of the position of the hand in the image, there may be 

a certain error  between the estimated skeleton position  and the real hand position , 

as shown in Figure 37. The estimation error  is obtained as the pixel distance between the 

real index position ( ) and the estimated index keypoint position ( ) as: 

 (14) 

Thanks to the camera calibration procedure (Section 5.1.1), a point in the acquired image 

frame  [px] corresponds to a Cartesian point  [m] rototranslated in workspace .  

corresponds to the real position  of the original  with an estimation error  which 

depends on the accuracy of the calibration and on the camera resolution. Thus,  is defined 

as follows, where the dot represents the conversion from pixels to meters performed applying 

Equation (3) (Section 5.1.1): 
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 (15) 

The robot operates in workspace , therefore we must obtain the position of , which 

corresponds to  according to the specific mapping between the two workspaces. This 

mapping introduces error , hence: 

 (16) 

Finally, to correctly move the robot end-effector to , we must obtain the corresponding   

in the robot reference system  which adds error . It is worth noting that  comprehends 

both the robot workspace calibration error and the robot intrinsic positioning error that may 

be due internal characteristics such as motor vibrations and encoder resolution. The 

correspondence between  and  is obtained from the robot calibration procedure 

detailed in Section 5.1.2, resulting in: 

 (17) 

It is made evident that moving from one reference frame to another introduces errors.  

can be assumed equal to zero if workspace  and workspace  dimensions are kept equal; 

hence, considering Equation (17) three experiments have been designed to determine the 

contribution on the overall positioning error of (i) the skeletonization error , (ii) the camera 

calibration error  and (iii) the robot error . 
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5.3.1 Evaluation of the hand skeleton estimation error 

For each considered point  the positioning error  due to the estimation of the hand 

skeleton made by OpenPose neural network has been evaluated considering the difference 

between (i) theoretical positions  [px] corresponding to the index positions in the image 

frame and (ii) actual positions  [px] corresponding to the index joint position in the image 

frame calculated by OpenPose (Figure 41).  

When users point their finger to a position, they must keep the index gesture firmly in place 

until  consecutive index gestures have been successfully detected by the software; 

hence, both theoretical and actual positions are obtained as the mean value over  

consecutive frames. Considering that the values are in pixels, the resulting mean is floored. 

Error  is therefore calculated as follows for each point : 

 (18) 

The user participating in this evaluation experiment moved its hand to  randomly 

chosen locations of workspace , corresponding to  couples of 

image frames and index joint estimations. Theoretical positions  have been manually 

selected from each acquired frame considering the tip of the index finger, while the actual 

positioning  of each frame corresponds to the predicted index keypoint ( ) obtained from 

Figure 41. Graphical representation of the hand skeleton estimation error. The purple dot is 

the theoretical position of the index finger, while the red dot is the actual position of the 

index keypoint estimated by OpenPose. 
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OpenPose neural network. The user hand in the acquired frames is both vertically oriented 

and left or right oriented and an equal number of left-hand and right-hand frames have been 

selected for the evaluation. It is worth noting that when users point their finger to a position, 

they must keep the index gesture firmly in place until  consecutive index gestures have 

been successfully detected by the software. Hence, for each point  the resulting theoretical 

and actual positions are obtained as the floored mean value over  consecutive frames, 

namely  and . Consequently, at each position   correspond  errors ; therefore it is 

possible to calculate a mean error  and a standard deviation  as follows: 

Table 13 shows the values of , ,  and  for each position . The mean values of 

 and  over  for both components are  [px] and  [px] 

respectively. The negative sign represents the case when the actual positioning  is 

overstimated with respect to the corresponding theoretical positioning .  

 

It is worth noting that the standard deviation  gives the measure of how much the user 

kept the hand firmly in place for each location. This result is useful to understand in which  

position  the user moved its hand too much, thus reducing the accuracy of the estimation of 

, an effect that could lead to an incorrect placing of the robot end-effector. 

 

 

 

 

 

(19) 
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Table 13. Averaged valued of theoretical and actual positions  and , of the hand 

skeleton estimation error  and of its standard deviation  for each point . 

5.3.2 Evaluation of the camera error 

Thanks to the calibration procedure detailed in Section 5.1.1, a point in the image frame can 

be converted to its corresponding point in workspace  by using Equation (3). The conversion 

from pixel coordinates to real-world coordinates introduces error , which in this 

experiment has been estimated considering the difference between (i) theoretical positions 

 [mm] corresponding to the real-world coordinates of the centroid of markers  in 

workspace , calculated with respect to reference point  (Figure 42) and (ii) the converted 

actual positions  [mm] corresponding to real-world coordinates of the same markers, 

obtained converting their pixel coordinates (taken from the image frame) in real-world 

coordinates using Equation (3). It is worth noting that workspace  has been placed at 1 m 

from the camera and that its markers are squares of 1x1 cm positioned according to 

theoretical positions in Table 14, as shown in Figure 42.   

Points 
 [px] 

 

 [px] 
 

 [px] 
 

 [px] 
 

x y x y x y x y 

 332 346 333 349 -1.29 -3.29 3.92 4.06 

 485 276 483 278 1.71 -2.14 3.06 3.00 

 437 264 437 269 -0.29 -4.86 4.49 6.49 

 509 278 507 282 1.43 -4.14 2.77 5.19 

 554 269 552 269 2.29 0.14 4.43 1.96 

 552 275 552 280 0.43 -5.43 2.56 1.18 

 614 199 610 205 4.14 -6.14 4.09 2.53 

 411 247 411 247 0.29 0.00 3.73 4.07 

 587 273 584 276 3.71 -3.00 3.84 3.82 

 401 255 400 256 1.29 -0.43 3.92 1.84 

 380 269 376 271 4.14 -1.43 4.09 4.03 

 446 174 442 176 3.29 -1.71 4.46 2.55 

 455 94 450 97 4.71 -3.00 2.37 4.24 

 496 243 493 245 3.00 -1.57 2.93 3.96 



Towards true Human-Machine collaboration: the concept of Meta-Collaborative workstations and a first software prototype 

Cristina Nuzzi  117 

Hence, for each marker position the total error  is obtained as follows: 

 (20) 

Table 14 reports the values obtained for each point , where the negative sign represents 

the case when the actual position  is overstimated with respect to the corresponding 

theoretical position . The resulting mean of the values of  in Table 14 is  

[mm], while the corresponding standard deviation is  [mm]. 

 

 

 

 

 

Figure 42. Scheme of workspace  representing all the markers   positions with respect to 

reference point . Theoretical positions are represented by the centroid of the markers 

drawn in blue, while actual positions are calculated by the software using Equation (3) (an 

example is drawn in green). The red dot represents the centroid of reference point . 
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Table 14. Values of theoretical positions , actual positions  and of the calculated camera 

error  for each marker  of workspace . 

5.3.3 Evaluation of the robot error 

The robot error  has two components: (i) error  which is due to the robot calibration 

procedure and (ii) error  which is due to physical robot characteristics, such as motor 

vibrations and encoder resolution: 

 (21) 

Hence, since only  may be estimated with an experimental evaluation, it is possible to 

obtain error   by subtraction. Considering Equation (17) we obtain: 

 (22) 

Points 
 [mm] 

 

 [mm] 
 

 [mm] 
 

x y x y x y 

 0.00 0.00 -0.68 -0.66 0.68 0.66 

 0.00 225.00 0.99 234.17 -0.99 -9.17 

 0.00 450.00 4.52 462.42 -4.52 -12.42 

 175.00 112.50 180.19 118.14 -5.19 -5.64 

 175.00 337.50 180.91 349.22 -5.91 --11.72 

 350.00 0.00 360.32 -0.71 -10.32 -0.71 

 350.00 225.00 359.17 234.13 -9.17 -9.13 

 350.00 450.00 357.07 464.28 -7.07 -14.28 

 525.00 112.50 541.19 118.19 -16.19 -5.60 

 525.00 337.50 538.16 351.06 -13.16 -13.56 

 700.00 0.00 725.08 -2.64 -25.08 2.64 

 700.00 225.00 721.12 235.02 -21.12 -10.02 

 700.00 450.00 716.21 469.87 -16.21 -19.87 
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In fact, by moving the robot end- -  and  are obtained 

automatically by the software using the conversion formulas in (3) and (11) respectively. 

 

In this experiment the aim is to determine the value of . To avoid adding other 

contributions to its estimation, the robot is moved to the predefined theoretical positions of 

workspace  ( ) by sending to the robot encoder the precise coordinates using ROS. 

Hence, the actual position ( ) where the robot moves to is only affected by . 

 

The robot has been moved to 7 theoretical positions 3 times each, corresponding to the 

centroid of markers , , , , ,  and  of workspace  as in Figure 39. Therefore, 

for each point , we obtain: 

 (23) 

To robustly determine the actual positions  during the experiment, a 3D printed carrier 

holding a bright red laser (Lasiris laser 635nm, 10mW) has been mounted on the end-effector 

as shown in the bottom-right corner of Figure 43. To correctly visualize the laser dot, an RGB 

camera (IDS Imaging UI-1460C) has been mounted behind the glass pane. A measuring 

software has been developed using LabVIEW to measure the distance ( ) between the 

theoretical position  (automatically calculated as the centroid of the marker of workspace 

, represented as the green dot in Figure 43, top-left corner) and the actual positioning  

(automatically detected as the centroid of the laser blob, represented as the red dot in Figure 

43, top-left corner). 

 

Table 15 reports the values of  and the corresponding standard deviation among the 3 

repetitions for each point . By calculating theoretical positions  using the rigid 

transformation matrix that converts  to  as shown in Equation (9) instead of sending them 

precisely to the encoder, it is possible to estimate  by performing again the subtraction 

between  and  for each  and subtracting the average error for that point . It is 
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worth noting that in Table 15 the negative sign represents the case when the actual position 

 is overstimated with respect to the corresponding theoretical position . The resulting 

mean of the values of  is  [mm], while the corresponding standard deviation 

is  [mm]. On the other hand, the mean of the values of  is  [mm]. 

 

It is worth noting that according to the task repeatability reported in the robot datasheet, I 

assumed that it could reach the desired position with a minimal error. This assumption has 

been proved true, in fact the resulting values of  suggest that a joint-level calibration of 

the robot was not needed. 

 

Figure 43. The image shows a close-up of the 3D printed laser carrier used (bottom-right 

corner) and of the image seen by the measuring software (top-left corner). Note that the 

image is captured by the RGB camera mounted behind the glass pane in order to see the 

markers and the laser blob. 
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Table 15. Values of the average intrinsic robot error  and of its standard deviation 

, as well as the calculated robot calibration error  for each marker  of 

workspace  used in the experiment. 

5.3.4 Discussion 

Table 16 reports the mean values of each error obtained in the experiments. In particular, the 

values of  have been converted from pixel to millimeters to allow the comparison with the other 

results.  

Table 16. Average values of errors , ,  and obtained in the experiments. 

 

I can conclude that the final position of the robot end-effector  is mostly affected by the 

camera error . This result is not surprising, considering that the Kinect v2 sensor is not 

suited for applications that require high resolution images; hence, by adopting an industrial 

RGB camera with better performances the values of  may significantly improve. 

 

Albeit the values of error  are aligned 

by improving the calibration between reference system  and reference system  it is 

possible to further reduce the contribution of error , hence achieving a lower overall 

Points 
 [mm] 

 

 [mm] 
 

 [mm] 
 

x y x y x y 

 0.26 1.86 0.01 0.05 0.30 1.10 

 0.19 1.59 0.11 0.27 1.70 0.00 

 1.63 0.58 0.14 0.05 6.70 0.70 

 0.77 1.44 0.04 0.05 0.60 0.40 

 0.70 1.15 0.02 0.12 2.60 0.20 

 0.20 1.50 0.17 0.06 0.40 0.50 

 0.91 1.40 0.40 0.04 2.00 0.50 

 [mm] 
 

 [mm] 
 

 [mm]  [mm] 
 

x y x y x y x y 

0.55 -0.70 -8.26 -10.33 0.66 1.66 2.04 0.49 
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robot error . It is worth noting that adopting a different robot with better performances 

may be necessary for precise positioning, as required by some applications (e. g. medical 

applications). 

 

Finally, even if error   is the lowest of the three, by changing the camera and improving the 

set-up illumination conditions it may be possible to further improve the results. The operator 

ability of keeping its hand still on top of the desired position is another key factor to reduce 

the error values, albeit the filtering procedure helps minimizing this effect as much as possible. 

 

- an easy to use open-source software, which I 

made available on GitHub [128] as a further contribution. Future developments include adding 

the z-axis spatial control, for example by adopting wearable devices or traditional controllers 

to guarantee precise control over the robot end-effector. Improving the graphical interface is 

also a necessity to make the overall system intuitive and easy to use even for non-expert users. 

By adding other functionalities such as the hand-tracking to reproduce a certain trajectory in 

-

manipulators intuitively and with reduced costs. Furthermore, the software may be used as a 

standalone package or in combination with MEGURU; in this case, it is considered as a plug-in 
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Conclusions 

Starting from the Industry 4.0 (I4.0) paradigm objectives, a set of enabling technologies has 

been defined through the years to push the fourth revolution forward. One of the ideas is to 

design Cyber Physical Systems, which are smart systems partially autonomous and 

cooperative, able to work in teams of machines or with humans. To this aim, the field of 

Collaborative Robotics plays a central role as one of the key technologies to create such 

intelligent systems. Albeit the paradigm was launched in 2014, up until today a limited number 

of firms all around the world adhere to its principles. Specifically, Italy started focusing on the 

digital transformation with funding plans only since 2017, as reflected on the adoption level 

of I4.0 technologies, which is extremely low. It has been hypothesized that this behavior may 

be due to the reduced level of knowledge of the firms' staff about the paradigm and the 

enabling technologies, as well as the limited funding possibilities of small-medium companies 

to buy these technologies and educate their staff. The topic of human-robot collaboration in 

industrial production lines has been thoroughly researched during the years, but even if the 

scientific community has proposed successful applications these are not currently adopted by 

firms. In fact, they adopt only three types of workstations: (i) completely manual, were the 

operator is in charge of the production process from start to finish; (ii) completely automated, 

were a set of industrial robots and manipulators carry out the production process 

automatically and (iii) collaborative workstations, were Cobots perform a portion of the 

process while being near the human operator, which performs other tasks. Alas, this type of 

collaboration is still inadequate, since Cobots are mechanically limited to fulfill the safety 

regulations needed to work alongside humans. Moreover, operators still communicate with 

them using traditional interfaces such as teach pendants and complex proprietary software, 

ion 

not flexible enough to meet the increasing need of production flexibility, as pointed out by 

the I4.0 paradigm. 

 

Meta-Collaborative

to create an intuitive and easy to use interface that allows users to communicate with any 
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kind of robot, being it Industrial or Collaborative, regardless of their workspace, which may be 

overlapping or not. To achieve a successful communication between the two, Gesture 

Recognition plays a central role. In fact, it has been studied that communicating by body and 

hand gestures is straightforward and natural for humans as much as using their voice. 

Compared to vocal communication, though, by using their body any person may successfully 

operate the robot regardless of its language and of the background noises that may be present 

in industrial plants. Nowadays, Gesture Recognition includes different technologies according 

to the sensor adopted, but the scientific community that adopt visual systems and machine 

learning models has proposed the most interesting results. In this case, intelligent models 

recognize the gesture from images, often acquired in real-time from the camera, and output 

the recognized gesture class with low inference times. 

 

By following this trend, in this thesis work I experimentally studied gestures and Deep Learning 

models to build an intuitive and effective gesture dictionary to be used as the communication 

language between human operators and robotic manipulators. With this language, which is 

based on the presence of both hands at the same time, users may effectively command the 

robot by using my open-source software named MEGURU (MEta-collaborative GestUre-based 

Robot program bUilder). MEGURU is aimed at substituting the traditional robot interface, for 

example the teach pendant, hence its functionalities mirror the classic ones. It has been 

designed as a State Machine where users navigate using the developed gesture dictionary, 

and it is currently capable of building robot programs by using simple actions as building blocks 

(e. g. moving to a point, opening the gripper, etc). MEGURU has been tested in two 

experiments to evaluate (i) the user experience and (ii) its effectiveness when compared to 

the teach pendant when building a robot program. The experimental results show that the 

perfect target users for MEGURU are people of age 20-40, which showed low response times 

and a better comprehension of the overall structure, allowing them to conclude their tasks in 

less time and with low recognition errors. Furthermore, when compared to the teach pendant 

programming method, MEGURU showed competing performances which strongly depend on 

the number of recognition errors. These are often due to the background and illumination 

characteristics of the scene, parameters that may be controlled in industrial plants to further 
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It is worth noting that in future validation campaigns rigid 

procedures to determine the Subjects participating in the tests will be used according to the 

with a certain device or software is not an easy task either; hence, in future studies existing 

state-of-the-art techniques to build the surveys will be adopted as well. To provide a better 

user experience, a graphical interface should be developed in the future to guide the operator 

through MEGUR

their position accordingly and improve the recognition of the gestures. Augmented Reality is 

also a technology that may work well with MEGURU; hence, future research directions may 

be aimed at incorporating these techniques in the software. For example, the graphical 

interface may be developed in an AR fashion and compared with a more traditional one in a 

set of experiments aimed at evaluating the user experience with both.  

 

Finally, since MEGURU has been designed as a modular core, I designed an expansion module 

- -effector teleoperation by using only 

- racts the 

-source Deep Learning-based 

software that estimates the skeleton of the human body from RGB images. Teleoperation is 

achieved thanks to precise camera and robot calibration procedures and a transformation 

chain to correctly map the user workspace (where the index finger moves) and the robot 

workspace (where the end-effector moves). The final end-effector position is affected by 

some errors, which have been estimated through three experiments: (i) the camera error, 

which is due to the camera calibration procedure necessary to transform a point from pixel 

coordinates to real-world coordinates and vice-versa; (ii) the skeletonization error, which is 

due to the skeleton estimation produced by OpenPose and (iii) the robot error, which is both 

due to the robot internal mechanics and its calibration procedure. Our experiments show that 

the highest one is the camera error, which may be improved by adopting a better performing 

camera with higher resolution. Improving the robot calibration procedure and the illumination 

conditions of the set-up are also feasible options to obtain lower values of the respective 

-
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precise positioning is required by the application. Furthermore, this version only includes a 2D 

teleoperation method: a new version is currently under study to add the third axis control by 

means of different controllers. 
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