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Abstract

In this thesis, we theoretically investigate the electrochemo-poromechanics of

ionic polymer metal composites (IPMCs) and cell clusters.

IPMCs are layered micro-devices constituted by an ionic electroactive poly-

meric membrane sandwiched between metal electrodes. In the membrane, the

negatively charged polymeric network is soaked in a fluid phase consisting of

cations dispersed in a solvent. The motion of this fluid phase makes the IPMC

electroactive. IPMCs can find application as actuators, sensors, and energy

harvesters in biomedical engineering, soft robotics, and portable electronics.

Cell clusters are collectives of closely packed cells, held together through

anchoring junctions. Their intracellular and extracellular spaces are saturated

with water hosting different ion species. Water and ions can move in the

intercellular spaces, directly between cells through gap junctions, and across cell

membranes through aquaporins and ion channels, respectively. Cell clusters are

suitable systems for studies on developmental mechanobioelectricity.

Since IPMCs and cell clusters share common features, their behavior can be

investigated through similar continuum multiphysical frameworks. Specifically,

we herein illustrate two models. The first one, already present in the IPMC liter-

ature, couples the electro-diffusion of ions and the elasticity of the solid network.

The second one, which is an original contribution, additionally encompasses the

solvent transport, providing also a micromechanical source for the volumetric

deformation of the network.

In the context of IPMCs, we specialize the first model to an advanced

structural theory featuring a zigzag warping kinematics of the IPMC cross-

section. This allows us to study the effect of the membrane shear deformation

on the electro-diffusion of ions, triggered by the membrane curvature. We adopt

the second model to address the cross-diffusion of solvent and ions in IPMC

actuation and sensing. Specifically, in actuation, the solvent counter-diffusion

contributes to the relaxation of the IPMC curvature under a fixed voltage; in

sensing, the ion counter-diffusion is associated with an electrical discharge under

a sustained mechanical load.
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With regard to cell clusters, inspired by the first theoretical framework

adopted for IPMCs, we augment a numerical code in the literature for the

study of bioelectrical dynamics, in order to further account for its coupling

with the elasticity of the cluster. We then use this augmented code to explore

possible feedback loops elicited by osmotic pressure and mechanosensitive ion

channels in morphogenesis. Finally, we employ the second model to investigate

the osmotic water fluxes within the cluster, triggered by the bioelectrical activity

and responsible of the cluster deformation. This theory, if complemented with

a model for biological growth, is expected to provide a contribution toward

addressing problems of interest in developmental mechanobioelectricity, such as

regeneration and cancer proliferation.

Ultimately, we believe that elucidating the electrochemo-poromechanics

underlying both IPMCs and cell clusters may be of paramount importance for

fostering bioinspired soft robotics applications.



Sommario

In questa tesi, si studia da un punto di vista teorico il comportamento elettrochemo-

poromeccanico degli ionic polymer metal composites (IPMC) e degli aggregati

cellulari.

Gli IPMC sono compositi laminati alla microscala costituiti da una membrana

in polimero elettroattivo ionico racchiusa tra elettrodi metallici. Nella membrana,

il reticolo polimerico, carico negativamente, è immerso in una fase fluida costituita

da cationi dispersi in un solvente. Il movimento di questa fase fluida rende l’IPMC

elettroattivo. Gli IPMC possono trovare applicazione come attuatori, sensori

e raccoglitori di energia pulita per l’ingegneria biomedica, la robotica soffice e

dispositivi elettronici portatili.

Gli aggregati cellulari sono degli insiemi di cellule prossime le une alle altre,

tenute insieme da giunzioni di ancoraggio. In tali aggregati, gli spazi intracellulari

ed extracellulari sono saturati da acqua e diverse specie ioniche. L’acqua e gli

ioni possono muoversi negli spazi intercellulari, direttamente da una cellula

all’altra tramite giunzioni comunicanti e attraverso le membrane cellulari tramite

le acquaporine e i canali ionici. Gli aggregati cellulari sono dei modelli utili per

lo studio della meccanobioelettricità dello sviluppo.

Poiché gli IPMC e gli aggregati cellulari esibiscono comportamenti che sono

regolati da principi fisici di base comuni, è possibile e utile studiare il loro compor-

tamento tramite simili teorie multifisiche alla scala del continuo. In particolare,

in questa tesi si illustrano due modelli. Il primo, già presente nella letteratura

degli IPMC, accoppia l’elettro-diffusione degli ioni con il comportamento elastico

del reticolo solido. Il secondo, che costituisce un contributo originale, tiene conto

in aggiunta del trasporto del solvente, che tra l’altro fornisce un modello per

descrivere la deformazione volumetrica del reticolo.

Per quanto riguarda gli IPMC, il primo modello viene combinato con una

teoria strutturale avanzata che tiene conto di una cinematica lineare a tratti della

sezione retta dell’IPMC. Ciò permette di studiare l’effetto della deformazione a

taglio della membrana sull’elettro-diffusione degli ioni, innescata dalla flessione

della membrana. Il secondo modello viene utilizzato per trattare la diffusione
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incrociata del solvente e degli ioni nei comportamenti ad attuatore e a sen-

sore degli IPMC. In particolare, in attuazione, la contro-diffusione del solvente

contribuisce al rilassamento della curvatura dell’IPMC a voltaggio costante;

nel comportamento a sensore, la contro-diffusione degli ioni è associata a una

diminuzione della carica elettrica accumulata sotto carico meccanico mantenuto

per un tempo sufficientemente lungo.

Con riferimento agli aggregati cellulari, traendo ispirazione dal primo modello

utilizzato per gli IPMC, si estende un codice numerico proposto in letteratura

per lo studio delle dinamiche della bioelettricità, in modo tale da tener conto

in aggiunta dell’accoppiamento di queste ultime con il comportamento elastico

dell’aggregato. Successivamente, si fa uso di questo codice esteso per esplo-

rare possibili fenomeni di retroazione provocati dalla pressione osmotica e dai

canali ionici meccanosensitivi nell’ambito della morfogenesi. Infine, il secondo

modello viene adoperato per investigare i flussi osmotici dell’acqua all’interno

dell’aggregato, innescati dall’attività bioelettrica e responsabili del processo defor-

mativo. Tale teoria, se completata con un modello per la descrizione della crescita

biologica, dovrebbe contribuire all’analisi di problemi di reale interesse per la

meccanobioelettricità dello sviluppo, quali la rigenerazione e la proliferazione

tumorale.

In ultima analisi, si ritiene che lo studio approfondito del comportamento

elettrochemo-poromeccanico alla base degli IPMC e degli aggregati cellulari

possa essere di fondamentale importanza per promuovere applicazioni di robotica

soffice bioispirata.
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Chapter 1

Introduction

In the recent years, the field of soft robotics has attracted the interest of

the engineering community (Trivedi et al., 2008; Kim et al., 2013; Rus and

Tolley, 2015). The aim of this line of research is to design and assemble robots

capable of undergoing large deformations, endowed with self-integrated sensors,

control systems, and power sources. Correspondingly, the field requires the

synergistic effort of different specialists, including electrical and mechanical

engineers. Moreover, soft robots are typically bioinspired and are required to be

biocompatible, as they are of importance for biomedical applications. Therefore,

biologists are likewise fundamental in this sector.

Electro-mechanical effects are at the core of soft robotics. Historically, the

most studied type of electro-mechanical interaction is represented by piezo-

electricity (Yang, 2005). Recent applications include advanced piezo-active

composites with advantageous electro-mechanical properties (Topolov et al.,

2013) and biodegradable piezoelectric actuators and sensors safely interacting

with biological parts (Chorsi et al., 2019). The piezoelectric behavior of some bio-

logical tissues, such as the bone tissue, has also long been acknowledged (Bassett,

1967). While uniform strains are responsible for the direct piezoelectric effect,

strain gradients trigger the direct flexoelectric effect (Nguyen et al., 2013). Flex-

oelectricity is particularly relevant in nanoscale systems, including those made

of soft biomaterials. Both the theories of piezoelectricity and flexoelectricity are

linear; differently, Dorfmann and Ogden (2005) have proposed a nonlinear theory

of electroelasticity, useful for the study of the large deformations experienced

by dielectric elastomers (Gei et al., 2013; Carpi et al., 2015). Piezoelectricity,

flexoelectricity, and nonlinear electroelasticity are all grounded on theoretical

frameworks coupling continuum solid mechanics and electrostatics.

In this thesis, we rather focus on a specific sub-field of devices and biological

systems whose behavior is governed by electrochemo-poromechanical interactions.
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14 Introduction

Specifically, we use the term electrochemistry to refer to the electro-diffusion of

ions, that is, the transport of ions along both their concentration gradient and

an electric field (Rubinstein, 1990). Electro-diffusion is typically described by

the Nernst-Planck equation, to be complemented with the Poisson equation for

the associated electrostatic problem. We remark that possible electrochemical

reactions are not included in our definition of electrochemistry, and they are

not considered here. We use the term poromechanics to refer to the deforma-

tion of a porous medium in the presence of fluid transport within the porous

network (Coussy, 2004). Addressing poromechanics requires Cauchy-Navier-like

equations for the mechanics of the solid network and the Darcy equation for the

description of the fluid flow. Effects of the coupling between electrochemistry and

poromechanics, including osmotic pressure, Maxwell stress, electro-osmotic fluid

flux, and convective ion flux, are responsible for electro-mechanical actuation

and sensing mechanisms.

Therefore, studying electrochemo-poromechanical interactions requires theo-

retical frameworks accounting for ion and fluid transport, along with electrostatics

and mechanics. In the literature, relevant contributions have been given in the

fields of polyelectrolyte gels (Hong et al., 2010) and biological tissues (Ateshian,

2007). Specifically, in this thesis we devote our interest to the electrochemo-

poromechanics of ionic polymer metal composites (IPMCs) and cell clusters.

IPMCs are sandwich structures composed of an ionic electroactive polymeric

membrane, a few hundred of micrometers thick, plated with thinner metal

electrodes (Shahinpoor and Kim, 2001). The membrane typically consists of a

negatively charged polymer network soaked in a solution of solvent and cations.

The motion of this solution confers the IPMC its remarkable electroactive proper-

ties. Specifically, an applied voltage drop across the electrodes is converted into

motion in actuation, whereas an imposed mechanical load is detected electrically

in sensing mode, or induces charge accumulation in energy harvesting applica-

tions (Shahinpoor and Kim, 2004; Pugal et al., 2010; Jo et al., 2013). Within

our terminology, in actuation the electrochemistry drives the poromechanical

response, whereas in sensing/energy harvesting the poromechanics elicits the

electrochemical response. The foregoing features make IPMCs attractive in

the fields of soft robotics, biomedical engineering, and low-power electronics

(Shahinpoor and Kim, 2005).

We adopt the term cell cluster to refer to biological model systems, similar

to epithelia, composed of closely packed cells, joined by anchoring junctions

connecting the cytoskeletons of the different cells (Alberts, 1983). Cell clusters

comprise both intracellular (IC) spaces and thin extracellular (EC) spaces

separating neighboring cells. IC and EC spaces are delimited by cell membranes.

These are equipped with ion channels, through which ions electro-diffuse between
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the IC and the EC spaces, aquaporins, through which water diffuses between

the IC and the EC spaces, and gap junctions, through which ions and water are

exchanged directly between the IC spaces of neighboring cells. We remark that,

in the present investigation, we disregard active transport mechanisms such as

ion pumps. Within cell clusters, the electro-diffusion of ions, setting the cell

membrane potential, triggers the poromechanical response; in turn, the latter

affects the electrochemistry mainly through the activity of mechanosensitive ion

channels, responding to the mechanics of the cell membrane. These mechanisms

are very similar to those of actuation and sensing in IPMCs, justifying the usage

of similar theoretical frameworks for their description. The study of the electro-

diffusion of ions and related membrane potential variations in non-excitable cells is

usually referred to as bioelectricity (Levin et al., 2017). Mechanobiology is instead

the discipline focusing on the role of mechanics in biological processes (Huang

et al., 2012). It has been shown that both bioelectricity and mechanobiology

are fundamental in development (McCaig et al., 2005; Mammoto and Ingber,

2010), alongside the more established fields of biochemistry and genetics. In

the following, we will adopt the term mechanobioelectricity to refer to the

aforementioned interactions between mechanical and electrochemical signals. For

brevity, we will often refer to cell clusters as a shortcut for “mechanobioelectricity

of cell clusters”.

Both IPMCs and cell clusters are of interest for bioinspired soft robotics. In

particular, IPMCs have already been used for specific applications in the field,

such as to propel the locomotion of biomimetic underwater vehicles (Aureli et al.,

2010), to design robotic carnivorous plants (Shahinpoor, 2011), and to harvest

energy from the beating of a robotic fish tail (Cha et al., 2013). Many more

applications will be possible thanks to the rapid progress in IPMC manufacturing,

allowed by technologies such as 3D printing (Carrico et al., 2015). Because of

their ability to grow, assemble, and repair autonomously guided be electrical,

chemical, and mechanical cues, cell clusters hold promise for the design of

multicellular engineered living systems (Mustard and Levin, 2014; Kamm et al.,

2018), this also being encouraged by the possibility of manipulating ion channels

in vivo through genetic, pharmacological, and optogenetic techniques (Levin

et al., 2017).

The aim of this thesis is to develop continuum electrochemo-poromechanical

theories for both IPMCs and cell clusters, and to find analytical and numeri-

cal solutions of the proposed theories for specific cases of interest. With the

exception of Ch. 8, we employ the finite element commercial software COMSOL

Multiphysics R© for the numerical computations.1 This a natural and suitable

1The COMSOL Multiphysics R© software has been run at the Applied Acoustics Lab -
Univeristy of Brescia.
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choice, given the multidisciplinarity of the undertaken research. Furthermore,

COMSOL Multiphysics R© has been often employed to develop numerical models

for IPMCs (Pugal et al., 2015; Volpini et al., 2017; Porfiri et al., 2018). When

integrated by experimental endeavors, we expect this work to help shed light

on specific aspects of the complex multiphysical behavior of IPMCs and cell

clusters, with the ultimate goal of fostering advancements in their soft robotics

applications.

We organize the thesis in two self-consistent parts, separately treating the

electrochemo-poromechanics of IPMCs and cell clusters. Before starting, in

Ch. 2 we present the notation and the symbols consistently used throughout

the thesis. During the dissertation, the sections denoted with the symbol †

and written with a smaller font contain mathematical derivations that may be

skipped by the uninterested reader.

Part I deals with IPMCs. After introducing them in Ch. 3 with reference to

their composition, manufacturing, and underlying physical principles, we recall

a purely electrochemo-mechanical theory for IPMCs, disregarding the solvent

transport, in Sec. 4.2. This theory, originally proposed by Cha and Porfiri (2014),

relies on three coupled governing equations, namely, a momentum balance for the

displacement field, a mass balance for the ion concentration, and the Gauss law

for the electric potential. It allows one to address both actuation and sensing of

IPMCs. Specifically, according to this theory, actuation is triggered by osmotic

and Maxwell stresses, entering the momentum balance as active stresses (or

eigenstresses). Sensing is instead promoted by a contribution to the ion flux

depending on the gradient of the volumetric deformation. Here, differently from

Cha and Porfiri (2014), we explicitly account for the mechanics of the electrodes,

but neglect steric effects of ions and the composite polymer-electrode layers at

the membrane-electrode interfaces.

This theory, previously employed in its original form neglecting the electrode

mechanics to describe the time-dependent actuation of IPMCs (Porfiri et al.,

2017, 2018), is specialized in Sec. 4.3 to a structural model for sandwich

structures, in order to discuss the role of shear deformation on the sensing

response of IPMCs. Specifically, we employ a zigzag warping model to describe

the kinematics of the IPMC, thus allowing the membrane and electrode cross-

sections to undergo independent Timoshenko-like rotations. This advanced

structural theory, originally proposed by Yu (1959) and Krajcinovic (1972),

leads to a membrane volume ratio that depends, in addition to the curvature,

on the shear deformation, thus reflecting on the electro-diffusion of ions, as

mathematically described in Sec. 4.4 and quantitatively discussed in Sec. 4.7.

Overall, Ch. 4 is adapted from “Leronni and Bardella (2019), Influence of shear

on sensing of ionic polymer metal composites, European Journal of Mechanics-
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A/Solids”.

In Sec. 5.2 we present an original electrochemo-poromechanical theory for

saturated IPMCs. This framework expands on the Cha and Porfiri (2014)

theory by explicitly addressing the transport of the solvent within the membrane

porosity network. Within the proposed framework, the osmotic stress of the Cha

and Porfiri (2014) theory, depending on the redistribution of ions, is replaced

by the solvent pressure. Therefore, the osmotic pressure does not enter the

mechanical equilibrium, but competes with the solvent pressure in establishing

the solvent chemical potential. Moreover, we account for the cross-diffusion of

solvent and ions, that is, on the basis of experimental evidences, we assume that

the (electro)chemical potential of each of these species influences the fluxes of

both species (Vanag and Epstein, 2009).

In Sec. 5.3 we apply the proposed model to the study of IPMC actuation under

a fixed voltage and sensing under a sustained mechanical load. In actuation we

uncover that, after initially accumulating near the cathode, the solvent molecules

counter-diffuse, determining a relaxation of the bending deformation of the IPMC.

This is strengthened by the asymmetry of the Maxwell stress in the vicinity

of the electrodes, which can even lead to a reversal of the curvature (Porfiri

et al., 2017), as observed in experiments (Asaka et al., 1995). In short-circuit

sensing, after first being transported toward the cathode with the solvent, ions

counter-diffuse, resulting in a decrease of the charge stored at the electrodes

(Farinholt and Leo, 2004). Overall, Ch. 5 is adapted from “Leronni and Bardella

(2021), Modeling actuation and sensing in ionic polymer metal composites by

electrochemo-poromechanics, Journal of the Mechanics and Physics of Solids”.

Finally, in Ch. 6 we propose a detailed comparison between the electrochemo-

mechanical theory of Cha and Porfiri (2014) and the electrochemo-poromechanical

theory proposed in this thesis.

In Part II we treat cell clusters. We start by briefly reviewing, in Sec. 7.1,

the literature on bioelectricity and its role in important biological processes

at the cellular scale, such as the regulation of the cell cycle (Blackiston et al.,

2009) and, in particular, of cell proliferation (Sundelacruz et al., 2009). These

aspects reflect on tissue-scale processes such as embryonic development, left-right

organ asymmetry, wound healing, tissue regeneration, and cancer progression

(McCaig et al., 2005). Then, in Sec. 7.1.1 we deal with the very recent subject

of mechanobioelectricity, focusing on how bioelectrical and mechanical signals

interact to coordinate growth and morphogenesis (Silver and Nelson, 2018; Silver

et al., 2020).

In Sec. 7.2 we describe the constituents of cell clusters relevant for mechanobio-

electricity. In particular, Sec. 7.2.1 deals with the mechanical constituents of

cell clusters, namely, cytoskeletal filaments and anchoring junctions. Sec. 7.2.2
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describes cell membranes and tight junctions, acting like barriers between the IC

and EC spaces and between the inside and outside of the cluster, respectively.

Sec. 7.2.3 presents an overview of the channel proteins involved in passive ion and

water transport, that is, ion channels, aquaporins, and gap junctions. Specifically,

we focus on mechanosensitive ion channels (MCs), which are important for the

following developments.

Among the computational efforts in the field of bioelectricity, Pietak and

Levin (2016) have proposed a finite volume code, referred to as the BioElectric

Tissue Simulation Engine (BETSE), describing the bioelectrical ion fluxes and

the related membrane potential variations within cell clusters. In Secs. 8.2 and

8.3 we augment BETSE in order to describe the mechanobioelectricity of cell

clusters. The resulting code, named mecBETSE (https://gitlab.com/betse/

mecbetse), allows one to compute the stress and strain fields resulting from the

osmotic pressure gradients due to the bioelectrical activity, and the consequent

impact on the opening of MCs, circularly modulating the bioelectrical state of

the cluster.

In Sec. 8.4 we employ mecBETSE to explore the feedback loops elicited

by osmotic pressure and MCs at both short and long-range, in relation to the

cluster geometry, mechanical properties and boundary conditions, and ion channel

distribution and selectivity. We also hint at aspects of biological significance, such

as the progression and regulation of cancer and the establishment of asymmetries

in tissue morphogenesis. The mecBETSE code and the benchmarks discussed in

Ch. 8 are the subject of “Leronni et al. (2020), On the coupling of mechanics

with bioelectricity and its role in morphogenesis, Journal of the Royal Society

Interface”.

By following the approach adopted in Sec. 5.2 for IPMCs, and inspired

by previous efforts for single cells in the literature (Yellin et al., 2018), in Sec.

9.2 we construct an electrochemo-poromechanical theory for cell clusters. The

model consists of two Gauss laws for the IC and EC electric potentials, 2n mass

balances for the IC and EC concentrations of the n mobile ion species involved,

two mass balances for the IC and EC water concentrations, and an overall

momentum balance for the displacement field. Self-balancing source terms in

the mass balances describe the exchange of ions and water between the IC and

EC spaces through the cell membrane, simulating the activity of ion channels

and aquaporins.

We employ this theory in Sec. 9.3 to accurately describe the osmotic transport

of water in the EC spaces separating cells, in the IC spaces through gap junctions,

and across the cell membranes through aquaporins. These osmotic phenomena,

triggered by the bioelectrical activity, are in turn responsible of the cluster

deformation. We examine both drained and undrained conditions, that is,

https://gitlab.com/betse/mecbetse
https://gitlab.com/betse/mecbetse
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we suppose that water and ions are either allowed or prevented from moving

across the cluster boundary, with the latter condition simulating the presence

of sealing tight junctions. Overall, Ch. 9 is adapted from “Leronni (2020),

Modeling the mechanobioelectricity of cell clusters, Biomechanics and Modeling

in Mechanobiology”.

The proposed model may be further augmented to quantitatively describe

the interplay between growth and depolarization (Sundelacruz et al., 2009), such

as to actually tackle complex developmental processes, including regeneration

and cancer proliferation. We comment on such a possible extension, relying on

the theory of kinematic growth (Ambrosi et al., 2019), in Ch. 10.

In the final Ch. 11 we draw the conclusions of our study, by also focusing

on the differences between the electrochemo-poromechanics of IPMCs and cell

clusters.





Chapter 2

Notation and symbols

In this thesis, we denote scalars with lightface letters, whereas we indicate vectors

and tensors with boldface letters.

Except for Ch. 8, limited to small deformations, we distinguish between

reference and current configurations, and use uppercase letters for the referential

description of geometry-dependent scalars, vectors, and tensors (that is, for the

so-called nominal quantities), and lowercase letters for the spatial description of

the same quantities (that is, for the so-called current quantities). Consistently,

we use the symbol X for the coordinates in the reference configuration (that

is, the so-called material coordinates) and x for the coordinates in the current

configuration (that is, the so-called spatial coordinates). As for mixed tensors

such as the deformation gradient, we use uppercase letters, and indicate their

components with one lowercase and one uppercase index.

In the following, we introduce the notation used for differential and algebraic

operations. For this purpose, we adopt the symbols A and a to indicate generic

nominal and current scalars, A and Ã for generic distinct nominal vectors, a

and ã for generic distinct current vectors, B and B̃ for generic distinct nominal

second-order tensors, and b for a generic current second-order tensor.

We use the symbol ∇ to indicate the material gradient operator, such that

(∇A)I =
∂A

∂XI
= A,I , (2.1a)

(∇A)IJ =
∂AI
∂XJ

= AI,J , (2.1b)

and grad to indicate the spatial gradient operator, such that

(grad a)i =
∂a

∂xi
= a,i , (2.2a)
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(grad a)ij =
∂ai
∂xj

= ai,j . (2.2b)

We use the symbol Div to refer to the material divergence operator, such that

Div A =
∂AI
∂XI

= AI,I , (2.3a)

(Div B)I =
∂BIJ
∂XJ

= BIJ,J , (2.3b)

and div to refer to the spatial divergence operator, such that

div a =
∂ai
∂xi

= ai,i , (2.4a)

(div b)i =
∂bij
∂xj

= bij,j . (2.4b)

We note that, though uncommon, material operators could also be applied to

current quantities and, vice versa, spatial operators could also be applied to

nominal quantities. In Ch. 8, restricted to small deformations, we adopt the

symbols associated with the spatial description.

We use the notation convention that writing two tensors of any order next

to each other implies the saturation of one index, such that

(BA)I = BIJAJ , (2.5a)

(BB̃)IJ = BIKB̃KJ . (2.5b)

We use the symbol · to indicate the inner product of two tensors of the same

order, resulting in a scalar; therefore

A · Ã = AIÃI , (2.6a)

B · B̃ = BIJ B̃IJ . (2.6b)

We use the symbol ⊗ to indicate the tensor product between two vectors, that is

(A⊗ Ã)IJ = AIÃJ . (2.7)

Finally, we adopt the standard superscripts T and −1 to indicate the transpose

and the inverse operations.

In Tabs. 2.1, 2.2, and 2.3 we list the generic, electrochemical, and porome-

chanical physical quantities, and related symbols, consistently used throughout

the thesis. Finally, in Tab. 2.4 we provide a list featuring all the abbreviations

used in this work.



23

Symbol Description Unit

U Nominal internal energy density J/m3

W Nominal Helmholtz free energy density J/m3

Wmec Mechanical contribution to W J/m3

Wmix Mixing contribution to W J/m3

Wpol Polarization contribution to W J/m3

N Outward unit normal to the reference boundary −
n Outward unit normal to the current boundary −

Table 2.1: Generic physical quantities used throughout the thesis.

Symbol Description Unit

C Nominal molar concentration mol/m3

c Current molar concentration mol/m3

D Diffusivity m2/s
F Faraday constant C/mol
R Gas constant J/(mol K)
kB Boltzmann constant J/K
T Absolute temperature K
M Mobility tensor mol2/(N m2s)
J Nominal molar flux mol/(m2s)
j Current molar flux mol/(m2s)
ψ Electric potential V
ε0 Vacuum permittivity F/m
εr Relative permittivity −
ε Absolute permittivity F/m
E Nominal electric field V/m
e Current electric field V/m
D Nominal electric displacement C/m2

d Current electric displacement C/m2

Q Nominal surface charge density C/m2

Qtot Nominal linear charge density C/m
µ Chemical potential J/mol
µ̃ Electrochemical potential J/mol

Table 2.2: Electrochemical physical quantities used throughout the thesis.
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Symbol Description Unit

u Displacement field m
E Young modulus N/m2

ν Poisson ratio −
λ First Lamé parameter N/m2

G Second Lamé parameter (shear modulus) N/m2

F Deformation gradient −
C Right Cauchy-Green deformation tensor −
b Left Cauchy-Green deformation tensor −
E Green-Lagrange strain tensor −
ε Small strain tensor −
J Volume ratio −
P Nominala stress tensor N/m2

σ Cauchy stress tensor N/m2

p Pressure N/m2

T = PN Nominal traction vector N/m2

t = σn Current traction vector N/m2

M Nominal bending moment (per unit depth) N
V Nominal shear force (per unit depth) N/m
Pmec (σmec) Mechanical nominal (Cauchy) stress tensor N/m2

Pmix (σmix) Osmotic nominal (Cauchy) stress tensor N/m2

Ppol (σpol) Maxwell nominal (Cauchy) stress tensor N/m2

pmec Mechanical pressure N/m2

pmix Osmotic pressure N/m2

ppol Electrostatic pressure N/m2

pw Water pressure N/m2

vw Water molar volume m3/mol
Φ Nominal porosity −

Table 2.3: Poromechanical physical quantities used throughout the thesis.

aThe terminology for this stress tensor, P, is very much heterogeneous in the literature.
For instance, (i) in Gurtin et al. (2010) it is referred to as the Piola stress, (ii) in Malvern
(1969) it is the transpose of the first Piola-Kirchhoff stress, (iii) Ogden (1984) denotes it as the
first Piola-Kirchhoff stress (while calling nominal stress the transpose of our P), and, finally,
(iv) Hong et al. (2010), that we follow, call it the nominal stress.
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Abbreviation Description

ECM Electrochemo-mechanical
ECPM Electrochemo-poromechanical
IPMC Ionic polymer metal composite
EB Euler-Bernoulli
FOSD First order shear deformation
ZW Zigzag warping
FE Finite element
CONT-FE Continuum finite element
PVW Principle of virtual work
PPA Parallel plate assumption
MPNP Modified Poisson-Nernst-Planck
MAE Matched asymptotic expansions
PDE Partial differential equation
ODE Ordinary differential equation
BETSE BioElectric Tissue Simulation Engine
mecBETSE Mechanical BioElectric Tissue Simulation Engine
IC Intracellular
EC Extracellular
MC Mechanosensitive ion channel
TJ Tight junction
GJ Gap junction

Table 2.4: Abbreviations used throughout the thesis.
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Chapter 3

Introduction

Ionic polymer metal composites (IPMCs) are sandwich micro-devices, whose core,

denoted as the membrane and plated with thin metal electrodes, consists of a

negatively charged polymer network soaked in a fluid phase of solvent and cations,

referred to as counterions (Shahinpoor and Kim, 2001). The IPMC electroactive

behavior has to be ascribed to the possibility of these counterions to redistribute

within the membrane upon the imposition of an electrical or mechanical stimulus.

Owing to their large compliance, low activation voltage, ability to operate in

different environmental conditions, and ease of manufacturing and customization,

IPMCs hold promise for actuation, sensing, and energy harvesting in soft robotics,

biomedical engineering, energy storage, and space applications (Shahinpoor and

Kim, 2005; Pugal et al., 2010; Jo et al., 2013; Punning et al., 2014).

In Fig. 3.1 an IPMC in a cantilever configuration with its physical constituents

is sketched. The IPMC is subject to either an applied voltage in actuation or an

imposed mechanical load in sensing. In Sec. 3.1 we describe in more detail the

IPMC composition and manufacturing process, while in Sec. 3.2 we introduce the

physics behind actuation and sensing, and briefly overview the related modeling

efforts in the literature.

3.1 IPMC composition and manufacturing

In IPMCs, Nafion and Flemion are typically used as ionomers for the membrane

(Kim and Shahinpoor, 2003; Shahinpoor, 2015a). An ionomer is a polymer that

includes electrically neutral units and a small but significant part of ionized units,

bonded to the polymer backbone. Ionomers are designed to selectively pass

cations or anions across their ionic groups. In particular, Nafion is a synthetic

polymer that incorporates perfluorovinyl ether groups terminating with sulfonate

groups SO−3 H+ over a Teflon backbone. Nafion pores allow the transport of
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membrane

anode

cathode

polymer chain

fixed ion

solvent (water) molecule

mobile counterion

Figure 3.1: Cantilever IPMC subject to either an applied voltage across the
electrodes (actuation) or an imposed mechanical load (sensing), with physical
constituents highlighted.

cations, but they prevent the movement of anions or electrons. Flemion is

an ionomer similar to Nafion, having carboxylate groups COO−H+ instead of

sulfonate groups. Although thin sheet-like membranes made of commercially

available Nafion or Flemion are normally employed, the fused filament 3D printing

technique allows the realization of more complex and unconventional geometries

(Carrico et al., 2015).

Different cation species, such as lithium, sodium, and potassium, can be

used as counterions. These are usually dispersed in water, but other solvents

such as ethylene glycol, glycerol, and crown ethers have also been considered

(Nemat-Nasser et al., 2006). As for the electrodes, noble metals such as platinum,

gold, silver, and palladium are usually employed.

In order to fabricate an IPMC, one of the most common manufacturing

techniques is the so-called impregnation-reduction process (Kim and Shahinpoor,

2003; Shahinpoor, 2015b). In the following, we refer to the production of a

typical IPMC constituted by a Nafion membrane, neutralized by either sodium

or lithium counterions dispersed in water and sandwiched between platinum

electrodes.

The initial stage consists of immersing the ionomer in a platinum salt solution

for a few hours. In this way, the water-saturated ionic polymer is oxidized by the

platinum salt. Specifically, the H+ cations of the sulfonate groups are exchanged

with the metallic cations Pt+ in the oxidation process. Then, the oxidized ionic

polymer is placed in a reduction solution composed of NaBH4 or LiBH4. The

process reduces the oxidized Pt+ particles to Pt particles, which are mainly

deposited on the membrane surfaces. In parallel, H+ cations are replaced with
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Na+ or Li+ cations, which are the so-called mobile counterions neutralizing the

fixed anions of the polymeric chains. Finally, additional amounts of Pt are plated

on the top of the formerly deposited Pt, to increase the electrode conductivity.

The result of the chemical plating is an ionomeric membrane with reduced metal

nano-particles accumulated in the proximity and on the top of its surfaces, acting

as distributed electrodes.

Alternatively to chemically depositing the metallic electrodes on the mem-

brane, Akle et al. (2007) have proposed the so-called direct assembly method,

consisting in painting large surface area electrodes on the membrane surfaces.

This process allows a better control of the electrode geometry and composition.

In the theoretical models developed in this thesis, we will assume that the

electrodes are homogeneous metallic layers forming a perfect interface with the

enclosed polymeric membrane, participating to the mechanics of the sandwich

IPMC. A similar approach has been undertaken in Schicker and Wallmersperger

(2013). We note that the electrode surface roughness and the composite polymer-

metal layers have been considered in some other works in the literature, including

Porfiri (2009) and Cha et al. (2012).

3.2 Modeling actuation and sensing in IPMCs

As anticipated, the IPMC electroactivity essentially depends on the motion of the

positive counterions within the membrane, while the anions are anchored to the

polymer chains. Specifically, in actuation, the application of a voltage difference

across the electrodes forces counterions to migrate toward the cathode, along the

electric field. The redistribution of counterions establishes an osmotic pressure

gradient across the membrane thickness, producing a bending deformation toward

the anode. Conversely, in short-circuit sensing, the imposition of a mechanical

load determines a volumetric deformation gradient across the membrane thickness.

This, in turn, causes the diffusion of counterions up the volumetric deformation

gradient, and correspondingly the detection of an electric current. According to

some authors, accounting for the Maxwell stress due to charge imbalance (Cha

and Porfiri, 2014; Schicker and Wallmersperger, 2013) and for the solvent flow

(Schicker and Wallmersperger, 2013; Zhu et al., 2013, 2016) is also important for

accurately predicting the IPMC response.

Therefore, IPMCs are characterized by an inherently complex physics, result-

ing from the nonlinear interplay among electrostatics, ion and solvent transport,

and mechanics. Importantly, the IPMC behavior is mostly governed by the thin

electric double layers (Bard and Faulkner, 2001) originating at the membrane-

electrode interfaces (Porfiri, 2008). Indeed, while the membrane bulk remains

approximately electroneutral in operating conditions, counterions accumulate
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in the proximity of the cathode, leaving the membrane region adjacent to the

anode ion-depleted. Likewise, strong electric potential gradients are observed

in the membrane regions next to the electrodes. Hence, the accurate modeling

of such double layers plays a key role in the proper prediction of the IPMC

electrochemo-mechanical behavior.

Since the pioneering contributions of Nemat-Nasser and Li (2000) and Shahin-

poor and Kim (2004), several models have been proposed for actuation and

sensing of IPMCs. In Ch. 4 of this thesis, which is adapted from Leronni

and Bardella (2019), we rely on the finite deformation electrochemo-mechanical

theory recently developed by Cha and Porfiri (2014), here summarized in Sec.

4.2, in order investigate the role of shear deformation in IPMC sensing.

We note that several studies have already been conducted on the basis of

the pivotal contribution of Cha and Porfiri (2014). In particular, Volpini et al.

(2017) and Volpini and Bardella (2021) have focused on modeling the short-

circuit sensing response elicited by through-the-thickness compression. Porfiri

et al. (2017) and Porfiri et al. (2018) have proposed an alternative explanation

of the so-called back-relaxation phenomenon in actuation, grounded on the

competition between osmotic and Maxwell stresses. Recent works on actuation

have revealed the importance of considering complex deformation states, with the

consequent need for sophisticated structural theories if, toward efficient design

and optimization, one wants to avoid cumbersome numerical models of IPMCs

treated as continua (Boldini and Porfiri, 2020; Boldini et al., 2020).

In Ch. 5, we elaborate a more comprehensive theory also accounting for

the solvent transport within the membrane, and use it to study both IPMC

actuation and sensing. In Ch. 6, closing the first part of the thesis, we critically

compare this new theory with the Cha and Porfiri (2014) theory.



Chapter 4

The role of shear

deformation in the sensing

response of ionic polymer

metal composites

This chapter is adapted from “Leronni and Bardella (2019), Influence of shear

on sensing of ionic polymer metal composites, European Journal of Mechanics-

A/Solids, 77:103750”.

4.1 Introduction

In this chapter, we adopt the Cha and Porfiri (2014) electrochemo-mechanical

theory, summarized in Sec. 4.2, with the aim of investigating the influence of

shear deformation on IPMC sensing. This would in fact seem to be a quite

natural issue to address in IPMCs, given their sandwich structure, such that

their flexure should be affected by shear (Allen, 1969). A further motivation for

this study is provided by Zangrilli and Weiland (2015), whose experiments show

some evidence of sensing promoted by shear loading.

This notwithstanding, we are unaware of attempts to model the role of shear

in IPMCs under flexure. A reason for this could be that, given the complexity of

IPMC modeling, their laminate structure is typically neglected. Indeed, although

the electrode layers have been studied in relation to the IPMC electrochemical

response (Porfiri, 2009; Akle et al., 2011; Cha et al., 2012), usually they do not

explicitly enter the mechanical modeling, thereby hampering the possibility of
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studying warping. An exception is represented by Schicker and Wallmersperger

(2013), which however focus on IPMC actuation.

In particular, the Cha and Porfiri (2014) theory has been initially applied to

model the IPMC time-dependent flexure in actuation by assuming the simplest

possible kinematics, based on the Euler-Bernoulli theory for homogeneous beams

(Porfiri et al., 2017, 2018). Later, the same theory has been employed with

reference to more complex beam theories also accounting for the electrode layers,

though still restricting attention to actuation (Boldini et al., 2020).

Given that shear deformation directly occurs under transverse mechanical

load, here we are mostly concerned with the modeling of IPMCs as sensors.

However, we provide a general result showing that even IPMC actuation is not

necessarily warping-free.

Accounting for shear deformation may be particularly relevant in short

IPMCs with quite stiff electrodes. Short IPMC samples have been tested in

Lee et al. (2006) for actuation improvement, and also employed in Abdulsadda

and Tan (2012) for the detection of a dipole source in water. Stiff electrodes

could be realized through the direct assembly method, as documented in Akle

et al. (2011), wherein high surface area electrodes with high particle density

and large thickness have been produced, demonstrating an increase in charge

accumulation, consistently with the results of Porfiri (2009).

To reach our goal, we model the IPMC mechanical behavior through the Yu-

Krajcinovic kinematics, characterized by a zigzag warping (Yu, 1959; Krajcinovic,

1972; Bardella and Tonelli, 2012) in which the cross-sections of both membrane

and electrodes are allowed to undergo independent Timoshenko-like rotations.

Henceforth, we refer to this structural model, presented in Sec. 4.3, as zigzag

warping (ZW) model.

By resorting to the principle of virtual work, written in a Lagrangian for-

mulation, we obtain three equilibrium equations to be solved for the transverse

displacement v and the membrane and electrode rotations, ϕm and ϕe. Notably,

such equations also involve the Maxwell stress and the osmotic pressure, which,

in turn, depend on the electric potential ψ and counterion concentration C.

In the case of linearized kinematics, and by assuming ψ and C as known

fields, we provide an analytical solution for v, ϕm, and ϕe. Then, we demonstrate

that disregarding the electrochemical fields in solving the equilibrium equations

leads to accurate results for the flexure of IPMCs in sensing, thus confirming

the previous results of Volpini et al. (2017) on IPMC through-the-thickness

compression sensing.

By following Cha and Porfiri (2014), we establish a modified Poisson-Nernst-

Planck (MPNP) system of equations governing the time-dependent electro-

chemical response. The novelty of this MPNP system, referred to as modified
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because modulated by kinematic fields, is that it nonlinearly involves not only

the membrane curvature (as in previous efforts on IPMC flexure based on the

Euler-Bernoulli beam kinematics), but also the membrane shear strain. In the

following, this resulting electrochemo-mechanical model, presented in Sec. 4.4,

is referred to as ZW-MPNP model.

By relying on the parallel plate assumption (PPA) (Pelesko and Bernstein,

2003), we semi-analytically solve the MPNP system for ψ and C, as functions

of the membrane curvature and shear strain, through the method of matched

asymptotic expansions (Verhulst, 2005). This method, previously employed by

Porfiri and his group (Porfiri, 2008; Aureli and Porfiri, 2013; Cha and Porfiri,

2014), allows us to accurately capture the large gradients of ψ and C arising in

the membrane regions close to the electrodes, denoted as boundary layers and

characterizing the IPMC electrochemical response.

By focusing on a cantilever IPMC subject to a uniform transverse load, we

show that shear deformation amplifies the electric response, measured in terms

of stored charge. We validate the new semi-analytical model by systematic

comparison against the results of two-dimensional finite element (FE) analyses

of the fully coupled nonlinear system of PDEs governing the IPMC electrochemo-

mechanics. These FE analyses are implemented in the commercial software

COMSOL Multiphysics R©, as documented in Sec. 4.6.

In discussing the results in Sec 4.7, we also consider the simpler struc-

tural models relying on the Bernoulli-Navier assumption of planar cross-section

kinematics, that is, the Euler-Bernoulli (EB) model and the first order shear

deformation (FOSD) theory, the latter basically coinciding with the Timoshenko

theory for laminate structures (Bert, 1973). According to the foregoing terminol-

ogy, in the following, we refer to the electrochemo-mechanical models obtained

from these structural theories as EB-MPNP and FOSD-MPNP models.

As a further contribution, the availability of the two-dimensional FE im-

plementation allows us to study the influence of the counterion flux along the

IPMC axis, thus removing the PPA, which is customary in IPMC modeling

(Nemat-Nasser and Li, 2000; Wallmersperger et al., 2007; Chen et al., 2007;

Porfiri, 2008; Cha and Porfiri, 2014). Our FE analyses show that the PPA

is generally appropriate to evaluate the overall electric response, although a

large shear deformation may lead to some discrepancies in the local counterion

distribution. Notably, this can be unveiled only by avoiding any linearization of

the kinematics.
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4.2 Summary of Cha and Porfiri (2014)

electrochemo-mechanical theory

Here, we briefly summarize the continuum electrochemo-mechanical theory of

Cha and Porfiri (2014), simplified in order to neglect steric effects and composite

layers, as also adopted by Boldini and Porfiri (2020) and Boldini et al. (2020).

The equations presented in this section refer to the membrane, while the

electrodes enter the modeling solely through their mechanical contribution (see

Sec. 4.2.4) and by providing the boundary conditions for the electrochemical

problem, to be imposed at the membrane-electrode interfaces, assumed to be

perfect (see Secs. 4.4.2 and 4.6). Moreover, this theory disregards the solvent

transport within the membrane (considered instead in the theory of Sec. 5.2),

while the membrane hydration is taken into account through the Young modulus

(see Sec. 4.7.1).

The primal variable for the mechanical description is the deformation gradient

F =
∂x

∂X
= ∇x , (4.1)

with x(X, t) denoting the current position (at time t) of the material point X

in the reference state, undeformed and electroneutral. Hence, the displacement

field reads u(X, t) = x(X, t)−X.

4.2.1 Balance equations

The balance equations consist of the mechanical equilibrium

Div P + B = 0 , (4.2a)

the Gauss law

Div D = F (C − C0) , (4.2b)

and the mass balance of counterions in the absence of sources

∂C

∂t
+ Div J = 0 . (4.2c)

Here, Div is the material divergence operator, P is the nominal stress tensor,

satisfying PFT = FPT, B is the nominal body force, D is the nominal electric

displacement, F is the Faraday constant, C and C0 are the nominal molar

concentrations of counterions and fixed ions, and J is the nominal counterion

flux.
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4.2.2 Constitutive relations

We assume the nominal Helmholtz free energy density W to be dependent on F,

D, and C, and to be additively decomposable as follows:

W (F,D, C) = Wmec(F) +Wpol(F,D) +Wmix(F, C) , (4.3)

where Wmec, Wpol, and Wmix account for mechanical deformation, dielectric

polarization, and mixing of counterions, respectively.

This leads to the determination of three contributions to the stress:

P =
∂W (F,D, C)

∂F
= Pmec + Ppol + Pmix , (4.4a)

where

Pmec =
∂Wmec(F)

∂F
, Ppol =

∂Wpol(F,D)

∂F
, Pmix =

∂Wmix(F, C)

∂F
(4.4b)

are the mechanical, Maxwell (or electrostatic), and osmotic stresses, respectively.

The nominal electric field E = −∇ψ, with ψ denoting the electric potential,

is conjugate to the electric displacement (Dorfmann and Ogden, 2005):

E =
∂W (F,D, C)

∂D
=
∂Wpol(F,D)

∂D
. (4.5)

The mixing free energy Wmix provides the relation between C and the

chemical potential µ, the latter written in terms of the electrochemical potential

µ̃ and the electric potential ψ:

µ = µ̃− Fψ =
∂W (F,D, C)

∂C
=
∂Wmix(F, C)

∂C
, (4.6)

where the term Fψ accounts for the electrophoretic effect, while Wmix is specified

in such a way as to incorporate Fick’s law into the model (see Sec. 4.2.4).

The counterion flux J is related as follows to µ̃, thus ensuring non-negative

dissipation:

J = −DCRT C−1∇µ̃ , (4.7)

where D is the diffusivity, R is the gas constant, T is the absolute temperature,

and C = FTF is the right Cauchy-Green deformation tensor. The second-order

tensor M = DC/(RT )C−1 in Eq. (4.7) is recognizable as a symmetric mobility

tensor within the framework of Gurtin et al. (2010).

By writing Eq. (4.5) in terms of ψ and substituting it into the Gauss law

(4.2b), one obtains the modified Poisson equation. Writing µ̃ as a function of F,

ψ, and C and, then, substituting the resulting relation for the flux (4.7) into the
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mass balance (4.2c) leads to the modified Nernst-Planck equation. The modified

Poisson and Nernst-Planck equations constitute the MPNP system of PDEs

governing the electrochemistry, where the term modified refers to the presence of

the mechanical deformation in these PDEs. The MPNP system has to be solved

together with the Navier-like vectorial PDE obtained from the combination of

equilibrium (4.2a) and constitutive equations (4.4), for five unknown scalar fields

consisting of ψ(X, t), C(X, t), and the three components of u(X, t). We explicit

the governing equations in Sec. 4.2.4, after prescribing a specific form for the

free energy density in Sec. 4.2.3.

We note that, given the time scale associated with counterion transport,

we assume that the electro-diffusion occurs after the whole mechanical load is

statically applied.

4.2.3 Prescription of the free energy density contributions

We consider isotropic elasticity governed by the Saint-Venant–Kirchhoff potential:

Wmec(F) =
Em

2(1 + νm)

[
νm

1− 2νm
(trE)2 + trE2

]
, (4.8)

in which Em and νm are the Young modulus and Poisson ratio of the membrane

and

E =
1

2
(C− I) (4.9)

is the Green-Lagrange strain tensor, with I denoting the second-order identity

tensor.

The polarization free energy Wpol is chosen in such a way as to provide the

simplest relation between E and D, that is, a linear relationship in the current

configuration (Dorfmann and Ogden, 2005):

Wpol(F,D) =
|FD|2
2εJ

, (4.10)

where ε is the membrane absolute permittivity and

J = det F (4.11)

denotes the Jacobian, or volume ratio.

The mixing free energy Wmix accounts for the change in entropy due to

counterion mixing, and reads

Wmix(F, C) = RT
[
C

(
ln

C

C0J
− 1

)
− C0

(
ln

1

J
− 1

)]
. (4.12)
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With this form of Wmix, C may be unbounded in the boundary layer at the

cathode, where counterions accumulate. This behavior can be controlled by a

material parameter, referred to as steric coefficient, that can be introduced by

properly extending Wmix (Kilic et al., 2007a,b; Porfiri, 2009; Porfiri et al., 2018).

This is not a central issue in this investigation on sensing, such that we adopt the

simpler form in Eq. (4.12). However, for the sake of completeness, in Sec. 4.5

we provide the relevant equations of the model when steric effects are accounted

for.

4.2.4 Governing equations

By combining the balance equations of Sec. 4.2.1, the constitutive relations of

Sec. 4.2.2, and the prescriptions for W in Sec. 4.2.3, we obtain the following

governing equations, to be solved once assigned proper initial and boundary

conditions:

Div

[
Em

1 + νm
F

(
νmtrE

1− 2νm
I + E

)
︸ ︷︷ ︸

Pmec

+
1

2εJ

(
2F(D⊗D)−C · (D⊗D)F−T

)
︸ ︷︷ ︸

Ppol

−RT (C − C0)F−T︸ ︷︷ ︸
Pmix

]
+ B = 0 , (4.13a)

Div
[
−εJC−1∇ψ

]︸ ︷︷ ︸
D

= F (C − C0) , (4.13b)

∂C

∂t
+ Div

−DC−1

∇C − C

J
∇J︸ ︷︷ ︸

J∇c

+
F

RT C∇ψ




︸ ︷︷ ︸
J

= 0 , (4.13c)

where · and ⊗ denote the inner and tensor products, respectively, and c = C/J

is the current counterion concentration. In particular, the counterion flux is

driven by the gradient of the nominal concentration (that is, by the gradient of

counterion moles, at fixed volume), by the gradient of the volume ratio, and by

the electric field. The first two contributions represent Fick’s law in deformable

solids, while the third describes the electrophoretic effect.

In the electrodes the problem is purely mechanical, and reads

Div

[
Ee

1 + νe
F

(
νetrE

1− 2νe
I + E

)]
︸ ︷︷ ︸

Pmec

+B = 0 , (4.14)
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Figure 4.1: Schematics of the IPMC geometry and assumed zigzag warping,
displaying both the reference and the current configurations.

where Ee and νe are the Young modulus and Poisson ratio of the electrodes.

4.3 The zigzag structural model

We model the IPMC as a sandwich plate, made up of a relatively thick and

soft core, that is, the ionomeric membrane, and of two thin and much stiffer

skins, that is, the metal electrodes. The membrane has reference thickness 2H,

whereas each electrode has thickness h. We hypothesize that the IPMC plate

undergoes cylindrical bending, such that it can be studied like a plane strain

beam of unit depth.

4.3.1 Kinematics

We model the IPMC kinematics by adopting the zigzag (piecewise linear) warping

(ZW) model developed by Yu (1959), Krajcinovic (1972, 1975), and Bardella

and Tonelli (2012) for sandwich beams. More specifically, as illustrated in Fig.

4.1, such a warping consists of allowing the cross-sections of each of the three

layers to rotate independently of the mid-axis, with each layer behaving as a
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Timoshenko homogeneous beam.

Because of the assumption of perfect interface between membrane and elec-

trodes, three independent kinematic variables are needed: the transverse dis-

placement v (related to the mid-axis rotation ϕ), the cross-section rotation of

the membrane ϕm, and the cross-section rotation of the electrodes ϕe.

As indicated in Fig. 4.1, in the reference configuration, Y is the through-

the-thickness coordinate, normal to the mid-axis X. The unit vectors along

the X and Y axes are denoted with Â and B̂, respectively, and, in the current

configuration, they become â and b̂:

â(X, t) = cosϕ(X, t)Â + sinϕ(X, t)B̂ , (4.15a)

b̂(X, t) = − sinϕ(X, t)Â + cosϕ(X, t)B̂ . (4.15b)

Since we neglect the mid-axis stretching, the following relations hold:

x′0(X, t) = cosϕ(X, t) , y′0(X, t) = sinϕ(X, t) , (4.16)

where x0 and y0 are the current positions of the mid-axis material points and

the notation f ′ = ∂f/∂X has been introduced.

The motion of each material point is described by

x(X,Y, t) =


x0(X, t)− sinϕm(X, t)Y if Y ∈ [−H,H] ,

x0(X, t)− sinϕm(X, t)H sgn(Y )

− sinϕe(X, t) [Y −H sgn(Y )] if |Y | ∈ [H,H + h] ,

(4.17a)

y(X,Y, t) =


y0(X, t) + cosϕm(X, t)Y if Y ∈ [−H,H] ,

y0(X, t) + cosϕm(X, t)H sgn(Y )

+ cosϕe(X, t) [Y −H sgn(Y )] if |Y | ∈ [H,H + h] .

(4.17b)
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Hence, the relevant (in-plane) components of the deformation gradient read

F =



cosϕ− ϕ′mY cosϕm − sinϕm

sinϕ− ϕ′mY sinϕm cosϕm

 if Y ∈ [−H,H] ,


cosϕ− ϕ′mH sgn(Y ) cosϕm

−ϕ′e[Y −H sgn(Y )] cosϕe − sinϕe

sinϕ− ϕ′mH sgn(Y ) sinϕm

−ϕ′e[Y −H sgn(Y )] sinϕe cosϕe

 if |Y | ∈ [H,H + h] .

(4.18)

The volume ratio (4.11) in the membrane, which plays an important role in

counterion diffusion, reads

J = cos(ϕ− ϕm)− ϕ′mY if Y ∈ [−H,H] . (4.19)

Since cos(ϕ− ϕm) < 1, the shear deformation is responsible of a local shrinkage,

which is uniform over each cross-section.

4.3.2 Structural mechanical balance

We impose the mechanical balance by resorting to the principle of virtual work

(PVW). With δa = ȧδt denoting any admissible variation of the field a, the

internal virtual work (per unit depth) reads

Wint =

∫ L

0

∫ H+h

−H−h
P · δF dY dX , (4.20)

where the stress in the membrane comprises mechanical, electrostatic, and

osmotic contributions, while the stress in the electrodes is purely mechanical

(see Sec. 4.2.4).

In the external virtual work (per unit depth) we consider a transverse load

per unit length and depth T (X, t), conjugate to the displacement v(X, t):

Wext =

∫ L

0

T δv dX , (4.21)

where a relation between v and ϕ exists on the basis of how the transverse load

works.

After integration over the cross-section and by parts, the PVW allows us to
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obtain

Wint =

∫ L

0

[
(M ′m − Vm)δϕm + (M ′e − Ve)δϕe + (Vm + Ve)δϕ

]
dX

−
[
Mmδϕm +Meδϕe

]L
0

=Wext , (4.22)

where

Mm =

∫ H

−H
T · âm Y dY + 2

∫ H+h

H

T · âmH dY , (4.23a)

Me = 2

∫ H+h

H

T · âe(Y −H) dY , (4.23b)

Vm =

∫ H

−H
T · b̂ dY + 2

∫ H+h

H

T · b̂m ϕ′mH dY , (4.23c)

Ve = 2

∫ H+h

H

T ·
(
b̂− b̂mϕ

′
mH

)
dY , (4.23d)

in which T = PÂ is the nominal traction vector, âm and b̂m are the unit vectors

normal and tangent to the deformed membrane cross-section, and âe and b̂e are

the unit vectors normal and tangent to the deformed electrode cross-sections.

Specifically, Mm is the part of the total bending moment M = Mm + Me

conjugate to δϕm and Me is the part of M conjugate to δϕe. The internal action

V = Vm + Ve =

∫ H+h

−H−h
T · b̂ dY (4.24)

is referred to as the shear force even if it is not the integral of the shear stress

over the cross-section. We note that in the small strain case Vm and Ve become

the integrals over the membrane and the electrodes, respectively, of the shear

stress, while Mm still includes a contribution from the longitudinal stresses in the

electrodes, such that it does not correspond to the bending moment sustained by

the membrane. Moreover, we remark that the internal actions in the membrane

comprise three contributions, analogously to the stress contributions of the

continuum theory, see Eq. (4.4b):

Vm = Vmec,m + Vpol + Vmix , Mm = Mmec,m +Mpol +Mmix . (4.25)

In order to analytically solve the electrochemo-mechanical problem, we follow

our previous studies (Volpini et al., 2017; Porfiri et al., 2017) and linearize the

mechanical balance with respect to the kinematics. We remark that this type of

linearization is not applied to the MPNP system (see Sec. 4.4), where the use of

the nonlinear expression (4.19) of J is essential to unveil the influence of shear
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deformation on the electrochemistry.

Hence, we have δv′ = δϕ, such that V = Vm + Ve is the force conjugate to δv

and the PVW (4.22) becomes

∫ L

0

[
(M ′m − Vm)δϕm + (M ′e − Ve)δϕe − (V ′m + V ′e )δv

]
dX

+
[
(Vm + Ve)δv −Mmδϕm −Meδϕe

]L
0

=Wext ∀ δv, δϕm, δϕe . (4.26)

Hence, by using Eq. (4.21), the strong form of the equilibrium equations

immediately follows:

M ′m = Vm , (4.27a)

M ′e = Ve , (4.27b)

V ′ = −T . (4.27c)

By substituting the relations presented in Sec. 4.2 in the foregoing definitions,

the internal actions result

Mmec,m = Mϕm
mecϕ

′
m +Mϕmϕe

mec ϕ′e

with Mϕm
mec = − 2EmH

3

3(1− ν2
m)
− 2EeH

2h

1− ν2
e

, Mϕmϕe
mec = −EeHh

2

1− ν2
e

, (4.28a)

Mpol = −
∫ H

−H

ε

2

(
∂ψ

∂Y

)2

Y dY , (4.28b)

Mmix = Mϕm

mixϕ
′
m +M0

mix

with Mϕm

mix =

∫ H

−H
−RT (C − C0)Y 2 dY , M0

mix =

∫ H

−H
−RT (C − C0)Y dY ,

(4.28c)

Mmec,e = Mϕmϕe
mec ϕ′m +Mϕe

mecϕ
′
e with Mϕe

mec = − 2Eeh
3

3(1− ν2
e )
, (4.28d)

Vmec,m = V γmmec(v′ − ϕm) with V γmmec = 2GmH , (4.28e)

Vpol = V γmpol (v′ − ϕm) with V γmpol = −
∫ H

−H

ε

2

(
∂ψ

∂Y

)2

dY , (4.28f)

Vmix = V γmmix(v′ − ϕm) with V γmmix =

∫ H

−H
RT (C − C0) dY , (4.28g)

Vmec,e = V γemec(v′ − ϕe) with V γemec = 2Geh . (4.28h)

Here, Gm = Em/[2(1 + νm)] and Ge = Ee/[2(1 + νe)] are the shear moduli
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and, by introducing the further condition of vanishing through-the-thickness

normal stress, as in standard plate theory, the longitudinal modulus entering

the bending stiffness is Ei/(1− ν2
i ), with i = m, e. We note that, in Eqs. (4.28b)

and (4.28f), according to the parallel plate assumption (PPA), we have neglected

the Maxwell stress contributions proportional to ψ′. Moreover, because of the

definition (4.23c), it results that Vmix 6= 0, although σmix, that is, the Cauchy

stress corresponding to Pmix, is a spherical tensor.

4.3.3 General analytical solution of the structural

mechanical balance

By substituting the internal actions (4.28) into the equilibrium Eqs. (4.27), we

obtain a system of ODEs to be solved for v(X), ϕm(X), and ϕe(X). Here, we

analytically solve this system by assuming that ψ and C are known, and by

neglecting their dependence on X. We remark that our final solution for ψ and

C will eventually depend on X, because it will be obtained, in Sec. 4.4, by

integrating the MPNP PDEs in Y and t at each X, the latter position along the

mid-axis providing the membrane curvature and shear strain modulating the

MPNP system. The validity of this strategy will be proved in Sec. 4.7.

The analytical solution of the structural mechanical balance can be obtained

by extending the technique proposed by Krajcinovic (1972) (see also Bardella

and Tonelli, 2012) to uncouple the three ODEs and integrate them. More details

are given at the end of this section for the interested reader. It results that

ϕm(X), ϕe(X), and v(X) can be expressed in terms of an auxiliary function

f(X), as follows:

ϕm =
β1α2

α1β2

(
k2f ′ − f ′′′

)
+ ef ′′′ , (4.29a)

ϕe =
β1α2

α1β2

(
k2f ′ − f ′′′

)
−H(m+ 1)f ′′′ , (4.29b)

v =
α2

β2
f IV −

(
β3

β2
+
β1α2

α1β2

)
f ′′ +

β1α2k
2

α1β2
f , (4.29c)

in which

α1 = −Mϕm
mec − 2Mϕmϕe

mec −Mϕm

mix −Mϕe
mec , (4.30a)

α2 = −(Mϕm
mec +Mϕm

mix)h2 +Mϕmϕe
mec (m+ 1)Hh

− Mϕm
mec +Mϕmϕe

mec +Mϕm

mix

Mϕmϕe
mec +Mϕe

mec
h[−Mϕmϕe

mec h+Mϕe
mec(m+ 1)H] , (4.30b)

β1 = V γmmec + V γmpol + V γmmix + V γemec , (4.30c)

β2 = −(V γmmec + V γmpol + V γmmix)h+ V γemec(m+ 1)H , (4.30d)
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β3 = (V γmmec + V γmpol + V γmmix)h2 +
V γemec(m+ 1)Hh(Mϕm

mec +Mϕmϕe
mec +Mϕm

mix)

Mϕmϕe
mec +Mϕe

mec
,

(4.30e)

m =
(Mϕm

mec +Mϕmϕe
mec +Mϕm

mix)h

(Mϕmϕe
mec +Mϕe

mec)H
− 1 , (4.30f)

k2 =
β1β3 − β2

2

β1α2
, (4.30g)

and the auxiliary function f(X) solves the sixth-order ODE

fV I(X)− k2f IV (X) = − β2

β1α2
T (X) , (4.31)

involving the determination of six integration constants Ci (with i = 1, . . . , 6).

For a uniform applied transverse load T , f(X) reads

f(X) = C1 sinh(kX)+C2 cosh(kX)+T 0X
4+C3X

3+C4X
2+C5X+C6 , (4.32)

where

T 0 =
β2

24(β1β3 − β2
2)
T . (4.33)

Solution for the cantilever benchmark

We consider the cantilever IPMC of Fig. 4.1, whose kinematic and static

boundary conditions read, respectively:

v(X = 0) = 0 , ϕm(X = 0) = 0 , ϕe(X = 0) = 0 , (4.34a)

and

V (X = L) = 0 , Mm(X = L) = 0 , Me(X = L) = 0 . (4.34b)

Rewriting the last two static boundary conditions in terms of the kinematic

variables reveals an interesting outcome of the adopted structural theory to

study IPMC electrochemo-mechanics:

ϕ′m(X = L) = γ1 , ϕ′e(X = L) = γ2 , (4.35)

where

γ1 = − Mϕmϕe
mec (Mpol +M0

mix)

(Mϕmϕe
mec )2 −Mϕe

mec(Mϕm
mec +Mϕm

mix)
, γ2 = −γ1

2h

3H
. (4.36)

Hence, at the free end the static boundary conditions (4.35) are not homogeneous,

even in the absence of concentrated moments, because of the electrochemical

contribution. Therefore, at least theoretically, even IPMC actuation is not free
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from warping, the latter being proportional, through Mpol and M0
mix, to the

applied voltage.

Back to our sensing problem, by imposing the boundary conditions (4.34),

we obtain the following integration constants:

C1 =
24T 0L

k3
, C2 = −24T 0

k4

1 + kL sinh(kL)

cosh(kL)
+

1

k4

sech(kL)(γ1 − γ2)

H(m+ 1) + h
,

C3 = −4T 0L , C4 =
6T 0

k2
(2 + k2L2) +

α1β2

2(−β2
2 + β1β3)

H(m+ 1)γ1 + hγ2

H(m+ 1) + h
,

C5 = −24T 0L

k2
, C6 = 12T 0

[
2

k4
+
L2

k2
+
L2

k2

α1β3

α2β1

+
2

k4

α1β
2
2

α2β2
1

(
1− sech(kL)− kL tanh(kL)

)]
+

α1β2

[H(m+ 1) + h](β2
2 − β1β3)2

×
[
(α2β1 + α1β3)[H(m+ 1)γ1 + hγ2] + α2β2(γ1 − γ2) sech(kL)

]
, (4.37)

in which we note that the second contributions in C2, C4, and C6 vanish in the

absence of electro-diffusion (as γ1 = γ2 = 0). Finally, by substituting Eq. (4.37)

in Eq. (4.32), we obtain the following expression for f(X), to be plugged in Eq.

(4.29):

f(X) =
24T 0

k4

1

1 + exp(−2kL)

[
kL[exp(−2kL+ kX)− exp(−kX)]

− exp(−kL+ kX)− exp(−kL− kX)
]

+
1

k4

γ1 − γ2

H(m+ 1) + h

× exp(−kL) + exp(−kL− 2kX)

exp(−kX) + exp(−2kL− kX)
+ T 0X

4 − 4T 0LX
3 +

6T 0

k2
(2 + k2L2)X2

+
α1β2

2(−β2
2 + β1β3)

H(m+ 1)γ1 + hγ2

H(m+ 1) + h
X2 − 24T 0L

k2
X + 12T 0

×
[
L2

k2
+
α1β3L

2

k2α2β1
+

2

k4
+

2α1β
2
2

k4α2β2
1

1− kL+ (1 + kL) exp(−2kL)− 2 exp(−kL)

1 + exp(−2kL)

]
+

α1β2

[H(m+ 1) + h](β2
2 − β1β3)2

[
(α2β1 + α1β3)[H(m+ 1)γ1 + hγ2]

+ α2β2(γ1 − γ2)
2 exp(−kL)

1 + exp(−2kL)

]
. (4.38)

We note that in Eq. (4.38) we have transformed the hyperbolic functions into

exponential functions of appropriate argument in order to avoid numerical issues

due to the high value of k, which is proportional to the sandwich heterogeneity.

In the absence of electrochemistry, γ1 = γ2 = 0 and Eq. (4.38) particularizes

to Eq. (27) in Bardella and Mattei (2014) for the analogous purely mechanical

problem.
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Uncoupling equilibrium equations†

To uncouple Eqs. (4.27), it is convenient to resort to Krajcinovic’s treatment of the

zigzag warping (Krajcinovic, 1972; Bardella and Mattei, 2014). We start by defining

the displacement along the X axis of any cross-section point as

u(X,Y ) = −Y Φ(X) + ω(Y )Ψ(X) , (4.39)

in which we have introduced the average rotation of the whole sandwich cross-section

Φ and the warping function Ψ in place of ϕm and ϕe. The following relations hold:

ϕm(X) = Φ(X)−Ψ(X)h , (4.40a)

ϕe(X) = Φ(X) + Ψ(Y )H(m+ 1) . (4.40b)

The zigzag function ω is related to the cross-section shearing distortion, and it is

modulated by the coefficient m as follows:

ω(Y ) =


hY if Y ∈ [−H,H] ,

−(m+ 1)HY + [H(m+ 1) + h]H sgn(Y ) if |Y | ∈ [H,H + h] .

(4.41)

Substitution of expressions (4.28) into equilibrium Eqs. (4.27) leads to

(Mϕm
mec +Mϕm

mix)ϕ′′m +Mϕmϕe
mec ϕ′′e =

(
V γmmec + V γmpol + V γmmix

)
(v′ − ϕm) , (4.42a)

Mϕmϕe
mec ϕ′′m +Mϕe

mecϕ
′′
e = V γemec(v′ − ϕe) , (4.42b)(

V γmmec + V γmpol + V γmmix + V γemec

)
v′′ −

(
V γmmec + V γmpol + V γmmix

)
ϕ′m − V γemecϕ

′
e = −T . (4.42c)

By replacing Eqs. (4.40) into Eqs. (4.42) we obtain

(Mϕm
mec +Mϕmϕe

mec +Mϕm
mix) Φ′′ + [− (Mϕm

mec +Mϕm
mix)h+Mϕmϕe

mec (m+ 1)H] Ψ′′

−
(
V γmmec + V γmpol + V γmmix

)
(v′ − Φ)−

(
V γmmec + V γmpol + V γmmix

)
hΨ = 0 , (4.43a)

(Mϕmϕe
mec +Mϕe

mec) Φ′′ + [−Mϕmϕe
mec h+Mϕe

mec(m+ 1)H] Ψ′′

− V γemec(v′ − Φ) + V γemec(m+ 1)HΨ = 0 , (4.43b)

(
V γmmec + V γmpol + V γmmix + V γemec

)
(v′′ − Φ′)

+
[(
V γmmec + V γmpol + V γmmix

)
h− V γemec(m+ 1)H

]
Ψ′ + T = 0 . (4.43c)

By introducing the coefficients (4.30), the system (4.43) can be rewritten in the following

more compact form, wherein each of Φ′′ and Ψ′′ enters one equation only:

α1Φ′′ + β1(v′ − Φ) + β3Ψ = 0 , (4.44a)



4.3 The modified PNP system 49

− α2Ψ′′ − β2(v′ − Φ) + β3Ψ = 0 , (4.44b)

β1(v′′ − Φ′)− β2Ψ′ + T = 0 . (4.44c)

Through further manipulation, the system (4.44) can be uncoupled, thus obtaining the

sixth-order ODE (4.31). Specifically, the functions Φ(X), Ψ(X), and v(X) are related

to f(X) as follows:

Φ =
β1α2

α1β2
(k2f ′ − f ′′′) , (4.45a)

Ψ = −f ′′′ , (4.45b)

v =
α2

β2
fIV −

(
β3

β2
+
β1α2

α1β2

)
f ′′ +

β1α2k
2

α1β2
f , (4.45c)

such that, by using Eqs. (4.40), we finally obtain Eqs. (4.29). We note that the

calibration of the coefficient m in Eq. (4.30f), governing the zigzag magnitude ω of the

warping function Ψ, is key to uncouple equilibrium equations.

4.4 The modified Poisson-Nernst-Planck system

and its perturbative solution

4.4.1 The electric displacement and the counterion flux

We follow the PPA (Pelesko and Bernstein, 2003; Cha and Porfiri, 2014) and

evaluate the electrochemical response by considering a spatially one-dimensional

problem, along the membrane thickness. This implies that, in writing the MPNP

system, we neglect the derivatives of ψ, C, and µ̃ with respect to X. Hence, by

combining the relations presented in Secs. 4.2 and 4.3, we obtain the following

relevant components of the electric displacement and counterion flux:

DY = −ε1 + (ϕ′m)2Y 2 − 2ϕ′mY cos(ϕ− ϕm)

J

∂ψ

∂Y
, (4.46a)

JY = −D1 + (ϕ′m)2Y 2 − 2ϕ′mY cos(ϕ− ϕm)

J2

×
(
C

J
ϕ′m +

∂C

∂Y
+

F

RT C
∂ψ

∂Y

)
, (4.46b)

with J the volume ratio given by Eq. (4.19).

Here, consistently with the finite deformation finite element (FE) analyses

reported in Sec. 4.7.3, we assume that the distributed load p acts along the Y

direction all along the loading history, such that v = y0 (see Eq. (4.16)). Hence,

in Eqs. (4.46) and in the following, we use the relation ϕ = arcsin v′.

The expression (4.46b) for the counterion flux can be recasted in the general

theory presented in Gurtin et al. (2010) for the diffusion of species in elastic
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solids, with the addition of the electrophoretic term. In particular, the flux

consists of three main contributions proportional to ϕ′m, ∂C/∂Y , and ∂ψ/∂Y .

We note that the curvature, −ϕ′m, is the through-the-thickness component of the

volume ratio gradient (see Eq. (4.19)) and, in the flux (4.46b), is also modulated

by the shear deformation ϕ− ϕm.

At t = 0+, that is, just after the application of the mechanical load, the

IPMC state is well approximated by:

C ≈ C0 , ∂C/∂Y ≈ 0 , ∂ψ/∂Y ≈ 0 , (4.47)

which corresponds to negligible counterion migration (associated with the elec-

trophoretic effect), whereas diffusion (associated with Fick’s law) triggers the

electrochemical response. By substituting conditions (4.47) in Eq. (4.46b) we

obtain

JY ≈ −D
(

1 +
sin2(ϕ− ϕm)

J2

)
C0

J
ϕ′m , (4.48)

showing that the electrochemical response vanishes in the absence of curvature.

However, the shear deformation amplifies the electrochemical response, because

both sin2(ϕ− ϕm) ≥ 0 and J decreases with increasing ϕ− ϕm (see Eq. 4.19).

By neglecting the membrane shear deformation, Eq. (4.46b) particularizes to

the analogous relation obtained in Porfiri et al. (2017). Also, even though ϕ−ϕm

does not appear in the linearized version of Eq. (4.46b), the shear deformation

indirectly affects ϕ′m in the ZW structural model, as occurs in fully clamped

regions (see Sec. 4.7).

4.4.2 The modified Poisson-Nernst-Planck system

Substitution of Eqs. (4.46) into the balance equations (4.2b) and (4.2c) leads to

the MPNP system:

− ε ∂

∂Y

[
1 + (ϕ′m)2Y 2 − 2ϕ′mY cos(ϕ− ϕm)

J

∂ψ

∂Y

]
= F (C − C0) , (4.49a)

∂C

∂t
= D

∂

∂Y

[
1 + (ϕ′m)2Y 2 − 2ϕ′mY cos(ϕ− ϕm)

J2

×
(
C

J
ϕ′m +

∂C

∂Y
+

F

RT C
∂ψ

∂Y

)]
, (4.49b)
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on which we impose the following boundary and initial conditions:

ψ(±H, t) = 0 , t ≥ 0 (short circuit) , (4.50a)

JY (±H, t) = 0 , t ≥ 0 (ion-blocking) , (4.50b)

ψ(Y, 0) = 0 and C(Y, 0) = C0 , Y ∈ [−H,H] (electroneutrality) .

(4.50c)

Moreover, the integration of Poisson and Nernst-Planck Eqs. (4.49), in

conjunction with the ion-blocking and electroneutrality conditions (4.50b) and

(4.50c), reveals that (Porfiri, 2008)

DY (H, t) = DY (−H, t) = −Q , (4.51)

with Q denoting the stored charge per unit nominal area, whose time derivative

is the electric current (per unit nominal area):

I =
dQ

dt
= −dDY (±H, t)

dt
. (4.52)

4.4.3 Solution through matched asymptotic expansions

Nondimensional modified Poisson-Nernst-Planck system

In order to semi-analytically solve the MPNP system, we conveniently rewrite it

by defining the following nondimensional variables:

ψ̄ = ψ/Vth , C̄ = C/C0 , ϕ̄′m = ϕ′mH , Ȳ = Y/H , t̄ = t/τ0 , (4.53)

where Vth = RT/F is the thermal voltage and τ0 = H/(FD)
√
εRT/C0 is the

characteristic time (Porfiri, 2008). Hence, the MPNP system (4.49) can be

rewritten as

− δ2 ∂

∂Y

[
1 + (ϕ′m)2Y 2 − 2ϕ′mY cos(ϕ− ϕm)

J

∂ψ

∂Y

]
= C − 1 , (4.54a)

∂C

∂t
= δ

∂

∂Y

[
1 + (ϕ′m)2Y 2 − 2ϕ′mY cos(ϕ− ϕm)

J2

×
(
C

J
ϕ′m +

∂C

∂Y
+ C

∂ψ

∂Y

)]
, (4.54b)
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CATHODE

BOUNDARY LAYER ξ− inner solution C−(ξ−, t), ψ−(ξ−, t)

matching conditions
(Y → −1, ξ− →∞)

MEMBRANE BULK

Y

outer solution Co(Y, t), ψo(Y, t)

matching conditions
(Y → +1, ξ+ →∞)

BOUNDARY LAYER ξ+ inner solution C+(ξ+, t), ψ+(ξ+, t)

ANODE

Figure 4.2: Matched asymptotic expansions: the outer solution in the mem-
brane bulk and the inner solutions in the boundary layers are matched through
proper conditions in order to obtain a composite solution valid in the whole
membrane domain.

where we have dropped the overline for the nondimensional variables and

δ =
1

FH

√
εRT
C0

=
λ

H
(4.55)

is a parameter proportional to the Debye screening length λ, whose smallness

reveals that the MPNP system is a singularly perturbed differential problem,

thus adequate to be solved with the method of matched asymptotic expansions

(MAE) (Verhulst, 2005). Finally, the nondimensional conditions read:

ψ(±1, t) = 0 , JY (±1, t) = 0 , ψ(Y, 0) = 0 , C(Y, 0) = 1 ,

along with DY (1, t) = DY (−1, t) . (4.56)

Matched asymptotic expansions

The MAE method can capture the main feature of the electrochemical response,

consisting of large gradients of counterion concentration and electric potential

in boundary layers, at the membrane-electrode interface regions, of size on the

order of δ (Porfiri, 2008).

Hence, in the following, we separately solve Eqs. (4.54) in the membrane

bulk, thus obtaining the so-called outer solution, and in the boundary layers,

thus obtaining the so-called inner solutions. Then, these solutions are combined,

through matching conditions, in the composite solution, which is valid in the

whole membrane domain. This approached is sketched in Fig. 4.2.
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Outer solution By considering regular asymptotic expansions of C and ψ

with respect to δ, the outer solution at the leading order reads

Co = 1 , (4.57a)

ψo = lnJ +A1

(
Y +

η

ϕ′m
arctan

J

η

)
+A2 , (4.57b)

where

η =
√

1− cos2(ϕ− ϕm) (4.58)

and A1 and A2 are unknown functions of time.

Inner solutions To obtain the solution in the boundary layers, we introduce

the local spatial variables ξ+ and ξ−, defined as

ξ± =
1∓ Y
δ

, (4.59)

where the superscripts + and − refer to the anode (Y → 1) and to the cathode

(Y → −1), respectively. We then rewrite the MPNP system (4.54) in terms of

ξ± and, by considering the leading order of the regular asymptotic expansions

of C and ψ with respect to δ, we obtain

− 1 + (ϕ′m)2 ∓ 2ϕ′m cos(ϕ− ϕm)

J±
∂2ψ±

∂(ξ±)2
= C± − 1 , (4.60a)

∂C±

∂ξ±
+ C±

∂ψ±

∂ξ±
= 0 , (4.60b)

where

J± = cos(ϕ− ϕm)∓ ϕ′m . (4.61)

We note that Eq. (4.60b) makes use of the ion-blocking condition in Eq. (4.56).

To solve system (4.60), we introduce the auxiliary functions y±, such that

C± = exp
(
y±
)
. (4.62)

By substituting Eq. (4.62) in Eq. (4.60b), we obtain

ψ± = −y± +A±3 , (4.63)

where A±3 are unknown functions of time. Combination of Eqs. (4.62) and (4.63)

with Eq. (4.60a) leads to the following second-order nonlinear ODEs in the
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unknown functions y±:

∂2y±

∂(ξ±)2
=

J±

1 + (ϕ′m)2 ∓ 2ϕ′m cos(ϕ− ϕm)

[
exp

(
y±
)
− 1
]
, (4.64)

whose solution is provided, for the interested reader, at the end of this section.

Composite solution The matching conditions at the bulk-boundary layer

interfaces for C and ψ require that (Porfiri, 2008)

lim
ξ±→∞

C± = lim
Y→±1

Co = 1 , (4.65a)

lim
ξ±→∞

ψ± = lim
Y→±1

ψo = ln J± +A1

(
±1 +

η

ϕ′m
arctan

J±

η

)
+A2 , (4.65b)

whereas the continuity of the flux along the membrane thickness implies

d

dt

[
∓1 + (ϕ′m)2 ∓ 2ϕ′m cos(ϕ− ϕm)

J±
∂ψ±

∂ξ±

∣∣∣∣
ξ±=0

]
︸ ︷︷ ︸

Q

= A1 , (4.66)

where, on the basis of Eq. (4.51), we have identified the nondimensional stored

charge Q, such that A1 should be interpreted as the nondimensional electric

current I flowing through the IPMC (see Eq. (4.52)).

We obtain the composite solution, valid over the whole membrane domain,

by summing up the solutions in the bulk (Eqs. (4.57a) and (4.57b)) with those

in the boundary layers (Eqs. (4.62) and (4.63)) and subtracting the “overlapping

values” (given by Eqs. (4.65a) and (4.65b)):

C = −1 + exp
(
y+
)

+ exp
(
y−
)
, (4.67a)

ψ = ln J +A1

(
Y +

η

ϕ′m
arctan

J

η

)
−A2 − ln

(
J+J−

)
−A1

η

ϕ′m

(
arctan

J+

η
+ arctan

J−

η

)
− y+ +A+

3 − y− +A−3 . (4.67b)

In the following, we provide details on the determination of the functions A1(t),

A2(t), A±3 (t), and y±(ξ±, t). We note that, in the composite solution, y± have

to be written as functions of Y through Eq. (4.59). Finally, we remark that in

the absence of shear deformation (η = 0) the composite solution reduces to that

obtained by Porfiri et al. (2017).
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Determination of the composite solution† In order to determine the com-

posite solution (4.67), we start by rewriting the first and fifth conditions in Eq. (4.56)

in terms of ψ±:

ψ±(0, t) = 0 , (4.68a)

− 1 + (ϕ′m)2 − 2ϕ′m cos(ϕ− ϕm)

J+

∂ψ+

∂ξ+

∣∣∣∣
ξ+=0

=
1 + (ϕ′m)2 + 2ϕ′m cos(ϕ− ϕm)

J−
∂ψ−

∂ξ−

∣∣∣∣
ξ−=0

. (4.68b)

Then, by substituting the inner solutions (4.62) and (4.63) in Eqs. (4.68a) and (4.68b)

and in the matching conditions (4.65a), (4.65b), and (4.66), we obtain, respectively:

y±
∣∣
ξ±=0

= A±3 , (4.69a)

− 1 + (ϕ′m)2 − 2ϕ′m cos(ϕ− ϕm)

J+

∂y+

∂ξ+

∣∣∣∣
ξ+=0

=
1 + (ϕ′m)2 + 2ϕ′m cos(ϕ− ϕm)

J−
∂y−

∂ξ−

∣∣∣∣
ξ−=0

, (4.69b)

lim
ξ±→∞

y± = 0 , (4.69c)

A±3 = ln J± +A1

(
±1 +

η

ϕ′m
arctan

J±

η

)
+A2 , (4.69d)

d

dt

[
1 + (ϕ′m)2 ∓ 2ϕ′m cos(ϕ− ϕm)

J±
∂y±

∂ξ±

∣∣∣∣
ξ±=0

]
= ±A1 . (4.69e)

Combination of Eqs. (4.63), (4.69a), and (4.69c) reveals that A±3 should be interpreted

as the electric potential differences across the boundary layers.

From Eqs. (4.69a) and (4.69d) we derive

y+
∣∣
ξ+=0

− y−
∣∣
ξ−=0

+ ln
J−

J+
−A1

[
2 +

η

ϕ′m

(
arctan

J+

η
− arctan

J−

η

)]
= 0 . (4.70)

Moreover, by following the phase-plane analysis of Porfiri (2008, 2009) in the plane

(y±, ∂y±/∂ξ±), we can replace conditions (4.69c), which hold for ξ± → ∞, with the

following ones at ξ± = 0:

1

2

(
∂y±

∂ξ±

∣∣∣∣
ξ±=0

)2

+
J±

1 + (ϕ′m)2 ∓ 2ϕ′m cos(ϕ− ϕm)

[
y±
∣∣
ξ±=0

−exp
(
y±
∣∣
ξ±=0

)
+1
]

= 0 ,

(4.71)

as long as the following inequalities are satisfied:

y+ ∂y
+

∂ξ+

∣∣∣∣
ξ+=0

≤ 0 , y−
∂y−

∂ξ−

∣∣∣∣
ξ−=0

≤ 0 . (4.72)

Now, we have to solve a Cauchy problem, defined by Eqs. (4.64) along with the
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“initial” conditions (4.69b), (4.70), and (4.71). Since Eq. (4.70) is characterized by the

presence of the unknown function of time A1, this Cauchy problem must be combined

with at least one of the two ODEs in t in Eq. (4.69e). The resulting coupled system

is solved numerically, by approximating the time derivatives in Eq. (4.69e) with the

following backward finite differences:

d

dt

[
∂y±(ξ±, t)

∂ξ±

∣∣∣∣
ξ±=0

]
≈
[
∂y±(ξ±, t)

∂ξ±

∣∣∣∣
ξ±=0

− ∂y±(ξ±, t−∆t)

∂ξ±

∣∣∣∣
ξ±=0

]
1

∆t
, (4.73)

where ∆t is a suitably small time step and we have accounted for the fact that

deformation is independent of diffusion time in our sensing analysis.

At each time t, Eqs. (4.69b), (4.70), (4.71), and the time-discretized (4.69e) consti-

tute a nonlinear algebraic system, which can be numerically solved for y±(ξ±, t)|ξ±=0,

∂y±(ξ±, t)/∂ξ±|ξ±=0, and A1(t). From these values, Eqs. (4.64) are numerically inte-

grated to determine the functions y±(ξ±) at the selected time t. Through Eq. (4.62),

we obtain C±. Next, we use Eq. (4.69a) to compute A±3 , to be substituted in Eq.

(4.63) to find ψ±. Then, we use Eq. (4.69d) to determine A2 and, consequently, ψo

through Eq. (4.57b). This completes the determination of the composite solution

(4.67).

4.5 Model extension to account for counterion

size†

If one needs to account for counterion size, the free energy density due to mixing can

be reformulated as follows (Cha and Porfiri, 2014):

Wmix(F, C) = RT C0(1− 2χ)J

χ(1− χ)

[
χC

C0J
ln

χC

C0J
− χ

J
ln
χ

J

+

(
1− χC

C0J
− χ

J

)
ln

(
1− χC

C0J
− χ

J

)
−
(

1− 2χ

J

)
ln

(
1− 2χ

J

)]
, (4.74)

where χ ∈ (0, 1) is the steric coefficient, defined as the initial counterion volume fraction,

mainly needed to control the counterion packing at the membrane-cathode interface

(Kilic et al., 2007a,b; Porfiri, 2009; Porfiri et al., 2018). Specifically, for the definiteness

of Eq. (4.74), it must be

C <
C0

χ
(J − χ) . (4.75)

Accordingly, in the following, we rewrite the main equations of our theory.
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The internal actions in Eqs. (4.28c) and (4.28g) become

Mmix = Mϕm
mixϕ

′
m+M0

mix with Mϕm
mix =

∫ H

−H
− C0(C − C0)RT

(−1 + χ)(−C0 + χC + χC0)
Y 2 dY ,

M0
mix =

∫ H

−H

C0RT (−1 + 2χ)

χ(−1 + χ)

[
ln

(
C0 − χC0 − χC

C0

)
− ln(1− 2χ)

]
Y dY , (4.76a)

Vmix = V γmmix(v′ − ϕm)

with V γmmix =

∫ H

−H

C0RT (−1 + 2χ)

χ(−1 + χ)

[
ln(1− 2χ)− ln

(
C0 − χC − χC0

C0

)]
dY .

(4.76b)

The modified Nernst-Planck Eq. (4.49b) is rewritten as

∂C

∂t
= D

∂

∂Y

{
1 + (ϕ′m)2Y 2 − 2ϕ′mY cos(ϕ− ϕm)

J2

×
[

1− 2χ

1− χ C0
Cϕ′m + (J − χ)(∂C/∂Y )

−χC + C0(J − χ)
+

F

RT C
∂ψ

∂Y

]}
, (4.77)

corresponding to the following composite solution for C and ψ, replacing Eqs. (4.67):

C = −1 +

exp

(
1− χ
1− 2χ

y+

)
1− χ

J+ − χ +
χ

J+ − χ exp

(
1− χ
1− 2χ

y+

)

+

exp

(
1− χ
1− 2χ

y−
)

1− χ

J− − χ +
χ

J− − χ exp

(
1− χ
1− 2χ

y−
) , (4.78a)

ψ =
1− 2χ

1− χ ln(J − 2χ) +A1

(
Y +

η

ϕ′m
arctan

J

η

)
−A2 − y+ +A+

3 − y− +A−3

− 1− 2χ

1− χ ln
[
(J+ − 2χ)(J− − 2χ)

]
−A1

η

ϕ′m

(
arctan

J+

η
+ arctan

J−

η

)
. (4.78b)

We finally obtain the functions y±, A1, A2, and A±3 by analogy with the case neglecting

steric effects, as illustrated before.

4.6 Two-dimensional finite element modeling

Here, we describe how to implement in COMSOL Multiphysics R© a two-dimensional

FE continuum model for the benchmark here of concern, depicted in Fig. 4.1. In

particular, the General Form PDE interface allows the direct implementation of

the governing equations; the software then automatically builds their discretized
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weak form by accounting for the chosen FE interpolation for the unknown fields.

We model the IPMC as a plane strain continuum. Moreover, we amplify

the elastic modulus along the through-the-thickness direction with a parameter

κ, suitably larger than one,1 so as to abate the corresponding direct strain

component. This allows us to obtain a strain field comparable to that predicted

by the structural model. While for moderate strains this has no effect on the

overall displacement field, it is important for electro-diffusion, which is strongly

dependent on the volume ratio.

Equilibrium (4.2a) holds in the whole IPMC domain, in which we apply a

spatially uniform body force of magnitude T/[2(H + h)], acting along Y , to

model the transverse load. We impose u = 0 at the fully clamped end, while its

complementary boundary is traction-free.

The Gauss law (4.2b) and the counterion mass balance (4.2c) are relevant in

the membrane domain only. At the membrane-electrode interfaces we impose

both the short circuit condition ψ = 0 and the ion-blocking condition J · B̂ = 0.

Moreover, at the membrane sides X = 0 and X = L (with |Y | ≤ H) we enforce

D · Â = 0 and J · Â = 0, to avoid pile-up of free charge in the absence of

electrodes and prevent counterions from leaving the membrane, respectively.

We discretize the geometry through a mesh of 9-noded biquadratic isopara-

metric FEs having square shape and side equal to h/2, except at the membrane

regions close to the electrodes, where, by referring to the COMSOL Multi-

physics R© terminology, we introduce ten Boundary Layers, which consist of ten

rows of FEs becoming smaller toward the interfaces. Such a decrease in size is

governed by a stretching factor between two consecutive FEs equal to 1.2, with

the smallest FEs having thickness equal to H/104, corresponding to an accept-

able aspect ratio. The time-discretization relies on Backward Differentiation

Formula.

We perform two distinct FE analyses. First, to validate the structural model,

we linearize the nominal stress with respect to the kinematics and adopt the

PPA; the results are documented in Sec. 4.7.2. Second, we remove the PPA

within a fully nonlinear kinematics; the results are presented in Sec. 4.7.3.

In the geometrically nonlinear analysis, in order to reach convergence, instead

of the General Form PDE interface, we resort to the Solid Mechanics interface

to solve the purely mechanical problem and we also enable the option Nearly

incompressible material, given the closeness of the membrane Poisson ratio

to 0.5 (see Sec. 4.7.1). Then, we employ the obtained deformation field to

inform the electrochemical problem, still implemented within the General Form

PDE interface. We remark that this solution procedure causes the loss of the

1 More specifically, we use a linear elastic orthotropic material, with EY = κEX and
νXY = νYX/κ.



4.7 Results and discussion 59

bidirectional coupling in the model, that is, the mechanics is assumed to be

unaffected by the electrochemistry, as in the derivation of the semi-analytical

solution. This notwithstanding, once ψ and C are computed, in order to be sure

that the obtained solution satisfies the fully coupled original problem, we have

checked that the deformation field does not significantly vary if we solve the

mechanical problem by also accounting for the Maxwell and osmotic stresses,

which are included through the option External stress.

4.7 Results and discussion

We present and discuss the results for two values of the membrane Young

modulus, corresponding to either dry or saturated membrane. This difference

influences the relevance of the shear deformation.

Moreover, for what concerns the validation of the semi-analytical solution

presented in Secs. 4.3 and 4.4, we not only compare it with the numerical

solution obtained through the FE model introduced in Sec. 4.6, but we also

consider simpler semi-analytical solutions based on the Euler-Bernoulli (EB) and

first order shear deformation (FOSD) theories. In the latter, the shearing rigidity

is set as in Bardella (2008), that is, by evaluating it on the basis of the energy

due to the shear stresses estimated by the classical Jourawski (1856) approach.

4.7.1 Benchmark data

We set the following geometrical parameters:

h = 20µm , H = 100µm , L = 10 mm , (4.79)

corresponding to a slenderness L/[2(H + h)] ≈ 40. The load magnitude is

T = 0.20 N/mm2 . (4.80)

We adopt the mechanical properties of pure platinum for the electrodes (Wei

and Su, 2012):

Ee = 168 GPa , νe = 0.38 , (4.81)

whereas, by referring to a Nafion membrane, we use (Satterfield et al., 2006; Wei

and Su, 2012)

Edry
m = 275 MPa , Esat

m = 50 MPa , νm = 0.487 , (4.82)

in which we account for the fact that the membrane Young modulus Em may be

substantially different depending on the hydration level (Satterfield et al., 2006;
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Figure 4.3: Transverse displacement v(X) for a dry membrane.

Silberstein and Boyce, 2010; Page et al., 2015). Hence, we consider two extreme

cases: Edry
m under dry condition and Esat

m under saturated condition. Although

more slender IPMC samples are often used, and lower elastic moduli should be

probably considered for the electrodes because of the manufacturing process

(Kim and Shahinpoor, 2003; Akle et al., 2007), the choices above highlight the

role of shear deformation. The electrochemical parameters are as those adopted

by Porfiri et al. (2017):

T = 300 K , C0 = 1200 mol/m3 , D = 10−11 m2/s , ε = 4.48×10−5 F/m . (4.83)

4.7.2 Validation of the semi-analytical solution

In the following discussion, with reference to the two-dimensional continuum FE

analysis (CONT-FE), by denoting with uX and uY the displacement components

along the X and Y directions, the transverse displacement is evaluated as

v(X) = uY (X, 0), the membrane curvature as ϕ′m(X) = ∂2uX/(∂X∂Y )|Y=0,

and the membrane shear strain as γm(X) = (∂uX/∂Y + ∂uY /∂X)|Y=0.

As representative electrochemical parameter to evaluate the IPMC short-

circuit sensing capabilities, we use the total charge, defined as the charge (per

unit depth) stored along the whole electrodes, thus reading Qtot =
∫ L

0
Q(X) dX,

with Q(X) given by Eq. (4.51).

The case of dry membrane

Figs. 4.3, 4.4, and 4.5 display the transverse displacement, membrane curva-

ture, and membrane shear strain along the IPMC axis. About the transverse

displacement, both the ZW and FOSD models are in perfect agreement with
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Figure 4.4: Curvature ϕ′m(X) for a dry membrane.
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Figure 4.5: Shear strain γm(X) = v′(X)− ϕm(X) for a dry membrane.
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Figure 4.6: Counterion concentration C(Y ) at X = 0.05L for a dry membrane.

the CONT-FE analysis, while the EB model is sensibly stiffer. Hence, shear

deformation should not be neglected.

The need to employ the ZW model becomes apparent when looking at the

deformation. In comparison with the CONT-FE results, this model is the only

one accurately predicting the curvature at the clamped end region and the shear

strain throughout the IPMC length. We underline that the dramatic decrease

of curvature and shear strain at the clamped end region is typical of sandwich

structures (Bardella and Mattei, 2014).

We remark that the CONT-FE solution is here obtained by considering the

fully coupled electrochemo-mechanical problem, whereas the semi-analytical

solution for the ZW-MPNP model is found by setting to zero the Maxwell and

osmotic stresses. Hence, the agreement between the obtained results confirms

the findings of Volpini et al. (2017), establishing the irrelevance of Maxwell and

osmotic stresses in IPMC sensing.

We now focus on the electrochemical steady state behavior. We first consider

the cross-section at X = 0.05L, in which ϕ′m and γm approximately assume

their maximum values. With reference to the ZW-MPNP model, the composite

solution (4.67) for C and ψ is shown in Figs. 4.6 and 4.7, and compared with

the CONT-FE results. These figures, beside the excellent agreement of the

considered models, document the well-known relevance of boundary layers in

IPMC electrochemistry (Porfiri, 2008).

Figs. 4.8 and 4.9 display C(X,Y ) and ψ(X,Y ) as predicted by the ZW-

MPNP model in the boundary layer regions, thus highlighting their peaks. These

contours suggest that the PPA is reasonable as the gradients of C and ψ along

Y are larger of about two orders of magnitude than those along X.
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Figure 4.7: Electric potential ψ(Y ) at X = 0.05L for a dry membrane.
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Figure 4.8: Counterion concentration C(X,Y ) at the membrane-cathode in-
terface (left) and at the membrane-anode interface (right) for a dry membrane.
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Figure 4.9: Electric potential ψ(X,Y ) at the membrane-cathode interface (left)
and at the membrane-anode interface (right) for a dry membrane.
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Figure 4.10: Stored charge Q(X) for a dry membrane.

The internal actions due to electrochemistry are computed according to

Eqs. (4.28b), (4.28c), (4.28f), and (4.28g). The results, here omitted for brevity,

indicate that they are smaller than the mechanical ones of several orders of

magnitude, such that they are totally negligible, as already inferred from the

foregoing perfect agreement between the ZW-MPNP and CONT-FE solutions.

We note that this is not the case in actuation, where instead the interplay between

Maxwell and osmotic stresses has a crucial role on the resulting deformation

(Porfiri et al., 2017, 2018).

Fig. 4.10 shows the stored charge (per unit nominal surface), computed from

Eq. (4.51). The charge profiles follow those of the curvature, which is the main

driving factor of IPMC sensing under flexure. Hence, both the ZW-MPNP and

CONT-FE solutions establish a strong decrease of the charge in the clamped end

region, differently from the models relying on the Bernoulli-Navier kinematics.

The total charge is Qtot ≈ 0.41µC/mm for the ZW-MPNP solution, negligibly

larger than the FE prediction Qtot ≈ 0.39µC/mm. Nevertheless, in the present

case of dry membrane, where shear is not so relevant, the total charge is accurately

evaluated also by the EB-MPNP and FOSD-MPNP models. Hence, in this case,

even the use of the simplest structural model is adequate to estimate the global

IPMC sensing capability.

The case of saturated membrane

In Figs. 4.11, 4.12, and 4.13 we present the results for the relevant kinematic

quantities in the case of saturated membrane. Also in this case, the ZW and

CONT-FE models predict almost exactly the same response.

The transverse displacement v(X) predicted by the EB model does not

appreciably differ from that for the dry membrane, given the small difference
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Figure 4.11: Transverse displacement v(X) for a saturated membrane.
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Figure 4.12: Curvature ϕ′m(X) for a saturated membrane.
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Figure 4.13: Shear strain γm(X) = v′(X)−ϕm(X) for a saturated membrane.
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Figure 4.14: Stored charge Q(X) for a saturated membrane.

in bending stiffness following the corresponding change in Em. Instead, such a

change significantly influences the shearing rigidity entering the FOSD model,

that now predicts a much larger v(X). This displacement, however, is not

anymore superposed to the ZW and CONT-FE predictions.

In X ∈ [≈ 0.1L,L], the ZW solution exhibits a slightly larger curvature

compared to the other structural models, whereas at the clamped end region

there is a remarkable difference even involving the curvature sign. Of course,

the most relevant difference between dry and saturated conditions concerns the

shear strain, which, in the latter case, increases of about five times in its peak

value.

The charge profiles predicted by the different structural models are now

clearly distinct, as illustrated in Fig. 4.14. Despite very relevant local differences,

the total charge Qtot is approximately the same according to the FOSD-MPNP

and ZW-MPNP models, while the EB-MPNP model underestimates it by about

15%.

Noticeably, the ZW-MPNP and CONT-FE responses are in qualitative

agreement, both predicting the increase of the electrochemical response due to

shear and its dramatic decrease at the clamped end. However, the ZW-MPNP

model seems to overestimate the nonlinear amplification of the counterion flux

due to shear.

4.7.3 Results within nonlinear kinematics

and two-dimensional electrochemistry

In the following, we consider two types of geometrically nonlinear FE analyses:

in the first one, referred to as 1D-NONLIN, we maintain the PPA, whereas in

the second one, referred to as 2D-NONLIN, we remove the PPA. Hence, in this
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subsection, the labels 1D and 2D refer to the electrochemistry. We compare

these analyses with the foregoing CONT-FE analysis, assuming linear geometry

and including the PPA, which, consistently with the terminology employed in

this subsection, is henceforth referred to as 1D-LIN.

The results about kinematics, undisplayed for brevity, show that the trans-

verse displacement predicted in the nonlinear case is smaller than that in the

linear case, according to the smaller bending moment at the clamped end re-

gion. Moreover, the Green-Lagrange strain field within the finite deformation

framework results to be totally similar to the small strain field evaluated with

linearized kinematics. This suggests that the displacements an IPMC undergoes

are large, whereas the deformations are relatively small.

In presenting the results, we focus on the volume ratio and its gradient com-

ponents, entering the following expressions for the counterion flux components,

obtained by combining relations (4.9) and (4.13c) and by neglecting the normal

through-the-thickness strain EY Y :

JX = −D
J2

[(
−C
J

∂J

∂X
+
∂C

∂X
+

F

RT C
∂ψ

∂X

)

− 2EXY
(
−C
J

∂J

∂Y
+
∂C

∂Y
+

F

RT C
∂ψ

∂Y

)]
, (4.84a)

JY = −D
J2

[
−2EXY

(
−C
J

∂J

∂X
+
∂C

∂X
+

F

RT C
∂ψ

∂X

)

+ (2EXX + 1)

(
−C
J

∂J

∂Y
+
∂C

∂Y
+

F

RT C
∂ψ

∂Y

)]
. (4.84b)

We notice that the shear strain EXY modulates two main contributions to the flux,

besides entering the volume ratio J . Next, we discuss the results by considering,

again, the cases of dry and saturated membrane.

The case of dry membrane

In Figs. 4.15, 4.16, and 4.17 we display the volume ratio and its gradient

components for a dry membrane, in the geometrically linear and nonlinear cases.

Let us focus, first, on the nonlinear case. Because of the local volume

reduction due to shear deformation, already evident in Eq. (4.19) for the ZW

model, J is asymmetric with respect to the mid-axis. Since the counterion flux

is toward the cathode, ∂J/∂Y < 0 everywhere. Noticeably, ∂J/∂X is almost

everywhere negligible, with the exception of a narrow region in proximity of the
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Figure 4.15: Volume ratio J(X,Y ) for a dry membrane, in the linear (left)
and nonlinear (right) cases. It should be noted that, for the sake of clarity, here
we use different contour scales for the two cases.
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Figure 4.16: Y -component of the gradient of the volume ratio, ∂J(X,Y )/∂Y ,
for a dry membrane, in the linear (left) and nonlinear (right) cases.
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Figure 4.17: X-component of the gradient of the volume ratio, ∂J(X,Y )/∂X,
for a dry membrane, in the linear (left) and nonlinear (right) cases.
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Figure 4.18: Counterion concentration C(X) at the cathode (Y = −H) for a
dry membrane.

clamped end. This suggests the validity of the PPA, as further discussed in the

following.

We remark that in the linear framework, an analysis accounting for ∂J/∂X

and based on the nonlinear expression for J would lead to partly incorrect

expectations on the electro-diffusion. This is demonstrated in the left contour

of Fig. 4.17, clearly indicating a counterion flux along the X direction, which

actually does not occur. On the contrary, in such an analysis, ∂J/∂Y turns out to

be numerically very close to its counterpart computed within finite deformations,

as displayed in Fig. 4.16. This is explained by the fact that the shear deformation

does not affect significantly ∂J/∂Y , as is clear in Eq. (4.19) for the ZW model.

Although the above inconsistency on ∂J/∂X in the case of linear kinematics

would be overcome by the use of the linear expression for J , we do not consider

this possibility in our investigation, as it would hide the role played by the shear

deformation.

In Figs. 4.18, 4.19, and 4.20 we compare the results of the 1D-LIN, 1D-

NONLIN, and 2D-NONLIN models, at the steady state, in terms of counterion

concentration at the cathode, counterion concentration at the anode, and stored

charge.

The 1D models, incorporating the PPA, predict approximately the same

response. This is consistent with the fact that the geometric linearization does

not lead to severe inaccuracies in the evaluation of ∂J/∂Y , as previously discussed

with reference to Fig. 4.16.

Although the 2D-NONLIN response exhibits some differences, it is overall

very much similar to the responses predicted by the 1D models, thus confirming
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Figure 4.19: Counterion concentration C(X) at the anode (Y = H) for a dry
membrane.
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Figure 4.21: Volume ratio J(X,Y ) for a saturated membrane, in the linear
(left) and nonlinear (right) cases.
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Figure 4.22: Y -component of the gradient of the volume ratio, ∂J(X,Y )/∂Y ,
for a saturated membrane, in the linear (left) and nonlinear (right) cases.

the appropriateness of the PPA. Delving into the details, the 2D-NONLIN

analysis estimates a slightly reduced positive peak of counterion concentration

at the cathode, whereas, correspondingly, the counterion depletion at the anode

is slightly increased.

Since in the 2D-NONLIN case Eq. (4.51) no longer holds, in Fig. 4.20 we

plot Q(X) at both the cathode and the anode. However, we note that, given

the adopted boundary conditions, it can be easily proved that the total charge

Qtot must be the same at the two electrodes.

We can conclude that, if the shear deformation is not too large, the geometric

nonlinearity and the two-dimensional electrochemical effects do not appreciably

influence the sensing behavior, such that the proposed semi-analytical solution

constitutes an effective predictive tool.

The case of saturated membrane

The results herein discussed are referred to a mechanical load T = 0.10 N/mm2,

the half of that utilized in the rest of this investigation. Such a limitation is due

to convergence issues in COMSOL Multiphysics R©.

In Figs. 4.21, 4.22, and 4.23 we compare J , ∂J/∂Y , and ∂J/∂X for linear

and nonlinear kinematics. Considerations similar to those for the case of dry

membrane hold; however, in this case, the shear deformation is so large as to

overcome the effect of curvature, such that the membrane undergoes shrinkage

almost everywhere.

Figs. 4.24, 4.25, and 4.26 summarize the relevant electrochemical results.

The comparison of the 1D responses demonstrates that the nonlinear model
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Figure 4.23: X-component of the gradient of the volume ratio, ∂J(X,Y )/∂X,
for a saturated membrane, in the linear (left) and nonlinear (right) cases.
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Figure 4.24: Counterion concentration C(X) at the cathode (Y = −H) for a
saturated membrane.
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Figure 4.25: Counterion concentration C(X) at the anode (Y = H) for a
saturated membrane.
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Figure 4.26: Stored charge Q(X) for a saturated membrane.

predicts a larger counterion transport toward the cathode, which determines a

larger charge accumulation. To explain this behavior, we simplify Eq. (4.84b)

by including the PPA, thus obtaining

JY = −D
J2

(2EXX + 1)

[
−C
J

∂J

∂Y
+
∂C

∂Y
+

F

RT C
∂ψ

∂Y

]
. (4.85)

We further consider the instant t = 0+ just after the load application, when

electroneutrality approximately holds, such that

JY ≈
DC0

J3
(2EXX + 1)

∂J

∂Y
. (4.86)

From this relation we deduce that allowing for nonlinear kinematics leads to

an amplified flux because, as shown in Figs. 4.21 and 4.22, J and |∂J/∂Y |
are, respectively, smaller and larger than the corresponding fields predicted in

the linear case. It is worth noting that this enhanced electrochemical response,

with respect to the 1D-LIN model, is also predicted by the ZW-MPNP model,

although this structural theory employs linear kinematics (as shown in Fig. 4.14,

where the results for the 1D-LIN model are labelled CONT-FE).

As for the 2D-NONLIN framework, we focus on the results unaffected by

the peculiar fields observed at the clamped region. These results document a

longitudinal flux toward the free end, as demonstrated by the shift of the peaks

of C(X,±H) in Figs. 4.24 and 4.25. This can be explained by considering Eq.

(4.84a) at t = 0+ and neglecting ∂J/∂X in comparison to ∂J/∂Y (as legitimated

by the right contours of Figs. 4.22 and 4.23), which leads to

JX ≈ −2
DC0

J3
EXY

∂J

∂Y
. (4.87)
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Since ∂J/∂Y < 0, the JX is toward the free end. We note that in the case of

saturated membrane the shear strain EXY modulating Eq. (4.87) is large enough

to provide a non-negligible contribution, contrary to the case of dry membrane.

Finally, while the charge Q close to the clamped end strongly depends on

whether the PPA is adopted or not, the total charge Qtot turns out to be basically

independent of the employed model.

4.8 Concluding remarks

In this chapter, we have studied the short-circuit sensing of a cantilever IPMC

subject to a uniform time-independent transverse load, with particular focus on

the IPMC laminate structure, constituted by a soft ionic electroactive membrane

sandwiched between two stiffer metal electrodes.

To this purpose, we have plugged the Krajcinovic (1972) structural theory for

sandwiches, relying on a zigzag warping to describe the cross-section kinematics,

into the electrochemo-mechanical framework of Cha and Porfiri (2014) for IPMCs.

This has allowed us to develop a structural model able to accurately account for

shear deformation in IPMCs under flexure.

We have obtained three coupled equilibrium equations for the laminate

IPMC in terms of structural variables, and analytically solved them in the case

of linearized kinematics. We remark that, in our theory, the osmotic and Maxwell

stresses in the membrane contribute to both the bending moment and the shear

force. Because of these contributions, it turns out that the proposed structural

model predicts warping even in actuation, for a sufficiently large applied voltage

across the electrodes.

Then, we have established a modified Poisson-Nernst-Planck (MPNP) system

of equations, modulated by the membrane curvature and shear strain, to describe

the time evolution of the electrochemical field variables, that is, the electric

potential ψ and the concentration of mobile counterions C. Under the parallel

plate assumption (PPA), we have obtained a semi-analytical solution of this

MPNP system by applying the method of matched asymptotic expansions

(Verhulst, 2005), which is particularly suited to describe the large gradients

experienced by ψ and C in the thin membrane regions close to the electrodes,

referred to as boundary layers and characterizing the IPMC electrochemistry

(Porfiri, 2008; Cha and Porfiri, 2014).

By numerical inspection of the obtained system of governing equations,

we have confirmed previous findings on IPMC compression sensing (Volpini

et al., 2017), establishing that, in sensing, Maxwell and osmotic stresses may be

neglected in solving the equilibrium equations. This allows us to first focus on

the mechanical balance and, then, to solve the MPNP system for ψ and C as



4.8 Concluding remarks 75

functions of the membrane curvature and shear strain.

We have validated the semi-analytical solution by systematically compar-

ing its results with those of two-dimensional continuum finite element (FE)

analyses of the fully coupled electrochemo-mechanical problem, implemented in

COMSOL Multiphysics R©. The adopted structural theory allows one to capture

the drop of the curvature and shear strain at the IPMC clamped end, which

cannot be predicted by simpler structural models relying on the Bernoulli-Navier

assumption of planar cross-sections. About electrochemistry, the match between

semi-analytical and FE results is very good if we set the membrane elastic

moduli in such a way as to hamper the through-the-thickness direct deformation

component, unaccounted for in the structural theory.

Finally, we have removed the PPA from the FE implementation, with the

purpose of shedding light on the influence of the counterion flux component

along the IPMC axis, typically neglected in literature. Although in these FE

analyses we do not solve the fully coupled electrochemo-mechanical problem, we

resort to nonlinear kinematics to evaluate the deformation field to be plugged in

the MPNP system. Our results show that the global sensing response is almost

coincident to that relying on the PPA, although a conspicuous shear deformation

may partially alter the counterion redistribution within the membrane.

In general, we have proved that the shear deformation enhances the IPMC

electrochemical response. Indeed, it nonlinearly affects the counterion flux so

that more counterions diffuse toward the cathode, with respect to the case

neglecting shear deformation. Correspondingly, the electric field and the stored

electric charge are larger. Though this favorable effect may be negligible in

ordinary IPMC samples, given their slenderness, it may become important in

applications involving shorter IPMCs with stiffer electrodes (Lee et al., 2006;

Akle et al., 2011; Abdulsadda and Tan, 2012).

We note that the foregoing conclusion on the sensing enhancement does

not apply if the mechanical action externally applied to the IPMC consists

of a displacement instead of a force. In fact, in this case, accounting for

shear deformation results in a smaller curvature, overall leading to a weaker

electrochemical response.

Future investigation should focus on further developing the structural model

by also taking into account the through-the-thickness direct deformation of the

membrane EY Y , which is typically disregarded in structural theories. Except for

sandwich panels with very soft core and specific boundary conditions (Frostig

et al., 1992; Mattei and Bardella, 2016; Panteghini and Bardella, 2017), this

assumption is adequate in purely mechanical problems. However, this is question-

able in IPMCs, in which, even if considering EY Y leaves the displacement field

substantially unaltered, it actually may have a relevant effect on the gradient
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of the volumetric deformation, which triggers IPMC sensing. In this regard,

we observe that recent endeavors on IPMC actuation, also employing the Cha

and Porfiri (2014) theory, have addressed the importance of accounting for the

asymmetric EY Y localization in the boundary layers established by the Maxwell

and osmotic stresses, whose quantification requires a reliable estimate of the

membrane Poisson ratio (Boldini and Porfiri, 2020; Boldini et al., 2020).



Chapter 5

A comprehensive

electrochemo-

poromechanical theory for

actuation and sensing of

ionic polymer metal

composites

This chapter is adapted from “Leronni and Bardella (2021), Modeling actuation

and sensing in ionic polymer metal composites by electrochemo-poromechanics,

Journal of the Mechanics and Physics of Solids, 148:104292”.

5.1 Introduction

Like most theories in IPMC literature, the Cha and Porfiri (2014) theory dis-

regards the solvent transport within the polymeric membrane, assuming that

its electroactive response may be established by accounting for the counterion

motion only (Farinholt and Leo, 2004; Branco and Dente, 2006; Chen et al., 2007;

Pugal et al., 2011; Nardinocchi et al., 2011). However, a few works highlight the

importance of modeling the transport of both solvent and counterions. These

include (i) the contributions of Zhu and coworkers on actuation (Zhu et al., 2013)

and sensing (Zhu et al., 2016), which are based on a coupled transport model

77
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of water and ions previously proposed by the same group (Zhu et al., 2011)

and on the micromechanics cluster model of Nemat-Nasser and Li (2000) and

Nemat-Nasser (2002), and (ii) the contribution of Schicker and Wallmersperger

(2013), which relies on the electrochemo-mechanical model of Wallmersperger

et al. (2007) and, again, on the cluster model of Nemat-Nasser and coworkers.

Here, in Sec. 5.2, we develop a continuum theory for IPMCs that combines

relevant features of the Cha and Porfiri (2014) theory, the mixture theory (Bowen,

1980; Ateshian, 2007; Bluhm et al., 2016), and the recently developed theories

for polyelectrolyte gels (Hong et al., 2010; Zhang et al., 2020). Specifically, we

describe the membrane as a mixture of a charged polymer and a saturating

fluid phase consisting of solvent and counterions, all coexisting within each

macroscopic point in our continuum formulation. Moreover, each constituent

is assumed to be intrinsically (that is, at the microscopic scale) incompressible,

such that the volumetric deformation of the membrane only depends on the flow

of the fluid phase. As in Leronni and Bardella (2019), we also account for the

purely mechanical behavior of the electrode layers, modeled as perfect electric

conductors impermeable to the fluid phase.

The model relies on four balance equations, written with respect to the

reference configuration, which is undeformed and electroneutral: the overall

momentum balance, two individual mass balances for solvent and counteri-

ons, and the Gauss law. The free energy density is assumed to consist of three

contributions, namely accounting for the stretching of the polymer chains (macro-

scopically resulting in compressible hyperelasticity of the membrane), the mixing

of solvent and counterions, and the dielectric polarization of the membrane. The

dissipation is due to the fluxes of solvent and counterions, wherein, noticeably,

we also account for their cross-diffusion, whereby the flux of each species is

governed by the (electro)chemical potential gradients of both species (Vanag

and Epstein, 2009; Zhu et al., 2011; Zhang et al., 2020).

Aiming at providing the essential multiphysical framework, including solvent

transport, to thoroughly explain IPMC actuation and sensing, we assume that

the fluid phase is a dilute and ideal solution, and we neglect both entropic and

energetic interactions between the fluid phase and the polymeric solid phase.

That is, we assume that the IPMC membrane is an ideal mixture (Ateshian,

2007).

Our effort results in is a theory coupling electrochemistry and poromechan-

ics of IPMCs. Specifically, the electrochemistry describes the distribution of

counterions within the membrane and the related electric potential field; it is

governed by a Poisson-Nernst-Planck system of equations, which ensues from

the counterion mass balance and the Gauss law, and results to be modified,

with respect to its classical version (Porfiri, 2008), by both the presence of the
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convective counterion flux with the underlying solvent and the finite deformation

framework. The poromechanics describes the deformation field of the membrane

by accounting for the solvent flow in the porous network; with respect to classical

poromechanics (Coussy, 2004; MacMinn et al., 2016), both the electro-osmotic

solvent flux and the Maxwell stress enter the governing equations, which rely on

the overall momentum balance and the solvent mass balance.

We note that previous efforts on IPMCs have already resorted to the theo-

ries of mixtures and porous media, although by either limiting the theoretical

development or disregarding relevant phenomena to more easily focus on specific

aspects of the IPMC behavior. For instance, Del Bufalo et al. (2008) and Tixier

and Pouget (2020) have applied their mixture theory-based models to analyze

the steady state actuation of IPMCs regarded as Euler-Bernoulli beams, under

small and large strains, respectively. By taking advantage of the theory of porous

media, Leichsenring et al. (2017) have derived a model neglecting both solvent

flux and membrane deformation to study the influence of the solvent volume

fraction on the IPMC electrochemistry.

Here, in Sec. 5.3, we apply our proposal to a continuum IPMC cantilever

strip subject either to a fixed voltage across the electrodes (actuation problem) or

to a uniformly distributed load under short-circuit condition (sensing problem).

We solve these problems by resorting to the commercial finite element code

COMSOL Multiphysics R©. In actuation, as an original contribution of this work,

we predict and explain the back-relaxation phenomenon (Asaka et al., 1995) in

terms of the interplay between the solvent counter-diffusion (Shahinpoor and

Kim, 2004) and the asymmetric growth of the Maxwell stress near the electrodes

(Porfiri et al., 2017). Dually, in sensing, our theory can anticipate the discharge

under a sustained mechanical stimulus (Farinholt and Leo, 2004) and explain it in

terms of the counterion counter-diffusion. We demonstrate how these behaviors

are influenced by the membrane elastic moduli entering the selected hyperelastic

strain energy density, where volumetric and deviatoric deformations are coupled.

5.2 Modeling framework

We assume that the IPMC membrane consists of a solid phase identifying with

a charged polymer and of a fluid phase represented by an uncharged solvent in

which counterions are immersed. Analogously to mixture theory, all the phases

coexist within each single material point (Ateshian, 2007). By definition, the

deformation gradient, written in terms of the displacement vector u, reads

F = I +∇u (5.1)
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and describes the motion of a material point from the reference (initial) configu-

ration, which is undeformed and electroneutral (Cha and Porfiri, 2014), to the

current configuration.1

Importantly, the solvent always saturates the membrane. This aspect distin-

guishes our model from most on the swelling of polymeric gels, which identify

the reference configuration with the space region occupied by the dry polymer

(Hong et al., 2008; Chester and Anand, 2010).

Throughout the manuscript, we refer to nominal molar concentrations, that

is, molar concentrations per unit reference total volume. Alternatively, in the

literature, molar concentrations are often expressed per unit volume of the fluid

phase only (Ateshian, 2007). Analogously, we define nominal molar fluxes as

molar fluxes per unit reference total area.

5.2.1 Balance equations

The model relies on four balance equations, written in the reference configuration:

the overall momentum balance (that is, the momentum balance for the mixture

as a whole), the mass balances for solvent and counterions, and the Gauss law.

We assume that mechanical equilibrium is rapidly attained in comparison

to the time scale characterizing the fluid phase transport. Hence, we neglect

inertial effects, such that, in the absence of body forces, the overall momentum

balance reduces to

Div P = 0 , (5.2)

where Div is the material divergence operator and P is the nominal stress tensor,

satisfying PFT = FPT.

The mass balance for the solvent reads

Ċw + Div Jw = 0 , (5.3)

in which Cw is the nominal molar concentration of the solvent, the symbol ˙

indicates partial time derivative, and Jw is the nominal molar solvent flux. Since

in IPMC membranes the solvent is typically constituted by water, we adopt the

subscript w to refer to physical quantities associated with the solvent.

Analogously, the mass balance for the counterions is

Ċ + Div J = 0 , (5.4)

with C and J denoting the nominal molar concentration of counterions and the

nominal molar counterion flux, respectively.

1In Eq. (5.1), I is the second order identity tensor and the symbol ∇ denotes the material
gradient operator.
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Figure 5.1: Cantilever IPMC subject to an applied voltage ψ̄ across the
electrodes (non-zero in the actuation problem) and to an imposed nominal
surface load T (non-zero in the sensing problem).

Finally, the Gauss law reads

Div D = F (C − C0) , (5.5)

where D is the nominal electric displacement, F is the Faraday constant, and

C0 is the nominal molar concentration of the anions fixed to the polymer chains.

In Eq. (5.5) we assume that both fixed anions and mobile counterions have unit

valency, which is usually the case for IPMCs (Shahinpoor and Kim, 2001; Porfiri,

2008).

We treat the electrodes as perfect electric conductors impermeable to both

solvent and ions. Therefore, they establish boundary conditions for the electro-

chemical and solvent transport problems in the membrane (see Sec. 5.2.2) and,

of the foregoing balance laws, are subject to Eq. (5.2) only.

5.2.2 Boundary and initial conditions

With reference to Fig. 5.1, the IPMC has reference length L, membrane thickness

2H, and much thinner electrodes of thickness h. We consider the usual case of a

very slender IPMC, such that L� 2(H + h).

About mechanics, in both actuation and sensing problems, we consider a

cantilever configuration with clamped side at the left end, such that

u = 0 at X = 0 . (5.6)

The rest of the boundary is subject to static boundary conditions. Specifically,

the edges at X = L and Y = H + h are always stress-free, while the remaining
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side is either stress-free in the actuation problem or subject to

T = PN = −TN at Y = −H − h (5.7)

in the sensing problem. In Eq. (5.7), T is the nominal traction, N is the outward

unit normal to the reference boundary, and T is the magnitude of the uniformly

distributed nominal load. In the benchmark of Sec. 5.3.4, this load will be

applied in a suitably short time to unveil the effect of the counter-diffusion of

mobile ions.

We assume that the electrodes are impermeable to both solvent and counte-

rions by imposing the zero-flux boundary conditions

Jw ·N = 0 and J ·N = 0 at Y = ±H , (5.8)

where the symbol · denotes the inner product. Given the IPMC slenderness, we

may disregard the edge effects at the IPMC ends, such that, in the simulations,

we extend these boundary conditions to X = 0 and X = L as well.

Finally, we express the boundary conditions for the electrostatics problem as

ψ =
ψ̄

2
at Y = H and ψ = − ψ̄

2
at Y = −H , (5.9)

in which ψ is the electric potential and ψ̄ is the applied voltage drop across the

electrodes. Specifically, ψ̄ 6= 0 in the actuation problem, while ψ̄ = 0 in the

short-circuit sensing problem. In the actuation benchmark of Sec. 5.3.3, ψ̄ will

be suddenly applied to unveil the phenomena behind the back-relaxation. At

the IPMC ends X = 0 and X = L, we prevent accumulation of surface charge

by imposing D ·N = 0.

The mass balances also need initial conditions, which are

Cw = C0
w at t = 0 , (5.10a)

C = C0 at t = 0 , (5.10b)

where C0
w and C0 are the initial solvent and counterion concentrations, respec-

tively. Eq. (5.10b) implies the electroneutrality of the reference configuration.

5.2.3 Thermodynamic restrictions

We follow the approach of Gurtin et al. (2010) for problems of species diffusion

coupled to elasticity, suitably augmented to take into account that counterions

are electrically charged. Given that we focus on isothermal conditions, we

disregard the heat terms in the thermodynamic laws. Hence, the energy balance



5.2 Modeling framework 83

encompasses mechanical, electrical, and species transport contributions:

U̇ = P · Ḟ + E · Ḋ + µwĊw + µĊ − Jw · ∇µw − J · ∇µ̃ , (5.11)

in which U is the nominal internal energy density,

E = −∇ψ (5.12)

is the nominal electric field, µw is the solvent chemical potential (with units of

energy per mole), µ is the counterion chemical potential, and

µ̃ = µ+ Fψ (5.13)

is the counterion electrochemical potential.

By introducing the nominal Helmholtz free energy density W , the second

law of thermodynamics reads

P · Ḟ + E · Ḋ + µwĊw + µĊ − Jw · ∇µw − J · ∇µ̃− Ẇ ≥ 0 . (5.14)

We assume that W is a function of the primal variables F, D, Cw, and C. Hence,

substituting Ẇ in Eq. (5.14) leads to

(
P− ∂W

∂F

)
· Ḟ +

(
E− ∂W

∂D

)
· Ḋ +

(
µw −

∂W

∂Cw

)
Ċw +

(
µ− ∂W

∂C

)
Ċ

− Jw · ∇µw − J · ∇µ̃ ≥ 0 . (5.15)

By resorting to the Coleman-Noll procedure, we obtain the general constitutive

relations

P =
∂W

∂F
, E =

∂W

∂D
, µw =

∂W

∂Cw
, µ =

∂W

∂C
, (5.16)

such that the dissipation inequality reduces to

− Jw · ∇µw − J · ∇µ̃ ≥ 0 . (5.17)

We assume that each flux is a linear combination of ∇µw and ∇µ̃:

Jw = −Mww∇µw −Mw∇µ̃ , (5.18a)

J = −Mw∇µw −M∇µ̃ , (5.18b)

where the constitutive operators can be collected into a symmetric mobility
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matrix (Onsager, 1931)

M =

[
Mww Mw

Mw M

]
, (5.19)

to be defined such that Eq. (5.17) is fulfilled (see Sec. 5.2.7). The assumption

that the flux of a species also depends on the (electro)chemical potential gradient

of the other species (that is, Mw 6= 0) is usually referred to as cross-diffusion

(Vanag and Epstein, 2009). The description of this phenomenon, which has been

observed to be relevant for IPMCs (Zhu et al., 2013, 2016), constitutes one of

the main concerns of our investigation.

5.2.4 Free energy density

We assume that W admits the additive decomposition

W (F, C, Cw,D) = Wmec(F) +Wmix(C,Cw) +Wpol(F,D) , (5.20)

in whichWmec, Wmix, andWpol are the contributions due to the overall membrane

stretching, the mixing of counterions and solvent molecules, and the membrane

polarization, respectively.

To describe the mechanics of the membrane, we select the isotropic compress-

ible Neo-Hookean material model proposed by Simo and Pister (1984):

Wmec(F) =
G

2
(tr C− 3)−G ln J +

1

2
λ ln2 J , (5.21)

in which λ = Eν/[(1+ν)(1−2ν)] and G = E/[2(1+ν)] are the Lamé parameters,

with E and ν denoting the Young modulus and the Poisson ratio, C = FTF is

the right Cauchy-Green deformation tensor, and

J = det F (5.22)

is the volume ratio. Eq. (5.21) describes a coupled hyperelastic material,

that is, Wmec cannot be decomposed into the sum of isochoric and volumetric

contributions (Holzapfel, 2000). This is known to be a desirable feature if

one aims at capturing the large deformation behavior of elastomers (Boyce

and Arruda, 2000). With respect to the material models usually employed in

electrochemo-poromechanics, such that of Hong et al. (2010) for polyelectrolyte

gels, the constitutive prescription in Eq. (5.21) involves an additional volumetric

term modulated by λ. The use of both Lamé parameters allows a better tuning

of the overall volumetric response, strictly related with the solvent flux (see Sec.

5.2.5), as demonstrated in Section 5.3 with particular reference to the counter-

diffusion phenomena occurring in IPMC actuation and sensing. Morevoer, the
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importance of employing both Lamé parameters for the IPMC membrane has

been unveiled by the study of Boldini and Porfiri (2020) on the multiaxial

deformations experienced by IPMCs.

For the metal electrodes, we adopt the Saint-Venant–Kirchhoff isotropic

material model:

W e
mec(F) =

λe

2
(trE)2 +Ge tr

(
E2
)
, (5.23)

in which λe and Ge are the Lamé parameters of the electrodes, whose Young

modulus and Poisson ratio are Ee and νe, and E = (C − I)/2 is the Green-

Lagrange strain tensor.

We assume that the fluid phase behaves as an ideal solution of solvent and

counterions, such that the free energy of mixing is purely entropic and reads

(Ateshian, 2007)

Wmix(C,Cw) = RT
(
C ln

C

C + Cw
+ Cw ln

Cw

C + Cw

)
, (5.24)

in which R is the gas constant and T is the absolute temperature. We remark

that Eq. (5.24) only describes the mixing of solvent and counterions, and this

turns out to be consistent with an ideal mixture theory in which the solution of

solvent and counterions identifies with the fluid phase (Ateshian, 2007), whereby

we expect the solid phase, consisting of the polymer chains, to be much less

relevant for mixing in IPMCs.2

Importantly, in this first investigation on the IPMC electrochemo-poromechanics,

we assume that the solution of solvent and counterions is dilute, that is,

C � Cw , (5.25)

such that Eq. (5.24) is substituted by the approximation

Wmix(C,Cw) = RTC
(

ln
C

Cw
− 1

)
. (5.26)

The assumption (5.25), beside being quite reliable in comparison with actual

IPMC fluid phases (Zhu et al., 2013), is convenient in the light of the challenging

computational models ensuing from such multiphysical theories, even when

neglecting the solvent transport (Boldini and Porfiri, 2020; Boldini et al., 2020).

By following Hong et al. (2010), Cha and Porfiri (2014), and Zhang et al.

(2020), we treat the membrane as an ideal dielectric, such that the polarization

2This assumption simplifies the usual theories adopted to describe the swelling of polymeric
gels (Hong et al., 2008; Chester and Anand, 2010) and polyelectrolyte gels (Hong et al., 2010;
Zhang et al., 2020), in which the mixing of solvent molecules with polymer macromolecules is
accounted for on the basis of the Flory-Huggins solution theory (Flory, 1942; Huggins, 1941).
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contribution reads

Wpol(F,D) =
|FD|2
2εJ

, (5.27)

where ε is the absolute permittivity of the membrane.

5.2.5 Constraint on the volumetric deformation

According with the dilute solution approximation (5.25), we neglect the volume

occupied by counterions (Ateshian, 2007) and hypothesize that both solvent

molecules and polymer chains are intrinsically incompressible, which is a common

practice for polyelectolyte gels as well (Zhang et al., 2020). Therefore, volumetric

deformations are inextricably related to variations of the solvent concentration

only, such that the volume ratio (5.22) is constrained as follows:

J = 1 + vw

(
Cw − C0

w

)
, (5.28)

where vw denotes the solvent molar volume. In order to impose this constraint,

the free energy density (5.20) is modified as follows (Holzapfel, 2000; Hong et al.,

2010; Zhang et al., 2020):

W = Wmec(F) +Wmix(C,Cw) +Wpol(F,D)

+ pw

[
1 + vw

(
Cw − C0

w

)
− J

]
, (5.29)

where pw is a Lagrange multiplier field assuming the role of solvent pressure.

We remark that our F is purely elastic. Hence, the allowed volumetric

deformation due to the solvent transport requires the selection of a compressible

hyperelastic strain energy, as for instance proposed in Eq. (5.21). We observe

that the elastic deformation could be constrained to be isochoric by adopting a

richer kinematics in which F involves inelastic contributions, such as the swelling

term in the theory of Chester and Anand (2010) for polymeric gels.

For later developments, it is convenient to rearrange Eq. (5.28) for the solvent

concentration:

Cw = C0
w +

1

vw
(J − 1) , (5.30)

whose rate is

Ċw =
J̇

vw
. (5.31)
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5.2.6 Conservative constitutive laws

Stress tensor

By combining Eqs. (5.16a), (5.21), (5.27), and (5.29), we obtain the following

nominal stress:

P = G(F− F−T) + λ ln JF−T︸ ︷︷ ︸
Pmec

+
1

2εJ

[
2F(D⊗D)−C · (D⊗D)F−T

]
︸ ︷︷ ︸

Ppol

−pwJF−T︸ ︷︷ ︸
Pw

, (5.32)

where ⊗ denotes the tensor product. Therefore, P may be regarded as a total

stress, comprising mechanical, electrostatic, and water pressure contributions.

The corresponding total Cauchy stress is

σ =
1

J
PFT =

1

J
[G(b− I) + λ ln JI]︸ ︷︷ ︸

σmec

+
1

2ε
[2d⊗ d− (d · d)I]︸ ︷︷ ︸

σpol

−pwI︸ ︷︷ ︸
σw

, (5.33)

where b = FFT is the left Cauchy-Green deformation tensor and d = J−1FD

is the current electric displacement (Dorfmann and Ogden, 2005). The total

pressure reads

p = −1

3
trσ = − 1

J

[
G

(
1

3
tr b− 1

)
+ λ ln J

]
︸ ︷︷ ︸

pmec

+
1

6ε
|d|2︸ ︷︷ ︸
ppol

+pw , (5.34)

adopting the convention that each contribution to the pressure is positive if

compressive.

In the jargon of poromechanics, σmec and pw are, respectively, the effective

stress and the pore water pressure (Coussy, 2004; MacMinn et al., 2016). In

electromechanics, σpol is usually denoted as the Maxwell stress (Dorfmann and

Ogden, 2005).

Electric displacement

By using Eqs. (5.12), (5.16b), and (5.27) we obtain the constitutive law for the

nominal electric field, whose inversion provides the nominal electric displacement

D = −εJC−1∇ψ . (5.35)



88 Electrochemo-poromechanics of IPMCs

As is well-known, in the current configuration, this relation reads d = −ε gradψ.

In Eq. (5.35), εJC−1 could be interpreted as a permittivity tensor, whose

anisotropic nature is given by the background deformation of the dielectric

material.

Solvent and counterion (electro)chemical potentials

We obtain the solvent chemical potential by combining Eqs. (5.16c), (5.26), and

(5.29):

µw = −RT C

Cw
+ vwpw , (5.36)

revealing that µw is affected both by a mechanical contribution through pw and

by an osmotic contribution through RTC.

Analogously, we obtain the counterion chemical potential µ by combining

Eqs. (5.16d) and (5.26), thus leading to the counterion electrochemical potential

of Eq. (5.13):

µ̃ = RT ln
C

Cw︸ ︷︷ ︸
µ

+Fψ . (5.37)

We note that µ is unaffected by pw because the fluid phase is assumed to be

dilute, such that the counterion volume turns out to be negligible.

5.2.7 Dissipative constitutive laws

In order to obtain the expressions for Jw and J, we need to specify the mobility

matrix M introduced with Eq. (5.19). We adopt the form

M =
1

RT C−1


DwCw DwC

DwC

(
Dw

C

Cw
+D

)
C

 , (5.38)

in which Dw is the solvent diffusivity in the polymer network and D is the diffu-

sivity of the counterions in the solvent. The matrix M is positive definite for

non-vanishing diffusivities and concentrations, thus fulfilling the dissipation in-

equality (5.17). Notably, our formulation of cross-diffusion is free from additional

parameters with respect to the two diffusivities required for the self-diffusion.

This differs from the cross-diffusion model proposed by Zhu et al. (2013), which

requires a further drag coefficient.

In light of Eq. (5.38), Eqs. (5.18) become

Jw = −Dw

RT C−1 (Cw∇µw + C∇µ̃) , (5.39a)
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J =
C

Cw
Jw −

D

RT C−1C∇µ̃ . (5.39b)

We observe that Ateshian (2007) obtains flux equations analogous to Eqs. (5.39)

within the mixture theory. Indeed, equations (128) and (129) of Ateshian (2007)

are the counterpart in the current configuration of Eqs. (5.39a) and (5.39b),

respectively, if one assumes absence of friction between polymer chains and

dilute species, as for instance in Huyghe and Janssen (1997), and considers that

external body forces acting on solvent and dilute species vanish. We further

note that, in order to describe the kinetics of polyelectrolyte gels, Zhang et al.

(2020) follow the Maxwell-Stefan approach to mass transport in multicomponent

systems (Krishna and Wesselingh, 1997), thus obtaining transport equations

again corresponding to Eqs. (5.39).

Finally, combining Eqs. (5.36), (5.37), and (5.39) results in

Jw = −Dw

RT C−1 (vwCw∇pw + FC∇ψ) , (5.40a)

J =
C

Cw
Jw −DC−1

(
∇C − C

Cw
∇Cw +

FC

RT ∇ψ
)
. (5.40b)

These equations are commented in the following.

Discussion

Let us first focus on the solvent flux given by Eq. (5.40a). About the resolution

strategy, we note that the use of constraints (5.30) and (5.31) allows us to express

the solvent mass balance (5.3) in terms of the solvent pressure pw.

About physics, we remark that, although the solvent is assumed to be

electrically neutral, its flux depends on the electric potential gradient. In

particular, the last term in Eq. (5.40a) represents the solvent electro-osmotic

flux, which is recognized by many investigators as a fundamental mechanism

of solvent transport in IPMC actuation (Asaka and Oguro, 2000; Shahinpoor

and Kim, 2004; Zhu et al., 2013). Indeed, as a voltage drop is applied across

the electrodes, counterions migrate in the direction of the electric field, carrying

along solvent molecules proportionally to the counterion concentration.

In the limit case of absence of counterions, the volumetric nominal flux of

solvent Jv
w, through Eq. (5.40a), reads

Jv
w = vwJw = −JC−1Dwϕ

2
w

RTcw
∇pw , (5.41)

where we have introduced the current solvent concentration cw = Cw/J and the

current porosity ϕw = vwcw. Then, by defining the permeability of the polymer

network to the solvent in terms of the solvent diffusivity as kw = Dwϕ
2
w/(RTcw),
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one obtains the nominal version of Darcy law (MacMinn et al., 2016):

Jv
w = −JC−1kw∇pw , (5.42)

whose more common counterpart in the current configuration reads jvw =

−kw grad pw.

By focusing now on the counterion flux in Eq. (5.40b), the first addend

represents the convective flux of counterions with the solvent. Within our frame-

work, it constitutes an important contribution of counterion flux in sensing, as

also in Zhu et al. (2016). Indeed, upon application of a mechanical stimulus,

the solvent moves down its pressure gradient, carrying along some counterions.

Moreover, within this motion, the solvent establishes a volumetric deformation

gradient (see Eq. (5.28)), which triggers counterion diffusion; this is considered

through the third term in Eq. (5.40b), proportional to ∇Cw = ∇J/vw. Counte-

rion convection along Jw and diffusion along ∇Cw originate an ion imbalance

and, consequently, an electric signal. Our theory explains the weak response

characterizing IPMC sensors (Shahinpoor and Kim, 2004) with the smallness of

the foregoing flux contributions, both proportional to C/Cw � 1.

Finally, in the limit case of immobile solvent (that is, Dw = 0, also implying

Jw = 0 through Eq. (5.40a)), we have Cw = C0
w (Eq. (5.3)), J = 1 (Eq. (5.28)),

c = C, and cw = Cw, such that Eq. (5.40b) reduces to

J = −DC−1

(
∇C +

FC

RT ∇ψ
)
, (5.43)

whose counterpart in the current configuration reads

j = −D [grad c+ Fc/(RT ) gradψ], which is the classical Nernst-Planck law

(Porfiri, 2008), stating that both the gradient of the counterion concentration

(Fick effect) and the electric field (electrophoretic effect) concur to counterion

transport.

5.3 Analysis of actuation and sensing

Here, we investigate the mechanisms underlying actuation and sensing on the

basis of finite element solutions of the proposed model applied to the benchmarks

of Fig. 5.1.

5.3.1 Model parameters

With reference to the initial, undeformed configuration, we consider a typical

IPMC of length L = 20 mm, membrane thickness 2H = 200µm, and electrode
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thickness h = 1µm.

We consider a saturated Nafion membrane, and adopt G = 50 MPa and,

unless otherwise specified, λ = 300 MPa for the Lamé parameters (Silberstein

and Boyce, 2010), such that ν ≈ 0.4286 and E ≈ 143 MPa. As for the electrodes,

we select Lamé parameters two orders of magnitude larger, that is, Ge = 5 GPa

and λe = 30 GPa. With respect to the usual moduli for metals, these are about

one order of magnitude lower (Liu et al., 2019), as justified by their significantly

larger defectiveness, due to the plating processes adopted in IPMC fabrication

(Kim and Shahinpoor, 2003).

We adopt room temperature T = 300 K and water as solvent, such that vw =

18 cm3/mol. We select C0
w = 20 000 mol/m3 (corresponding to an initial porosity

Φ0 ≈ vwC
0
w = 0.36), Dw = 10−9 m2/s, D = 10−10 m2/s, C0 = 1 200 mol/m3,

and ε = 10−4 F/m. These values are within the ranges propesed by Zhu et al.

(2016).

5.3.2 Finite element model

The finite element solution is obtained with the commercial software COMSOL

Multiphysics R© under plane strain conditions. We adopt the General Form PDE

interface to solve the governing equations ensuing from the mass balances (5.3)

and (5.4) and the Gauss law (5.5), by employing quadratic Lagrangian shape

functions to approximate the fields pw, C, and ψ. We use the Solid Mechanics

interface to solve the equilibrium equations (5.2), by choosing quadratic serendip-

ity shape functions to approximate the field u.

The mesh consists of 19 565 quadrilateral elements, whose geometry is de-

scribed by quadratic serendipity shape functions. We discretize the IPMC length

with 200 uniform elements of size 0.1 mm each, except for a region of width

2H = 0.2 mm at the clamped end, where we employ a finer mesh featuring 16

columns of elements instead of 2; this mesh region, required to obtain a suffi-

ciently accurate deformation field therein, is displayed in Fig. 5.2. We discretize

the membrane thickness with 50 elements, whose size decreases from the center

to the electrodes in geometric sequence with the ratio between the largest and

the smallest elements equal to 10; in the electrodes the mesh is uniform, featuring

4 elements along the thickness. We additionally introduce 16 boundary layer

elements in each of the membrane regions next to the electrodes. These elements

also have variable size along the thickness, with the smallest ones, adjacent to

the electrodes, of size 10 nm, and the stretching factor between two consecutive

elements equal to 1.2. These very fine mesh regions are motivated by the large

gradients of C and ψ therein, which constitute the well-established essential

feature of IPMC electrochemistry (Porfiri, 2008), also impacting on the solvent



92 Electrochemo-poromechanics of IPMCs

Cw/C
0
w

Figure 5.2: Finite element mesh at the clamped end region of the membrane,
with the contour of the non-dimensional solvent concentration Cw(X,Y )/C0

w in
the membrane bulk for the actuation problem (see Sec. 5.3.3) at time t = 0.1 s.

redistribution in our model. The overall number of degrees of freedom is 329 133.

We employ Backward Differentiation Formula for the time integration. At

each time step, we use a segregated approach to solve the discretized equations.

Specifically, in actuation we first solve the electrochemical problem, and then,

in an iterative loop, use this solution to inform and solve the poromechanical

problem. Dually, in sensing the algorithm first solves the poromechanical problem,

and then uses the obtained solution as a guess for the electrochemical problem.

These solution schemes are convenient as they are suggested by the underlying

physics.

While the response is almost independent of X in actuation, the maximum

electrochemical response in sensing is obtained in the cross-section where the

bending moment attains its maximum value out of the region influenced by the

fully clamped constraint, that is, at X ≈ L/100. Our finite element model allows

us to obtain accurate results within this cross-section, where, in the following,

we discuss the through-the-thickness variation of the relevant fields.3

Finally, let us note that the accuracy of the obtained numerical solution has

been assessed through proper refinement of the spatial and temporal discretiza-

tions.

3Analyzing the results so close to the fully clamped cross-section is convenient also because
of its very small rotation, leading to a negligible difference between its normal in the reference
and current configurations.
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Figure 5.3: Actuation: non-dimensional counterion concentration C(Y )/C0 at
X = L/100 in the cathode (a) and anode (b) boundary layers.

5.3.3 Actuation

In actuation, the numerical model allows us to instantaneously apply a voltage

drop ψ̄ = 0.25 V across the electrodes, which is then maintained until the steady

state. This elicits the counterion migration from the anode to the cathode,

resulting in counterion depletion and accumulation in the boundary layers,

with the membrane bulk remaining electroneutral. In Fig. 5.3 we display the

counterion concentration C(Y ) in the boundary layers, at different time instants.

At the cathode, C increases up to about 12C0 at t ≈ 1 s, and then remains

constant. At the anode, C decreases to zero at t ≈ 0.1 s, and then the thickness

of the boundary layer increases until C(Y ) attains its steady state profile at

t ≈ 1 s. As displayed in Fig. 5.4, the asymmetry of the boundary layers reflects

on the electric potential ψ(Y ), which, through the Maxwell stress, is relevant

for the back-relaxation (Porfiri et al., 2017). Importantly, the reason for the

highlighted asymmetry is inherently electrochemical, although it is strengthened

by large deformations.

As counterions migrate toward the cathode, the solvent molecules follow by

electro-osmosis. In Figs. 5.5 and 5.6 we represent Cw(Y ) in the boundary layers

and in the membrane bulk, respectively. In the cathode boundary layer, the

peak value of Cw increases up to about 1.36C0
w at t ≈ 1 s, and then remains

constant. Outside the cathode boundary layer, Cw increases until t ≈ 0.1 s, and

then slowly decreases, by approaching its initial value at the steady state. The

anode side behaves similarly, though experiencing solvent depletion. The contour

of Cw in the clamped region of the membrane at t = 0.1 s is further reported in

the previous Fig. 5.2, where the color bar is set in such a way as to highlight the

variation of Cw in the membrane bulk only, thus obscuring its variation in the
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Figure 5.4: Actuation: electric potential ψ(Y ) at X = L/100 in the membrane.
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Figure 5.5: Actuation: non-dimensional solvent concentration Cw(Y )/C0
w at

X = L/100 in the cathode (a) and anode (b) boundary layers.
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Figure 5.6: Actuation: non-dimensional solvent concentration Cw(Y )/C0
w at

X = L/100 in the membrane bulk (boundary layers excluded). The curve
corresponding to the time instant t ≈ 0.1 s at which the solvent begins counter-
diffusing is highlighted in red.
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Figure 5.7: Actuation: non-dimensional transverse displacement uY (t) evalu-
ated at the free end (X,Y ) = (L, 0).

boundary layers, as in Fig. 5.6. Analogously to C, we note that the maximum

solvent accumulation at the cathode, characterized by a thinner boundary layer,

is larger than the maximum depletion at the anode, indicating asymmetry in the

solvent redistribution. Notably, the relative change of Cw along the membrane

thickness is much lower than that of C.

We draw the first conclusion that in the boundary layers the contribution of

the solvent pressure gradient ∇pw to the solvent flux never exceeds that of the

electric field E = −∇ψ, such that Cw undergoes a monotonic variation in time

until the steady state. In other words, in IPMC actuation, the electrochemistry

also governs the boundary layer behavior of the solvent. Instead, in the membrane

bulk, the contribution of ∇pw overcomes that of E at a certain time, after which

the solvent counter-diffuses and the back-relaxation occurs.

For the flexure magnitude, in Fig. 5.7 we display the time evolution of the

transverse displacement uY (L, 0). It initially rapidly increases, reaching the

peak value up
Y at tp. Then the back-relaxation occurs and uY slowly decreases

until the steady state value uss
Y at tss. With reference to the case λ = 300 MPa:

up
Y ≈ 1.7%L, tp ≈ 0.1 s and uss

Y ≈ −0.7%L, tss ≈ 50 s. Therefore, while initially

the IPMC bends toward the anode, it finally undergoes opposite curvature,

bending toward the cathode. This behavior and the associated timescales have

been first documented in Asaka et al. (1995).
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Figure 5.8: Actuation: longitudinal strain EXX(Y ) at X = L/100 in the
membrane and electrodes.

Remarkably, as shown in Fig. 5.7 and demonstrated in the following, dis-

regarding the Maxwell stress both leads to a significant overestimation of up
Y

(up
Y ≈ 2.7%L, now reached at tp ≈ 0.25 s) and excludes the possibility of pre-

dicting the change in sign of the curvature, although the back-relaxation still

takes place.

Fig. 5.7 also displays the dependence of the back-relaxation on the first Lamé

parameter λ, whereby increasing λ anticipates the steady state and amplifies

the magnitude of the back-relaxation. Moreover, it exists a sufficiently small λ

such that the curvature does not change sign, although the back-relaxation still

occurs. We can explain this dependence of the flexure on λ by leveraging on the

two fundamental results illustrated below.

First, as illustrated in Fig. 5.8, the longitudinal (Green-Lagrange) strain

EXX(Y ) remains nearly linear all along the IPMC cross-section. On this basis,

let us note that Fig. 5.8 clearly reports the change of curvature sign at the

steady state with respect to that at the initial peak. In more detail, at tp the

IPMC bends toward the anode and the neutral axis is shifted, with respect to

the mid-axis, toward the anode. At tss the curvature has opposite sign, with

the IPMC bending now toward the cathode; notably, the whole cross-section

presents positive EXX , denoting a longitudinal elongation of the strip. The

IPMC extension in actuation has also been reported in Boldini et al. (2020) on
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Figure 5.9: Actuation: undeformed configuration and deformed configurations
(10 times amplified) at tp and tss, also displaying the longitudinal strain field
EXX .
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Figure 5.10: Actuation: transverse Maxwell stress σpol
yy (Y ) at X = L/100 in

the cathode (a) and anode (b) boundary layers.

the basis of the Cha and Porfiri (2014) theory. Generally, EXX is small, although

the bending deformation is relevant, given the strip slenderness. In Fig. 5.9 we

report the undeformed configuration and the deformed configurations at tp and

tss, with the associated contour plots of EXX .

Second, it is crucial to notice, as documented by Fig. 5.10, how the Maxwell

stress σpol
yy (Y ) = −σpol

xx (Y ) grows asymmetrically in the boundary layers. Since

∂ψ/∂x is negligible, σpol
yy ≈ (ε/2)(∂ψ/∂y)2 has the same sign on both sides of

the membrane, where it increases in magnitude with time. Importantly, near the

anode σpol
yy assumes slightly greater values and, most of all, it attains a relevant

magnitude in a larger region, because of the thicker boundary layer therein. This

asymmetry grows in time, and is expected to increase with the applied voltage

(Porfiri et al., 2017).

Hence, we can explain the mechanics behind the back-relaxation documented
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in Fig. 5.7 by temporarily resorting to small strains and decoupling poromechan-

ics and electrochemistry, solving the latter first. This provides, by suitably approx-

imating the behavior observed in Fig. 5.8, a longitudinal strain εxx(y) ≈ κy+ ε0,

with κ denoting the curvature and ε0 the mid-axis strain, and a known Maxwell

stress σpol
yy (y) ≈ (ε/2)(∂ψ/∂y)2. Then, by resorting to the equilibrium along y,

we can estimate the transverse mechanical stress σmec
yy (y) ≈ −σpol

yy (y) + pw(y),

as confirmed by the finite element analyses. Under plane strain, the longitudinal

mechanical stress reads σmec
xx (y) = [E/(1− ν2)]εxx(y) + [ν/(1− ν)]σmec

yy (y), such

that the total longitudinal stress in the membrane turns out to be

σxx(y) ≈ E

1− ν2
(κy+ε0)+

ν

1− ν
[
−σpol

yy (y) + pw(y)
]
−σpol

yy (y)−pw(y) . (5.44)

In the electrodes, we simply have

σxx(y) = σmec
xx (y) ≈ Ee

1− ν2
e

(ky + ε0) . (5.45)

As no mechanical loads are applied to the IPMC in actuation, we can estimate

κ and ε0 by imposing vanishing total bending moment and total axial force. In

particular, by using Eqs. (5.44) and (5.45), the first condition provides

κ ≈ 1

β(1− ν)

∫ H

−H
[σpol
yy (y) + (1− 2ν)pw(y)]y dy

= − 1

β(1− ν)
[Mpol + (1− 2ν)Mw] , (5.46)

where

β =
E

1− ν2

2

3
H3 +

Ee

1− ν2
e

2H2h (5.47)

is the plane strain bending stiffness per unit depth relying on the Bernoulli-

Navier kinematics and on the assumption of thin skins, and Mpol and Mw are the

bending moments per unit depth due to the Maxwell stress and to the solvent

pressure. It is important to notice that, in Eq. (5.46), the difference from unity

of the coefficients (1− ν) and (1− 2ν) ensues from the second contribution to

the mechanical stress in Eq. (5.44), which has been overlooked so far in IPMC

literature, to the best of our knowledge.

Given that the solvent moves from the anode to the cathode, Eq. (5.46)

establishes that the solvent pressure always gives a negative contribution to κ,

corresponding to bending toward the anode. In fact, as shown in Fig. 5.11, at

the anode side pw < 0 and at the cathode side pw > 0.

Instead, the Maxwell stress σpol
yy > 0 gives a positive contribution to κ at the

anode side, while it provides a negative contribution to κ at the cathode side.
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Figure 5.11: Actuation: solvent pressure pw(Y ) at X = L/100 in the mem-
brane.

Therefore, the back-relaxation may lead to bending toward the cathode (κ > 0)

only due to the Maxwell stress, whereby this occurs when the contribution of

the Maxwell stress at the anode overcomes those of the solvent pressure and of

the Maxwell stress at the cathode. This turns out to be possible because of the

boundary layers asymmetry described above (see, in particular, Fig. 5.10).

Moreover, Eq. (5.46) allows us to explain the back-relaxation dependence on

λ, as illustrated in Fig. 5.7: increasing λ for a given G implies a larger ν, the

latter approaching 0.5 as λ→∞; this diminishes the negative contribution to κ

due to pw, thus anticipating and emphasizing the back-relaxation.

Let us now delve into further details on the back-relaxation contribution due

to the solvent counter-diffusion, on the basis of pw(Y ) in Fig. 5.11. By passing

from tp to tss, |pw| diminishes everywhere, except in the cathode boundary layer,

resulting in a decrease of Mw with time, as confirmed by the case disregarding

the Maxwell stress in Fig. 5.7.

As recently established by Boldini and Porfiri (2020) and Boldini et al. (2020),

the IPMC actuation is characterized by large gradients of all the relevant stress

and strain components in the boundary layers, except for the longitudinal strain

(see Fig. 5.8). This is detailed in the following within the context of the present

theory. Fig. 5.12 displays the transverse Green-Lagrange strain EY Y (Y ) in the

membrane. The profile of EY Y is asymmetric, with the peak magnitude of EY Y
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Figure 5.12: Actuation: transverse strain EY Y (Y ) at X = L/100 in the
membrane.

at the cathode being nearly double than that at the anode. Our poromechanical

framework allows the model to further predict non-negligible EY Y outside the

boundary layers, which vanishes at the steady state, according to the solvent

redistribution (see Fig. 5.6).

Finally, in Fig. 5.13 we represent the longitudinal mechanical stress σmec
xx (Y )

at the cathode and anode sides. It is worth noting that the steady state bending

toward the cathode, due to the back-relaxation, is accompanied with a change

in sign of the axial stress in the anode, which becomes larger than that at the

cathode. Remarkably, σmec
xx and σmec

yy combine as to provide a longitudinal strain

EXX that is well approximated by an affine function of Y , see Fig. 5.8.

In Porfiri et al. (2017), the importance of the Maxwell stress in IPMC back-

relaxation was first advanced, on the basis of the Cha and Porfiri (2014) theory,

which neglects the solvent flow, and assumes that actuation is triggered by an

osmotic pressure term proportional to the difference in concentration between

counterions and fixed ions. Given that counterions are unlikely to counter-diffuse

in actuation, in the Cha and Porfiri (2014) framework the back-relaxation can

be explained exclusively through electrostatic arguments. Conversely, Zhu et al.

(2013) account for the cross-diffusion of solvent and counterions, but neglect

the Maxwell stress; indeed, Zhu et al. (2013) predict a back-relaxation without

reversal of the curvature.
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Figure 5.13: Actuation: longitudinal mechanical stress σmec
xx (Y ) at X = L/100

in the cathode (a) and in the anode (b), including the boundary layers in the
membrane.

The present theory is, to the best of our knowledge, the first one to effectively

combine the classical model of the back-relaxation, based on the solvent counter-

diffusion, with the more recent (so far, alternative) description relying on the

relevance of the Maxwell stress. Furthermore, our theory allows one to establish

a precise link between the steady state bending response and the Lamé constants,

thus suggesting a possible strategy for the identification of the model parameters.

5.3.4 Sensing

In short-circuit sensing, we impose a uniformly distributed nominal load of mag-

nitude T = 50 N/m2. The numerical model does not allow us to instantaneously

apply this load; hence, we linearly enforce it in a suitably short time interval

ti = 0.1 s, and then maintain it until the steady state. The load application leads

to a sensing response triggered by poromechanics, as described in the following.

In Fig. 5.14 we represent the longitudinal mechanical stress σmec
xx and the

solvent pressure pw along the membrane thickness, at ti = 0.1 s and tss ≈ 50 s.

While |σmec
xx | increases in time, |pw| decreases and nearly vanishes everywhere

at the steady state. At each time instant, we observe that σmec
xx (t) − pw(t) ≈

σmec
xx (tss), showing, incidentally, that the time evolution of the Maxwell stress is

irrelevant. In Fig. 5.15 we display the longitudinal, EXX , and transverse, EY Y ,

Green-Lagrange strains. The cathode side extends longitudinally and shortens

transversely, while the anode side exhibits opposite behavior. Progressively,

|EXX | slightly increases, while |EY Y | decreases. In Fig. 5.16 we represent

the solvent concentration Cw, which is directly related with the volumetric

deformation by Eq. (5.28). It increases with time at the cathode side while
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Figure 5.14: Sensing: longitudinal mechanical stress σmec
xx (Y ) and solvent

pressure pw(Y ) at X = L/100 in the membrane.

−1.0 −0.5 0.0 0.5 1.0

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Y/H

EXX , EY Y [%]

EXX at ti

EXX at tss

EY Y at ti

EY Y at tss
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decreasing at the anode side. All the poromechanical fields are nearly symmetric

with respect to the mid-axis, except for some asymmetry arising in the boundary

layers as the steady state is approached.

In Fig. 5.17 we represent the time evolution of the transverse displacement at

the free end, uY (L, 0), which is non-dimensionalized through its value estimated

with the linear elastic Euler-Bernoulli beam theory uEB
Y = TL4/(8β) ≈ 2.14 mm,

where β is given by Eq. (5.47). As the load is progressively applied, the IPMC

bends toward the anode, with a tip displacement ui
Y ≈ 0.945uEB

Y at ti. As long

as the load is maintained, the tip displacement increases with time, reaching the

steady state value uss
Y ≈ 0.985uEB

Y . Therefore, the time-delayed displacement is

uss
Y − ui

Y ≈ 4%uss
Y .

The observed poromechanics can be explained by temporarily resorting to

small strains within the Euler-Bernoulli kinematics for the whole IPMC cross-

section and disregarding the effect of the electric field. Under plane strain, the

volume ratio reads J(x, y) = 1 + ν[σmec
xx (x, y) + σmec

yy (x, y)]/λ. The applied load

T is associated with a bending moment M(x) = T (x2 − 2Lx + L2)/2, which

is partly equilibrated by the total longitudinal stress in the membrane, such

that σmec
xx (x, y) = pw(x, y)− [E/(1− ν2)]M(x)y/β. Given the smallness of the

applied load and the thinness of the IPMC, the equilibrium in the y direction

requires that σmec
yy (x, y) ≈ pw(x, y), as also confirmed by the finite element
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Figure 5.17: Sensing: non-dimensional transverse displacement uY (t) at
(X,Y ) = (L, 0) relative to the value uEB

Y predicted by the linear elastic Euler-
Bernoulli beam model.

results. Consequently, the volume ratio can be rewritten as

J(x, y) ≈ 1 +
ν

λ

[
2pw(x, y)− E

1− ν2

M(x)

β
y

]
= 1 +

1

2(λ+G)

[
2pw(x, y)− 4G(λ+G)

λ+ 2G

M(x)

β
y

]
, (5.48)

in which the last form is convenient to discuss the influence of λ. By neglecting

∂pw/∂x, which is small compared to ∂pw/∂y, the solvent mass balance (5.3)

reduces to

ṗw(x, y)− (λ+G)kw
∂2pw(x, y)

∂y2
≈ 4G(λ+G)

λ+ 2G

Ṁ(x)

2β
y , (5.49)

in which kw = Dwv
2
wC

0
w/(RT ). Eq. (5.49) is a diffusion-type equation to be

solved, at each x, for the solvent pressure field pw(y, t), given the initial condition

pw(y) = 0 at t = 0 and the boundary conditions ∂pw/∂y
∣∣
y=±H= 0, corresponding

to imposing zero-flux at the electrodes. All the other relevant poromechanical

fields can be readily reconstructed once Eq. (5.49) is solved.

While the load is linearly increased during the ramp of time length ti, the

constant Ṁ = T (x2 − 2Lx + L2)/(2ti) generates a progressively increasing
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solvent pressure gradient along the membrane thickness. The solvent pressure

pw enters the equilibrium, such that |σmec
xx | is less than it would be for a non-

porous material. Then, while the load is kept constant after the loading ramp,

Ṁ = 0 and the solvent progressively moves down its pressure gradient, |pw|
reduces, and a larger fraction of the applied load is equilibrated by |σmec

xx |, which

increases in time, while |σmec
yy | ≈ |pw| decreases. Therefore, |EXX | progressively

increases, along with the IPMC deflection. At the steady state, the excess

solvent pressure is dissipated, such that the solvent becomes irrelevant for the

equilibrium. Correspondingly, in the membrane the total longitudinal stress σxx

tends to coincide with its mechanical contribution σmec
xx , and the deflection to

the Euler-Bernoulli beam value uEB
Y .4

Within our framework, the smallness of the time-dependent deflection uss
Y −

ui
Y is explained by the fact that a considerable part of the applied load is

instantaneously equilibrated by the longitudinal stress in the electrodes, σxx =

σmec
xx = −[Ee/(1− ν2

e )]My/β.

So far, we have neglected the electric field contribution to the solvent flux.

Actually, at the steady state, the solvent pressure is not exactly zero (see Fig.

5.14), as the component of the solvent flux proportional to ∇pw must balance

the electro-osmotic contribution, proportional to E. The mechanical stress state

is in turn partly altered by the electro-osmotic flux of the solvent, but not by

the Maxwell stress, which turns out to be negligible. Consequently, the final

deflection is slightly less than that predicted by the Euler-Bernoulli beam theory.

We can now comment on the electrochemical response elicited by the sol-

vent flux, with reference to Fig. 5.18, in which we represent the counterion

concentration C(Y ) in the boundary layers, and Fig. 5.19, where we display

the electric potential ψ(Y ) in the membrane. At the cathode, C increases with

time until t ≈ 0.5 s, which is five times longer than the loading ramp duration ti,

and then decreases. The analogous opposite behavior is observed at the anode.

We conclude that counterions initially flow toward the cathode by convection

with the solvent and by diffusion toward regions of larger volume ratio, until

they counter-diffuse as their concentration gradient becomes sufficiently large

(see Eq. (5.40b)). At the steady state, the convective and electro-diffusive fluxes

are individually null. The electric potential field of Fig. 5.19 results from the

counterion redistribution, on the basis of Gauss law (5.5).

In Fig. 5.20(a) we represent the time evolution of the total stored charge per

4This picture is reminiscent of the consolidation problem of soil mechanics. However, in the
classical problem of consolidation (Biot, 1941), the process is allowed by the drainage of water
from the soil surface, whereby the total “vertical” stress is uniform along the soil depth. Here,
differently, the solvent is prevented from draining, but the process is allowed by the presence
of a total longitudinal stress gradient along the membrane thickness.
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corresponding to the time instant at which counterions begin counter-diffusing
are highlighted in red.
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(b) per unit depth.

unit depth, defined as

Qtot =

∫ L

0

∣∣∣DY (Y = ±H)
∣∣∣dX . (5.50)

It increases until t ≈ 0.5 s, when, with reference to the case λ = 300 MPa, it

reaches the peak value Qp
tot ≈ 0.91µC/mm. Then it starts decreasing slowly to

the steady state value Qss
tot ≈ 0.16µC/mm ≈ 18%Qp

tot. This decrease of Qtot,

which can be deleterious for IPMCs employed in energy harvesting, is clearly

due to the counterion counter-diffusion. The reversal of the counterion flux

is also confirmed by the change in sign of the total electric current per unit

depth, defined as Itot = Q̇tot, whose time evolution is shown in Fig. 5.20(b).

The current increases with the load application; then, it decreases rapidly and

becomes negative at t ≈ 0.5 s, when counterions begin counter-diffusing; finally,

it slowly goes to zero at the steady state. Qualitatively, the same results in

terms of stored charge and electric current have been experimentally observed

by Farinholt and Leo (2004) in response to an imposed tip displacement.

Fig. 5.20 also displays the time evolution of the total stored charge and

electric current obtained by varying the Lamé parameter λ, with G held equal

to 50 MPa.5 By decreasing λ, the peak stored charge Qp
tot increases and, most

of all, the counterion counter-diffusion is milder, such that, for λ = 30 MPa,

Qss
tot ≈ 0.5Qp

tot. This behavior is explained by the fact that, by diminishing λ,

the solvent flux toward the cathode increases, along with the counterion flux.

Indeed, Eq. (5.48) reveals that |J(y)|, and correspondingly |Cw(y)| through the

5Differently from the actuation problem, our numerical model exhibits convergence issues if
we set λ = 3000 MPa in this sensing problem, such that we limit λ to 1000 MPa.
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constraint (5.30), increase by decreasing λ. Moreover, Fig. 5.20 shows that

the discharge process requires a significantly larger time for smaller λ. This

is explained by the diffusion equation (5.49), which shows that the “solvent

pressure flux”, defined as −(λ+G)kw∂pw/∂y, decreases with λ, thus requiring

more time for the solvent pressure to be dissipated. This analysis might offer

a criterion for selecting the most efficient ionomer for an IPMC employed as a

sensor on the basis of the resulting elastic moduli.

Finally, we remark that, in sensing, the time-increasing asymmetry in C(Y )

and, especially, ψ(Y ) (see Figs. 5.18 and 5.19), can be captured only by con-

sidering a finite deformation framework. Indeed, although the deformations are

relatively small (see Fig. 5.15), the time-varying deformation field non-negligibly

modulates the electrochemistry, characterized in sensing by small deviations

from the initial electroneutral state. This effect is expected to be amplified by

the application of larger loads than that considered here.

5.4 Concluding remarks

We have herein proposed a model for IPMCs by suitably modifying the electrochemo-

mechanical theory of Cha and Porfiri (2014). As a main novelty, we have

accounted for the transport of the solvent, which establishes the volumetric

deformation of the membrane and cross-diffuses with counterions.

Specifically, by referring to the mixture theory (Ateshian, 2007), we have

regarded the IPMC membrane as the superposition of a solid phase, identifying

with a negatively charged polymer, and a fluid phase, consisting of counterions

immersed in a solvent. Toward the simplest possible model thoroughly describing

the complex IPMC multiphysics, we have assumed that each constituent is

incompressible and that the fluid phase is dilute, such that the volumetric

deformation of the membrane only depends on the solvent redistribution. The

model is governed by four coupled equations consisting of an overall momentum

balance, the mass balances for solvent and counterions, and the Gauss law,

to be solved for the displacement field, the solvent pressure, the counterion

concentration, and the electric potential. We have proposed a free energy density

encompassing the contributions due to the overall stretching of the membrane,

the mixing of solvent and counterions, and the dielectric polarization of the

membrane. As for the dissipation, we have accounted for cross-diffusion (Vanag

and Epstein, 2009), that is, we have assumed that the (electro)chemical potential

gradient of each species influences the flux of every species. Finally, we have

modeled the electrodes as perfect electric conductors impermeable to the fluid

phase, contributing to the overall bending stiffness of the IPMC.

Our model results in two mutually coupled building blocks, addressing
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the electrochemistry and the poromechanics of IPMCs. The electrochemistry

is described by a Poisson-Nernst-Planck system of equations (Porfiri, 2008),

augmented to consider the convective transport of counterions with the solvent,

and modified, with respect to its conventional form, by being modulated through

finite deformations. The poromechanics relies on Biot theory for saturated

media (Biot, 1941), extended to include both the electro-osmotic transport of the

solvent and the Maxwell stress. The electrochemistry drives the poromechanical

response in actuation; dually, the poromechanics triggers the electrochemical

response in sensing. This clearly emerges from the results of the finite element

analyses of the proposed theory implemented in the commercial code COMSOL

Multiphysics R©.

More specifically, in actuation the applied voltage drop across the electrodes

elicits the migration of counterions toward the cathode; simultaneously, the

electro-osmosis of the solvent in the same direction occurs, such that the cathode

side swells, while the anode side shrinks. As soon as the solvent pressure gradient

increases sufficiently, the solvent starts counter-diffusing, with a consequent

relaxation of the bending deformation. Moreover, as the imbalance of ions

near the electrodes grows asymmetrically in time (Porfiri et al., 2017), the

Maxwell stress is responsible for a time-increasing bending deformation toward

the cathode, which can overcome the effect of the solvent pressure and determine

a reversal of the curvature (Asaka et al., 1995).

In sensing, the applied mechanical load establishes a solvent pressure gradient

along the membrane thickness, which is then progressively dissipated as the

solvent diffuses toward the cathode. Correspondingly, counterions move in the

same direction by convection with the solvent and diffusion toward regions of

larger volume ratio, and electrical charge is stored at the electrodes. When

the counterion concentration gradient becomes large enough, counterions start

counter-diffusing, with a consequent reduction of the harvested electrical energy,

as experimentally observed in Farinholt and Leo (2004).

As a further novelty with respect to IPMC literature, we have described the

membrane deformation through a compressible coupled hyperlastic model depen-

dent on both Lamé parameters (Simo and Pister, 1984). We have demonstrated

that, for a given shear modulus, the calibration of the first Lamé parameter λ

allows one to modulate the entity of the back-relaxation in actuation and of the

electric discharge in sensing, whereby larger values of λ emphasize both phe-

nomena. On the one hand, this sheds light on the electrochemo-poromechanics

of IPMCs. On the other hand, given the recent advancements in IPMC manu-

facturing (Carrico et al., 2015), it might provide a criterion for designing and

selecting the optimal material for the membrane.

Future work should, first of all, focus on efficiently solving meaningful
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benchmarks governed by the here developed theory in order to quantitatively

compare its predictions against ad hoc experimental results. In fact, our present

finite element implementation in COMSOL Multiphysics R© is computationally

cumbersome and suffers convergence issues if we apply too large loads or set

quite extreme values of some parameters, such as the first Lamé constant.

Two strategies could be followed to address this issue: developing either an ad

hoc finite element code or manageable and reliable semi-analytical solutions.

Similar tasks have been recently accomplished for the Cha and Porfiri (2014)

theory, encompassing a two-dimensional user defined finite element for continuum

analysis in Abaqus R© (Boldini and Porfiri, 2020; Boldini et al., 2020) and enriched

structural theories accounting for the through-the-thickness deformation of the

membrane and for the IPMC laminate structure, combined with asymptotic

methods for the electrochemistry (Leronni and Bardella, 2019; Boldini and Porfiri,

2020; Boldini et al., 2020).

Moreover, in order to accurately predict experimental data, the model should

be extended to account for the large variation of material properties due to both

the electrode roughness (Porfiri, 2009) and the presence of metal particles in

thin membrane regions adjacent to the electrodes, in the literature variously

referred to as “intermediate layers” (Tiwari and Kim, 2010), “composite layers”

(Cha et al., 2012), and “polymer-metal composite electrodes” (Liu et al., 2019).

Accounting for these composite layers, possibly along with the volume occupied

by counterions, would mitigate the large gradients of counterion concentration

in the boundary layers and the associated high stress concentrations, at the

price of additional computational difficulties (Porfiri et al., 2018; Volpini and

Bardella, 2021). One would achieve an even more pronounced mitigation if such

regions of variable properties were more appropriately modeled as functionally

graded materials (Suresh and Mortensen, 1998). Finally, the same goal could be

reached also by adopting a constitutive law limiting the maximum mechanical

stress, for instance involving viscoplastic deformation (Silberstein and Boyce,

2010); in fact such limitation, by equilibrium, would hamper a too large increase

of the Maxwell stress and the solvent pressure, which are proportional to the

fluid phase concentration gradient.

Establishing the range of applicability of the present theory would pave the

way to elaborate on the main hypotheses the theory relies on. For instance,

as a major point, removing the assumption of dilute fluid phase of solvent

and counterions might quantitatively impact the predicted response, as IPMC

electrochemistry is characterized by a large accumulation of counterions at

the cathode. Let us recall that in Cha and Porfiri (2014) theory this effect

is prevented by introducing a so-called steric coefficient in the Borukhov-like

(Borukhov et al., 2000) mixing free energy density of counterions and polymer
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chains. Within our framework, removing the dilute solution approximation

would require (i) adopting a proper mixing free energy density for a non-ideal

solution, (ii) modifying the solvent and counterion fluxes to account for the

friction between counterions and polymer network, and (iii) relating the volume

ratio to both solvent and counterion concentrations. Finally, let us observe

that, to the best of our knowledge, the mixing of solvent molecules and polymer

chains has so far been overlooked in IPMC theories. Again, experiments should

demonstrate the need for such an addition to the modeling, which is instead

a common feature in the literature of polyelectrolyte gels (Hong et al., 2010;

Zhang et al., 2020).



Chapter 6

Discussion

In this final chapter on IPMCs, we analyze and compare the electrochemo-

mechanical (ECM) and electrochemo-poromechanical (ECPM) theories presented

in Secs. 4.2 and 5.2, respectively.

First, we note that the ECM and ECPM theories adopt different strain

energy densities. Indeed, the former employs the Saint-Venant–Kirchhoff law

(4.8), which, although representing a simple extension of the linear elastic law

to large deformations, is convenient to obtain analytical solutions through

asymptotic expansions, requiring appropriate linearizations. The latter assumes

instead the compressible coupled Neo-Hookean law (5.21), which is expected to

be more suitable to study the large deformations experienced by elastomeric

materials. However, despite the utilization of different material models, the

mechanical free energies enter the ECM and ECPM theories in the same way,

as well as the polarization free energies (4.10) and (5.27), the latter resulting in

identical expressions for the electric displacement and Maxwell stress in the two

theories. The main difference between the ECM and ECPM theories lies instead

in the adopted mixing free energies, as discussed in the following.

In the ECM theory, not accounting for the solvent transport, the mixing free

energy is expressed as a function of the volume ratio (see Eq. (4.12)). As a result,

through Eq. (4.4b), an osmotic stress Pmix = −RT (C − C0)F−T, dependent

on the counterion concentration difference with respect to the initial state

C − C0, enters the mechanical equilibrium (4.13a). Therefore, the counterion

redistribution is directly responsible of deformation, as the osmotic stress in

general needs to be equilibrated by a suitable mechanical stress Pmec.

In the ECPM theory, accounting for the solvent transport, the mixing free

energy is instead expressed in terms of the solvent concentration (see Eq. (5.26)).

Therefore, the differentiation of the free energy with respect to the deformation

gradient does not give rise to an osmotic stress Pmix entering the mechanical

113
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equilibrium (5.2). Instead, the chemical potential of the solvent (5.36), obtained

by differentiating the free energy with respect to the solvent concentration,

depends on the osmotic pressure RTC, which should therefore be interpreted as

a potential for the solvent to move, rather than a pressure in the jargon of solid

mechanics.

If then, in the ECPM theory, one assumes that the constituents of the

porous material are incompressible and that the fluid phase is dilute, the solvent

concentration may be expressed as a function of the volume ratio (see Eq. (5.30)).

However, such a constraint introduces another independent variable, namely,

a Lagrange multiplier playing the role of solvent pressure (see Eq. (5.29)), for

which the solvent mass balance (5.3) should be solved. Notably, the solvent

pressure pw enters both the chemical potential of the solvent (5.36) and the

mechanical equilibrium (5.32) through Pw, the latter replacing the osmotic stress

Pmix of the ECM theory.

We note that, for a non-dilute solution, the counterion concentration would

enter the constraint (5.28). In such a case, the solvent concentration should be

expressed as a function of both the volume ratio and the counterion concentration,

while the Lagrange multiplier should be interpreted as the solution pressure,

where the term solution denotes the overall fluid phase.

One could argue that, despite the osmotic pressure enters the solvent chemi-

cal potential, it eventually lacks in the solvent flux (5.40a). This is specifically

due to accounting for cross-diffusing effects. Indeed, when one assumes that

the counterion electrochemical potential affects the solvent flux (Eq. (5.18a)),

the osmotic pressure gradient contribution to the solvent flux is automatically

replaced by the electro-osmotic contribution, proportional to the product of

the counterion concentration and the electric field (Eq. (5.40a)). Specifically,

we note that the electro-osmotic flux has exactly the same form of the elec-

trophoretic counterion flux in Eq. (5.40b). Although osmosis and electro-osmosis

would provide qualitatively the same effect, they are characterized by different

timescales: indeed, osmosis follows ion migration, while electro-osmosis occurs

simultaneously with ion migration.

In both the ECM and ECPM theories, the purely diffusive counterion flux,

given by Fick’s law, actually consists of two contributions: one proportional

to the nominal counterion concentration gradient and one to the volume ratio

gradient, the latter analogous to the solvent concentration gradient in the ECPM

theory (Eqs. (4.13c) and (5.40b)). This represents Fick’s law in deformable

bodies, whereby both changes in concentration at fixed volume and changes in

volume drive the counterion flux. The usage of a Lagrangian finite deformation

theory allows one to single out the two contributions, which would instead

collapse into a unique term by using the current counterion concentration, as
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this is expressed per unit deformed volume.

Finally, to summarize, the ECPM theory introduces, with respect to the

ECM theory, the explicit modeling of the solvent transport. In both the processes

of actuation and sensing, the solvent transport could be regarded as a mediator

of the electrochemical and mechanical responses. Indeed, in actuation, the

applied electric field triggers, through counterion migration, the transport of the

solvent, in turn responsible of the deformation field; conversely, in sensing, the

applied mechanical load elicits the solvent transport, the latter determining the

counterion redistribution and, therefore, the output of an electric signal. Then,

accounting for cross-diffusion allows one to consider further coupling effects,

namely, the solvent electro-osmosis and the counterion convection. The ECM

theory simply skips the intermediate water transport modeling, by relying, in

actuation, on an osmotic stress dependent on the counterion concentration, and,

in sensing, on a counterion flux component proportional to the volume ratio

gradient.

We remark that in our ECPM model only the mixing of solvent and coun-

terions is considered, while the polymeric solid phase is not considered in the

mixing process. In Hong et al. (2010) and Zhang et al. (2020), dealing with

the swelling of polyelectrolyte gels, the free energy additionally accounts for the

mixing of solvent molecules and polymer macromolecules, by resorting to the

Flory-Huggins solution theory (Flory, 1942; Huggins, 1941). Correspondingly, in

the same works they identify the reference configuration with the space region

occupied by the dry polymer, being mainly interested in the swelling process,

while, in our theory, the IPMC membrane is already swollen in the reference

configuration.

While the ECM theory could be expanded to account for the counterion finite

size by operating directly on the mixing free energy, as for example proposed in

Sec. 4.5, the same goal could be reached in the ECPM theory by modifying the

constraint (5.28), in order to account for the volume occupied by counterions. In

such a case, the solution pressure would also drive the counterion motion, as it

would enter the counterion electrochemical potential. As anticipated in Sec. 5.4,

considering the counterion volume would also require, first, using a mixing free

energy suitable for a non-dilute and non-ideal solution, and, second, accounting

for the friction between counterions and polymer network. Notably, this would

lead to a quite severe complication of the governing equations, including the

introduction of further parameters, namely, the counterion molar volume, the

counterion and solvent activity coefficients, and the counterion diffusivity in the

porous material, which would become distinct from that in free solution (see

equation (126) of Ateshian, 2007).

Ultimately, we point out that the structural model employed in Sec. 4.3 to
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study the effect of shear on sensing could in principle be employed to study

actuation as well. However, its direct usage in actuation may be questionable, as

the assumptions of zero mid-axis stretching (underlying Eqs. (4.16)) and, mostly,

zero through-the-thickness direct strain are clearly violated by the results of

continuum models for IPMCs, as established by both the ECM theory in Boldini

and Porfiri (2020) and our ECPM theory (see in particular Figs. 5.8 and 5.12).

Recently, an enriched Euler-Bernoulli beam model, accounting for the localized

through-the-thickness deformation in the membrane boundary layers, has been

successfully applied to study IPMC actuation, though being limited to slender

IPMCs with thin electrodes (Boldini et al., 2020). Notably, for such IPMCs,

employed in Sec. 5.3, the effect of shear is totally negligible in sensing as well,

justifying the interpretation of the results in terms of simple Euler-Bernoulli

kinematics.
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Chapter 7

Introduction

Traditionally, developmental biology has been studied from a genetic and bio-

chemical perspective. Indeed, the pivotal contribution of Turing (1952) proposes

that chemical patterns generated through reaction and diffusion of chemical

substances instruct embryo development. The work of Wolpert (1969) sug-

gests instead that the concentration gradient of morphogens provides positional

information toward cell pattern formation.

However, recent endeavors have documented that, alongside genetic and

biochemical cues, bioelectrical and mechanical signaling are important for devel-

opment (McCaig et al., 2005; Mammoto and Ingber, 2010).

7.1 Developmental endogenous bioelectricity

In this work, consistently with the literature (Levin et al., 2017), we use the

term bioelectricity to refer to the redistribution of ions, and related membrane

potential variations, within a cell cluster. Specifically, ion fluxes lead to membrane

depolarization or hyperpolarization, that is, to increment or decrement of the

membrane potential.

More specifically, we treat endogenous bioelectricity, whereby the exchange

of ions is triggered by internal factors, such as the spatio-temporal activity of

ion channels, and not by external ones, which for instance include the imposition

of an electric field. In particular, we remark that we do not deal with neurons or

muscle cells, historically associated with ion channels. Rather, we refer to the role

of ion channels in the developmental processes undergone by non-excitable cell

clusters (Bates, 2015). This justifies the locution developmental bioelectricity.

Indeed, it has been shown that, through ion channels and pumps, bioelectricity

regulates important developmental processes at the single cell level, such as

the progression of the cell cycle and, in particular, the tendency of the cell
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to proliferate or to differentiate. Moreover, by also taking advantage of the

activity of gap junctions, which couple neighboring cells electrically, bioelectricity

controls processes at the tissue level, such as embryonic development, symmetry

breaking, cancer progression, wound healing, and regeneration. In the following,

we provide an overview of relevant discoveries in the field of developmental

endogenous bioelectricity. The interested reader may find exhaustive reviews

about this topic in McCaig et al. (2005) and Levin et al. (2017).

First of all, bioelectricity is fundamental for the advancement of the cell

cycle. Blackiston et al. (2009) argue that hyperpolarization, that is, a decrease

of the membrane potential with respect to the resting value, is required for the

initiation of the S phase, in which the DNA is replicated. This hyperpolarization

seems to be mainly due to the activation of several families of potassium channels.

Conversely, depolarization, that is, an increase of the membrane potential with

respect to the resting value, is necessary for entering the M phase, in which

the mother cell undergoes mitosis, that is, it divides into two daughter cells.

This depolarization is associated with a reduction in the activity of potassium

channels, and a concomitant chloride efflux resulting from the activation of

chloride channels.

Consistently with the foregoing considerations, Sundelacruz et al. (2009)

advance that hyperpolarized somatic cells tend to be quiescent and to not

undergo mitosis. Instead, developing and cancer cells are typically characterized

by a depolarized state, thus being highly proliferative.

While proliferation is associated with depolarization, differentiation is paired

with hyperpolarization. Indeed, differentiating cells are typically more hyperpo-

larized than stem cells. The degree of hyperpolarization generally increases with

the differentiation time and is specific of the cell lineage into which stem cells

are differentiating. For instance, Sundelacruz et al. (2008) show that human

mesenchymal stem cells differentiating into either fat or bone are hyperpolar-

ized, and that the hyperpolarization is larger for adipogenic differentiation.

Importantly, inducing depolarization by either increasing the EC potassium

concentration or blocking the Na+,K+-ATPase prevents both adipogenic and

osteogenic differentiation.

The bioelectric behavior of the single cell then reflects on the tissue-scale

behavior. Regarding tumorigenesis, Chernet and Levin (2013b) show that tumor-

like structures induced by human oncogenes in embryos of Xenopus laevis may

be detected by their characteristic depolarized state, even before these tumors

become morphologically apparent. Moreover, they prove that manipulating ion

channels in order to hyperpolarize these cells leads to an influx of butyrate

through sodium-butyrate exchangers, which in turn suppresses the formation of

tumors.
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Endogenous bioelectricity seems to be involved in wound healing as well

(Nuccitelli, 2003). When a wound occurs, the transepithelial potential is locally

disrupted. This results in a local electric field in the epithelium plane, which is

directed toward the wound. Notably, many epithelial cells, such as the human

keratinocytes of the epidermis, can detect this electric field and migrate along

its direction in a process called galvanotaxis, such as to close the wound. It

also seems that applying electric fields externally may accelerate the process of

wound healing.

Bioelectricity has even implications in tissue regeneration. For instance,

manipulating the bioelectric pattern may alter the anterior-posterior polarity of

a regenerating planarian (Beane et al., 2011). Typically, the head blastema of

a regenerating planarian is characterized by a depolarized state, while the tail

blastema is associated with a hyperpolarized state. Suppressing the activity of

the H+,K+-ATPase in the head blastema through the SCH inhibitor determines

a hyperpolarization and hampers the formation of the head, while the opening of

the glutamate-gated chloride channel in the tail blastema through the ivermectin

activator determines a depolarization and leads to the formation of a head

instead of a tail.

The establishment of left-right asymmetry may also be initiated by bio-

electricity. Levin et al. (2002) argue that, in early Xenopus laevis and chick

embryos, the left-right asymmetric activity of the H+,K+-ATPase determines a

leftward membrane potential gradient, which is responsible of a rightward flux

of small positively charged molecules through gap junctions. This flux, in turn,

could be the reason for the asymmetric gene expression that leads to left-right

asymmetries in the positioning and anatomy of organs.

Importantly, bioelectric signals may also coordinate morphogenetic events

at long-range, not only at short-range. In Pai et al. (2015), experimentally

disrupting the bioelectric signaling within the developing neural tube region of

a Xenopus laevis locally alters the apoptosis and proliferation of cells, which

results in brain mispatterning. Notably, the normal brain pattern can be restored

by fine-tuning the membrane potential field in the ventral non-neural region,

that is, at long-range.

The foregoing evidences leave no doubt that bioelectricity is heavily involved

in developmental processes. First, the membrane potential qualifies as a useful

readout of the biological state of a cell cluster, with depolarization and hyperpo-

larization generally indicating a propensity to proliferate and to be quiescent,

respectively. Second, more importantly, the membrane potential acts as an

instructive factor, for example by initiating a biochemical or genetic signaling

cascade toward a specific biological goal. Therefore, manipulating ion channels

through genetic or pharmacological techniques may be useful for directing pat-
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tern formation, reducing cancer progression, accelerating wound closure, and

controlling regeneration. Beyond these important implications in biomedicine,

the fine-tuning of the bioelectric field is expected to have even stronger impact

on the fields of synthetic biology and bioengineering, and especially on the design

of soft robots (Mustard and Levin, 2014).

In order to understand the dynamics of bioelectric networks and manipulate

them toward the specific desired outcomes, it is necessary to develop quanti-

tative and bio-realistic simulators. Pietak and Levin (2016) have proposed a

finite-volume multiphysics simulator written in PythonTM, referred to as the

BioElectric Tissue Simulation Engine (BETSE), which can be used to compute

the bioelectrical fluxes of ions, and related membrane potential changes, in a

two-dimensional cell cluster.

In Pietak and Levin (2017), BETSE has been augmented to consider the in-

terplay between genetic, biochemical, and bioelectrical dynamics. This approach

has begun to identify interventions controlling complex morphogenesis of whole

organs, such as repairing defects in a developing frog brain that would otherwise

result from exposure to teratogens (Pai et al., 2018).

7.1.1 Developmental endogenous mechanobioelectricity

Alongside chemical, genetic, and electrical cues, mechanical signals also play

a key role in developmental processes. This is confirmed by the emergence of

mechanobiology as a discipline at the interface between cell biology and cell

mechanics (Huang et al., 2012).

The understanding of mechanotransduction, which is the conversion of me-

chanical signals into biochemical responses, is at the core of mechanobiology

(Ingber, 2006). Mediators of this process are cellular components such as the

cytoskeletal filaments and the cell membrane, membrane components such as

ion channels and surface receptors, extracellular matrix components, cell-cell

junctions such as cadherins and gap junctions, and cell-extracellular matrix junc-

tions such as integrins and focal adhesions. Importantly, all these components

work concertedly within the structural hierarchy of tissues and organs.

Mechanotransduction is crucial during all stages of embryogenesis (Mammoto

and Ingber, 2010): in early development, by influencing egg activation, early

asymmetric cell divisions, and the establishment of the initial embryonic polarity;

in mid-development, by regulating the sorting of progenitor cells, anterior-

posterior axis formation, tissue folding, dorsal closure, and the establishment

of planar cell polarity; and in later development, orchestrating organogenesis.

Mechanotransduction is also important for maintaining tissue homeostasis after

the development is completed (Shishvan et al., 2018). Moreover, a wide range
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of seemingly unrelated diseases are the result of the modification of either cell

mechanics, tissue structure, or the activity of mechanotransduction molecules

(Ingber, 2003). Cancer itself could be seen as a disease of tissue development

often characterized by abnormal mechanotransduction.

Integrating the knowledge of chemical, genetic, electrical, and mechanical

signaling pathways might be of great importance for the design of multicellular

engineered living systems (Kamm et al., 2018). Although the approaches to de-

velopmental biology based on biochemistry and molecular genetics have pervaded

the literature in the last century, the important roles of electricity and mechanics

have been recognized in the recent years. However, despite the presence of works

addressing the interplay between the more established fields of biochemistry and

genetics and the avant-gardes of bioelectricity and mechanobiology, the mutual

relationship between these last two disciplines has almost never been addressed

in a developmental context.

Notably, as argued by Silver and Nelson (2018), bioelectrical and mechanical

cues are expected to affect each other. Indeed, on the one hand, the membrane

potential and the osmotic pressure are strictly related. Specifically, depolarization

is often associated with an influx of sodium, and consequently with an in increase

of osmotic pressure; conversely, hyperpolarization typically occurs because of the

efflux of potassium, leading to a decrease of osmotic pressure. On the other hand,

several ion channels are mechanosensitive, that is, they respond electrically to

changes in the membrane mechanics (Martinac, 2004).

Later, Silver et al. (2020) have proved that mechanotransduction may effec-

tively direct the establishment of membrane potential gradients within a tissue.

In particular, they show that connexin hemichannels, which are mechanosensi-

tive, preferentially open in the peripheral regions of mammary epithelial tissues,

characterized by a higher endogenous mechanical stress, thus leading to local

depolarization. This, in turn, is responsible of transcriptional changes that

promote cell proliferation.

By following this exciting line of research, to which we refer to by using the

term mechanobioelectricity, we next explore the interplay between endogenous

mechanical and electrical signaling in cell clusters. This task is first accomplished

in Ch. 8 by extending the BETSE code, documented in Pietak and Levin (2016),

to the realm of mechanics. In Ch. 9, we build a more general theory that further

accounts for the modeling of the water flow within the cluster. Chs. 8 and 9 are

adapted from Leronni et al. (2020) and Leronni (2020), respectively.

Before starting, in the next Sec. 7.2, we describe in more detail the object of

our modeling, that is, the cell cluster and its internal constituents. Then, in Sec.

7.3, we present the classical equations used in cell membrane electrophysiology,

which we often refer to throughout our treatment.
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7.2 Constituents of cell clusters

With reference to Fig. 7.1, we start by describing the constituents of animal

cell clusters relevant for their electrochemo-poromechanical response. These

can be subdivided into three broad categories, namely, constituents involved in

the mechanics of the cluster (Sec. 7.2.1), constituents acting as a barrier either

between the intracellular (IC) and extracellular (EC) spaces of the cluster or

between the cluster and the surrounding bath (Sec. 7.2.2), and constituents

involved in the bioelectricity of the cluster (Sec. 7.2.3). The interested reader

can find additional information on classical books of cell biology, such as Alberts

(1983). A good overview of the mechanics of the cytoskeleton and of the

cell membrane is given by Huang et al. (2012). Ion channels, at the core of

bioelectricity, are thoroughly addressed in Hille (1984).

7.2.1 Cytoskeletal filaments and anchoring junctions

The mechanical behavior of the cluster is essentially established by a polymer

network constituted by cytoskeletal filaments and anchoring junctions, similarly

to epithelial tissues of animals.

The cytoskeleton governs the mechanics of the single cell. It results from

the assembly of three interconnected families of protein filaments, namely, actin

filaments, microtubules, and intermediate filaments. Actin filaments are double-

stranded helical polymers with a diameter of 5− 9 nm, composed of repeated

units of the protein actin. They are highly concentrated in the so-called “cortex”

underneath the cell membrane. Microtubules are long and hollow cylindrical

polymers with a diameter of 25 nm, composed of laterally associated protofila-

ments of dimers of α- and β-tubulin. They typically depart from a centrosome

located in the proximity of the nucleus. Intermediate filaments are rope-like

polymers with a diameter of 10 nm, composed of a very diversified array of

intermediate filament proteins, mainly keratin in epithelial tissues, where they

play a key role.

Anchoring junctions mechanically connect the cytoskeletons of different

cells one another, thereby allowing the transmission of mechanical stress within

the cluster. They are constituted by transmembrane proteins of the cadherin

superfamily. They can be subdivided in adherens junctions, which connect actin

filament bundles, and desmosomes, which connect intermediate filaments.

Epithelial sheets are attached to an underneath thin layer of extracellular

matrix, referred to as “basal lamina”, in turn sitting on the connective tissue.

This connection occurs through other types of anchoring junctions, typically

constituted by transmembrane proteins of the integrin superfamily, including

actin-linked cell-matrix adhesions and hemidesmosomes. However, we remark
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Figure 7.1: Animal cell cluster with the main constituents involved in its
electrochemo-poromechanical response.
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that, in the present work, we specifically refer to clusters of closely packed

cells joined through anchoring junctions, thereby excluding the presence of the

underneath extracellular matrix and connective tissue.

In plants, anchoring junctions are replaced by the cell wall, surrounding each

cell and cementing plant cells one another. The cell wall is typically thick and

much stiffer than other cell components. It is composed of a polymer network

of cellulose microfibrils and cross-linking glycans, embedded within a matrix of

pectin polysaccharides. The polymer lignin is abundant in the secondary cell

wall, which stiffens and waterproofs the whole wall.

Since the cytoskeleton, the anchoring junctions of animal cells, and the

cell walls of plant cells are all constituted by networks of cross-linked polymer

filaments, it is convenient to resort to the well established literature on the

constitutive modeling of rubber elasticity (Boyce and Arruda, 2000) to study

their macroscopic mechanical behavior.

7.2.2 Cell membranes and tight junctions

We assume that within the cluster, despite the close-packing of the cells, a thin

network of EC spaces exists, separating cells one another. The IC and EC

spaces are delimited by cell membranes. These are essentially constituted by

5 nm-thick lipid bilayers. The most abundant lipid molecules in bilayers are

phospholipids, consisting of an hydrophilic head and two hydrophobic tails. Given

their structure and composition, they spontaneously arrange into bilayers in

aqueous environments, which tend to fold over themselves in order to form sealed

compartments. Lipid molecules can freely flow within individual monolayers,

thus giving the membrane a fluid-like behavior.

Tissues are characterized by very different IC and EC concentrations of

ions. While sodium and chloride are abundant in the EC space, potassium

concentration is higher in the IC space, also containing many other fixed anions.

This imbalance of ions across the cell membrane sets the membrane potential,

defined as the difference between the IC and EC electric potentials, whose resting

value ranges from −40 mV to −70 mV.

The presence of ions at different concentrations in the IC and EC spaces will

require us to treat the IC and EC ion concentrations as independent variables.

Lipid bilayers host a large number of transmembrane proteins, including the

cadherins and integrins described before, and those mediating the transport of

ions and water molecules between the IC and EC spaces or directly between cells,

which are described in the next section. The cell membranes are not significant

for the overall mechanical behavior of the cluster. However, the mechanics of

the membrane is important for the opening of mechanosensitive ion channels, as
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illustrated in the next section.

While cell membranes act as selectively permeable barriers between the IC

and EC spaces, epithelial sheets behave similarly in separating the fluid bathing

their apical side and the connective tissue underlying their basal side. This

barrier function is allowed by tight junctions, mainly constituted by claudin

transmembrane proteins, which seal together neighboring cells, thus preventing

the leakage of small molecules in the intercellular spaces (Tsukita et al., 2001).

Tight junctions may be differently permeable to distinct ion species and water

molecules, and even alter dynamically their permeability.

In our two-dimensional cell clusters, which, differently from epithelia, are

not polarized, tight junctions may be present at the cluster boundary, sealing

cells one another. We assume that, if present, tight junctions are completely

impermeable to the passage of both ions and water.

As the separation of charge across the cell membrane establishes the mem-

brane potential, the separation of charge across tight junctions, that is, in our

context, between the interior and the exterior of the cluster, originates the

so-called transepithelial potential.

7.2.3 Ion channels, aquaporins, and gap junctions

Lipid bilayers are substantially impermeable to ions. Therefore, ion transport

across cell membranes is mostly mediated by two classes of transmembrane

proteins, namely, channels and pumps.

Ion channels are pore-forming structures for the passive transport of ions,

that is, the transport down their electrochemical potential gradient. Ion channels

can be non-selective or selective to specific ions, depending on their size and

charge. Importantly, ion channels are not always open, but alternate open and

closed states. They can be classified according to their gating mechanism: we

can distinguish voltage-gated channels, which are affected by changes in the

membrane potential value, ligand-gated channels, which open when a certain

molecule binds them intracellularly or extracellularly, and mechanosensitive

channels, which respond to the mechanics of the cell membrane. Other gating

mechanisms have been acknowledged.

Sometimes ion channels can undergo an inactivated state, that is, they

remain inactive despite the presence of the opening stimulus. However, in the

investigation of Ch. 8, we will restrict our treatment to ion channels modeled as

two-state systems, being either open or closed.

In the same Ch. 8, we will particularly focus on mechanosensitive chan-

nels (MCs), since they are at the core of electrochemo-mechanics, as they convert

mechanical stimuli into electrochemical signals (Martinac, 2004). In particular,
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it seems that most MCs respond directly to the membrane tension, which can

be produced, for instance, by little differences in the transmembrane osmolarity,

or by shear stresses due to fluid flow. Other MCs are supposed to be tethered to

cytoskeletal or extracellular matrix proteins, whose deflection causes the opening

of the channel. The first MC that has been studied at a molecular level is

the large-conductance MC in bacteria, which mainly works as a safety valve

to prevent bacterial cells from bursting when facing hypotonic environments.

MCs are also abundant in eukaryotic cells. Important families of eukaryotic

MCs are the potassium-selective TREK and TRAAK channels, and the more

recently discovered cation non-selective PIEZO channels (Coste et al., 2010).

The functions performed by eukaryotic MCs are much more diversified than

those of prokaryotic MCs, and their understanding is at its dawn.

Ions are also actively transported across the cell membrane through ion

pumps, though at slower rates. Active transport occurs up the electrochemical

potential gradient of ions, thus requiring energy to be carried out. The energy

source can be provided by the passive transport of another ion, by the ATP

hydrolysis, or by light. A remarkable example of an ATP-driven ion pump is

the well-known sodium-potassium pump, also known as Na+,K+-ATPase, which

mainly works to reestablish the resting concentrations of sodium and potassium

in the IC and EC spaces, and consequently the resting membrane potential.

We note that, in this investigation, we limit our attention to passive species

transport, thereby not accounting for ion pumps.

Although the cell membrane is more permeable to water than to ions, the

transmembrane transport of water is facilitated by the presence of specific channel

proteins called aquaporins (Verkman and Mitra, 2000; Agre, 2006). These

allow the rapid passage of water molecules in a single row by osmosis, and are

completely impermeable to ions. Typically, their density on the cell membrane

is much larger than that of ion channels. Moreover, different from ion channels,

aquaporins are usually always open, though mechanisms of regulation have also

been acknowledged.

Finally, gap junctions are channels directly connecting two adjacent cells,

allowing the direct passage of ions from cell to cell (Goodenough and Paul,

2009). They are constituted by two connexons joined across the intercellular

space. Differently from ion channels, gap junctions are not selective to specific

ions. More precisely, any water-soluble molecule up to a certain size or mass

can permeate through gap junctions. Water molecules themselves are allowed to

pass through gap junctions (Gao et al., 2011). Importantly, like ion channels,

gap junctions can also alternate between open and closed states, depending on

different stimuli. The presence of gap junctions is fundamental in cell clusters,

as it allows the electrochemical coupling among cells.
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In plants, plasmodesmata directly connect the cytoplasms of two adjacent

cells, forming pore-like structures that cross the thick cell walls separating cells.

Although they are structurally different from the gap junctions of animal cells,

they perform the same functions and possess similar properties.

7.3 The Goldman-Hodgkin-Katz equations

In electrophysiology, the transmembrane ion fluxes and the membrane poten-

tial are classically described by the Goldman-Hodgkin-Katz flux and voltage

equations (Hille, 1984).

The Goldman-Hodgkin-Katz flux equation gives the transmembrane flux Jm
i

of an ion i as a function of the membrane potential ψm and of the intracellular

and extracellular ion concentrations ci and cei . It reads

Jm
i =

ziF

RT
Dm

i

tm
ψm

ci − cei exp

(
− ziF

RT ψ
m

)
1− exp

(
− ziF

RT ψ
m

) , (7.1)

where zi is the ion valency, F is the Faraday constant, R is the gas constant, T

is the absolute temperature, Dm
i is the ion transmembrane diffusivity, and tm is

the membrane thickness. The Goldman-Hodgkin-Katz flux equation is obtained

from the one-dimensional Nernst-Planck equation (Rubinstein, 1990) written

along the membrane thickness, by assuming steady state conditions and uniform

electric field.

In general, different ion species contribute to the membrane potential, such

that a flux of the type (7.1) can be written for each ion species. By imposing

that the net electric current density across the cell membrane is zero, that is,

F
∑

i ziJ
m
i = 0, and solving for ψm, one obtains the Goldman-Hodgkin-Katz

voltage equation (also simply known as Goldman equation). By only considering

monovalent ions, it reads
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where ci+ and cei+ are the intracellular and extracellular concentrations of cations,

ci− and cei− are the intracellular and extracellular concentrations of anions, and

Dm
i+ and Dm

i− are the transmembrane diffusivities of cations and anions.

We note that, for Eq. (7.2) to hold, it is not necessary that each individual ion

flux is zero, but only the net current. However, at equilibrium, each individual

ion flux is balanced by an active contribution due to ion pumps, such that the

individual ion concentrations are approximately constant. Finally, if a single ion
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species is transported across the membrane, the Goldman equation reduces to

the standard Nernst equation of electrochemistry (Bard and Faulkner, 2001):

ψm =
RT

ziF
ln
cei
ci
. (7.3)

We remark that, according to the Goldman-Hodgkin-Katz formalism, the

driving forces for the transmembrane ion transport are the ion concentration gra-

dients and the electric field only, thus neglecting, for example, the potential role

of intracellular and extracellular water concentrations and membrane mechanics.



Chapter 8

On the coupling of

mechanics with

bioelectricity and its role in

morphogenesis

This chapter is adapted from “Leronni et al. (2020), On the coupling of mechanics

with bioelectricity and its role in morphogenesis, Journal of the Royal Society

Interface, 17(167):20200177”.

8.1 Introduction

In order to numerically address the coupling between mechanical and bioelectrical

signaling, here we endow the BioElectric Tissue Simulation Engine (BETSE),

introduced in Pietak and Levin (2016), with a solid mechanics module.

Our effort is motivated by the arguments advanced in Silver and Nelson

(2018), and inspired by recent theories coupling electro-diffusion and elasticity

(Hong et al., 2010; Cha and Porfiri, 2014). These theories have been fostered by

the emergence of soft smart materials for actuation and sensing in robotics and

biomedicine (Trivedi et al., 2008; Kim et al., 2013; Rus and Tolley, 2015).

Specifically, first, the imbalance of charge and ion concentrations within the

cluster is expected to generate electrostatic and osmotic forces, impacting its

mechanical behavior. By resorting to the soft robotics terminology, cells are

actuated by endogenous bioelectricity.

Moreover, cells sense mechanical stimuli through several molecular structures
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Figure 8.1: Cell cluster (left) and equilibrium of a membrane patch (right).

(Ingber, 2006). Here, we account for mechanosensitive ion channels (MCs), whose

activation depends on the membrane mechanics (Martinac, 2004), where larger

tension increases the opening probability (Wiggins and Phillips, 2004). This, in

turn, alters transmembrane ion fluxes, and consequently the membrane potential.

Ultimately, the latter qualifies both as an instructor and as a readout of the

mechanical state of the cluster.

We detail the modeling and implementation in BETSE of the foregoing

mechanisms of actuation and sensing in cell clusters in Secs. 8.2 and 8.3,

respectively. Then, in Sec. 8.4, we employ the augmented BETSE code, referred

to as “mecBETSE”,1 to explore possible feedback loops triggered by osmotic

pressure and MCs in morphogenesis.

This investigation represents a first step toward a rigorous integration of

bioelectricity with mechanobiology. Such integration has the potential to help

understanding embryogenesis, control of regeneration, and the transformation

toward, or normalization of, cancer (Chernet and Levin, 2013a; Mathews and

Levin, 2018). In the long term, unveiling the multiscale interconnections of

electrostatic, osmotic, and mechanical signals may be of great importance for

the design of engineered living systems (Kamm et al., 2018).

8.2 Bio-actuation : how bioelectrical forces

shape the multicellular mechanical response

We consider a cluster of closely packed cells, as depicted in Fig. 8.1. Ion channels

allow for ion transport between the intracellular space and the thin extracellular

1The mecBETSE code is freely available at https://gitlab.com/betse/mecbetse.

https://gitlab.com/betse/mecbetse
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space separating neighboring cells. Ion fluxes also occur freely in the extracellular

space, which is connected to a bath surrounding the cluster. Here, we focus

on the physical role of ions as carriers of charge and mass (thus disregarding

any chemical processes they could be involved in) through the Nernst-Planck

description of ion electro-diffusion (Pietak and Levin, 2016).

We assume for the cluster mechanics a Cauchy continuum description, and

neglect the thin extracellular space in evaluating the electrostatic and osmotic

forces exchanged by cells. Since the timescale associated with ion transport is

much longer than that to achieve mechanical equilibrium (Gurtin et al., 2010),

we neglect inertial effects in the linear momentum balance, which, in the absence

of body forces, reads

divσ = 0 , (8.1)

where div and σ denote the divergence operator and the stress tensor, respectively.

In the framework for synthetic materials that inspired us (Cha and Porfiri, 2014)

σ could be regarded as a total stress, consisting of several contributions:

σ = σmec + σpol + σmix , (8.2)

with σmec, σpol, and σmix respectively denoting mechanical, electrostatic, and

osmotic stresses, ensuing from contributions to the free energy density due to

mechanical deformation, dielectric polarization, and ion mixing.

In this first contribution on the interaction between bioelectricity and mechanobi-

ology, we assume isotropic linear elasticity within a small deformation framework,

such that the mechanical stress reads

σmec = 2Gε+ λ(tr ε)I , (8.3)

where G = E/[2(1 + ν)] and λ = Eν/[(1 + ν)(1− 2ν)] are the Lamé parameters

(with E the Young modulus and ν the Poisson ratio), tr denotes the trace

operator, I is the second-order identity tensor, and ε is the small strain tensor,

which in turn is given by

ε =
1

2

[
(grad u) + (grad u)T

]
, (8.4)

with grad and u denoting the gradient operator and the displacement vector,

respectively. Henceforth, we consider spatially uniform elastic moduli, referring to

the effective behavior of closely packed cells of given cytoskeleton and anchoring

junctions.

For an isotropic linear dielectric, the electrostatic (or Maxwell) stress reads
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(Dorfmann and Ogden, 2017)

σpol = ε0

[
εre⊗ e− 1

2
(e · e)I

]
, (8.5)

in which ⊗ and · indicate the tensor and inner products respectively, ε0 and εr

are the vacuum and relative permittivities, and e = −gradψ is the electric field,

with ψ denoting the electric potential. We consider the electrostatic stress across

neighboring membranes only, because elsewhere the electric field is irrelevant

(Pietak and Levin, 2016).

For suitably small ion concentrations the osmotic stress is linear (Gurtin

et al., 2010):

σmix = −RT
∑

i

(ci − c0i )I = −RT (c− c0)I = −pmixI , (8.6)

in whichR is the gas constant, T is the absolute temperature, ci is the intracellular

concentration of the ion species i, and c is the sum of the intracellular ion

concentrations (that is, the osmotic concentration), with c0i and c0 their spatially

uniform initial values; finally, pmix represents the osmotic pressure.

We disregard the explicit modeling of the water flow allowed by aquaporins

(Agre, 2006), whereby this is phenomenologically described by σmix, which is,

as σpol, an active stress to be equilibrated by σmec through Eq. (8.1), thus

coupling bioelectricity and mechanics.

Under small strains, we are able to compute the electrostatic and osmotic

stresses in terms of membrane potential and ion concentrations. Then, we

introduce the electrostatic and osmotic body forces fpol = divσpol (Dorfmann

and Ogden, 2017) and fmix = divσmix, such that

f = fpol + fmix = div(σpol + σmix) (8.7)

and equilibrium (8.1) becomes

divσmec + f = 0 . (8.8)

By combining Eqs. (8.3), (8.4), and (8.8) we obtain the following Cauchy-Navier

equations, accounting for bioelectrical phenomena:

div
[
G grad u +G(grad u)T + λ(div u)I

]
+ f(e, c) = 0 . (8.9)

We refer to the in-plane behavior of a monolayer of cells, and assume that its

mechanics is adequately described by either plane stress or plane strain states,

whereby the real scenario lies in between. Hence, Eq. (8.9) consists of two
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coupled equations, to be solved in terms of f for the in-plane displacement

components ux and uy.

Since electro-diffusion is time-dependent, f varies in time, leading to a time-

varying mechanical response. We adopt a partly explicit time-integration scheme

in which, at each step, we compute the displacement increment from Eq. (8.9)

by evaluating f as a function of e and c at the beginning of the step; then, we

employ the mechanical fields to update the bioelectrical fields at the following

step, as illustrated in Sec. 8.3.

Eq. (8.9) needs boundary conditions, which could be either kinematic:

u = ū on Su , (8.10)

with ū denoting the imposed displacement, or static:

tmec = σmecn = t̄mec on St , (8.11)

with t̄mec denoting the imposed mechanical traction. In Eqs. (8.10) and (8.11)

Su and St are complementary parts of the total boundary S. In this investigation

we restrict attention to homogeneous mechanical boundary conditions, implying

either ū = 0 or t̄mec = 0, which are suitable for a cluster surrounded by a

relatively stiff or compliant environment, respectively.

The finite volume discretization of Eq. (8.9) in BETSE is detailed in the

next Sec. 8.2.1 for the interested reader.

8.2.1 The finite volume discretization of the

Cauchy-Navier equations†

We discretize Eq. (8.9) through the finite volume method (Schäfer, 2006; Quarteroni,

2009), by assuming that each biological cell occupies a finite domain of polygonal

shape, and undergoes uniform displacements, strains, and stresses. Although in the

simulations in the main article we consider a regular hexagonal grid, here we present a

more generic discretization also suitable for an irregular grid. We remark that cells are

actually separated by thin extracellular spaces allowing transmembrane ion transport;

however, we assume that a reliable overall mechanical response can be obtained by

neglecting these extracellular spaces in solving Eq. (8.9).

For a plane mechanical problem, Eq. (8.9) is equivalent to the following system of

equations:

div
[
G gradux +Gu,x + λ̃(divu)i

]
+ fx = 0 , (8.12a)

div
[
G graduy +Gu,y + λ̃(divu)j

]
+ fy = 0 , (8.12b)

in which u,x = ∂u/∂x, u,y = ∂u/∂y, i is the unit vector in the x-direction, and j is
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the unit vector in the y-direction. Under plane strain conditions

λ̃ = λ =
Eν

(1 + ν)(1− 2ν)
, (8.13)

whereas under plane stress conditions

λ̃ =
Eν

1− ν2
. (8.14)

Integral form of the Cauchy-Navier equations

We write Eqs. (8.12) in integral form for each cell of the cluster. We refer to the generic

cell m, with m = 1, ...,M and M the number of cells in the cluster. Upon applying

the divergence theorem, we obtain∫
∂Vm

[
G gradux +Gu,x + λ̃(divu)i

]
· ndA+

∫
Vm

fx dV = 0 , (8.15a)

∫
∂Vm

[
G graduy +Gu,y + λ̃(divu)j

]
· ndA+

∫
Vm

fy dV = 0 , (8.15b)

where Vm is the space region occupied by the cell m, ∂Vm is its boundary, and n is the

outward unit normal to ∂Vm.

Since we model cells as polygons (in particular, as hexagons), the surface integrals

in Eqs. (8.15) can be split in the sum of the integrals over the cell faces:

Nm∑
n=1

∫
∂Vmn

[
G(gradux · nmn) +G(u,x · nmn) + λ̃(divu)(i · nmn)

]
dA

+

∫
Vm

fx dV = 0 , (8.16a)

Nm∑
n=1

∫
∂Vmn

[
G(graduy · nmn) +G(u,y · nmn) + λ̃(divu)(j · nmn)

]
dA

+

∫
Vm

fy dV = 0 , (8.16b)

with Nm being the number of faces of the cell m, ∂Vm =
⋃Nm
n=1 ∂Vmn, and ∂Vmn

denoting the region occupied by the face n of the cell m, of area Amn and outward

unit normal nmn (spatially uniform along each cell face). We note that, in this two-

dimensional problem, volume integrals become surface integrals, and surface integrals

become line integrals, linearly weighed by the thickness along the z-direction.
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Discretization

We now introduce appropriate numerical schemes to evaluate the integrals and the

derivatives. By adopting the mid-point rule for the integrals, we obtain

Nm∑
n=1

[
G(gradux)mn · nmn +G(u,x)mn · nmn + λ̃(divu)mn(i · nmn)

]
Amn

+ fmx Vm = 0 , (8.17a)

Nm∑
n=1

[
G(graduy)mn · nmn +G(u,y)mn · nmn + λ̃(divu)mn(j · nmn)

]
Amn

+ fmy Vm = 0 , (8.17b)

where the superscript mn means “evaluated in the mid-point of the face n of the cell

m”, whereas the superscript m means “evaluated in the center of the cell m”. More

explicitly, we have:

Nm∑
n=1

[
G(umnx,xn

mn
x + umnx,yn

mn
y ) +G(umnx,xn

mn
x + umny,xn

mn
y )

+ λ̃(umnx,xn
mn
x + umny,yn

mn
x )

]
Amn + fmx Vm = 0 , (8.18a)

Nm∑
n=1

[
G(umny,xn

mn
x + umny,yn

mn
y ) +G(umnx,yn

mn
x + umny,yn

mn
y )

+ λ̃(umnx,xn
mn
y + umny,yn

mn
y )

]
Amn + fmy Vm = 0 , (8.18b)

and, after a convenient re-arrangement, we obtain

Nm∑
n=1

[
(λ̃+ 2G)umnx,xn

mn
x +Gumnx,yn

mn
y +Gumny,xn

mn
y + λ̃umny,yn

mn
x

]
Amn + fmx Vm = 0 ,

(8.19a)
Nm∑
n=1

[
(λ̃+ 2G)umny,yn

mn
y +Gumnx,yn

mn
x +Gumny,xn

mn
x + λ̃umnx,xn

mn
y

]
Amn + fmy Vm = 0 .

(8.19b)

To approximate the derivatives at mn, we resort to the local reference system ξmn,

ηmn, represented for regular and non-regular grids in Fig. 8.2. This reference system

is such that ξmn connects the centers of the cells m and n, whereas ηmn is aligned

with the face mn. The axis ξmn is directed from the cell m to the cell n and, by

counterclockwise numbering the cells surrounding the cell m, the axis ηmn is directed

from the cell n− 1 to the cell n+ 1, when there is no jump in numbering. We remark

that, for a regular (hexagonal) grid, ξmn is normal to the face n, such that ξmn and ηmn

define an orthogonal reference system. In general, this is not the case for a non-regular
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m
mn

n

n+ 1

n− 1

mn(n+ 1)

mn(n− 1)

ξmn
ηmn

m
mn

n

n+ 1

n− 1

mn(n+ 1)

mn(n− 1)

ξmnηmn

x

y

(a) (b)

Figure 8.2: Regular (a) and non-regular (b) grids with the local reference
system ξmn , ηmn.

grid.

The derivatives of ui (with i = x, y) with respect to ξmn and ηmn can be expressed,

through the chain rule, as follows:u
mn
i,ξ

umni,η

 =

x
mn
,ξ ymn,ξ

xmn,η ymn,η


︸ ︷︷ ︸

Jmn

u
mn
i,x

umni,y

 , (8.20)

in which Jmn is the Jacobian matrix of the coordinate transformation. By inverting

Jmn, we find the desired expressions for umni,x and umni,y :

u
mn
i,x

umni,y

 =
1

Jmn

 ymn,η −ymn,ξ

−xmn,η xmn,ξ


u

mn
i,ξ

umni,η

 , (8.21)

where Jmn = det Jmn = xmn,ξ ymn,η − xmn,η ymn,ξ . We approximate the metric quantities

as

xmn,ξ ≈
xn − xm
ξn − ξm , ymn,ξ ≈

yn − ym
ξn − ξm , (8.22a)

xmn,η ≈
xmn(n+1) − xmn(n−1)

ηmn(n+1) − ηmn(n−1)
, ymn,η ≈

ymn(n+1) − ymn(n−1)

ηmn(n+1) − ηmn(n−1)
, (8.22b)

where the superscripts mn(n+1) and mn(n−1) indicate the vertexes in common among

cells m, n, n+ 1 and m, n, n− 1 (see Fig. 8.2). In the case of a regular (hexagonal)

grid, Jmn describes the usual transformation rule for vector components between

orthogonal reference systems, Eqs. (8.22) are exact, and Jmn = 1. We approximate

the displacement derivatives umni,ξ and umni,η through the central finite difference scheme:

umni,ξ ≈
uni − umi
ξn − ξm , (8.23a)
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umni,η ≈
u
mn(n+1)
i − umn(n−1)

i

ηmn(n+1) − ηmn(n−1)
. (8.23b)

However, the displacement components in the vertexes are not the unknowns of the

problem; hence, we approximate them through the average of the corresponding values

in the surrounding cell centers:

u
mn(n+1)
i ≈ umi + uni + un+1

i

3
, (8.24a)

u
mn(n−1)
i ≈ umi + uni + un−1

i

3
. (8.24b)

For a non-regular grid, the terms in Eqs. (8.24) should be weighed through the relative

distances between vertexes and centers. By substituting Eqs. (8.24) into Eq. (8.23b),

we obtain

umni,η ≈
(un+1
i − un−1

i )/3

ηmn(n+1) − ηmn(n−1)
. (8.25)

Finally, by replacing Eqs. (8.22), (8.23a), and (8.25) into Eq. (8.21), we get

umni,x =
(ymn(n+1) − ymn(n−1))(uni − umi )− (yn − ym)(un+1

i − un−1
i )/3

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
,

(8.26a)

umni,y =
−(xmn(n+1) − xmn(n−1))(uni − umi ) + (xn − xm)(un+1

i − un−1
i )/3

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
,

(8.26b)

where it is clear that in the approximation of the derivatives of the displacement

components at mn also the cells n+ 1 and n− 1 are involved, even in the case of a

regular grid. Substitution in Eqs. (8.19) leads to

Nm∑
n=1

[
(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))

]−1

{
(λ̃+ 2G)

[
(ymn(n+1) − ymn(n−1))(unx − umx )− (yn − ym)(un+1

x − un−1
x )/3

]
nmnx

+G
[
−(xmn(n+1) − xmn(n−1))(unx − umx ) + (xn − xm)(un+1

x − un−1
x )/3

]
nmny

+G
[
(ymn(n+1) − ymn(n−1))(uny − umy )− (yn − ym)(un+1

y − un−1
y )/3

]
nmny

+ λ̃
[
−(xmn(n+1) − xmn(n−1))(uny − umy ) + (xn − xm)(un+1

y − un−1
y )/3

]
nmnx

}
Amn

+ fmx Vm =

Nm∑
n=1

Hmn
x Amn + fmx Vm = 0 , (8.27a)
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Nm∑
n=1

[
(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))

]−1

{
(λ̃+ 2G)

[
−(xmn(n+1) − xmn(n−1))(uny − umy ) + (xn − xm)(un+1

y − un−1
y )/3

]
nmny

+G
[
−(xmn(n+1) − xmn(n−1))(unx − umx ) + (xn − xm)(un+1

x − un−1
x )/3

]
nmnx

+G
[
(ymn(n+1) − ymn(n−1))(uny − umy )− (yn − ym)(un+1

y − un−1
y )/3

]
nmnx

+ λ̃
[
(ymn(n+1) − ymn(n−1))(unx − umx )− (yn − ym)(un+1

x − un−1
x )/3

]
nmny

}
Amn

+ fmy Vm =

Nm∑
n=1

Hmn
y Amn + fmy Vm = 0 , (8.27b)

where we remind that nmnx and nmny are the components of the normal unit vector

directed from the cell m to the cell n, whereas Hmn
x and Hmn

y are the components

of the numerical flux Hmn exchanged between the cells m and n (Quarteroni, 2009),

here physically corresponding to a mechanical traction vector, and also depending on

the unknowns in the cells n+ 1 and n− 1. Eqs. (8.27) can be readjusted in a more

convenient form, as follows:

Nm∑
n=1

(
axxmnu

n
x + axymnu

n
y

)
+ axxmmu

m
x + axymmu

m
y + fmx Vm = 0 , (8.28a)

Nm∑
n=1

(
ayxmnu

n
x + ayymnu

n
y

)
+ ayxmmu

m
x + ayymmu

m
y + fmy Vm = 0 , (8.28b)

where

axxmn =
(λ̃+ 2G)(ymn(n+1) − ymn(n−1))nmnx −G(xmn(n+1) − xmn(n−1))nmny

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn

+
1

3

−(λ̃+ 2G)(yn−1 − ym)n
m(n−1)
x +G(xn−1 − xm)n

m(n−1)
y

(xn−1 − xm)(ymn(n−1) − ymn(n−2))− (yn−1 − ym)(xmn(n−1) − xmn(n−2))
Am(n−1)

+
1

3

(λ̃+ 2G)(yn+1 − ym)n
m(n+1)
x −G(xn+1 − xm)n

m(n+1)
y

(xn+1 − xm)(ymn(n+2) − ymn(n+1))− (yn+1 − ym)(xmn(n+2) − xmn(n+1))
Am(n+1) ,

(8.29a)

axymn =
G(ymn(n+1) − ymn(n−1))nmny − λ̃(xmn(n+1) − xmn(n−1))nmnx

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn

+
1

3

−G(yn−1 − ym)n
m(n−1)
y + λ̃(xn−1 − xm)n

m(n−1)
x

(xn−1 − xm)(ymn(n−1) − ymn(n−2))− (yn−1 − ym)(xmn(n−1) − xmn(n−2))
Am(n−1)

+
1

3

G(yn+1 − ym)n
m(n+1)
y − λ̃(xn+1 − xm)n

m(n+1)
x

(xn+1 − xm)(ymn(n+2) − ymn(n+1))− (yn+1 − ym)(xmn(n+2) − xmn(n+1))
Am(n+1) ,

(8.29b)

axxmm =

Nm∑
n=1

−(λ̃+ 2G)(ymn(n+1) − ymn(n−1))nmnx +G(xmn(n+1) − xmn(n−1))nmny

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn ,

(8.29c)
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axymm =

Nm∑
n=1

−G(ymn(n+1) − ymn(n−1))nmny + λ̃(xmn(n+1) − xmn(n−1))nmnx

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn ,

(8.29d)

ayxmn =
−G(xmn(n+1) − xmn(n−1))nmnx + λ̃(ymn(n+1) − ymn(n−1))nmny

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn

+
1

3

G(xn−1 − xm)n
m(n−1)
x − λ̃(yn−1 − ym)n

m(n−1)
y

(xn−1 − xm)(ymn(n−1) − ymn(n−2))− (yn−1 − ym)(xmn(n−1) − xmn(n−2))
Am(n−1)

+
1

3

−G(xn+1 − xm)n
m(n+1)
x + λ̃(yn+1 − ym)n

m(n+1)
y

(xn+1 − xm)(ymn(n+2) − ymn(n+1))− (yn+1 − ym)(xmn(n+2) − xmn(n+1))
Am(n+1) ,

(8.29e)

ayymn =
−(λ̃+ 2G)(xmn(n+1) − xmn(n−1))nmny +G(ymn(n+1) − ymn(n−1))nmnx

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn

+
1

3

(λ̃+ 2G)(xn−1 − xm)n
m(n−1)
y −G(yn−1 − ym)n

m(n−1)
x

(xn−1 − xm)(ymn(n−1) − ymn(n−2))− (yn−1 − ym)(xmn(n−1) − xmn(n−2))
Am(n−1)

+
1

3

−(λ̃+ 2G)(xn+1 − xm)n
m(n+1)
y +G(yn+1 − ym)n

m(n+1)
x

(xn+1 − xm)(ymn(n+2) − ymn(n+1))− (yn+1 − ym)(xmn(n+2) − xmn(n+1))
Am(n+1) ,

(8.29f)

ayxmm =

Nm∑
n=1

G(xmn(n+1) − xmn(n−1))nmnx − λ̃(ymn(n+1) − ymn(n−1))nmny

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn ,

(8.29g)

ayymm =

Nm∑
n=1

(λ̃+ 2G)(xmn(n+1) − xmn(n−1))nmny −G(ymn(n+1) − ymn(n−1))nmnx

(xn − xm)(ymn(n+1) − ymn(n−1))− (yn − ym)(xmn(n+1) − xmn(n−1))
Amn .

(8.29h)

We note that each coefficient axxmn, axymn, ayxmn, and ayymn is given by the sum of three

contributions, whereby the first is associated with Hmn, the second with Hm(n−1), and

the third with Hm(n+1). Moreover, for the conservation of linear momentum for the

cell m, it can be shown that

Nm∑
n=1

(
axxmn + axymn

)
+ axxmm + axymm = 0 , (8.30a)

Nm∑
n=1

(
ayxmn + ayymn

)
+ ayxmm + ayymm = 0 . (8.30b)

After writing Eqs. (8.28) for each cell, we obtain a linear algebraic system of

2M equations of the type Au = b, where u is the unknown vector, containing the

displacement components in the cell centers, b is the known vector, containing the

body force components (due to electrostatic and osmotic stresses) in the cell centers,

and A is the coefficient matrix, depending on geometry and mechanical properties.

The coefficient matrix

We order the components of u and b as follows:

uT =
[
u1
x, u

1
y, ..., u

M
x , u

M
y

]
, (8.31)
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bT = −
[
f1
xV1, f

1
yV1, ..., f

M
x VM , f

M
y VM

]
, (8.32)

such that A is a block symmetric matrix:

A =


A11 A12 . . . A1M

A12 A22 . . . A2M

...
...

. . .
...

A1M A2M . . . AMM

 , (8.33)

where, for m = 1, ...,M and n > m,

Amn =

a
xx
mn axymn

ayxmn ayymn

 (8.34)

if the cell n adjoins the cell m, otherwise Amn = 0, and, for m = 1, ...,M ,

Amm =

a
xx
mm axymm

ayxmm ayymm

 = −
∑
n6=m

Amn . (8.35)

We observe that the block symmetry of A originates because ξmn = −ξnm, ηmn = −ηnm,

and nmn = −nnm, that is, because adjoining cells exchange equal and opposite fluxes:

Hmn
x = −Hnm

x , Hmn
y = −Hnm

y ; the matrices Amn and Amm are not symmetric; most

of the Amn matrices are zero matrices, and consequently A is sparse; because of Eq.

(8.35), deriving from the conservation of linear momentum for each cell, A is block

diagonally dominant. The linear system can be solved by inverting the coefficient

matrix: u = A−1b, once the boundary conditions are implemented.

The body force

Under small deformations, the body force can be computed once the coupled problems

of electrostatics and ion transport are solved, that is, when the electric potential and

ion concentrations are known in the cell cluster (Pietak and Levin, 2016). We write

the discretized form of the body force by starting from Eq. (8.7). After integration,

application of the divergence theorem, and split of the surface integral, we have∫
Vm

f dV =

∫
Vm

div(σpol + σmix) dV =

∫
∂Vm

(σpol + σmix)ndA

=

Nm∑
n=1

∫
∂Vmn

(σpol + σmix)nmn dA . (8.36)

By using the mid-point integration rule, we obtain

∫
Vm

f dV ≈
Nm∑
n=1

(σmnpol + σmnmix)nmnAmn . (8.37)
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Upon substitution of Eqs. (8.5) and (8.6), Eq. (8.37) becomes

∫
Vm

f dV ≈ ε0

Nm∑
n=1

Amn


[
(εr − 1/2)(emnx )2 − 1/2(emny )2

]
nmnx + εre

mn
x emny nmny

εre
mn
x emny nmnx +

[
(εr − 1/2)(emny )2 − 1/2(emnx )2

]
nmny



−RT
Nm∑
n=1

Amn(cmn − c0)

n
mn
x

nmny

 . (8.38)

We assume the electric field across two cells to be normal to their interface, such that

emnx = emnnmnx , (8.39a)

emny = emnnmny , (8.39b)

where emn is computed through the central finite difference scheme, as the difference

between the membrane potentials of the neighboring cells divided by the double of the

membrane thickness:

emn ≈ −ψ
n
m − ψmm

2tm
, (8.40)

in which ψm is the membrane potential and tm is the membrane thickness. We

approximate the osmotic concentration by averaging the values of the adjoining cells:

cmn ≈ cn + cm

2
. (8.41)

Eqs. (8.39), (8.40) and (8.41) must be replaced in Eq. (8.38), and the latter substituted

in Eqs. (8.27) and in the following equations for fmx Vm and fmy Vm.

The contribution of a boundary cell face ∂Vmn ∈ S (with S cluster boundary) to the

body force in the corresponding boundary cell is computed as (∆σmnpol +∆σmnmix)nmnAmn,

where ∆σmnpol = σ̄mnpol −σmpol and ∆σmnmix = σ̄mnmix−σmmix are the jumps in the electrostatic

and osmotic stresses across the boundary, with σ̄mnpol and σ̄mnmix electrostatic and osmotic

stresses in the bath surrounding the cluster. Since the boundary is physically represented

by the concatenation of portions of cell membranes, which are comparable to capacitors

(Pietak and Levin, 2016), we assume the electric field at both sides of the boundary

to be zero, such that ∆σmnpol = 0. Upon using Eq. (8.6) for ∆σmnmix, we obtain

∆σmnmix = −RT (c̄mn − cm), in which c̄mn is the osmotic concentration in the bath.

The boundary conditions

Boundary conditions must be incorporated in the linear system Au = b. We first con-

sider the kinematic boundary condition (8.10). If ∂Vmn ∈ Su, when the corresponding

numerical flux has to be evaluated, we use the backward (instead of the central) finite

difference scheme to approximate the derivatives with respect to ξmn, such that, in

place of Eqs. (8.22a) and (8.23a), we have

xmn,ξ ≈
xmn − xm
ξmn − ξm , ymn,ξ ≈

ymn − ym
ξmn − ξm , (8.42a)
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umni,ξ ≈
umni − umi
ξmn − ξm =

ūmni − umi
ξmn − ξm , (8.42b)

where Eq. (8.10) has been introduced in Eq. (8.42b). Regarding the derivatives with

respect to ηmn, Eq. (8.22b) remains valid, and, upon usage of Eq. (8.10), Eq. (8.23b)

becomes

umni,η ≈
ū
mn(n+1)
i − ūmn(n−1)

i

ηmn(n+1) − ηmn(n−1)
. (8.43)

The linear system modifies according to Eqs. (8.42a), (8.42b), and (8.43), with the flux

terms proportional to ūmni , ū
mn(n+1)
i , and ū

mn(n−1)
i embedded in b2m−1 and b2m, and

those proportional to umi embedded in Amm. If ū is uniform along the face, vertexes

included, one has umni,η = 0. Moreover, if ū = 0, there are no additional terms in b2m−1

and b2m.

Regarding the static boundary condition (8.11), if ∂Vmn ∈ St, we set

Hmn = tmnmec = t̄mnmec (8.44)

and we add the components of this numerical flux to b2m−1 and b2m, respectively.

Again, if t̄m = 0, there are no additional terms in b2m−1 and b2m.

Deformation and stress fields

Once obtained the displacement vector u, we evaluate the in-plane deformation field

in the cell centers by resorting to the compatibility equations (8.4). This requires the

computation of the discrete displacement gradient in the cell centers, which is obtained

by averaging the discrete displacement gradients at the cell faces mid-points:

(gradu)m ≈ 1

Nm

Nm∑
n=1

(gradu)mn ≈ 1

Nm

Nm∑
n=1

u
mn
x,x umnx,y

umny,x umny,y

 (8.45)

for m = 1, ...,M , where in turn umni,x and umni,y (with i = x, y) are given by Eqs. (8.26).

More accurate approximations, also accounting for the relative distances between cell

faces and cell center, should be employed for a non-regular grid. Under plane stress

conditions, εzz = −ν(εxx + εyy)/(1− ν).

After obtaining ε, we compute the in-plane mechanical stress field through the

constitutive law

σmec = 2Gε+ λ̃(εxx + εyy)I . (8.46)

Under plane strain conditions, σzz = λ(εxx + εyy).

8.3 Bio-sensing : how mechanosensitive ion

channels sense the cell membrane mechanics

Mechanosensitive ion channels (MCs) respond to the mechanics of the cell

membrane (Martinac, 2004). Here, we assume that, for a given membrane
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Figure 8.3: Geometry of the channel-membrane system (adapted from Wiggins
and Phillips (2004)).

mechanical state, MCs instantaneously reach their steady state open probability.

Moreover, as proposed by Wiggins and Phillips (2004), we adopt the following

energy form governing the MCs behavior:

G =
1

2
CKU2 − nA , (8.47)

which depends on the hydrophobic mismatch 2U between channel and membrane

(Fig. 8.3) and on the membrane tension n; moreover, C = 2πR and A = πR2

are the circumference and area of the channel, whose radius is R, and K is

the effective elastic modulus of the membrane, resulting from the hydrophobic

mismatch linear elastic problem. As in Fig. 8.3, 2U = tm −W , in which tm is

the membrane thickness and W is the channel hydrophobic length.

Wiggins and Phillips (2004) consider the channel as a two-state system,

which may be either closed, with radius RC , or open, with radius RO. Hence, by

expressing Eq. (8.47) in terms of R and imposing G(RO) = G(RC), the opening

membrane tension results

nopen =
KU2

RO +RC
. (8.48)

The open state is energetically favored when n > nopen. Then, one resorts to

the Boltzmann distribution for the channel open probability popen, increasing

with n and being half if n = nopen:

popen =
1

1 + exp [π (R2
O −R2

C) (nopen − n) /(kBT )]
, (8.49)

with kB the Boltzmann constant.

In this work, we neglect interactions of neighbor MCs, thus assuming the



146 On the coupling of mechanics with bioelectricity

following relation for the membrane diffusivity of the ion species i:

Di
m = Di

m,0 +Di
MC popen(n) , (8.50)

where Di
m,0 is the diffusivity in the absence of open MCs and Di

MC is the

additional diffusivity for all available channels open. The diffusivity Di
m governs

the transmembrane electro-diffusion by entering the Goldman-Hodgkin-Katz

flux equation (7.1), as implemented in BETSE (Pietak and Levin, 2016).

We remark that MCs may exhibit an inactivated state (Coste et al., 2010;

Peyronnet et al., 2014), whose effect would impact our model by reducing the

membrane diffusivity. Albeit relevant to quantitatively solve specific problems,

accounting for this would not change the qualitative outcome of our investigation.

As bioelectricity influences biomechanics through the active stresses entering

f in Eq. (8.9), biomechanics influences bioelectricity through MCs gating. As

already mentioned, in our resolution strategy we assume a simple partly explicit

algorithm in which, at time t, we employ e and c to evaluate f . By choosing

a suitably small time step ∆t, solving Eq. (8.9) provides σmec(t+ ∆t), which

determines n as follows, and finally Di
m through Eqs. (8.49) and (8.50).

We treat the cell membrane as a structural membrane subject to a mechanical

pressure difference ∆pmec, having principal curvature radii r1 and r2. Equilibrium

establishes that (Huang et al., 2012)

n = ∆pmec
r1r2

r1 + r2
. (8.51)

In our framework, each cell experiences a uniform intracellular mechanical pres-

sure pmec = (trσmec)/3, while the extracellular mechanical pressure vanishes,

since the extracellular space is continuous and connected with the bath surround-

ing the cluster, and hence relatively free to accommodate deformation. In the

adopted small strains setting, balance equations are written on the undeformed

configuration, such that r1 and r2 are the initial curvature radii. Moreover, as

illustrated in Fig. 8.1, to obtain an average membrane tension, we consider a

cell of in-plane circular shape with radius r1 = r, such that, the out-of-plane

radius being r2 →∞, Eq. (8.51) particularizes to

n = pmecr . (8.52)

The membrane equibiaxial tension state underlying Eq. (8.51) relies on the

relatively small bending and shear stiffnesses of the membrane (Huang et al.,

2012), the former conferred by the inner cytoskeleton and the surrounding

glycocalyx, the latter resulting from the liquid-like behavior of lipid molecules,

freely flowing within the membrane surface. We remark that in patch clamp
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Figure 8.4: Membrane surrounded by a cell wall; real (left) and model (right).

electrophysiology, used to investigate MCs gating, Eq. (8.51) is also adopted to

estimate n resulting from an applied pressure and a measured geometry (Haswell

et al., 2011). This experimental technique circumvents known issues in singling

out the tension felt by membranes in intact animal cells (Hoffmann et al., 2009).

In the next Sec. 8.3.1, for the interested reader, we determine n on the basis

of two richer models. First, we consider the case of plant cells, where the plasma

membrane, in which MCs are embedded (Peyronnet et al., 2014; Hamilton et al.,

2015), is surrounded by a stiff cell wall, contributing to the mechanics of the

cluster in place of the anchoring junctions. Second, back to the case of animal

cells, we account for the through-the-thickness membrane stretch and for the

transmembrane electric field; this analysis establishes the validity of Eq. (8.52).

8.3.1 Estimation of the cell membrane tension†

Membrane surrounded by a cell wall under small strains

Here, we propose how to estimate the membrane tension when the membrane curvature

radius and the internal pressure acting on the membrane are known. We first propose

a relation valid for cells with wall, such as plant cells, and then we particularize it to

the case of cells without wall, such as animal cells.

A reliable estimate can be obtained, under plane strain conditions, by considering a

circular membrane of outer radius r and thickness tm, surrounded by a wall of thickness

tw. Isotropic linear elasticity provides the following radial displacement field (Love,

1927):

um
r = Amr +Bm/r r ∈ [r − tm, r] , (8.53a)

uw
r = Awr +Bw/r r ∈ [r, r + tw] , (8.53b)

where the integration constants Am, Bm, Aw, and Bw must be determined by imposing
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the boundary and interfacial conditions. The relevant strain components are

εrr =
dur

dr
, (8.54a)

εθθ =
ur

r
, (8.54b)

where εrr is the radial strain and εθθ is the circumferential strain. The corresponding

stress components read

σi
rr =

2Gi

1− 2νi
[(1− νi)εrr + νiεθθ] , (8.55a)

σi
θθ =

2Gi

1− 2νi
[νiεrr + (1− νi)εθθ] , (8.55b)

in which Gi and νi are the shear modulus and Poisson ratio of the layer i, with i = m,w.

In the case in which the internal pressure is pmec and the external pressure vanishes,

the boundary conditions read

σm
rr(r − tm) = −pmec , (8.56a)

σw
rr(r + tw) = 0 . (8.56b)

At the interface between membrane and wall the radial displacement and stress must

be continuous:

um
r (r) = uw

r (r) , (8.57a)

σm
rr(r) = σw

rr(r) . (8.57b)

Eqs. (8.56) and (8.57) can be solved for Am, Bm, Aw, and Bw.

The membrane tension n is defined as the integral of σm
θθ over tm:

n =

∫ r

r−tm
σm
θθ dr . (8.58)

In the limit of tm, tw � r we finally obtain

n =

[
1 +

twGw/(1− νw)

tmGm/(1− νm)

]−1

pmecr . (8.59)

We note that the geometrical and mechanical properties of both plasma membrane

and cell wall contribute to determine the membrane tension. Since twGw is larger

than tmGm, Eq. (8.59) establishes that a relatively large pmec is required to obtain a

membrane tension n able to open a mechanosensitive channel; indeed, compatibility and

material properties dictate that a much larger circumferential stress σθθ must develop

in the wall, whereby the integral of σθθ over the whole thickness must equilibrate pmecr.

Finally, we note that, by setting tw = 0, that is, in the absence of wall, Eq. (8.59)

particularizes to the relation relevant for our investigation on wall-free cells, that is, Eq.

(8.52). We note that this relation can also be established by equilibrium considerations

only (Huang et al., 2012), without involving compatibility and constitutive equations.
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Figure 8.5: Membrane without cell wall (model).

Membrane without cell wall under large strains

Animal cells, being wall-free, are softer than plant cells. Therefore, in the case here of

interest of animal cells, it is worth to evaluate to which extent variations of r can affect

the membrane tension n. Beside considering the effect of the intracellular mechanical

pressure pmec, we also consider that of the electric field e acting across the membrane

thickness. Indeed, it has been shown that applying a voltage across a cell membrane

may result in a change in the membrane tension and, consequently, in the cell radius

(Nguyen et al., 2012).

We refer to the nonlinear electroelastic problem of a circular cylindrical tube

presented in Melnikov and Ogden (2016). By considering the membrane as an in-

compressible isotropic Neo-Hookean solid and by introducing the thin-walled tube

approximation, we obtain for the radial stretch λr:

λr = λ−1/2
z

[
1− 1

Gm

(
pmecλzr

tm
+ ε0εrλ

2
z|e|2

)]1/4

, (8.60)

where λz is the out-of-plane stretch. By further assuming vanishing total radial stress

σrr, the membrane tension n reads

n = σθθtm = pmecrλ
−1
z λ−2

r = pmecr

[
1− 1

Gm

(
pmecλzr

tm
+ ε0εrλ

2
z|e|2

)]−1/2

, (8.61)

where σθθ is the total circumferential stress. Since both pmec and e induce a membrane

thinning (λr < 1 in Eq. (8.60)), considering λr in Eq. (8.61) increases the membrane

tension.

We estimate the parameter Gm through the experimental value for the membrane

elastic stiffness to equibiaxial tension Ka (Phillips et al., 2012), under the assumption
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of incompressible elasticity:

Gm =
Ka

3tm
≈ 107 N/m2 , (8.62)

whereas εr = 3 (Gramse et al., 2013). The electric field strength depends on the

membrane potential ψm:

|e| = |ψm|
tm

. (8.63)

We now refer to plane strain conditions (λz = 1). By considering a quite large

mechanical pressure pmec = 1 kPa, a typical resting membrane potential ψm = −50 mV,

and ordinary geometrical parameters r = 5µm and tm = 7.5 nm, we obtain λr = 0.98

and n = 1.04 pmecr, in which the contribution of e to λr is negligible with respect to

that of pmec. The small increase in n allows us to neglect the effect of λr, such that

Eq. (8.61) reduces to Eq. (8.52), employed in our simulations. Under plane stress

conditions we expect no significant variations of the results.

We remark that, in the case in which λr was accounted for, the MC open probability

in Eq. (8.49) would increase not only because of an increase of n, but also because of

a lowering of nopen associated with the reduction of U .

8.4 Simulations

We consider four initial boundary-value problems relevant to morphogenesis.

We limit our simulations to relatively short time intervals, such that the cluster

evolution involves suitably small strains.

To simplify the interpretation of the results, we focus on a minimum number

of ion species, that is, sodium ions Na+ and potassium ions K+, whose electro-

chemical potential gradients are directed outside and inside the cell, respectively.

Depolarization of specific regions is triggered by increasing the membrane diffu-

sivity to Na+, while hyperpolarization is obtained through K+-selective or cation

non-selective MCs. Generic charge-balancing anions M− and fixed negatively

charged proteins P− contribute as well to the membrane potential. Chloride ions

could be considered for specific applications: accounting for their inflow would

provide an osmotic effect qualitatively similar to Na+, along with a polarization

effect similar to that due to the outflow of K+. Calcium is present at very small

concentrations in cells and signals by virtue of its chemical nature: hence, it

would not play a relevant role in our model.

As shown in Pietak and Levin (2016), voltage-gated ion channels and gap

junctions are involved in bioelectrical signaling. In the following we provide only

some comments about their possible qualitative effect in our simulations, where

we restrict attention to MCs, which are the most relevant when investigating on

the interplay between mechanics and bioelectricity.
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8.4.1 Model parameters

The simulations are conducted at body temperature T = 310 K. Unless otherwise

specified, we adopt the following model parameters.

We select a Young modulus E = 1.6 kPa, as obtained through indentation

tests on healthy human cervical epithelial cells (Guz et al., 2014). By assuming

nearly incompressible material behavior, we set Poisson ratio ν = 0.49. As

relative permittivity of the cell membrane we adopt εr = 3, as measured in

Gramse et al. (2013).

The initial intracellular concentrations are: c0Na+ = 10 mol/m3, c0K+ =

140 mol/m3, c0P− = 135 mol/m3, and c0M− = 15 mol/m3. The initial extracellular

concentrations are: ce,0Na+ = 145 mol/m3, ce,0K+ = 5 mol/m3, ce,0P− = 10 mol/m3,

and ce,0M− = 140 mol/m3. The adopted Na+ and K+ concentrations are in the

ranges of those found in physiological conditions in mammalian cells. Both

inside and outside cells, the initial osmotic concentration is uniform and equal

to c0 = 300 mol/m3, whereas the free charge ρ = F
∑

i zici (with zi denoting

the valency of the ion i) is zero, corresponding to null active stresses. Hence,

the initial configuration is undeformed. We note that this, although being con-

venient on the modeling side, does not correspond to physiological conditions,

characterized by a resting membrane potential, which can be estimated through

the Goldman-Hodgkin-Katz voltage equation (7.2) (Pietak and Levin, 2016),

and residual mechanical stresses (Lanir, 2009).

The diffusivity Di
m,0 of all mobile ions is 10−18 m2/s (Pietak and Levin, 2016),

except for specific regions where we increase DNa+

m,0 as a convenient way to trigger

depolarization.

With reference to a MC of large conductance, we use RO = 3.5 nm and RC =

2.3 nm as open and closed radii (Wiggins and Phillips, 2004). By considering

a 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid, abundant in lipid bilayers, the

effective elastic modulus of the membrane and the hydrophobic mismatch are

K = 27kBT nm−3 and 2U = 0.4 nm, respectively (Wiggins and Phillips, 2004).

Therefore, the opening tension (8.48) results nopen = 0.19kBT nm−2 = 0.8 mN/m,

which agrees with experiments (Phillips et al., 2012). Finally, we adopt an in-

plane cell radius r = 5µm.

8.4.2 Simulation 1: cancer progression

We deal with a circular cluster of diameter ≈ 150µm, composed of ≈ 175

cells. We posit plane stress state and, with reference to Eq. (8.10), we enforce

ū = 0 on S = Su.

We assume that a region of diameter ≈ 50µm in the center of the cluster

consists of cancerous cells, which are typically characterized by a depolarized
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membrane potential (Chernet and Levin, 2013b). This may be due to large

intracellular Na+ level (Yang and Brackenbury, 2013) and/or high expression of

Na+ channels (Djamgoz, 2014). To reproduce this situation, we choose to increase

DNa+

m,0 in the central region, thus therein setting DNa+

m,0 = 50×10−18 m2/s. Owing

to structural modifications of the cytoskeleton, cancerous cells often appear

softer than healthy ones (Lekka, 2016); thus, we adopt E = 1.4 kPa for them

(Guz et al., 2014). Fig. 8.6 illustrates the results of the simulation at t = 10 s.

In the cancerous region, a depolarized membrane potential ψm and an in-

creased osmotic concentration c originate because of the influx of Na+. The

results show that ψm reaches the steady state in some milliseconds, while c

continuously increases in the internal region during the simulation. Indeed,

at steady state membrane potential (as given by the Goldman-Hodgkin-Katz

voltage equation (7.2)) the net transmembrane electric current is zero, while

individual transmembrane ion fluxes (as given by the Goldman-Hodgkin-Katz

flux equation (7.1)) are in general non-vanishing.

The depolarized region and the surrounding cluster attract each other by the

electrostatic force fpol. Simultaneously, the strong gradient of c between the two

regions generates a large outward osmotic force fmix. An outward fmix also arises

at the cluster boundary, because of the difference in c between the boundary

cells and the surrounding bath, the latter being progressively ion-depleted.

The fpol field is irrelevant for the mechanical response. Instead, due to the

fmix field, we register a large positive mechanical pressure pmec in the cancerous

region, and a smaller negative pmec in the healthy cells, compressed by the

expansion of the tumor mass. The qualitative expansion of the inner region is

independent of the mechanical boundary condition applied to the cluster, while

the latter affects the qualitative deformation of the healthy cells, that would for

instance expand as well if we applied t̄mec = 0 on S = St.

To conclude, this simulation suggests that the depolarized state of cancerous

cells may result in an osmotically-driven expansion of the tumor, which is

enhanced by their large compliance. We note that osmosis has already been

related to cancer progression in literature. Specifically, Stroka et al. (2014)

have demonstrated that differential osmosis through the leading and trailing

edges of a single tumor cell in a narrow channel promotes cell migration; Hui

et al. (2019) have shown that migration of individual cancer cells in a confined

environment, driven by osmotic concentration gradients, is reduced by abating

the concentration of aquaporins, suggesting that cancer progression might be

hampered by reducing transmembrane osmosis.

Finally, we add that if gap junctions were accounted for, they would result

in some transport of Na+ from the inner region to the surrounding, that is,

to a reduction of the local depolarization accompanied with an increase of the
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Figure 8.6: (a) Membrane potential ψm(x), (b) osmotic concentration c(x),
(c) electrostatic force fpol(x), (d) osmotic force fmix(x), (e) displacement vector
u(x), and (f) mechanical pressure pmec(x) at t = 10 s. The central depolarized
region, in which ions accumulate, is expanded by osmotic forces.



154 On the coupling of mechanics with bioelectricity

depolarized area.

8.4.3 Simulation 2: osmoregulation

Here we investigate the role of MCs as osmoregulators. We consider the same

benchmark of Simulation 1, and additionally account for either K+-selective

MCs,2 with DK+

MC = 10−16 m2/s, or cation non-selective MCs,3 allowing transport

of both K+ and Na+, with DK+

MC = DNa+

MC = 10−16 m2/s. In Fig. 8.7 we represent

ψm(t), c(t), and pmec(t) for the innermost cell of the cluster, comparing the

responses obtained by accounting or not for MCs.

Without MCs, ψm is nearly constant, whereas c and pmec increase about

linearly. With K+-selective MCs, when pmec, and hence the membrane tension,

become sufficiently large, channels open, such that ψm nonlinearly decreases

and c increases less than linearly, since the inflow of Na+ due to the high DNa+

m

competes with the outflow of K+ through MCs. This effect hinders the increase

of fmix, such that, at the end of the simulation, the value of pmec is about half of

that in the absence of MCs. Given the selected diffusivities, we observe the same

qualitative behavior, though milder, in the case of cation non-selective MCs.

The foregoing negative feedback loop (where negative refers to the pressure

reduction due to channel opening) represents a possible mechanism for cells

to regulate osmotic pressure and, hence, their volume. Notably, MCs in bac-

teria, despite being non-selective to cations and anions (Martinac, 2004), are

hypothesized to operate as “safety valves” to prevent the membrane failure when

osmotic shock occurs (Phillips et al., 2012). The role of MCs as regulators of cell

volume in vertebrates is still debated, although several TRP channels exhibit

osmosensitivity (Hoffmann et al., 2009).

Furthermore, this simulation suggests that genetically modifying cells to

induce a high expression of K+-selective MCs could help to restore the membrane

potential of cancerous cells to its normal value, thereby hampering cancer

progression. Importantly, Chernet and Levin (2013b) have shown that an

artificial hyperpolarization obtained by overexpressing specific ion channels can

inhibit tumor formation. Beside tumor cells, also embryonic and stem cells tend

to be more depolarized than others (Levin, 2014), such that their activity could

potentially be guided through the aforementioned control plans.

We finally note that accounting for voltage-gated K+-selective or cation

non-selective channels in place of the corresponding MCs would have the same

qualitative effect on this benchmark, since pressurized regions are also depolar-

2K+-selective MCs are, for example, TREK and TRAAK channels, which can be found in
eukaryotes (Martinac, 2004).

3Cation non-selective MCs are, for example, the eukaryotic Piezo channels (Coste et al.,
2010).
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Figure 8.7: (a) Membrane potential ψm(t), (b) osmotic concentration c(t),
and (c) mechanical pressure pmec(t) in the innermost cell of the cluster. The
activation of MCs reduces ψm and the increase rate of c and pmec.
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ized.

8.4.4 Simulation 3: symmetry breaking

In the ion flux model of left-right asymmetry (Vandenberg and Levin, 2013), the

asymmetric expression of K+ channels and H+ pumps leads to ψm differences

between left and right sides of the embryo, which in turn cause an asymmetric

gene expression. Here we show that an asymmetric expression of K+-selective

MCs can mechanically induce asymmetric patterning.

We consider the elongated cluster in Fig. 8.8, with major axis ≈ 300µm along

the x-direction and minor axis≈ 100µm along the y-direction, consisting of≈ 300

cells. Under plane stress, with reference to Eqs. (8.10) and (8.11), we impose

ū = 0 on the straight top and bottom sides, along with t̄mec = 0 on the curved

left and right boundaries. In the central region V = {100 < x < 200µm,∀y} we

set DNa+

m,0 = 10−17 m2/s.

As shown in Fig. 8.8, ψm and c are symmetric in the absence of MCs, with

V strongly depolarized for the influx of Na+. Osmotic forces at the boundary of

V determine a horizontal symmetric elongation.

If K+-selective MCs (with DK+

MC = 10−16 m2/s) are present only in the right

half part of V, a local hyperpolarization occurs, as represented in Fig. 8.9.

Eventually, the asymmetric expression of MCs is responsible of a “left-right

asymmetry” in the cell migration pattern: indeed, the vertical line corresponding

to nil horizontal displacement is on the left of the mid-axis, and left side cells

migrate slightly more than right side cells.

Fig. 8.10 represents, as functions of t, the maxima of |ux| on the left and

right sides of the cluster, ulx and urx respectively. After MCs activate, ulx(t)

becomes progressively larger than urx(t), with both being reduced with respect

to the case without MCs.

In conclusion, differently from previous literature (see Vandenberg and Levin,

2013 and references therein), where left-right asymmetry of organs arises from

asymmetric gene expression, here asymmetric patterning is originated by physical

forces. In both cases, though, ion channels are fundamental in modulating the

phenomenon.

Finally, we also argue that additional osmotically-driven asymmetric morpho-

genesis should occur in the case of spatially non-uniform mechanical properties.

8.4.5 Simulation 4: long-range bioelectric signaling

Non-local bioelectricity (that is, the functional impact of the electrical state

of cells at long distance from a morphogenetic event in vivo) is involved in

tumorigenesis (Chernet and Levin, 2014), brain patterning (Pai et al., 2015),
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Figure 8.8: (a) Membrane potential ψm(x), (b) osmotic concentration c(x), and
(c) displacement vector u(x) at t = 10 s, without MCs. The central depolarized
region, in which ions accumulate, determines a symmetric horizontal elongation
of the cluster.
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Figure 8.9: (a) Membrane potential ψm(x), (b) osmotic concentration c(x), and
(c) displacement vector u(x) at t = 10 s, with MCs. The asymmetric expression
of MCs determines a symmetry breaking in the migration pattern.
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Figure 8.10: Maxima of |ux| on the right and left sides of the cluster. They
progressively diverge in time because of the asymmetric distribution of MCs.

and planarian regeneration (Levin et al., 2019). Here, we explore whether and

how long-range bioelectric signaling is mediated by cluster mechanics.

We deal with the same geometry of Simulation 3, but, under plane strain,

we impose ū = 0 on the curved left boundary, along with t̄mec = 0 on the rest

of the boundary. In the rightmost region of the domain Vr = {x > 250µm,∀y}
we select DNa+

m,0 = 2 × 10−18 m2/s. We perform two 5 s long analyses, one

without MCs, and one with uniformly distributed K+-selective MCs featuring

DK+

MC = 10−17 m2/s.

Without MCs, as shown in Fig. 8.11, Vr appears depolarized. The large

gradient of c between Vr and the ion-depleted bath produces large osmotic forces

at the right end, determining a rightward expansion. The mechanical pressure

field is non-trivial, being large in the depolarized region, reducing in the inner

cluster region, and then increasing again near the fixed left end.

As represented in Fig. 8.12, the MCs opening produces a hyperpolarization

of cells, which is larger near the curved boundaries, where pmec is larger. Notably,

while in Simulations 2 and 3 the initial depolarization is reduced by the local

opening of MCs, here MCs also open outside the depolarized region (that is,

non-locally). This results in the hyperpolarization of the left end region, located

far from the imposed bioelectrical perturbation. We note that, under plane

stress, this long-range effect would be largely mitigated by the stress relaxation

due to the free out-of-plane strain component.

Therefore, Simulation 4 highlights a possible case in which long-range bio-

electric signaling, mediated by biomechanical properties, occurs. Specifically,
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Figure 8.11: (a) Membrane potential ψm(x), (b) osmotic concentration c(x),
(c) electrostatic force fpol(x), (d) osmotic force fmix(x), (e) displacement vector
u(x), and (f) mechanical pressure pmec(x) at t = 5 s, without MCs. Osmotic
forces at the right end produce a rightward elongation of the cluster and a large
mechanical pressure near the fixed left end.
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Figure 8.12: (a) Membrane potential ψm(x) and (b) osmotic concentration
c(x) at t = 5 s, with MCs. These open because of the osmotic forces at the right
end, and trigger a change in ψm near the fixed left end.

MCs-driven long-range signaling is most likely to be induced in cluster regions

attracting larger mechanical stresses, thereby promoting MCs opening. This

may be due to specific mechanical boundary conditions or spatially variable

mechanical properties.

Moreover, while in Simulations 2 and 3 MCs trigger a negative feedback

loop by acting, respectively, as regulators of pmec (Fig. 8.7) and ux (Fig. 8.10),

this simulation exhibits a positive feedback loop, where the displacement field

increases because of the channel opening (Fig. 8.13). This is ultimately due

to non-local signaling, and specifically to the emergence of a region, in the

center-left part of the cluster (Fig. 8.12), where ψm and c are larger, thereby

producing further expansion forces.

8.5 Concluding remarks

The behavior of bioelectric networks in tissues is complex; thus, the use of

quantitative, bio-realistic simulators is essential to understand the dynamics of

such signals and to infer interventions driving cellular systems to biomedically-

desirable states. The BioElectric Tissue Simulation Engine is a finite volume

multiphysics simulator, written in PythonTM language, developed in Pietak and

Levin (2016) to model bioelectrical interactions in cell clusters, which we have

here extended to mechanics. On the one hand, the existence of electric fields and

ion concentration gradients originates electrostatic and osmotic forces, which in

turn, by equilibrium, lead to a mechanical stress field and, hence, to deformation.

On the other hand, the mechanics of the cell membrane impacts the opening

of ion channels, which are responsible for the transmembrane electro-diffusion,

eventually modulating bioelectrical forces.
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Figure 8.13: Maximum of ux as a function of t. It increases more rapidly after
MCs activate.

Our simulations show that osmotic forces induce an expansion of depolarized

regions (such as tumor, embryonic, and stem cell ensembles), while electrostatic

forces are negligible.4 We suggest that overexpressing K+-selective mechanosen-

sitive channels (MCs) in depolarized cells could help to hinder cancer progression

or to regulate the activity of embryonic and stem cells. Moreover, K+-selective

MCs may be exploited to obtain asymmetric patterning, or to induce non-local

bioelectric signals in regions with larger mechanical stress, as it may occur under

specific constraints. Such constraints may even allow K+-selective MCs to trig-

ger a positive feedback loop that amplifies the mechanical response, while MCs

usually establish negative feedback loops that regularize the global mechanical

behavior.

To summarize, in this work we have investigated a mechanism of mutual

coupling between mechanobioelectrical actuation and sensing, which may inspire

the design of biological smart soft robots with physically integrated control

structures (Pfeifer and Bongard, 2006; Cheney et al., 2014). However, relevant

tasks should be accomplished to achieve this goal. On the experimental side,

the suggested intervention strategies should be verified, by resorting to in vivo

manipulation of ion channels through pharmacological or optogenetic techniques,

and quantification of the corresponding membrane potential variations, including

long-range signaling. On the modeling side, the extension to large deformations

is a crucial step for the following reasons.

4We expect that the Maxwell stress would instead play a major role in the case of exogenous
bioelectricity. Indeed, cells experience relevant deformations when subject to external electric
fields (see, e.g., Nodargi et al., 2017).
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First, finite deformations would permit the accurate investigation of long-

lasting morphogenetic events involving non-regular cell clusters. Moreover, finite

deformations would allow the modeling of growth. This could provide insight

on the mechanics of bioelectricity-driven regeneration, toward illustrating the

ability of some biological systems to maintain a complex anatomical state despite

drastic injury - a kind of homeostatic process (Pezzulo and Levin, 2016). Indeed,

bioelectric patterns and long-range signaling seem to be implicated in regenera-

tion, as in planaria (Levin et al., 2019). Furthermore, large deformations are

necessary to introduce more appropriate mechanical constitutive laws, eventually

accounting for the cell’s internal structure. For instance, the mechanics of the

cytoskeleton could be described in more detail by leveraging, for example, on a

statistical treatment of cross-linked polymers (De Tommasi et al., 2015) or on a

soft tensegrity structure model (Fraldi et al., 2019). Lastly, large deformations

would enable a more accurate evaluation of the cell membrane tension through

the availability of the membrane local curvature in the deformed configuration.

Another major advancement would be the modeling of osmotically-driven

water fluxes, both across the membrane via aquaporins (Agre, 2006) and freely in

the extracellular space, by resorting, as an instance, to a poroelastic framework

in which volumetric deformations depend on the water flow (Coussy, 2004).

Finally, the inclusion of voltage-gated ion channels, gap junctions, and bio-

actuation proteins, such as prestins, converting the membrane potential to

force in the surrounding membrane (Dallos and Fakler, 2002), would allow the

investigation of further nonlinear feedback loops that might be exploited by cells

in morphogenesis and fine-tuned in synthetic biology applications.

Notably, the extension to large deformation poroelasticity is addressed in the

next chapter.





Chapter 9

An electrochemo-

poromechanical theory for

the mechanobioelectricity of

cell clusters

This chapter is adapted from “Leronni (2020), Modeling the mechanobioelectricity

of cell clusters, Biomechanics and Modeling in Mechanobiology”.

9.1 Introduction

The mecBETSE platform, presented in Leronni et al. (2020) and in the foregoing

Ch. 8, is limited to small deformations, thus hampering developmental appli-

cations. Moreover, it does not account for the water flow triggered by osmotic

pressure gradients, which, according to poromechanics frameworks (Coussy,

2004), largely employed for cells (Moeendarbary et al., 2013), is strictly related

with deformation.

In order to overcome the previous limits, and inspired by the framework

adopted for IPMCs in Sec. 5.2, we propose a continuum finite strain theory

coupling the bioelectricity and the poromechanics of cell clusters. In this theory,

the bioelectrical response is governed by mass balances for the intracellular

(IC) and extracellular (EC) concentrations of sodium, potassium, and chloride

ions, and by Gauss laws for the IC and EC electric potentials. The difference

between IC and EC electric potentials provides the membrane potential. The

poromechanical response is determined by mass balances for the IC and EC

165
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concentrations of water molecules, and by an overall momentum balance for

the displacement field. An important feature of the model is the possibility of

accounting for the transmembrane ion and water exchange through self-balancing

source terms in the IC and EC mass balances.

Previous efforts in the literature have already focused on the interplay be-

tween cell mechanics and transmembrane ion and water transport, including the

contributions of Sun and coworkers. In particular, Jiang and Sun (2013) have

proposed a mathematical model for the study of volume and pressure regulation

in eukaryotic cells, featuring water permeation, mechanosensitive ion channels,

ion pumps, and a quite detailed mechanics of the cell cortex. Later, Yellin et al.

(2018) have augmented the model in order to account for multiple ionic species

and the membrane potential. While Jiang and Sun (2013) and Yellin et al. (2018)

focus on the response of a single cell, here we rather aim at developing a minimal

tool able to deal with the overall electrochemo-poromechanics of a cell cluster.

However, in order to limit the complexity of our theory, in this first contribution

we neglect the modeling of both active ion pumps and gating of ion channels.

These aspects will be addressed in future investigations.

We systematically derive our theory in Sec. 9.2, starting from first principles.

In Sec. 9.3, with reference to a 1D axisymmetric benchmark, we discuss the

finite element solution of the proposed model obtained through the commercial

software COMSOL Multiphysics R©. We examine different conditions, including

the effect of accounting for gap junctions (Sec. 9.3.5) and tight junctions (Sec.

9.3.6). Finally, in Sec. 9.4 we draw the conclusions of our study, and outline

possible future developments.

9.2 Modeling framework

In the following, we develop a continuum Lagrangian finite strain theory ad-

dressing the mechanobioelectricity of the cell cluster described in Sec. 7.2 and

sketched in Fig. 7.1. By relying on mixture theory (Ateshian, 2007), we assume

that the solid network and the IC and EC spaces coexist within the same material

point, such that transmembrane fluxes should be regarded as local fluxes.

9.2.1 Balance equations

The momentum balance, to be solved for the displacement field u, describes the

mechanics of the cluster, governed by a solid network of cytoskeletal filaments

and anchoring junctions. Under the quasi-static approximation, and in the
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absence of bulk loads, it reduces to the mechanical equilibrium

Div P = 0 , (9.1)

where Div is the material divergence and P is the nominal stress tensor.

The mass balances for the IC and EC water concentrations read

Φ0Ċw + Div Jw = −Jm
w A

c/V c , (9.2a)

Φe
0Ċ

e
w + Div Je

w = Jm
w A

c/V c , (9.2b)

where Φ0 and Φe
0 are the initial IC and EC porosities, Cw and Ce

w are the IC and

EC molar concentrations of water per unit reference volume of the IC and EC

spaces, Jw and Je
w are the IC and EC nominal molar fluxes of water, Jm

w is the

transmembrane nominal molar flux of water, positive if water moves from the IC

to the EC space, Ac is the reference cell membrane area, and V c is the reference

cell volume. The symbol ˙ indicates time derivative, that is, Ċw = ∂Cw/∂t. Since

the cluster is constituted by closely packed cells, Φe
0 � Φ0. The terms on the

right-hand sides are self-balancing, that is, a source of water for the IC space is

a sink for the EC space, or vice versa.

Similarly, the mass balances for the IC and EC concentrations of mobile ion

i read

Φ0Ċi + Div Ji = −Jm
i A

c/V c , (9.3a)

Φe
0Ċ

e
i + Div Je

i = Jm
i A

c/V c , (9.3b)

where Ci and Ce
i are the IC and EC molar concentrations of ion i per unit

reference volume of the IC and EC spaces, Ji and Je
i are the IC and EC nominal

molar fluxes of ion i, and Jm
i is the transmembrane nominal molar flux of ion i.

For the sake of clarity, Jw and Ji, Je
w and Je

i , and Jm
w and Jm

i represent the

water and ion fluxes between cells through gap junctions (GJs), in the intercon-

nected intercellular spaces, and across cell membranes through aquaporins and

ion channels, respectively.

Finally, the Gauss laws for the IC and EC electric potentials ψ and ψe read

Div D = Φ0F
∑

i

ziCi , (9.4a)

Div De = Φe
0F
∑

i

ziC
e
i , (9.4b)

where D and De are the IC and EC nominal electric displacements, F is the

Faraday constant, and zi is the valency of ion i. The terms on the right-hand

sides represent the IC and EC nominal free charges, and account for both mobile
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and fixed ions.

9.2.2 Boundary and initial conditions

In our benchmark, we consider that the cluster is traction-free, that is, we

supplement Eq. (9.1) with the boundary condition

PN = 0 , (9.5)

where N is the outward unit normal to the reference boundary.

The initial conditions for the mass balances (9.2) and (9.3) read

Cw = C0
w , Ce

w = Ce,0
w , (9.6a)

Ci = C0
i , Ce

i = Ce,0
i . (9.6b)

We assume that water and ions can be exchanged with the bath surrounding

the cluster through the EC space only, provided that tight junctions (TJs) are

absent. Therefore, we equip Eqs. (9.2a) and (9.3a) with the boundary conditions

Jw ·N = 0 , (9.7a)

Ji ·N = 0 , (9.7b)

where the symbol · denotes the inner product.

As for Eqs. (9.2b) and (9.3b), in the absence of TJs we impose chemical

equilibrium at the boundary, that is

µe
w = µ̄w = µe,0

w , (9.8a)

µe
i = µ̄i = µe,0

i , (9.8b)

where µe
w and µe

i are the EC chemical potentials of water and ion i, coinciding

with those of the bath µ̄w and µ̄i, in turn supposed to be equal to the initial EC

ones. Instead, in the presence of sealing TJs, we impose the boundary conditions

Je
w ·N = 0 , (9.9a)

Je
i ·N = 0 . (9.9b)

Therefore, we assume that TJs are completely impermeable to both water and

ions.
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We assign to Eq. (9.4a) the boundary condition

D ·N = D̄m , (9.10)

in which D̄m is the transmembrane electric displacement at the boundary, which

will be defined in Sec. 9.2.6.

As for Eq. (9.4b), in the absence of TJs we impose electrical equilibrium,

that is

ψe = ψ̄ = 0 , (9.11)

where ψ̄ is the electric potential of the bath, assumed to be zero. Instead, in the

presence of TJs, we impose

De ·N = D̄tj , (9.12)

with D̄tj denoting the electric displacement across the TJs, which will be defined

in Sec. 9.2.6.

While in the present work we focus on endogenous mechanobioelectricity,

we remark that our framework may be also adopted to investigate the effect

of an externally applied mechanical load or electric field, or of the exposure to

an hypotonic or hypertonic environment, by enforcing appropriate boundary

conditions.

9.2.3 Thermodynamic restrictions

We follow the approach of Gurtin et al. (2010) for coupled problems of mechanics

and species transport, suitably augmented to account for the electric charge of

ions. Therefore, under isothermal conditions, the energy balance reads

U̇ = P · Ḟ + Φ0

(
µwĊw +

∑
i

µiĊi

)
+ Φe

0

(
µe

wĊ
e
w +

∑
i

µe
i Ċ

e
i

)
+ E · Ḋ + Ee · Ḋe

− Jw · ∇µw −
∑

i

Ji · ∇µ̃i − Je
w · ∇µe

w −
∑

i

Je
i · ∇µ̃e

i

−Ac/V c
[
Jm

w (µe
w − µw) +

∑
i

Jm
i (µ̃e

i − µ̃i)
]
, (9.13)

where U is the nominal internal energy density, F = I +∇u is the deformation

gradient (with I denoting the second-order identity tensor and ∇ denoting the

material gradient), µw and µi are the IC chemical potentials of water and ion i,

E = −∇ψ , Ee = −∇ψe (9.14)
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are the IC and EC nominal electric fields, and

µ̃i = µi + Fziψ , µ̃e
i = µe

i + Fziψ
e (9.15)

are the IC and EC electrochemical potentials of ion i.

Upon combining Eq. (9.13) with the second law of thermodynamics and

introducing the nominal Helmholtz free energy density W , we obtain the free

energy imbalance

−Ẇ +P · Ḟ+Φ0

(
µwĊw +

∑
i

µiĊi

)
+Φe

0

(
µe

wĊ
e
w +

∑
i

µe
i Ċ

e
i

)
+E ·Ḋ+Ee ·Ḋe

− Jw · ∇µw −
∑

i

Ji · ∇µ̃i − Je
w · ∇µe

w −
∑

i

Je
i · ∇µ̃e

i

−Ac/V c
[
Jm

w (µe
w − µw) +

∑
i

Jm
i (µ̃e

i − µ̃i)
]
≥ 0 . (9.16)

We assume that W is a function of the independent variables F, Cw, Ci, C
e
w, Ce

i ,

D, and De, such that Eq. (9.16) becomes

(
P− ∂W

∂F

)
· Ḟ +

(
Φ0µw −

∂W

∂Cw

)
Ċw +

∑
i

(
Φ0µi −

∂W

∂Ci

)
Ċi

+

(
Φe

0µ
e
w −

∂W

∂Ce
w

)
Ċe

w +
∑

i

(
Φe

0µ
e
i −

∂W

∂Ce
i

)
Ċe

i +

(
E− ∂W

∂D

)
· Ḋ

+

(
Ee − ∂W

∂De

)
· Ḋe − Jw · ∇µw −

∑
i

Ji · ∇µ̃i − Je
w · ∇µe

w −
∑

i

Je
i · ∇µ̃e

i

−Ac/V c
[
Jm

w (µe
w − µw) +

∑
i

Jm
i (µ̃e

i − µ̃i)
]
≥ 0 . (9.17)

By relying on the Coleman-Noll procedure, we obtain the following constitutive

prescriptions:

P =
∂W

∂F
, (9.18a)

µw =
1

Φ0

∂W

∂Cw
, µe

w =
1

Φe
0

∂W

∂Ce
w

, (9.18b)

µi =
1

Φ0

∂W

∂Ci
, µe

i =
1

Φe
0

∂W

∂Ce
i

, (9.18c)

E =
∂W

∂D
, Ee =

∂W

∂De
. (9.18d)
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Consequently, Eq. (9.17) reduces to the dissipation inequality

− Jw · ∇µw −
∑

i

Ji · ∇µ̃i − Je
w · ∇µe

w −
∑

i

Je
i · ∇µ̃e

i

−Ac/V c
[
Jm

w (µe
w − µw) +

∑
i

Jm
i (µ̃e

i − µ̃i)
]
≥ 0 . (9.19)

We remark that the terms in the second line are local dissipation terms, arising

from the exchange of water and ions across the cell membrane within the same

material point.

Since water and ions share the same IC and EC spaces, we assume that each

IC or EC flux is affected by the chemical potential gradient of water and by the

electrochemical potential gradients of all mobile ions, that is,

Jw = −Mww∇µw −
∑

i

Mwi∇µ̃i , (9.20a)

Ji = −Mwi∇µw −Mii∇µ̃i −
∑

j

Mij∇µ̃j , j 6= i , (9.20b)

Je
w = −Me

ww∇µe
w −

∑
i

Me
wi∇µ̃e

i , (9.20c)

Je
i = −Me

wi∇µe
w −Me

ii∇µ̃e
i −

∑
j

Me
ij∇µ̃e

j , j 6= i , (9.20d)

where the constitutive operators can be collected into the symmetric (Onsager,

1931) mobility matrices

M =


Mww Mw1 Mw2 . . .

Mw1 M11 M12 . . .

Mw2 M12 M22 . . .
...

...
...

. . .

 , (9.21a)

M e =


Me

ww Me
w1 Me

w2 . . .

Me
w1 Me

11 Me
12 . . .

Me
w2 Me

12 Me
22 . . .

...
...

...
. . .

 , (9.21b)

in which the off-diagonal entries account for the so-called cross-diffusion (Vanag

and Epstein, 2009).

Conversely, aquaporins and ion channels are specific for water and ion trans-

port. Therefore, the transmembrane fluxes of water and ion i only depend

on the difference between the EC and IC chemical potentials of water and
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electrochemical potentials of ion i, respectively:

Jm
w = −Mm

w (µe
w − µw) , (9.22a)

Jm
i = −Mm

i (µ̃e
i − µ̃i) . (9.22b)

We assume the mobility matrices M and M e to be positive definite and the

mobility coefficients Mm
w and Mm

i to be positive, in order to fulfill Eq. (9.19),

as detailed in Sec. 9.2.7.

9.2.4 Free energy density

We choose the following additive decomposition for the free energy density:

W = Wmec(F) +Wmix(Cw, Ci) +W e
mix(Ce

w, C
e
i )

+Wpol(F,D) +W e
pol(F,D

e) , (9.23)

where Wmec accounts for the elasticity of the cluster, Wmix and W e
mix account

for the mixing of water and ions in the IC and EC spaces, and Wpol and W e
pol

account for the dielectric polarization of the IC and EC spaces.

We adopt for Wmec the compressible Neo-Hookean model proposed by Simo

and Pister (1984):

Wmec(F) =
G

2
(tr C− 3)−G ln J +

1

2
λ ln2 J , (9.24)

where λ and G are the first and second Lamé parameters, C = FTF is the right

Cauchy-Green deformation tensor, and

J = det F (9.25)

is the Jacobian, that is, the volume ratio.

We assume the IC and EC solutions of water and ions to be ideal, such that

Wmix and W e
mix are purely entropic and read (Ateshian, 2007)

Wmix(Cw, Ci) = RTΦ0

×
(
Cw ln

Cw

Cw +
∑

j Cj
+
∑

i

Ci ln
Ci

Cw +
∑

j Cj

)
, (9.26a)
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W e
mix(Ce

w, C
e
i ) = RTΦe

0

×
(
Ce

w ln
Ce

w

Ce
w +

∑
j C

e
j

+
∑

i

Ce
i ln

Ce
i

Ce
w +

∑
j C

e
j

)
, (9.26b)

where R is the gas constant and T is the absolute temperature. We underline

that Wmix and W e
mix account for both mobile and fixed ions, also the latter being

part of the IC and EC solutions. We further hypothesize that the IC and EC

solutions are dilute, that is,
∑

i Ci � Cw and
∑

i C
e
i � Ce

w, such that we may

rewrite Eqs. (9.26) as

Wmix(Cw, Ci) = RTΦ0

∑
i

Ci

(
ln
Ci

Cw
− 1

)
, (9.27a)

W e
mix(Ce

w, C
e
i ) = RTΦe

0

∑
i

Ce
i

(
ln
Ce

i

Ce
w

− 1

)
. (9.27b)

Finally, we treat the IC and EC solutions as ideal dielectrics, such that Wpol

and W e
pol read (Hong et al., 2010)

Wpol(F,D) =
|FD|2
2ε0εrJ

, (9.28a)

W e
pol(F,D

e) =
|FDe|2
2ε0εrJ

, (9.28b)

in which ε0 is the vacuum permittivity and εr is the relative permittivity of

the IC and EC solutions, assumed to coincide with that of water given their

diluteness.

9.2.5 Constraint on the volumetric deformation

We assume that the solid phase, water, and ions are incompressible, such that

the volume ratio of Eq. (9.25) is inextricably related to the redistribution of

water and ions, namely

J = 1 + Φ0

(
vwCw +

∑
i

viCi − 1
)

+ Φe
0

(
vwC

e
w +

∑
i

viC
e
i − 1

)
, (9.29)

where vw and vi are the molar volumes of water and ion i. In the limit of dilute

IC and EC solutions, Eq. (9.29) reduces to

J = 1 + Φ0

(
vwCw − 1

)
+ Φe

0

(
vwC

e
w − 1

)
, (9.30)



174 Electrochemo-poromechanics of cell clusters

implying that

C0
w = Ce,0

w =
1

vw
, (9.31)

to be replaced in Eq. (9.6a). Moreover:

ci =
Ci

vwCw
, cei =

Ce
i

vwCe
w

(9.32)

are the IC and EC molar concentrations of ion i per unit current volume of the

IC and EC spaces.

In order to impose the constraint (9.30), we modify the free energy density

(9.23) as (Hong et al., 2010)

W = Wmec(F) +Wmix(Cw, Ci) +W e
mix(Ce

w, C
e
i ) +Wpol(F,D) +W e

pol(F,D
e)

+ pw

[
1 + Φ0

(
vwCw − 1

)
+ Φe

0

(
vwC

e
w − 1

)
− J

]
, (9.33)

where pw is a Lagrange multiplier field assuming the role of water pressure. For

later developments, we rearrange Eq. (9.30) for the IC water concentration:

Cw =
1

vw
+

1

Φ0vw

[
J − 1− Φe

0

(
vwC

e
w − 1

)]
. (9.34)

Notably, this operation removes Cw from the list of the independent variables,

in favor of the independent variable pw introduced by Eq. (9.33).

9.2.6 Conservative constitutive laws

We obtain the nominal stress P by combining Eqs. (9.18a), (9.24), and (9.33):

P = G(F− F−T) + λ ln JF−T︸ ︷︷ ︸
Pmec

+
1

2ε0εrJ

[
2F(D⊗D)−C · (D⊗D)F−T

]
︸ ︷︷ ︸

Ppol

+
1

2ε0εrJ

[
2F(De ⊗De)−C · (De ⊗De)F−T

]
︸ ︷︷ ︸

Pe
pol

−pwJF−T︸ ︷︷ ︸
Pw

, (9.35)

where ⊗ denotes the tensor product. The stresses Ppol and Pe
pol are the electro-

static (or Maxwell) nominal stresses in the IC and EC spaces, while Pw is the

nominal stress due to water pressure. These could be regarded as active stresses

(or eigenstresses), to be balanced by the mechanical nominal stress Pmec through

equilibrium (9.1). Therefore, P is the total nominal stress. The corresponding
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total Cauchy stress is

σ =
1

J
PFT =

1

J

[
G(b− I) + λ ln JI

]
︸ ︷︷ ︸

σmec

+
1

2ε0εr

[
2d⊗ d− (d · d)I

]
︸ ︷︷ ︸

σpol

+
1

2ε0εr

[
2de ⊗ de − (de · de)I

]
︸ ︷︷ ︸

σe
pol

−pwI︸ ︷︷ ︸
σw

, (9.36)

where b = FFT is the left Cauchy-Green deformation tensor and d = J−1FD

and de = J−1FDe are the IC and EC current electric displacements. We define

the total pressure, positive if compressive, as

p = −1

3
trσ = − 1

J

[
G

(
1

3
tr b− 1

)
+ λ ln J

]
︸ ︷︷ ︸

pmec

+
1

6ε0εr
|d|2︸ ︷︷ ︸

ppol

+
1

6ε0εr
|de|2︸ ︷︷ ︸

pe
pol

+pw .

(9.37)

By using Eqs. (9.18b), (9.27), and (9.33) we obtain the following IC and EC

chemical potentials of water:

µw = −RT C

Cw
+ vwpw , µe

w = −RT C
e

Ce
w

+ vwpw , (9.38)

where

C =
∑

i

Ci , Ce =
∑

i

Ce
i (9.39)

are the IC and EC osmotic concentrations. We remark that µw and µe
w are

affected by both the IC and EC osmotic pressures RTC and RTCe and the

water pressure pw. Boundary condition (9.8a) may now be explicited for the

independent variable Ce
w, thus reading

Ce
w =

RTCe

vw (RTCe,0 + pw)
, (9.40)

where we have used

p0
w = 0 . (9.41)

By combining Eqs. (9.15), (9.18c), (9.27), and (9.33) we obtain the following

IC and EC electrochemical potentials of ion i:

µ̃i = RT ln
Ci

Cw
+ Fziψ , µ̃e

i = RT ln
Ce

i

Ce
w

+ Fziψ
e . (9.42)
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Boundary condition (9.8b) may now be explicited for the independent variable

Ce
i , thus reading

Ce
i = vwC

e,0
i Ce

w . (9.43)

Finally, the usage of Eqs. (9.14), (9.18d), (9.28), and (9.33) provides the IC

and EC nominal electric fields, whose inversion results in the IC and EC nominal

electric displacements

D = −ε0εrJC−1∇ψ , De = −ε0εrJC−1∇ψe . (9.44)

Similarly, the electric displacements at the boundary across the cell mem-

branes and the TJs in Eqs. (9.10) and (9.12) are given by

D̄m = ε0ε
m
r

ψ − ψ̄
Tm

= ε0ε
m
r

ψ

Tm
, (9.45a)

D̄tj = ε0ε
tj
r

ψe − ψ̄
T tj

= ε0ε
tj
r

ψe

T tj
, (9.45b)

in which εm
r and εtj

r and Tm and T tj are the membrane and TJ relative permit-

tivities and thicknesses, respectively. We remark that Eqs. (9.45) neglects the

local deformation of the cell membranes and TJs.

9.2.7 Dissipative constitutive laws

We choose the following form for the IC and EC mobility matrices of Eqs. (9.21):

M =
1

RT C−1

×



DwCw DwC1 DwC2 . . .

DwC1

(
Dw

C1

Cw
+D1

)
C1 Dw

C1C2

Cw
. . .

DwC2 Dw
C1C2

Cw

(
Dw

C2

Cw
+D2

)
C2 . . .

...
...

...
. . .


, (9.46a)
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M e =
1

RT C−1

×



De
wC

e
w De

wC
e
1 De

wC
e
2 . . .

De
wC

e
1

(
De

w
Ce

1

Ce
w

+De
1

)
Ce

1 De
w
Ce

1C
e
2

Ce
w

. . .

De
wC

e
2 De

w
Ce

1C
e
2

Ce
w

(
De

w
Ce

2

Ce
w

+De
2

)
Ce

2 . . .

...
...

...
. . .


, (9.46b)

in which Dw and De
w are the water diffusivities in the IC and EC spaces, while

Di and De
i are the diffusivities of ion i in the IC and EC water. As for the

transmembrane mobility coefficients of Eqs. (9.22), by still neglecting the local

deformation of the membrane, we adopt the forms

Mm
w =

Dm
w

RT
Cw + Ce

w

2Tm
, (9.47a)

Mm
i =

Dm
i

RT
Ci + Ce

i

2Tm
, (9.47b)

where Dm
w and Dm

i are the transmembrane diffusivities of water and ion i. The

mobility matrices M and M e are positive definite and the mobility coefficients

Mm
w and Mm

i are positive for non-zero diffusivities and concentrations, thus

ensuring the validity of Eq. (9.19).

Substituting Eqs. (9.46) into Eqs. (9.20) leads to

Jw = −Dw

RT C−1

[
Cw∇µw +

∑
i

Ci∇µ̃i

]
, (9.48a)

Ji =
Ci

Cw
Jw −

Di

RT C−1Ci∇µ̃i , (9.48b)

Je
w = −D

e
w

RT C−1

[
Ce

w∇µe
w +

∑
i

Ce
i ∇µ̃e

i

]
, (9.48c)

Je
i =

Ce
i

Ce
w

Je
w −

De
i

RT C−1Ce
i ∇µ̃e

i . (9.48d)

In the perspective of mixture theory, one would obtain the same expressions by

relying on the individual momentum balances for water and ions in the IC and

EC spaces separately, and assuming that the friction between the different ion

species and between the ions and the solid network in either the IC or EC space

is negligible, given the diluteness of the solution (Huyghe and Janssen, 1997).

Combining Eqs. (9.38), (9.42), and (9.48) provides the following IC and EC
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fluxes:

Jw = −DwC−1

[
vwCw

RT ∇pw +
F

RT
∑

i

ziCi∇ψ +

∑
j6=i Cj

Cw
∇Cw

]
, (9.49a)

Ji =
Ci

Cw
Jw −DiC

−1

[
∇Ci −

Ci

Cw
∇Cw +

F

RT ziCi∇ψ
]
, (9.49b)

Je
w = −De

wC−1

[
vwC

e
w

RT ∇pw +
F

RT
∑

i

ziC
e
i ∇ψe +

∑
j6=i C

e
j

Ce
w

∇Ce
w

]
, (9.49c)

Je
i =

Ce
i

Ce
w

Je
w −De

i C
−1

[
∇Ce

i −
Ce

i

Ce
w

∇Ce
w +

F

RT ziC
e
i ∇ψe

]
, (9.49d)

where the index i refers to mobile ions, whereas the index j refers to fixed ions.

Let us first analyze the water fluxes (9.49a) and (9.49c). The first terms

account for the water flux down its pressure gradient; the second terms describe

the electro-osmosis of water with mobile ions; the third terms represent the

osmosis of water toward fixed ions. In the absence of ions (Ci = Cj = Ce
i =

Ce
j = 0), Eqs. (9.49a) and (9.49c) reduce to Darcy-like fluxes, as in standard

poromechanics (Coussy, 2004).

Let us now delve into the ion fluxes (9.49b) and (9.49d). The first terms are

associated with the convection of ions with water; the second and third terms

account for Fick’s law, whereby both the nominal (that is, at fixed volume) ion

concentration gradient and the water concentration gradient contribute to ion

diffusion; the fourth terms account for migration, that is, the ion transport in

an electric field. For immobile water (Dw = De
w = 0), Eqs. (9.49b) and (9.49d)

reduce to standard Nernst-Planck fluxes, describing the electro-diffusion of ions

(Rubinstein, 1990).

Substituting Eqs. (9.38), (9.42), and (9.47) in Eqs. (9.22) leads to the

following transmembrane fluxes:

Jm
w = −Dm

w

Cw + Ce
w

2Tm

[
Ce

wC − CwC
e

CwCe
w

]
, (9.50a)

Jm
i = −Dm

i

Ci + Ce
i

2Tm

[
ln

(
Ce

i

Ci

Cw

Ce
w

)
− Fzi

RT ψ
m

]
, (9.50b)

where

ψm = ψ − ψe (9.51)

is the membrane potential. Eq. (9.50a) accounts for the transmembrane osmosis

through aquaporins, whereas Eq. (9.50b) accounts for the transmembrane

electro-diffusion of ions through ion channels, historically addressed through the

Goldman-Hodgkin-Katz flux equation (7.1) (Hille, 1984).
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Finally, we note that, in light of Eq. (9.34), substituting Eqs. (9.49a) and

(9.50a) into Eq. (9.2a) provides an equation to be solved for the water pressure

pw.

9.3 One-dimensional axisymmetric benchmark

As a representative benchmark, we consider a circular cell cluster, of reference

radius Rcl, whose innermost circular region, of reference radius Rcl/2 and denoted

as Ωin, is characterized by a transmembrane diffusivity to sodium Dm
Na+ ten

times larger than the surrounding annular region, denoted as Ωout, simulating

an overexpression of sodium channels. Given the axial symmetry of the problem,

the results only depend on the radial coordinate R. We assume plane stress

conditions in Eq. (9.1), and that each cell is circular in the reference configuration,

such that, in Eqs. (9.2) and (9.3), Ac/V c = 2/Rc, with Rc denoting the reference

cell radius.

We derive the governing equations for this 1D axisymmetric problem in Sec.

9.3.1, and detail their finite element implementation in COMSOL Multiphysics R©

in Sec. 9.3.2. After listing the model parameters in Sec. 9.3.3, we first present

the results of the simulation in the absence of both GJs and TJs, in Sec. 9.3.4.

Then, we introduce and comment on the role of GJs in Sec. 9.3.5. Finally, we

further account for TJs in Sec. 9.3.6.

9.3.1 Governing equations†

In a 1D axisymmetric space dimension, equilibrium (9.1) reduces to

P ′rR +
1

R
(PrR − PθΘ) = 0 , (9.52)

where P ′rR = ∂PrR/∂R, and PrR and PθΘ are the radial and circumferential total

nominal stresses, given by (see Eq. (9.35))

PrR = G

(
FrR − 1

FrR

)
+ λ

ln J

FrR
− pw

J

FrR
+

FrR
2ε0εrJ

[
D2 + (De)2

]
, (9.53a)

PθΘ = G

(
FθΘ − 1

FθΘ

)
+ λ

ln J

FθΘ
− pw

J

FθΘ
− F 2

rR

2ε0εrJFθΘ

[
D2 + (De)2

]
, (9.53b)

where

J = FrRFθΘFzZ , (9.54)

with

FrR = 1 + u′ , (9.55a)

FθΘ = 1 +
u

R
, (9.55b)
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and FzZ denoting the radial, circumferential, and out-of-plane deformation gradient

components (or stretches), and u being the radial displacement. Under plane stress

conditions, the out-of-plane total nominal stress PzZ is zero:

PzZ = G

(
FzZ − 1

FzZ

)
+ λ

ln J

FzZ
− pw

J

FzZ
− F 2

rR

2ε0εrJFzZ

[
D2 + (De)2

]
= 0 . (9.56)

We equip Eq. (9.52) with the following boundary conditions (see Eq. (9.5)), with that

in R = 0 ensuing from symmetry:

u(0) = 0 , PrR(Rcl) = 0 . (9.57)

Mass balances (9.2) and (9.3) become

Φ0Ċw + J ′w +
Jw

R
= −Jm

w
2

Rc
, (9.58a)

Φe
0Ċ

e
w + (Je

w)′ +
Je

w

R
= Jm

w
2

Rc
, (9.58b)

Φ0Ċi + J ′i +
Ji

R
= −Jm

i
2

Rc
, (9.58c)

Φe
0Ċ

e
i + (Je

i )′ +
Je

i

R
= Jm

i
2

Rc
, (9.58d)

where the radial IC and EC nominal fluxes read (see Eq. (9.49))

Jw = − Dw

F 2
rR

(
vwCw

RT p′w +
F

RT
∑

i

ziCiψ
′ +

∑
j6=i Cj

Cw
C′w

)
, (9.59a)

Je
w = − D

e
w

F 2
rR

(
vwC

e
w

RT p′w +
F

RT
∑

i

ziC
e
i (ψe)′ +

∑
j6=i C

e
j

Ce
w

(Ce
w)′
)
, (9.59b)

Ji =
Ci

Cw
Jw − Di

F 2
rR

(
C′i −

Ci

Cw
C′w +

F

RT ziCiψ
′
)
, (9.59c)

Je
i =

Ce
i

Ce
w

Je
w −

De
i

F 2
rR

(
(Ce

i )′ − Ce
i

Ce
w

(Ce
w)′ +

F

RT ziC
e
i (ψe)′

)
. (9.59d)

The IC nominal concentration of water Cw and the transmembrane nominal fluxes

Jm
w and Jm

i are still given by Eqs. (9.34) and (9.50). We supply Eqs. (9.58) with the

following initial conditions (see Eqs. (9.6b), (9.31), and (9.41)):

pw = 0 , Ce
w =

1

vw
, (9.60a)

Ci = C0
i , Ce

i = Ce,0
i , (9.60b)

and with the following boundary conditions (see Eqs. (9.7), (9.9), (9.40), and (9.43)):

Jw(0) = Jw(Rcl) = 0 , (9.61a)
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Je
w(0) = 0 ,

Ce
w(Rcl) =

RTCe(Rcl)

vw [RTCe,0 + pw(Rcl)]
without TJs ,

Je
w(Rcl) = 0 with TJs ,

(9.61b)

Ji(0) = Ji(R
cl) = 0 , (9.61c)

Je
i (0) = 0 ,

Ce
i (Rcl) = vwC

e,0
i Ce

w(Rcl) without TJs ,

Je
i (Rcl) = 0 with TJs .

(9.61d)

Finally, Gauss laws (9.4) reduce to

D′ +
D

R
= Φ0F

∑
i

ziCi , (9.62a)

(De)′ +
De

R
= Φe

0F
∑

i

ziC
e
i , (9.62b)

where the IC and EC electric displacements are given by (see Eq. (9.44))

D = −ε0εr
J

F 2
rR

ψ′ , (9.63a)

De = −ε0εr
J

F 2
rR

(ψe)′ . (9.63b)

We complement Eqs. (9.62) with the following boundary conditions (see Eqs. (9.10)-

(9.12) and (9.45)):

D(0) = 0 , D(Rcl) = ε0ε
m
r
ψ

Tm
, (9.64a)

De(0) = 0 ,

ψe(Rcl) = 0 without TJs ,

De(Rcl) = ε0ε
tj
r
ψe

T tj
with TJs .

(9.64b)

9.3.2 Finite element implementation†

We solve the coupled governing equations presented in Sec. 9.3.1 by employing the finite

element commercial software COMSOL Multiphysics R©. We use the General Form

PDE interface to implement equilibrium (9.52), mass balances (9.58), and Gauss laws

(9.62), and the Domain ODEs and DAEs interface to impose the plane stress constraint

(9.56). We employ quadratic Lagrange shape functions to approximate the independent

variables u, pw, Ce
w, Ci, C

e
i , ψ, ψe, and FzZ . The mesh consists of 100 elements, whose

size decreases linearly from the boundaries to the interface between Ωin and Ωout, where

the independent variables undergo steep gradients, especially in the absence of GJs.

Specifically, the ratio between the largest and smallest elements is 10. We employ the

BDF method for the time integration and adopt the Fully Coupled approach, equipped
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with the MUMPS linear solver, to solve all the discretized equations simultaneously at

each time step.

9.3.3 Parameters

The model parameters are listed in Tab. 9.1. We refer to an average animal cell

of reference radius Rc = 5µm and membrane thickness Tm = 5 nm. The cluster

reference radius is Rcl = 500µm, which is much larger than Rc, that is, the

characteristic size of a material point, thus ensuring the validity of our continuum

formulation. We assume that cells are separated by a reference intercellular space

of about 30 nm in size (Pietak and Levin, 2016), and that approximately the

70% of the cluster is occupied by fluid. Correspondingly, we obtain an estimate

of Φ0 = 0.695 and Φe
0 = 0.005 for the initial IC and EC porosities.

The simulations are conducted at body temperature T = 310 K. Accordingly,

εr = 80 and vw = 18 cm3/mol are reliable estimates for the relative permittivity

and molar volume of water. We employ εm
r = 3 for the relative permittivity

of the cell membrane (Gramse et al., 2013). The thickness of a TJ complex is

about T tj = 500 nm (Tsukita et al., 2001), and we use εtj
r = 30 for its relative

permittivity, which is an average value between those of bulk water and proteins

inside (Li et al., 2013).

We choose a representative value E = 0.4 kPa for the Young modulus and

assume a Poisson ratio ν = 0.3 (Moeendarbary et al., 2013). The Lamé param-

eters entering Eq. (9.24) thus read λ = Eν/[(1 + ν)(1 − 2ν)] ≈ 0.23 kPa and

G = E/[2(1 + ν)] ≈ 0.15 kPa. In Sec. 9.3.5 we also consider the case of a larger

E, simulating a cluster of plant cells, equipped with stiff cell walls.

With reference to a typical mammalian cell, the more abundant ions involved

in bioelectricity are sodium, potassium, and chloride. We adopt the following

initial IC and EC concentrations (Alberts, 1983): C0
Na+ = 10 mol/m3, Ce,0

Na+ =

145 mol/m3, C0
K+ = 140 mol/m3, Ce,0

K+ = 5 mol/m3, C0
Cl− = 10 mol/m3, and

Ce,0
Cl− = 110 mol/m3. We also consider a fixed generic monovalent anion, whose IC

and EC concentrations are uniform and constant and equal to CA− = 140 mol/m3

and Ce
A− = 40 mol/m3. In the IC space, A− is intended to represent negatively

charged proteins, nucleic acids, and other cellular constituents. Notably, CA−

and Ce
A− ensure the initial electroneutrality in both the IC and EC spaces (that

is,
∑

i ziC
0
i =

∑
i ziC

e,0
i = 0) and also the equality of the initial IC and EC

osmotic concentrations (that is, C0 = Ce,0 = 300 mol/m3). By using Eq. (9.31),

we obtain C0
w = Ce,0

w = 1/vw ≈ 5.6 × 104 mol/m3. Therefore, the IC and EC

solutions are effectively dilute, indeed C0/C0
w = Ce,0/Ce,0

w ≈ 0.5%.

We employ the following transmembrane ion diffusivities: Dm
Na+ = 10−18 m2/s,

Dm
K+ = 5× 10−18 m2/s, and Dm

Cl− = 5× 10−17 m2/s. These are on the order of
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Symbol Descr. Ref. value Range expl. Unit

Reference cell radius Rc 5 µm

Membrane thickness Tm 5 nm

Reference cluster radius Rcl 500 µm

Initial IC porosity Φ0 0.695 -

Initial EC porosity Φe
0 0.005 -

Temperature T 310 K

Water relative perm. εr 80 -

Water molar volume vw 18 cm3/mol

Membrane relative perm. εm
r 3 -

TJ thickness T tj 500 nm

TJ relative perm. εtj
r 30 -

Young modulus E 0.4 0.4÷ 4000 kPa

Poisson ratio ν 0.3 -

Initial IC Na+ conc. C0
Na+ 10 mol/m3

Initial EC Na+ conc. Ce,0

Na+ 145 mol/m3

Initial IC K+ conc. C0
K+ 140 mol/m3

Initial EC K+ conc. Ce,0

K+ 5 mol/m3

Initial IC Cl− conc. C0
Cl− 10 mol/m3

Initial EC Cl− conc. Ce,0

Cl− 110 mol/m3

IC fixed anion conc. CA− 140 mol/m3

EC fixed anion conc. Ce
A− 40 mol/m3

Transmem. Na+ diff. Dm
Na+ 10−18 (Ωout) m2/s

10−17 (Ωin) m2/s

Transmem. K+ diff. Dm
K+ 5× 10−18 m2/s

Transmem. Cl− diff. Dm
Cl− 5× 10−17 m2/s

Transmem. water diff. Dm
w 10−8 10−14 ÷ 10−8 m2/s

EC Na+, K+, and Cl− diff. De
i 10−9 m2/s

EC water diff. De
w 10−7 10−8 ÷ 10−6 m2/s

IC Na+, K+, and Cl− diff. Di 10−12 m2/s
(with GJs)

IC water diff. (with GJs) Dw 10−9 10−10 ÷ 10−8 m2/s

Table 9.1: Employed model parameters.
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those reported in Pietak and Levin (2016), but account for the fact that the

permeability of artificial lipid bilayers to Na+, K+, and Cl− is not the same

(Alberts, 1983). As anticipated, in Ωin we set instead Dm
Na+ = 10−17 m2/s. We

consider that the transmembrane water diffusivity is Dm
w = 10−8 m2/s, that is,

ten order of magnitudes larger than Dm
Na+ , as documented in Alberts (1983)

with reference to artificial lipid bilayers. In Sec. 9.3.4, we further analyze the

case of smaller Dm
w , simulating an underexpression of aquaporins.

We follow Pietak and Levin (2016) and assume De
i = 10−9 m2/s for the

diffusivity of all ions in EC water. We set De
w = 10−7 m2/s for the EC water

diffusivity, as approximately obtained through the Kozeny-Carman equation

(Coussy, 2004). Given the uncertainty in this parameter, in Sec. 9.3.4 we also

explore how the response changes by increasing or decreasing De
w of one order

of magnitude.

In the presence of GJs, we adopt Di = 10−12 m2/s for the diffusivity of all

ions in IC water. In particular, Di ≤ 10−14 m2/s should be excluded, as it has

no impact on the behavior of the cluster. Finally, we adopt Dw = 10−9 m2/s for

the IC water diffusivity, and, in Sec. 9.3.5, we further explore how the cluster

behavior is affected by variations of Dw of one order of magnitude.

9.3.4 Results in the absence of gap and tight junctions

We first assume that GJs are either absent or closed, such that Dw = Di = 0 in

Eqs. (9.49a) and (9.49b). Therefore, the mass balances (9.2a) and (9.3a) reduce

to ordinary differential equations. Moreover, we assume that TJs are absent,

such that boundary conditions (9.8) and (9.11) hold. In Fig. 9.1 we represent

the relevant bioelectrical and mechanical fields as a function of R at different

times.

The large Dm
Na+ in Ωin leads to a prominent influx of Na+ from the EC to

the IC space, that is, down its concentration gradient. Correspondingly, the

IC osmotic concentration C rapidly increases. We register a little increase of

C in Ωout as well, which is essentially due to the large CA− compared to Ce
A− ,

as explained by the Gibbs-Donnan effect (Overbeek, 1956). While C presents a

steep gradient at R = Rcl/2, due to the lack of GJs connecting Ωin and Ωout, the

EC osmotic concentration Ce is smoother, because of the interconnection of the

intercellular spaces. Moreover, while Ce initially decreases with time, it then

increases as Na+ is transported from the outside to the inside of the cluster.

The redistribution of ions establishes a negative IC electric potential ψ,

as of the beginning of the simulation. This is again explained by the Gibbs-

Donnan effect. In particular, Ωin is depolarized with respect to Ωout, and the

depolarization increases over time due to the influx of Na+. The EC electric
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Figure 9.1: (a) Rel-
ative IC osmotic con-
centration, (b) relative
EC osmotic concentra-
tion, (c) IC electric po-
tential, (d) EC electric
potential, (e) relative
IC water concentration,
(f) relative EC water
concentration, (g) wa-
ter pressure, (h) Jaco-
bian, (i) areal Jacobian,
and (j) radial displace-
ment as a function of
the radial coordinate at
different times.
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potential ψe remains rather small, such that the membrane potential ψm nearly

corresponds to ψ. In particular, the value of about −60 mV, registered in

Ωout, is representative of the resting ψm associated with the adopted initial ion

concentrations and transmembrane diffusivities, which can be estimated through

the Goldman-Hodgkin-Katz voltage equation (7.2) (Hille, 1984).

As Na+ is transported from the EC to the IC space through ion channels

in Ωin, water follows by osmosis through aquaporins. Correspondingly, the IC

water concentration Cw increases with time. In the EC space, as Na+ ions enter

the cluster to cope with the request for Na+ in Ωin, they drag water molecules

by electro-osmosis. Therefore, the EC water concentration Ce
w increases after

initially decreasing, similarly to Ce.

As water enters Ωin, the water pressure pw increases therein, and is equili-

brated by the mechanical stress. The IC and EC electrostatic pressures ppol and

pe
pol, not represented here, are both irrelevant, being orders of magnitude lower

than pw. The increase of Cw in Ωin is also accompanied by an increase of the

Jacobian J . We remark that, given the smaller variation of Ce
w compared to

Cw except for the initial transient, and, mostly, the close cell packing, implying

Φ0 � Φe
0, the contribution of the variation of Ce

w to J , as described by Eq.

(9.30), is negligible.

The areal Jacobian Ja, given by the product of the radial and circumferential

deformation gradient components (or stretches) FrR and FθΘ, indicates in-plane

expansion everywhere, larger in Ωin. By comparing J and Ja, we infer that there

occurs an out-of-plane expansion in Ωin and a little out-of-plane compression in

Ωout. Finally, the radial displacement u increases from R = 0 to R = Rcl/2, and

then decreases.

In Fig. 9.2 we explore how the same fields are affected by variations of the EC

water diffusivity De
w. By increasing De

w, water is transported more rapidly from

the outside to the inside of the cluster through the EC space, and consequently

from the EC to the IC space across cell membranes. Therefore, fixed the time,

Cw, Ce
w, pw, J , Ja, and u increase. Interestingly, C and Ce increase as well, since

the convective contribution to ion transport grows with De
w (see Eqs. (9.49c)

and 9.49d). The change in the ion redistribution also impacts on ψm, though

mildly. Finally, we note that, by decreasing De
w to 10−8 m2/s, the demand for

water in Ωin can be barely sustained, such that, for a given time, Cw decreases

from R = Rcl/2 to R = 0; furthermore, Cw also decreases from R = Rcl to

R = Rcl/2, suggesting that water is transported from the IC to the EC space in

Ωout, and then from Ωout to Ωin through the EC space, resulting in an in-plane

shrinkage of Ωout.

In Fig. 9.3 we consider the effect of the transmembane water diffusivity

Dm
w , modulated by the density and open fraction of aquaporins. Increasing
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Figure 9.2: (a) Rel-
ative IC osmotic con-
centration, (b) relative
EC osmotic concentra-
tion, (c) IC electric po-
tential, (d) EC electric
potential, (e) relative
IC water concentration,
(f) relative EC water
concentration, (g) wa-
ter pressure, (h) Jaco-
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and (j) radial displace-
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Dm
w above 10−8 m2/s or decreasing it up to 10−12 m2/s does not affect the

results. By further decreasing Dm
w to 10−14 m2/s, the transmembrane water

transport is hampered, such that Cw strongly decreases and Ce
w increases. In

turn, this determines a decrease of pw, J , Ja, and u. Importantly, while varying

De
w strongly impacted on the ion redistribution, changing Dm

w mildly affects it.

Indeed, De
w enters the EC ion fluxes through the convective contribution, while

Dm
w does not govern the transmembrane ion fluxes, given that aquaporins and

ion channels are specific for water and ions (see Eqs. (9.50)). The impact of Dm
w

on ψm is also negligible.

9.3.5 Introducing gap junctions

We now investigate on the role of GJs on the mechanobioelectricity of the cluster.

As reported in Sec. 9.3.3, we adopt Di = 10−12 m2/s uniformly for all ions and

Dw = 10−9 m2/s.

In Fig. 9.4 we compare the relevant fields at the end of the simulation with

and without GJs. If GJs are present, the Na+ ions entering the IC space in Ωin

flow down their IC electrochemical potential gradient toward Ωout. Therefore,

accounting for GJs smooths out the steep gradient of C at R = Rcl/2, thus

leading to a reduction of C in Ωin and to an increase of C in Ωout. The different

ion redistribution in the IC space also influences ψ, with a lesser depolarization

occurring in Ωin and a larger one characterizing Ωout. Similarly, the water

entering the IC space in Ωin flows toward Ωout through GJs, mainly dragged by

ions through electro-osmosis. Predictably, the EC fields are almost no affected

by GJs. Notably, the IC water redistribution in the presence of GJs leads to a

decrease of Ja in Ωin and to an increase of Ja in Ωout; correspondingly, u(Rcl/2)

diminishes, but u(Rcl) remains equal.

In Fig. 9.5 we compare the responses for different values of Dw. By increasing

Dw, more water is transported from Ωin to Ωout, such that the difference in Cw

between Ωin and Ωout reduces, along with that in Ja. However, again, u(Rcl)

remains the same. The difference in C between Ωin and Ωout reduces as well,

which confirms the relevance of ion transport by convection as Dw is risen.

Decreasing Dw below 10−10 m2/s does not affect further the results.

In Fig. 9.6 we examine the cluster behavior by varying its Young modulus E.

Increasing it up to one order of magnitude does not affect the results, except for

pw, which grows proportionally to E. Therefore, we conclude that, for suitably

small values of E, proper of animal cells, the response of the cluster to the

imposed bioelectrical perturbation is independent of E. More specifically, the

ion redistribution triggers the water redistribution, which establishes the cluster

deformation. However, for larger values of E, which may be proper of plant



190 Electrochemo-poromechanics of cell clusters

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

R/Rcl

(a) (C − C0)/C0 [%]

0.0 0.2 0.4 0.6 0.8 1.0

−15

−10

−5

0

R/Rcl

(b) (Ce − Ce,0)/Ce,0 [%]

0.0 0.2 0.4 0.6 0.8 1.0

−60

−50

−40

−30

−20

−10

R/Rcl

(c) ψ [mV]

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

R/Rcl

(d) ψe [mV]

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

R/Rcl

(e) (Cw − C0
w)/C0

w [%]

0.0 0.2 0.4 0.6 0.8 1.0

−20

−15

−10

−5

0

R/Rcl

(f) (Ce
w − Ce,0

w )/Ce,0
w [%]

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

R/Rcl

(g) pw [Pa]

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

R/Rcl

(h) J [−]

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.05

1.10

1.15

R/Rcl

(i) Ja [−]

0.0 0.2 0.4 0.6 0.8 1.0

0

6

12

18

R/Rcl

(j) u [µm]

Without GJs With GJs

Figure 9.4: (a) Rel-
ative IC osmotic con-
centration, (b) relative
EC osmotic concentra-
tion, (c) IC electric po-
tential, (d) EC electric
potential, (e) relative
IC water concentration,
(f) relative EC water
concentration, (g) wa-
ter pressure, (h) Jaco-
bian, (i) areal Jacobian,
and (j) radial displace-
ment as a function of
the radial coordinate at
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cells endowed with stiff walls, the mechanics affects the water redistribution as

well. Indeed, in such a case, the accumulation of water in the IC space of Ωin

determines the build-up of a large water (turgor) pressure gradient ∇pw, forcing

water to flow back toward Ωout, through both GJs and the EC space according

to our model (see Eqs. (9.49a) and (9.49c)). Consequently, Cw and Ce
w both

diminish, along with Ja and u. Though at a lesser extent, C and Ce are affected

as well, while ψm practically remains unaltered, given the similar reductions in

both ψ and ψe.

In Fig. 9.7 we investigate the cluster behavior in the presence of GJs

until the steady state, reached at about 24 h. The IC fields monotonically

increase with time, both at R = 0 and, albeit slower, as ions and water flow

outward through GJs, at R = Rcl. At the steady state, the IC fields attain

the uniform values (C − C0)/C0 = (Cw − C0
w)/C0

w ≈ 2.5 and ψ = 0. The EC

fields at R = 0 rapidly decrease in the first 2 min, and then slowly increase,

as ions and water flow inward through the intercellular spaces. At the steady

state, the EC fields Ce − Ce,0, Ce
w − Ce,0

w , and ψe attain uniform zero values.

Therefore, the EC space is undeformed at the steady state. Notably, at the

steady state c = C/(vwCw) = C0 = Ce,0 = Ce/(vwC
e
w) = ce (see Eq. (9.32));

moreover, we could show that ci = cei = Ce,0
i ∀i. The volume ratio J behaves

similarly to Cw, as Ce
w is not significant for J in the absence of TJs. While

initially u(Rcl/2) ≈ u(Rcl), they progressively diverge and, at the steady state,

u(Rcl) = 2u(Rcl/2) ≈ 0.4Rcl. To conclude, this simulation reveals that, in the

absence of TJs and for a sufficiently compliant cluster (such that pw is irrelevant

in Eq. (9.40)) devoid of ion pumps, at the steady state the current IC and EC

ion concentrations and the IC and EC electric potentials become equal to those

of the bath surrounding the cluster, in turn coinciding with the initial EC ones.

This is accompanied by large cluster deformations, exclusively attributable to

the deformation of the IC space.

9.3.6 Introducing tight junctions

In this section, we comment on the cluster response in the presence of TJs, that

is, by considering that the EC space cannot exchange neither water nor ions

with the bath surrounding the cluster. Boundary conditions (9.9) and (9.12)

now hold. As in Sec. 9.3.5, we also account for GJs. We display the results of

the simulation in Fig. 9.8, by focusing on a relatively short time interval of 30 s.

As for the previous case, the large Dm
Na+ in Ωin leads to a rapid inflow of

Na+ from the EC to the IC space. However, in the presence of TJs, the ions of

the outside bath cannot replace those lost by the EC space. Therefore, given

that Φ0 � Φe
0, the increase of C with time is limited, while the decrease of Ce is



194 Electrochemo-poromechanics of cell clusters

0 6 12 18 24

0

50

100

150

200

250

t [h]

(a) (C − C0)/C0 [%]

0 6 12 18 24

−20

−15

−10

−5

0

t [h]

(b) (Ce − Ce,0)/Ce,0 [%]

0 6 12 18 24

−60

−40

−20

0

t [h]

(c) ψ [mV]

0 6 12 18 24

−1.2

−0.9

−0.6

−0.3

0.0

t [h]

(d) ψe [mV]

0 6 12 18 24

0

50

100

150

200

250

t [h]

(e) (Cw − C0
w)/C0

w [%]

0 6 12 18 24

−24

−18

−12

−6

0

t [h]

(f) (Ce
w − Ce,0

w )/Ce,0
w [%]

0 6 12 18 24

0

50

100

150

t [h]

(g) pw [Pa]

0 6 12 18 24

1.0

1.5

2.0

2.5

t [h]

(h) J [−]

0 6 12 18 24

1.0

1.2

1.4

1.6

1.8

2.0

t [h]

(i) Ja [−]

R = 0 R = Rcl

0 6 12 18 24

0

50

100

150

200

t [h]

(j) u [µm]

R = Rcl/2

Figure 9.7: (a) Rel-
ative IC osmotic con-
centration, (b) relative
EC osmotic concentra-
tion, (c) IC electric po-
tential, (d) EC electric
potential, (e) relative
IC water concentration,
(f) relative EC water
concentration, (g) wa-
ter pressure, (h) Jaco-
bian, and (i) areal Ja-
cobian at R = 0 and
R = Rcl, and (j) radial
displacement at R =
Rcl/2 and R = Rcl, as
a function of time in the
presence of gap junc-
tions.



9.3 One-dimensional axisymmetric benchmark 195

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.3

0.6

0.9

1.2

R/Rcl

(a) (C − C0)/C0 [%]

0.0 0.2 0.4 0.6 0.8 1.0

−60

−40

−20

0

R/Rcl

(b) (Ce − Ce,0)/Ce,0 [%]

0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

5

10

15

R/Rcl

(c) ψ [mV]

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

R/Rcl

(d) ψe [mV]

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

R/Rcl

(e) (Cw − C0
w)/C0

w [%]

0.0 0.2 0.4 0.6 0.8 1.0

−60

−40

−20

0

R/Rcl

(f) (Ce
w − Ce,0

w )/Ce,0
w [%]

0.0 0.2 0.4 0.6 0.8 1.0

−0.25

0.00

0.25

0.50

0.75

R/Rcl

(g) pw [Pa]

0.0 0.2 0.4 0.6 0.8 1.0

0.9994

1.0000

1.0006

1.0012

1.0018

R/Rcl

(h) J [−]

0.0 0.2 0.4 0.6 0.8 1.0

0.9997

1.0000

1.0003

1.0006

1.0009

R/Rcl

(i) Ja [−]

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.02

0.04

0.06

0.08

0.10

R/Rcl

(j) u [µm]

0 s 5 s 10 s 30 s

Figure 9.8: (a) Rel-
ative IC osmotic con-
centration, (b) relative
EC osmotic concentra-
tion, (c) IC electric po-
tential, (d) EC electric
potential, (e) relative
IC water concentration,
(f) relative EC water
concentration, (g) wa-
ter pressure, (h) Jaco-
bian, (i) areal Jacobian,
and (j) radial displace-
ment as a function of
the radial coordinate
at different times, in
the presence of gap and
tight junctions.



196 Electrochemo-poromechanics of cell clusters

more pronounced and nearly uniform with R.

While ψe remained nearly null everywhere in the absence of TJs, such that

ψm practically coincided with ψ, here both ψ and ψe contribute to ψm, being

comparable in magnitude. We observe that, initially, ψm is very close to the value

registered in the absence of TJs. We further note that the positive ψe at R = Rcl

corresponds to the transepithelial potential established by TJs (Nuccitelli, 2003).

Following Na+, water molecules pass from the EC to the IC space by osmosis

through aquaporins, leading to an increase of Cw and to a decrease of Ce
w. As

reported for C and Ce, given the impermeability of the boundary to water and

the large difference between Φ0 and Φe
0, Cw little increases, while Ce

w strongly

decreases uniformly.

Given the limited water redistribution, the mechanical fields are much smaller

in magnitude than in the absence of TJs. Furthermore, we highlight that J , and

consequently pw, are negative in Ωout, meaning that there the decrease of the

EC volume is larger than the increase of the IC volume. Indeed, we remark that,

in the presence of TJs, the great disparity between |Cw − C0
w| and |Ce

w − Ce,0
w |

makes both contributions important for the estimation of J through Eq. (9.30).

The radial displacement u increases from R = 0 to R = Rcl/2, though remaining

very small, and then decreases becoming nearly zero at R = Rcl.

In Fig. 9.9 we display the time evolution of the relevant fields until the steady

state. After quickly increasing in the first 30 s, C(R = 0) slowly decreases to a

steady state value ≈ 1.005C0, reached at about t = 60 min. Similarly, C(Rcl)

increases quite rapidly in the first 30 s, but then keeps increasing, though slower,

until the same steady state value of C(0). Both Ce(0) and Ce(Rcl) decrease to

the same steady state value ≈ 0.3Ce,0 at about t = 30 s. Therefore, we conclude

that Na+ ions electro-diffuse from the EC to the IC space of Ωin in the first

30 s, and then flow from Ωin to Ωout through GJs until the steady state, when C

becomes uniform within the whole cluster.

The evolution of Cw and Ce
w at R = 0 and R = Rcl in the first 30 s is

analogous to that observed for C and Ce. However, between approximately

t = 30 s and t = 3 min, Cw(0) increases, while Cw(Rcl) decreases. This suggests

that, in this time interval, some water flows from Ωout to Ωin, either directly

through GJs or by passing through the EC space. After 3 min, water starts

flowing back from Ωin to Ωout, until both Cw(0) and Cw(Rcl) reach the same

steady state value ≈ 1.005C0
w. Notably, c = C0 = Ce,0 = ce at the steady state;

moreover, we could show that ci = cei ≈ C0
i ∀i.

The Jacobian J and the areal Jacobian Ja increase at R = 0 and decrease at

R = Rcl until t = 3 min, and then asymptotically tend to one. In particular, Ja is

equal to the out-of-plane stretch J/Ja. The radial displacement u at R = Rcl/2

increases until t = 3 min and then goes to zero.



9.3 One-dimensional axisymmetric benchmark 197

0 20 40 60

0.0

0.3

0.6

0.9

1.2

t [min]

(a) (C − C0)/C0 [%]

0.0 0.1 0.2 0.3 0.4 0.5

−60

−40

−20

0

t [min]

(b) (Ce − Ce,0)/Ce,0 [%]

0 20 40 60

−5

0

5

10

15

t [min]

(c) ψ [mV]

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

t [min]

(d) ψe [mV]

0 20 40 60

0.00

0.25

0.50

0.75

1.00

t [min]

(e) (Cw − C0
w)/C0

w [%]

0.0 0.1 0.2 0.3 0.4 0.5

−60

−40

−20

0

t [min]

(f) (Ce
w − Ce,0

w )/Ce,0
w [%]

0 20 40 60

−0.4

0.0

0.4

0.8

1.2

t [min]

(g) pw [Pa]

0 20 40 60

0.999

1.000

1.001

1.002

1.003

t [min]

(h) J [−]

0 20 40 60

0.9995

1.0000

1.0005

1.0010

1.0015

t [min]

(i) Ja [−]

R = 0 R = Rcl

0 20 40 60

0.00

0.05

0.10

0.15

t [min]

(j) u [µm]

R = Rcl/2

Figure 9.9: (a) Rel-
ative IC osmotic con-
centration, (b) relative
EC osmotic concentra-
tion, (c) IC electric po-
tential, (d) EC electric
potential, (e) relative
IC water concentration,
(f) relative EC water
concentration, (g) wa-
ter pressure, (h) Jaco-
bian, and (i) areal Ja-
cobian at R = 0 and
R = Rcl, and (j) radial
displacement at R =
Rcl/2 and R = Rcl, as
a function of time in
the presence of gap and
tight junctions.



198 Electrochemo-poromechanics of cell clusters

To conclude, in the presence of TJs and in the absence of ion pumps, at the

steady state the current IC and EC ion concentrations are equal and close to the

initial IC values, and both the IC and EC spaces are electroneutral. Moreover,

within the same material point, the volume increase of the IC space balances the

volume decrease of the EC space, such that the cluster is globally undeformed.

9.4 Concluding remarks

We have herein proposed a continuum finite strain theory for the coupling of

electrostatics, ion transport, water transport, and mechanics of a closely packed

cell cluster.

Specifically, we have regarded the cluster as the superposition of a solid

network of cytoskeletal filaments and anchoring junctions and intracellular

(IC) and extracellular (EC) solutions of water and ions. We have described

the mechanics of the cluster through compressible hyperelasticity. Given the

diluteness of the IC and EC solutions and the incompressibility of all the

constituents, volumetric deformations are established by water redistribution

only. We have obtained the IC and EC fluxes, the first being allowed by gap

junctions, by considering cross-diffusing effects. Correspondingly, the IC and EC

water fluxes result from the contributions of water pressure and electro-osmosis,

while the IC and EC ion fluxes are due to electro-diffusion and convection. We

have further accounted for transmembrane osmosis and ion electro-diffusion

through aquaporins and ion channels, respectively.

We have tested our model to an in-plane circular cluster whose central region

Ωin presents an overexpression of sodium channels. The model correctly predicts

the accumulation of ions and, consequently, of water, in the IC space of Ωin,

and the resulting depolarization and in-plane expansion. The presence of gap

junctions smooths out the steep gradients in all the relevant fields otherwise

existing at the boundary of Ωin. In the absence of applied mechanical loads, the

contribution of the pressure to the water flux becomes relevant in stiff plant

cell clusters only, while in deformable animal cell clusters the water flow is

almost exclusively dictated by osmotic phenomena. In the absence of tight

junctions, the ion and water redistribution may be severe, leading to large

deformations; moreover, the membrane potential and the volumetric deformation

are essentially established by the IC fields only, as the EC space remains nearly

electroneutral and undeformed, except for the very initial transient. Differently,

in the presence of cluster-sealing tight junctions, the ion and water redistribution

is much more limited, resulting in small deformations, and both the IC and

EC spaces contribute to setting the membrane potential and the volumetric

deformation.
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The model may be quite straightforwardly complemented with the inclu-

sion of (i) the active transmembrane ion transport, (ii) the voltage-gating and

mechanosensitivity of ion channels and gap junctions, and (iii) genetic and

biochemical dynamics required for specific applications, as already addressed in

the literature (Jiang and Sun, 2013; Pietak and Levin, 2016, 2017; Leronni et al.,

2020).

A major and cumbersome advancement would be the inclusion of growth into

the model, toward exploring the interplay between mechanical and bioelectrical

dynamics in development and regeneration. This could be achieved by introducing

an inelastic (growth) contribution to the deformation gradient, multiplying the

elastic contribution and being modulated by the membrane potential, so as to

relate growth and depolarization (Sundelacruz et al., 2009; Ambrosi et al., 2019;

Silver et al., 2020). More details are provided in the next Ch. 10.





Chapter 10

Discussion

In the following, we compare the small strain electrochemo-mechanical (ECM)

model developed in Secs. 8.2 and 8.3 with the large strain electrochemo-

poromechanical (ECPM) model presented in Sec. 9.2. Finally, we hint at

how the theory of kinematic growth (Ambrosi et al., 2019) could be plugged into

the proposed large strain ECPM model.

Let us first focus on the small strain assumption underlying the ECM model.

Such hypothesis, although limiting the analysis to relatively short morphogenetic

events involving suitably small deformations, is convenient in bio-actuation (Sec.

8.2) for it allows a partial decoupling between electrochemistry and mechanics.

Indeed, the electrostatic and osmotic stresses (8.5) and (8.6) are independent of

deformation, such that one can solve first the electrochemical problem for the

electric field and ion concentrations, and then the mechanical problem (8.9) for

the displacement field. This is not possible under large strains, as the nominal

active stresses due to electrostatics and water pressure depend on deformation

(Eq. (9.35)).

Regarding bio-sensing (Sec. 8.3), conversely, once the membrane tension is

known, one can compute the channel open probability (8.49) and the membrane

diffusivity (8.50), modulating the electrochemical response. Again, we note

that the small strain assumption, not discriminating between undeformed and

deformed configurations, considerably simplifies the problem. Indeed, the Young-

Laplace Eq. (8.51) may be regarded as an equilibrium equation to be solved for

the membrane tension, given the membrane geometry and the pressure acting

on it.

Within finite deformations, the problem becomes cumbersome, as equilibrium

is established on the current configuration, in which the membrane thickness in

Eq. (8.48) and the membrane radius of curvature in Eq. (8.52) are unknown,

thus requiring compatibility and an appropriate constitutive law in order to

201
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solve the problem. The example of Sec. 8.3.1 partly addresses this issue, but

still assumes that the cell remains circular in the deformed configuration, which

does not hold true in general. Moreover, we note that in the ECPM model,

although we have accounted for the cluster large strains, we have neglected the

local membrane deformation (see, e.g., Eqs. (9.47)), since we were not interested

in modeling the mechanosensitivity of ion channels.

Let us now focus on the issue of water flow. In the ECM model, we have not

accounted for the water transport and the related volumetric deformation, but

rather assumed that the osmotic stress, given by the variation of the osmotic

concentration with respect to the initial state (Eq. (8.6)), is instantaneously

equilibrated by the mechanical stress (8.3), thus producing deformation. This

phenomenological approach considerably simplifies the problem, as it reduces

the number of governing equations and their complexity. We argue that such

an approach may be adequate, and recommendable given its manageability,

for soft cell clusters characterized by a large density of aquaporin channels.

Indeed, the simulations of Sec. 9.3 reveal that, in the case of sufficiently small

Young modulus and relatively large transmembrane water diffusivity, the osmotic

pressure gradient triggers fast osmotic fluxes that produce a volume change.

Differently, on the one side, if the Young modulus is larger, the water flux

is not only affected by the ion redistribution, but also driven by the water

pressure (see Fig. 9.6); on the other side, if aquaporins are underexpressed, the

transmembrane water flow following the ion redistribution and, correspondingly,

the establishment of the volumetric deformation are limited (see Fig. 9.3).

Another assumption the ECM theory is grounded on is the irrelevance of

the extracellular fields in establishing the mechanical response. The simula-

tions of Secs. 9.3.4 and 9.3.5, conducted in the absence of tight junctions and

accounting for both the intracellular and extracellular fields, reveal that the

cluster deformation is indeed practically governed by the intracellular fields only.

Correspondingly, the water pressure of the ECPM model could be regarded as

an intracellular water pressure in the absence of tight junctions; this, again, is

consistent with assuming that, in the ECM model, the jump in the mechanical

pressure across the membrane coincides with the intracellular value (see Eq.

(8.51) and related discussion). Differently, in the case in which tight junctions

are present, both the intracellular and extracellular spaces are relevant for the

overall deformation (see Sec. 9.3.6), such that the usage of the proposed ECM

model would be questionable, although the small strain assumption would be

valid given the limited ion and water redistribution.

To summarize, first, adopting a finite deformation framework is required

when one needs to investigate developmental processes involving significant ion

redistribution and/or growth, which determine large elastic and inelastic strains.
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Second, resorting to the explicit water flow modeling is necessary when the

cluster mechanics affects the water transport along with osmotic phenomena,

and/or when water transport is for some reasons hampered because of a local low

density and/or open fraction of aquaporins. Third, the thin extracellular spaces

are as relevant as the intracellular spaces in deriving the mechanical response

for a cluster with an impermeable boundary, but negligible otherwise.

We further note that the equilibrium Eqs. (8.9) and (9.1), pertaining to the

ECM and ECPM models respectively, are structurally different. Indeed, in the

former, electrostatic and osmotic stresses have been converted into body forces,

such that the divergence operator is applied to the mechanical stress only, and

the static boundary condition (8.11) is formulated in terms of mechanical stress.

Differently, in the latter, the argument of the divergence is the total stress, and

the static boundary condition (9.5) is written in terms of total stress.

About this point, another important difference distinguishes how the bath

surrounding the cluster is accounted for in BETSE and in the ECPM model we

have developed. Specifically, in BETSE the electrochemical boundary conditions

(that is, zero electric potential and fixed ion concentrations) are applied far from

the cluster boundary, that is, at the boundary of the environmental domain (see

Pietak and Levin, 2016 and related Supplementary Material, Sec. 2.7). Therefore,

the bath in the immediate proximity of the cluster boundary may be ion-enriched

or ion-depleted during a simulation, resulting in osmotic forces at the cluster

boundary. These have been included in the body force vectors pertaining to the

boundary cells, as described in Sec. 8.2.1 and displayed, for instance, in Fig.

8.6(d). Differently, in the ECPM model, the sole cluster domain is modeled,

such that the electrochemical boundary conditions are applied to the cluster

boundary, by assuming that the external bath is a reservoir at fixed chemical

and electric potentials (see, e.g., Eqs. (9.8) and (9.11)). Correspondingly, as

shown in Fig. 9.1, wherein the boundary cells are characterized by a very small

increment in the osmotic and water concentrations, the water pressure at the

boundary is negligible.

A major open issue: the theory of bioelectric kinematic growth We

conclude this discussion by proposing a way to account for growth within the

proposed ECPM theoretical framework. By relying on the theory of kinematic

growth (Ambrosi et al., 2019), the deformation gradient F is given by the

following multiplicative decomposition:

F = FeFg , (10.1)
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in which Fe is the elastic deformation gradient, accounted for in the present

investigation, and Fg is the growth deformation gradient. Specifically, Fg, which

has to be constitutively assigned according to biological phenomena, represents

the addition of mass to a local volume element. It takes the reference config-

uration Ω0 to the grown, mechanically unstressed, but generally incompatible,

configuration Ωg. Instead, Fe generates mechanical stress, by taking the grown

configuration Ωg to the current compatible configuration Ω. It is convenient to

adopt F and Fg as independent kinematic variables, such that, from Eq. (10.1),

we obtain Fe = FF−1
g .

By extending Eq. (9.33), we assume that the Helmholtz free energy per unit

reference volume is given by the following additive decomposition:

W (F,Fg, Cw, Ci, C
e
w, C

e
i ,D,D

e)

= JgWmec(FF−1
g ) +Wmix(Cw, Ci) +W e

mix(Ce
w, C

e
i ) +Wpol(F,D) +W e

pol(F,D
e)

+ pw

[
1 + Φ0

(
vwCw − 1

)
+ Φe

0

(
vwC

e
w − 1

)
− JJ−1

g

]
, (10.2)

where J = det F and Jg = det Fg are the volume ratio and the growth volume

ratio. We note that Wmec, defined in terms of Fe, is an energy per unit volume

of Ωg; hence, it is multiplied by Jg in order to obtain the corresponding energy

per unit reference volume. Differently, Wmix, W e
mix, Wpol, and W e

pol are already

defined per unit reference volume. Moreover, the water redistribution is now

related to the elastic volume ratio Je = JJ−1
g .

Therefore, the nominal stress tensor reads

P =
∂W

∂F
= Jg

∂Wmec

∂
(
FF−1

g

)F−T
g︸ ︷︷ ︸

Pmec

+
∂Wpol

∂F︸ ︷︷ ︸
Ppol

+
∂W e

pol

∂F︸ ︷︷ ︸
Pe

pol

−pwJJ
−1
g F−T︸ ︷︷ ︸

Pw

. (10.3)

Since Ppol, Pe
pol, and Pw can be regarded as active stresses, while Fg as an

active strain, the proposed one is a mixed active stress/strain theory (Ambrosi

and Pezzuto, 2012).

In our theory, we are interested in relating growth and membrane potential.

Indeed, it has been shown that depolarized cells, such as cancer and developing

cells, tend to proliferate more than hyperpolarized cells, such as somatic cells

(Sundelacruz et al., 2009; Yang and Brackenbury, 2013). Binggeli and Weinstein

(1986) have also hypothesized that a threshold value of membrane potential

may exist separating resting from proliferating cells. These evidences suggest a

dependence of the rate of change of the growth deformation gradient Ḟg on the
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membrane potential ψm of the following type:

Ḟg


= 0 if ψm < ψ̄m ,

∝
(
ψm − ψ̄m

)
I if ψm > ψ̄m ,

(10.4)

where ψ̄m is the aforementioned threshold value. Eq. (10.4) prescribes that

isotropic growth only occurs above ψ̄m, and that growth becomes faster as ψm

increases. Finally, we note that assigning a meaningful evolutive constitutive

law for Fg is complicated by the fact that ψm is not only an overall property of

cells, but changes dynamically within the cell cycle (Sundelacruz et al., 2008;

Yang and Brackenbury, 2013).





Chapter 11

Concluding remarks

In this thesis, we have presented continuum electrochemo-mechanical (ECM)

and electrochemo-poromechanical (ECPM) theories suitable for investigating the

behavior of porous materials featuring a solid network immersed in a dilute fluid

phase of solvent and ions. Specifically, the ECM theory neglects the modeling of

the solvent transport, and directly couples the electro-diffusion of ions in the fluid

with the elastic deformation of the solid network. The ECPM theory further

accounts for the solvent transport, which mediates the electrochemical and

mechanical responses. We have employed the proposed theories for describing

the ionic electroactive behavior of ionic polymer metal composites (IPMCs) and

the mechanobioelectricity of biological cell clusters.

In particular, in Ch. 4 we have plugged the zigzag warping structural theory

proposed by Yu (1959) and Krajcinovic (1972) for sandwich beams into the

ECM theory developed by Cha and Porfiri (2014) for IPMCs. The result is a

model that allows one to study the influence of the shear deformation of the

membrane on the counterion diffusion in IPMC sensing. Indeed, the membrane

shear strain enters the counterion flux, in addition to the membrane curvature.

We have proved that, for short IPMCs with stiff electrodes subject to an imposed

mechanical load, the shear deformation non-negligibly enhances the counterion

flux, thus improving the sensing/energy harvesting capabilities of IPMCs. More

importantly, the successful application of such a structural model in predicting

the IPMC electrochemo-mechanics, as confirmed by continuum finite element

analyses, questions the reliability for IPMCs of the Euler-Bernoulli structural

model, which has been so far pervasive in the literature. In the wake of this

work, Boldini and Porfiri (2020) have further proved that through-the-thickness

strain localization in the membrane regions adjacent to the electrodes occurs in

actuation, which, again, cannot be captured by the Euler-Bernoulli beam theory.

Later, Boldini et al. (2020) have proposed an advanced structural theory for

207
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IPMC actuation accounting for both the layered structure of the IPMC and the

through-the-thickness strain localization at the membrane-electrode interfaces.

In Ch. 5, inspired by the mixture theory (Ateshian, 2007) and by recents

works on polyelectrolyte gels (Hong et al., 2010), we have modified the Cha and

Porfiri (2014) theory in order to account for the solvent transport within the

IPMC membrane. Additionally, we have accounted for the cross-diffusion of

solvent and counterions (Vanag and Epstein, 2009), as recently accomplished by

Zhang et al. (2020) for polyelectrolyte gels. Our resulting ECPM theory reveals

to be suitable to qualitatively reproduce the experimentally observed IPMC

curvature relaxation in actuation (Asaka et al., 1995) and electric discharge

in sensing (Farinholt and Leo, 2004). Specifically, our model explains the first

behavior with the solvent counter-diffusion down its pressure gradient, occurring

after the solvent is initially transported toward the cathode by electro-osmosis;

electrostatic phenomena may concur to strengthen the curvature relaxation, even

resulting in an opposite bending (Porfiri et al., 2017). The second behavior is

instead related with the ion counter-diffusion down its concentration gradient,

occurring after ions are initially transported toward the cathode by convection

with the solvent. Notably, the modeling of solvent transport, and especially of its

cross-diffusion with counterions, is necessary in order to reproduce the foregoing

counterintuitive phenomena.

In Ch. 6 we have compared the Cha and Porfiri (2014) ECM theory and

the here developed ECPM theory, showing that their main difference lies in the

adopted form of the mixing free energy. In particular, Cha and Porfiri (2014)

propose a modified version of the Borukhov et al. (2000) mixing free energy for

an electrolyte solution containing two charge carriers. Their mixing free energy

depends on the deformation gradient, resulting in an osmotic stress increasing

with the counterion concentration. Differently, our free energy accounts for

the entropy increase due to the mixing of counterions and solvent molecules,

resulting in an osmotic contribution, again proportional to the counterion con-

centration, to the solvent chemical potential. Moreover, in our case, the coupling

between mechanics and fluid phase transport stems from the dependence of

the macroscopic volumetric deformation of the membrane on the fluid phase

concentration.

The proposed comprehensive ECPM model for IPMC actuation and sens-

ing may be improved with regard to the complex behavior characterizing the

membrane-electrode interfaces. First, the adopted dilute solution approximation

may be questionable for IPMC actuation, as counterions largely accumulate near

the cathode. Second, we have assumed a flat interface between membrane and

electrodes; actually, the membrane-electrode interfaces are characterized by a

rough surface, which increases the overall charge storage capacity (Porfiri, 2009).
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Third, as a result of the manufacturing process, the electrodes are not perfectly

uniform layers. Specifically, some authors have identified, on each IPMC side, an

outer thin metal electrode layer and an inner thicker polymer-metal composite

electrode layer (Kim and Shahinpoor, 2003; Tiwari and Kim, 2010; Akle et al.,

2011; Liu et al., 2019). Composite electrodes have been accounted for in some

IPMC modeling efforts by introducing the so-called composite layers between

the purely polymeric membrane and the purely metallic electrodes (Cha et al.,

2012).

In Ch. 8 we have combined the description of the bioelectrical ion fluxes

in cell clusters, underlying the BioElectric Tissue Simulation Engine (Pietak

and Levin, 2016), with the Cha and Porfiri (2014) description of actuation

in IPMCs. Moreover, by leveraging on a model proposed by Wiggins and

Phillips (2004), we have accounted for mechanosensitive ion channels and their

membrane tension-dependent open probability. This has led to the Mechanical

BioElectric Tissue Simulation Engine, allowing one to study the coupling between

mechanics and bioelectricity in cell clusters. Although we have restricted our

attention to the small strain setting, our analyses suggest that there may be

a correlation between increase in membrane potential (that is, depolarization),

and increase in mechanical stress and cell volume, due to the combined effect of

osmotic pressure and mechanosensitivity of ion channels. Similar claims have

been put forward in recent contributions to the literature (Yellin et al., 2018;

Silver and Nelson, 2018; Silver et al., 2020). We expect that this result could

motivate further investigations, given that depolarization seems to be implicated

in developmental processes, such as in the proliferation of both healthy and

cancer cells (Sundelacruz et al., 2009).

In Ch. 9, influenced by previous works on the poroelastic nature of cells

(Moeendarbary et al., 2013) and on the coupling between cell mechanics and

transmembrane osmosis (Jiang and Sun, 2013), we have proposed a thermody-

namically consistent ECPM theory for cell clusters. Such a theory extends the

model of Ch. 8 in three main directions. First, it additionally accounts for the

water transport, which occurs directly from cell to cell, in the intercellular spaces,

and across cell membranes through aquaporins. As extensively documented in

Ch. 10, explicitly accounting for the water transport in addition to ion transport

is especially relevant when the former does not naturally follow the latter: this

occurs in stiff plant cell clusters, characterized by large turgor pressures also

influencing the solvent flux, or when the closure of aquaporins hampers the

transmembrane water exchange. Second, the ECPM theory additionally accounts

for the effect of the extracellular fluid phase concentration on the mechanics

of the cluster. This is relevant in tight junctions-sealed cell clusters, whereby,

in the absence of fluid exchange with the bath surrounding the cluster, both



210 Concluding remarks

intracellular and extracellular concentration fields concur to the deformation.

Third, the proposed ECPM theory extends the contribution of Ch. 8 to a large

deformation framework, thus paving the way for quantitative predictions and

even developmental applications.

About this last point, in order to actually address development, regeneration,

and cancer progression, our cell cluster model should be complemented with

the mathematical description of growth, by relying for instance on the theory

of kinematic growth (Ambrosi et al., 2019). Moreover, in order to correlate

depolarization and proliferation (Sundelacruz et al., 2009), the growth part of the

deformation gradient should be expressed as a function of the local bioelectrical

state, as for example proposed and discussed in Ch. 10. Finally, we remark

that, while in IPMCs the ion transport is purely passive, in cell clusters the

transmembrane ion transport also occurs actively. Modeling active ion transport

would require coupling the ion flow toward regions of higher electrochemical

potential with a source of energy. This can be, for instance, the flow of another

ion toward regions of smaller electrochemical potential in the case of coupled

transporters, or the chemical reaction of ATP hydrolysis in the case of ATP-

driven pumps (Alberts, 1983). About this, we note that the coupling of active

transmembrane transport and cell mechanics has already been addressed in other

works in the literature (Ateshian et al., 2010; Yellin et al., 2018), though limiting

attention to a single cell.

In the following, the interested reader can find a further final discussion on

the main differences between the electrochemo-poromechanics of IPMCs and cell

clusters.

Electrochemo-poromechanics of IPMCs and cell clusters: a compari-

son Although we have studied IPMCs and cell clusters through similar ECM

and ECPM theories, there are some notable differences in their modeling, as

discussed in the following.

While in IPMCs the porosity network is unique, in cell clusters we have

distinguished between intracellular (IC) and extracellular (EC) spaces, separated

by cell membranes. In both the IPMC porosity network and the EC space the

motion of solvent and ions is typically always allowed; differently, in the IC space

the transport of species may be hampered in the case of low density or low open

fraction of cell-connecting gap junctions.

Moreover, in cell clusters the IC and EC spaces can exchange mass, since

water and ions are allowed to cross the cell membrane through aquaporins and

ion channels, respectively. Such transmembrane fluxes have been regarded, in

the context of our continuum ECPM theory, as local fluxes, that is, as local

exchanges of mass between IC and EC spaces.
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While we have regarded the IPMC and EC diffusivities as material parameters,

the IC and transmembrane diffusivities are, in general, dynamically modulated

by factors such as the membrane potential, the membrane tension, or the

concentration of specific ligands. In particular, in our ECM theory, we have

explicitly accounted for the mechanosensitivity of ion channels.

In IPMCs, a single positive mobile ion species, such as lithium, sodium, or

potassium, is responsible for the electroactivity of the membrane. Differently,

studying bioelectricity demands considering, at least, three different mobile ion

species, namely sodium, potassium, and chloride. Each ion species requires two

mass balances, one for its IC concentration and one for its EC concentration. We

have neglected the friction between the different ions and between the ions and

the solid network in deriving the ion and water fluxes, and adopted the same

IC and EC diffusivities for all ions, given the non-selectivity of gap junctions.

Differently, ion channels may be selective for certain ion species; correspondingly,

we have assumed, in general, a distinct transmembrane diffusivity for each ion

species. If then one wants to account for specific biochemical networks, further

chemical species and related mass balances should be included in the model, as

well as possible exchanges of mass due to chemical reactions.

Both IPMCs and cell clusters feature a polymer network, whose mechanics

has to be described. While in IPMCs this network is represented by a synthetic

ionomer such as Nafion, in cell clusters it consists of natural polymers, namely

cytoskeletal filaments joined by anchoring junctions. In particular, we remark

that, within our framework, cytoskeleton and anchoring junctions do not belong

to the fluid IC and EC spaces respectively, but they are part of the same solid

network.

Both IPMCs and cell clusters feature fixed anions. In the case of Nafion-based

IPMCs, these are represented by monovalent sulfonate groups anchored to the

polymer backbone; therefore, in our ECPM theory for IPMCs, we have assumed

that the fluid phase is constituted by solvent molecules and mobile cations only.

In the case of cell clusters, we have accounted for a single fixed anionic species,

representing the many different anions contained in cells; specifically, this fixed

anionic species has been considered as part of the IC solution, thus contributing

to the IC osmotic concentration.

We have regarded IPMC ionomers and cell clusters as homogenized domains

in which electrostatic, transport, and mechanical phenomena occur and influence

each other. In IPMCs we have further accounted for the electrode domains.

These have been modeled as non-porous perfect electric conductors, impermeable

to both solvent and counterions, contributing to the overall IPMC stiffness. In

cell clusters, the impermeability of the boundary to the external bath depends

instead on the presence of cluster-sealing tight junctions.
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In IPMCs, actuation and sensing are triggered by the external imposition of

an electric field or mechanical load, respectively. In other words, the response

is elicited by the applied boundary condition. Although electric fields and

mechanical loads could in principle be applied to cell clusters as well, in our

investigation we have focused on endogenous mechanobioelectricity, whereby the

response depends on the spatio-temporal activity of ion channels, that is, on the

variation of the transmembrane ion diffusivities in space and time.

The IPMC electrochemical response is characterized by the presence of very

thin boundary layers in the membrane regions close to the electrodes, in which

the counterion concentration and the electric potential experience steep gradients,

especially in actuation. These boundary layers mathematically describe the

electric double layers arising at the membrane-electrode interfaces. We remark

that, in cell clusters, ion concentrations and electric potentials actually vary in

the vicinity of cell membranes only, such that the bulk cytoplasm remains nearly

electroneutral. However, our model, suitable for describing the global cluster

response, prevents us from visualizing such local boundary layers.

As anticipated, in IPMC actuation the imposition of a voltage across the

electrodes elicits a severe counterion redistribution and, correspondingly, a strong

electric field in both boundary layers. Therefore, in IPMC actuation the Maxwell

stress is as relevant as the osmotic or solvent pressure. Differently, the Maxwell

stress arising at the interface between cluster regions polarized at diverse extents

is totally negligible. However, we expect that the Maxwell stress would play a

major role in the case of exogenous bioelectricity, that is, if an external electric

field would be applied to the cluster.

Our simulations reveal that the contribution of the solvent pressure to the

solvent flux is fundamental in IPMC sensing, whereby the application of a

mechanical load triggers the solvent flow down its pressure gradient, and in

actuation as well, whereby the solvent pressure gradient in the bulk is responsible

for the solvent counter-diffusion, contributing to the back-relaxation. Instead,

we argue that, in the absence of applied mechanical loads, the water pressure

is relevant for the water flux in stiff plant cell clusters only. Differently, in

compliant animal cell clusters the water flow is dictated almost exclusively by

osmotic phenomena.

Cross-diffusing effects, that is, water electro-osmosis and ion convection are

relevant transport mechanisms in cell clusters. In IPMCs, electro-osmosis is

especially important in actuation, since solvent molecules are dragged toward the

cathode with ions as the voltage drop is applied across the electrodes. Conversely,

ion convection is relevant in sensing, because ions are transported toward the

cathode with the underlying solvent as the mechanical load is applied.

Resorting to a large deformation framework is necessary in IPMC actuation,
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characterized by large through-the-thickness normal strain components localized

in the boundary layers. Moreover, if one wants to explore the effect of shear

deformation on ion electro-diffusion in short IPMCs with thick electrodes, then

the nonlinear expression of the volume ratio should be retained in the ion flux. As

for cell clusters, large deformations are registered in compliant animal cell clusters

allowed to exchange water and ions with their surrounding bath. Moreover, a

large deformation framework is always necessary if one needs to account for

biological growth, that is, for biological mass production over time.
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