
Vol.:(0123456789)1 3

Pflügers Archiv - European Journal of Physiology 
https://doi.org/10.1007/s00424-021-02571-w

ION CHANNELS, RECEPTORS AND TRANSPORTERS

A detailed characterization of the hyperpolarization‑activated “funny” 
current (If) in human‑induced pluripotent stem cell (iPSC)–derived 
cardiomyocytes with pacemaker activity

Federica Giannetti1   · Patrizia Benzoni1   · Giulia Campostrini1,2   · Raffaella Milanesi1,3   · Annalisa Bucchi1   · 
Mirko Baruscotti1   · Patrizia Dell’Era4   · Alessandra Rossini5   · Andrea Barbuti1 

Received: 22 October 2020 / Revised: 1 April 2021 / Accepted: 19 April 2021 
© The Author(s) 2021

Abstract
Properties of the funny current (If) have been studied in several animal and cellular models, but so far little is known concern-
ing its properties in human pacemaker cells. This work provides a detailed characterization of If in human-induced pluripotent 
stem cell (iPSC)–derived pacemaker cardiomyocytes (pCMs), at different time points. Patch-clamp analysis showed that If 
density did not change during differentiation; however, after day 30, it activates at more negative potential and with slower 
time constants. These changes are accompanied by a slowing in beating rate. If displayed the voltage-dependent block by cae-
sium and reversed (Erev) at − 22 mV, compatibly with the 3:1 K+/Na+ permeability ratio. Lowering [Na+]o (30 mM) shifted the 
Erev to − 39 mV without affecting conductance. Increasing [K+]o (30 mM) shifted the Erev to − 15 mV with a fourfold increase 
in conductance. pCMs express mainly HCN4 and HCN1 together with the accessory subunits CAV3, KCR1, MiRP1, and 
SAP97 that contribute to the context-dependence of If. Autonomic agonists modulated the diastolic depolarization, and thus 
rate, of pCMs. The adrenergic agonist isoproterenol induced rate acceleration and a positive shift of If voltage-dependence 
(EC50 73.4 nM). The muscarinic agonists had opposite effects (Carbachol EC50, 11,6 nM). Carbachol effect was however 
small but it could be increased by pre-stimulation with isoproterenol, indicating low cAMP levels in pCMs. In conclusion, we 
demonstrated that pCMs display an If with the physiological properties expected by pacemaker cells and may thus represent 
a suitable model for studying human If-related sinus arrhythmias.
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Introduction

Rhythmicity of cardiac contractions derives from the spontane-
ous electrical oscillations of the sinoatrial node (SAN). In these 
cells, at the end of the repolarizing phase of the action poten-
tial, a slow diastolic depolarization (DD) drives the membrane 
potential to the threshold for firing the next action potential. 
Although the DD is due to a complex interplay of various ionic 

mechanisms, the pacemaker “funny” current (If) plays a pivotal 
role [18]. The If, described for the first time in 1979 in rabbit 
sinoatrial cardiomyocytes, owes its name to its unusual property 
of being activated upon hyperpolarization. f-channels are non-
selective channels conducting a mixed Na+ and K+ current that 
display a dual voltage and ligand gating, being activated upon 
membrane hyperpolarization and direct binding of cAMP. In 
mammals, f-channels are the product of the HCN gene family 
consisting of 4 isoforms (HCN1-4). In the SAN of many species, 
HCN4 is the most abundant isoform followed by HCN1 and to 
a lesser extent HCN2 [8, 11, 13]. The importance of f-channels 
to cardiac rhythmicity is demonstrated by the fact that mutations 
in HCN4 have been found in patients with several sinus arrhyth-
mias, such as sinus bradycardia, inappropriate sinus tachycardia, 
sinus node disease but also with atrial fibrillation and ventricular 
non-compaction [17]. Moreover, alterations in either the physi-
ological levels of HCN channel or in If current properties have 
been linked to other arrhythmias and cardiomyopathy [9, 35].
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The majority of studies addressing the physiological and 
pathological role of If have been performed in rabbit and 
murine SAN cells [12, 16]. This choice derives from the dif-
ficulty of retrieving human SAN tissue. Indeed, while atrial 
and ventricular cardiomyocytes can be isolated from small 
biopsies during various types of surgeries, the SAN, due to its 
function and dimension is practically inaccessible. So far, only 
few studies analysed HCN channel expression in the human 
SAN [13, 28] and only one study described the properties of If 
in three cells isolated from a diseased human SAN [39].

The possibility to differentiate pluripotent stem cells into 
cardiomyocytes has opened a new opportunity to obtain 
SAN-like cells. Previous studies have demonstrated that 
SAN-like cells derived from mouse embryonic stem cells 
(mESC) show an If current with properties very similar 
to those of the native mouse SAN cells [5, 36]. Similarly, 
human induced pluripotent stem cells (hiPSC) have made 
easily available a source of human pacemaker cardiomy-
ocytes, giving us the unique opportunity to analyse the 
properties of the human If current. Here we present a full 
functional characterization of the If current recorded from 
regularly and spontaneously beating cardiomyocytes, here 
dubbed pCMs (pacemaker cardiomyocytes), at different time 
points of differentiation.

Material and methods

Maintenance of hiPSCs lines and cardiac 
differentiation

All the hiPSC lines used were from healthy donors. We used 
previously characterized and published hiPSC lines [1, 9] 
derived both from females and male donors of different ages. 
Moreover, a new line has been generated from blood cells of 
a healthy male donor (age 52) following an informed consent, 
in agreement with the declaration of Helsinki and its use was 
approved by the ethical committee of the Università degli Studi 
di Milano (nr. 29/15). Human iPSC lines were maintained on 
Matrigel-coated plates in TeSR-E8 medium (Stem Cell Tech-
nologies). Cells were passaged using Tryple Express (Thermo 
Fisher Scientific) every 4 days and seeded at the density of 
20,000 cells/cm2. Cardiac differentiation was induced at least 
30 passages after the generation of the lines and were used up 
to passage 140. Within this interval, we did not observe any 
significant variation in either the differentiation capacity or in 
cardiomyocytes yield. Cardiac differentiation was carried out 
on hiPSC monolayers using the PSC Cardiomyocyte Differ-
entiation Kit (Thermo Fisher Scientific), following the manu-
facturer’s instructions. Briefly, when iPSCs reached 70–80% 
of confluency, cardiomyocyte differentiation medium A was 
added; after 48 h, medium was replaced with cardiomyocyte 

differentiation medium B, and after other 48 h, medium was 
replaced with the cardiomyocyte maintenance medium (CMM) 
that was refreshed every 2 days. hiPSC-derived cardiomyo-
cytes were maintained in culture for 15, 30, or 60 days.

Quantitative reverse transcriptase PCR (qRT‑PCR) 
analysis

Total RNA was isolated using TRIzol (Thermo Fisher 
Scientific). GoScript™ Reverse Transcription System 
(Promega) was used to synthesize cDNA following the 
manufacturer’s instructions. For each gene, qRT-PCR was 
performed on technical duplicates or triplicates from at 
least 4 independent experiments, using 10 ng of cDNA 
with the iQTMSYBR® Green Supermix (Bio-Rad) using 
the iCycler Bioer System (BIOER). Expression data were 
analysed using 2^(-ΔCT) method using β-actin (ACTB) as 
housekeeping gene. Gene expression levels were normal-
ized to cardiac Troponin-T (TNNT2) levels to account for 
differences in cardiomyocytes yield among various dif-
ferentiation experiments. Primers used are given below.

ACTB F: CAC​TCT​TCC​
AGC​CTT​CCT​TC

R: AGT​GAT​CTC​CTT​
CTG​CAT​CCT​

TNNT2 F: AAG​CCC​AGG​
TCG​TTC​ATG​CCC​

R: CTC​CAT​GCG​CTT​
CCG​GTG​GA

HCN1 F: TGA​AGC​TGA​
CAG​ATG​GCT​
CTT​

R: CTG​GCA​GTA​CGA​
CGT​CCT​TT

HCN2 F: CTG​ATC​CGC​
TAC​ATC​CAT​CA

R: AGA​TTG​CAG​ATC​
CTC​ATC​ACC​

HCN3 F: TGG​ATC​CTA​
CTT​TGG​GGA​GA

R: ATG​GTC​CAC​GCT​
GAG​TGA​GT

HCN4 F: AAC​AGG​AGA​
GGG​TCA​AGT​CG

R: ATC​AGG​TTT​CCC​
ACC​ATC​AG

CAV3 F: CGA​GGA​CAT​
AGT​CAA​GGT​
GGAT​

R: AGA​AGG​AGA​
TGC​AGG​CGA​AC

KCNE2 (MiRP1) F: ACT​GCA​TAG​
CAG​GAG​GGA​
AGC​

R: TCA​GCA​TCA​ACT​
TTG​GCT​TGG​

ALG10 (KCR1) F: CTG​GCT​TGT​
ACC​TGG​TGT​CA

R: GGA​TAC​TTG​AGG​
CAG​CCT​TGT​

DLG1 (SAP97) F: GGT​CAC​GCC​
TCT​CTT​CAG​AC

R: CAC​ACA​CCT​TGC​
CCT​AGC​C

Immunofluorescence (IF) staining and Western blot 
analysis

hiPSC-CMs were fixed in 4% paraformaldehyde and incu-
bated in a blocking PBS solution with 0.3% Triton X-100 
(Sigma-Aldrich) and 3% Donkey serum, for 45 min. Anti-
bodies used are reported below. Nuclei were stained with 
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0.5 µg/ml DAPI. Western blot analyses were carried out 
loading 120 µg of protein extracts; proteins were separated 
by SDS-PAGE and transferred onto PVDF membranes. 
Chemiluminescence signals were acquired with the Chemi-
doc system (BioRAD) after membrane incubation with 
SuperSignal™ West Pico/Fempto PLUS Chemiluminescent 
Substrate (Thermo Fisher Scientific). Membranes were incu-
bated with primary antibodies overnight at 4 °C and second-
ary antibodies for 1 h at RT under agitation. Mouse anti-car-
diac Troponin (Abcam, clone 1C11, 1:1000), rat anti-HCN4 
(Abcam, 1:2000), mouse anti-HCN1 (Termofisher, 1:1000), 
rabbit anti-CAV3 (Abcam, 1:500), appropriate secondary 
antibodies conjugated to HRP (Jackson ImmunoResearch, 
1:10,000) for WB, and Alexa −488 and −594 coniugated 
(Jackson ImmunoResearch, 1:600) for IF were applied. Den-
sitometric analyses of WB bands for HCNs isoforms were 
performed using Image J software.

Electrophysiological analysis

hiPSC-derived cardiomyocytes were isolated at day 15, 
30, or 60 with tripsyn-EDTA (Sigma) and plated on 
fibronectin (Corning)-coated dish. Electrophysiological 
experiments were performed using either the ruptured 
or perforated patch-clamp configuration at 36 ± 1  °C 
on pCM. The extracellular Tyrode solution (pH 7.4) 
contained (mM): 137 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 
10 D-glucose, 10 Hepes–NaOH. Patch pipettes had a 
resistance of 4–7 MΩ and 10-12 MΩ, for voltage- and 
current-clamp recordings, respectively, when filled with 
intracellular-like solution (pH 7.1) containing (mM) 
the following: 120 KCl, 20 Na-HEPES, 10 MgATP, 0.1 
EGTA-KOH, 2 MgCl2.

The If current was recorded from isolated pCM adding 
BaCl2 (1 mM) and MnCl2 (2 mM) to the Tyrode solution 
(CTRL condition) to minimize interference from K+ and 
Ca2+ currents. If was activated from a holding potential 
(hp) of −30 mV by applying 10-mV hyperpolarizing volt-
age steps from −35 to −125-mV long enough to reach 
steady-state activation, followed by a fully activating step 
at −125 mV. Steady-state current density was calculated 
as the ratio between current intensity and cell capaci-
tance at all voltages. Activation curves were obtained 
from normalized tail currents and fitted to the Boltzmann 
equation:

where V1/2 is the half-activation voltage and s the inverse 
slope factor. Activation time constants (τ) were calcu-
lated by fitting traces to a single exponential curve in the 
range −75/–125 mV, after an initial delay.

y = 1∕
(

1 + exp
((

V − V1∕2

)

∕s
))

Fully activated current density–voltage (I/V) relations 
from day 30 pCMs were determined as previously pub-
lished [20]. Briefly, If was recorded from a hp of −35 mV 
by applying pairs of steps at −125 mV (all channels open) 
and +20 mV (all channels closed) each one followed by 
test steps in the range −120/ +20 mV (in 20 mV incre-
ments); fully activated current was determined as the 
arithmetical difference between initial current amplitude 
elicited by test steps at the same voltage. To block the 
If current, 2 mM CsCl was added to the control solu-
tion. The potassium-dependence was studied increasing 
the external K+ concentration to 30 mM using the fol-
lowing external solution (in mM): 110 NaCl, 1.8 CaCl2, 
0.5 MgCl2, 30 KCl, 1 BaCl, 2 MnCl2, 5 HEPES NaOH 
(pH 7.4). Sodium-dependence was studied decreasing the 
external Na+ concentration to 30 mM, using the follow-
ing external solution (mM): 30 NaCl, 107 NMDG-Cl, 5 
KCl, 2 CaCl2, 1 MgCl2, 10 D-glucose, 10 Hepes–NaOH 
(pH 7.4).

To dissect the effect of autonomic agonists on If and rate, 
isoproterenol (from 10 to 3000 nM) or carbachol (from 1 
to 1000 nM) has been added to either Tyrode or control 
solution from concentrated stock solutions. The voltage 
shifts were calculated as previously reported [4] by apply-
ing hyperpolarizing pulses from − 30 mV (hp) to a voltage 
close to V1/2 and compensating the differences in current 
amplitude caused by drugs perfusion by manually changing 
the amplifier holding command. Shifts were plotted against 
drug concentrations and fitted to the Hill equation:

where Ymax represents the maximal shift, k the EC50, and 
n the Hill coefficient.

Statistics

Data were analysed with Clampfit 10 (Molecular Devices) 
and Origin Pro 9 (OriginLab). Normal distribution of data 
points was assessed using the Kolmogorov–Smirnov test; 
groups were compared with one-way ANOVA followed by 
pairwise comparison using Fisher’s test. P < 0.05 defines 
statistical significance. Normally-distributed data are pre-
sented as Mean ± Standard Error of the Mean (SEM).

y = Ymax
x
n/

k
n
+x

n
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Results

Kinetic properties of If

Differentiation of hiPSC into cardiomyocytes is usually 
monitored by the appearance of spontaneously beating 
activity in the culture dishes, which strongly indicates 
the presence of a proportion of spontaneously contract-
ing pacemaker cells. Following single cell isolation, we 
run patch clamp experiments only on cardiomyocytes 
showing regular pacemaker activity, here dubbed pCM 
(pacemaker cardiomyocytes). Figure 1a shows three rep-
resentative action potentials (APs) recorded from single 
pCM at d15, 30, and 60, as indicated. AP parameters 
(Fig. 1 table) are in line with those previously reported 
for specifically selected nodal like cells [34]. Application 
of hyperpolarizing steps in the range −35/ −125 mV to 
pCM elicited time- and voltage-dependent inward cur-
rents with electrophysiological properties compatible 
with If. Figure 1b shows representative traces recorded 
from pCMs at day 15 (triangle), day 30 (circle), and day 
60 (square) of differentiation. Mean cell capacitance at 
the three time points was similar (20.3 ± 1.0 pF n = 19, 
23.2 ± 1.9 pF n = 21, and 19.2 ± 2.1 pF n = 13 at days 15, 
30, and 60, respectively). As shown by the steady-state 
I-V curves, current density did not vary significantly with 
time (Fig. 1c).

Analysis of the activation curves shows that at days 30 
and 60, the voltage-dependence of If shifted slightly but 
significantly to more negative potentials than at day 15 
(Fig. 1d). Finally, the analysis of activation time constant 
(τ) revealed that at day 15, the If current activated with 
significantly faster τ than at later differentiation days, in 
the range −75 to −115 mV (Fig. 1e).

hiPSC‑CMs express HCN isoforms and accessory 
subunits

In order to evaluate the subunit composition of the If cur-
rent, we first investigated the expression of the HCN iso-
forms of beating cultures at d15, 30, and 60.

From box plots in Fig. 2a, it is clear that HCN4 and 
HCN1 are the most abundant isoforms expressed at all 
time points, in accordance with literature data on SAN 
cells of various species and on stem cell-derived SAN-like 
cells. HCN1 mRNA was more expressed at day 30 than at 
both day 15 and day 60; HCN2 expression increased sig-
nificantly at day 60; HCN3 expression was almost absent 
at day 15 but increased at later time points remaining how-
ever low. Transcript levels of HCN channels in human ven-
tricular samples are shown for comparison. In agreement 

with literature data, HCN4 and HCN1 are not expressed 
in the human ventricle.

We also analysed the expression of several known aux-
iliary proteins of f-channels (Fig. 2b) such as caveolin-3 
(CAV3), KCR-1, MiRP-1, and SAP97 that, interacting with 
HCN, finely modulate their functional properties [7, 32, 35]. 
All genes were expressed in hiPSC-CMs.

Panel c shows Western blot analysis at each differen-
tiation time-point for HCN1, HCN4, and cTnT. HCN4 is 
the prevalent isoform expressed at the protein level, at all 
time-points. It is worth noting that the densitometry analysis 
revealed that the HCN1/HCN4 ratio is significantly higher 
at day 15 than at the other time points (d15, 2.07*; day 30, 
0,30; d60, 0,07. n = 3, P < 0.05 by Anova), pointing to a 
higher contribution of the fast-activating HCN1 isoform at 
d15 than at later time points. These data agree with and sup-
port the kinetics data shown in Fig. 1d and e.

Figure 2d shows a representative immunofluorescence 
image of hiPSC-CMs co-stained with anti-HCN4 and 
-caveolin-3 antibodies. As previously demonstrated, the co-
expression of these two proteins is characteristic of pace-
maker/SAN cardiomyocytes of different species [4, 33, 36].

These differences are compatible with a certain degree of 
functional maturation likely due to a variation in the context-
dependence and/or stoichiometry of HCN subunits between 
d15 and d30. For this reason, the following analysis were 
carried out only at day 30, a good compromise between time 
of differentiation and maturity.

Ionic nature of If

In Fig. 3a, representative current traces recorded applying 
the protocol described in the “Material and methods” sec-
tion for obtaining the fully activated I-V relationship of If 
are shown. The reversal potential (Erev) estimated from the 
I-V was around − 22 mV (Fig. 3c), a value compatible with 
the mixed sodium and potassium permeability typical of If. 
Addition of caesium (2 mM), a well-known blocker of the If 
current, to the extracellular solution almost completely sup-
pressed the inward component of If, especially at the most 
negative potentials (Fig. 3b and c), while did not affect the 
outward current, in agreement with the previously-reported 
voltage-dependent block [15].

In panel 3d, the effects of varying the external con-
centrations of Na+ and K+ on the fully activated I-V 
relations are shown. Changing the external potassium 
concentration from 5 to 30  mM increased conduct-
ance density more than fourfold (from 58.6 ± 4.9 to 
256.0 ± 40.6 pS/pF, n = 30 and n = 14 respectively) and 
induced a positive shift of the Erev (to about − 15 mV; 
Fig. 3d, filled triangles). When the If was recorded in 
the low sodium (30 mM) external solution, conduct-
ance did not change significantly (46.9 ± 4.8 pS/pF, 
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n = 14) while the Erev shifted to more negative voltages 
(around − 38 mV, Fig. 3d inset empty triangles). These 
effects are compatibles with previously reported data of 
If in rabbit SAN [20].

Modulation of If and spontaneous action potential 
rate by sympathetic and parasympathetic agonists

A well-studied modulatory mechanism of heart rate is based 
on a direct cAMP-dependent modulation of the funny cur-
rent by autonomic neurotransmitters [19]. Here we assessed 
how If responded to different concentrations of both the 

Fig. 1   Action potential properties and If density and kinetic in pCM. 
a (Top) Representative spontaneous action potentials recorded from 
d15, 30, and 60 pCMs, as indicated; (Bottom) Summary table of 
the AP parameters: APA, action potential amplitude; MDP, maxi-
mum disatolic potential; APD, action potential duration at 50% 
(APD50) or 90% (APD90) of repolarization; APD90c, rate corrected 
APD90. b Representative traces of the If current density recorded 
in the range −35/ −115  mV (20 mV increment), at the three differ-
ent differentiation stages (d15, triangles; d30, circles; d60, squares 
throughout the figure). c Plot of mean If current density–voltage rela-
tions obtained at the different time points. Mean values at −115 mV 

were as follows: − 3.75 ± 0.29 pA/pF (n = 19), − 4.19 ± 0.45 pA/
pF (n = 21), and − 4.64 ± 0.90 pA/pF (n = 13). d Plot of the mean 
If activation curves; V1/2 and inverse-slope factors were as fol-
lows: − 76.5 ± 0.71* mV and 4.8 ± 0.36 (n = 19), − 79.0 ± 0.8 mV and 
5.6 ± 0.36 (n = 21), − 81.2 ± 1.37  mV and 6.4 ± 0.47 (n = 13) at days 
15, 30, and 60, respectively. Asterisk indicates P = 0.041  day 15 vs 
30 and P = 0.0011 day 15 vs 60. e Plots of If activation time constant 
(τ) in the range − 75 to − 125 mV. Mean τ values at − 75 mV were as 
follows: 1.6 ± 0.2 s* n = 19; 3.2 ± 0.61 s n = 21; 2.9 ± 0.71 s n = 13, at 
days 15, 30, and 60, respectively. Asterisk indicates P = 0.0423  day 
15 vs 30 and P = 0.0454 day 15 vs and 60
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Fig. 2   hiPSC-CMs express 
HCN isoforms and auxiliary 
proteins. a Box-plot showing 
qRT-PCR analysis of HCN1-4 
genes in iPSC-CMs at d15, 30, 
and 60, as indicated; Troponin 
T expression was used as refer-
ence gene in each sample to 
normalize for cardiomyocyte 
yield in different differentia-
tions. b qRT-PCR analysis of 
genes known to be f-channels 
auxiliary subunits (caveolin-
3-CAV3; Alpha-1,2-Glucosyl-
transferase-KCR1; Discs large 
homolog 1-SAP97; and Potas-
sium channel βsubunit-MIRP1) 
in beating cultures at the vari-
ous time points. c WB analysis 
of HCN4 and HCN1 in three 
hiPS-CM cultures at the various 
time points. cTnT expression 
was used for estimating content 
in cardiomyocytes. d Confocal 
microscopy image of hiPSC-
CM showing co-expression of 
HCN4 (green) and caveolin-3 
(red); nuclei were counter-
stained with DAPI (blue)
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β-adrenergic agonist isoproterenol (Iso) and the muscarinic 
agonist carbachol (CCh).

In Fig. 4a and b, the time course (a) of the If amplitude, 
elicited by voltage steps in the range −80/ −95 mV, before 
(Tyr), during (Iso) superfusion of 1 µM Iso, and after wash-
out (WO) is shown together with representative traces, over-
lapped (b). As expected, isoproterenol reversibly increased If 
amplitude by shifting the activation curve to positive poten-
tials. The shifts of the activation curve were calculated as 
described in the “Material and methods” section. The plot in 
Fig. 4c shows the dose–response curve of the shift, obtained 
with concentrations of Iso ranging between 10 and 3000 nM. 
Data points fitting with the Hill equation (see “Material and 
methods” section) gave a half-maximal effective concentra-
tion (EC50) of 73.4 nM and a Hill number of 0.96.

In Fig. 4d, e, and f, the time course, current traces, and 
dose–response curve of the shift obtained perfusing the para-
sympathetic agonist CCh at different concentrations (1 to 
1000 nM) are shown. Perfusion of 100 nM CCh induced a 
reduction of the current amplitude (CCh in Fig. 4d and e) 
corresponding to a leftward shift of the activation curve of 
about 3 mV. Fitting of the dose–response curve with the Hill 
equation resulted in an EC50 of 11.6 nM and a Hill number 
of 0.8.

Since responses to CCh were smaller than expected 
from literature data [21, 41], we re-evaluated the effect of 

100 nM CCh after previous stimulation of If with 100 nM 
Iso (Iso and Iso + CCh in Fig. 4e). Data in Fig. 4g–i show 
that under this experimental conditions, 100 nM CCh caused 
a mean shift of 6.4 ± 0.81 mV (n = 5), significantly higher 
than the 2.9 ± 0.34 mV shift caused by 100 nM CCh alone 
(n = 4). These data indicate that pCMs have low basal level 
of cAMP.

We finally evaluated the effects of Iso (1 µM) and Ach 
(100 nM) on action potentials recorded from small aggre-
gates of 30 day-old spontaneously beating pCMs. In Fig. 5a 
and b, representative time-courses of the beating rates 
before, during, and after Iso or Ach superfusion are plotted.

As expected, Iso accelerated, while ACh slowed the spon-
taneous beating rate. In panel 5c and 5d, stretches of action 
potential recordings in Tyrode (continuous line) and Iso or 
ACh (dashed line) are shown overlapped to highlight the 
changes in the slope of the diastolic depolarization (DD). 
Panels 5e and 5f show the dot plot of the % change in beating 
activity elicited by Iso (mean increase + 102.7 ± 16.0%, n = 13) 
and ACh (mean decrease − 12.5 ± 1.7%, n = 7). Coherently 
with the effect of the drugs on the If, the slope of the DD sig-
nificantly increased from 0.014 ± 0.002 to 0.029 ± 0.004 V/s 
during Iso superfusion (P = 0.0023; n = 13), but only slightly 
decreased with the muscarinic agonist (0.011 ± 0.002 V/s; 
P = 0.4731; n = 7). Again, the small effect of ACh on the DD 
is compatible with low intracellular cAMP levels.

Fig. 3   Characterization of the 
ionic nature of If current. a Rep-
resentative normalized If traces 
recorded at day 30 of differen-
tiation elicited by the protocol 
used to obtain the fully acti-
vated I-V. b If traces recorded 
at −125 mV before (CTRL) 
and during the superfusion of 
2 mM Caesium (Cs) at day 30 
of differentiation. c Mean fully 
activated I-V relations obtained 
without (empty circles, n = 27) 
or with 2 mM Cs (black circles, 
n = 20). d Mean fully activated 
I-V relations in the presence 
of 30 mM external potassium 
(filled triangles, n = 13) or 
30 mM external sodium (empty 
triangles, n = 14). The inset 
shows a blow up of the x-axis to 
appreciate changes in the Erev
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Discussion

In the last years, hiPSC-derived cardiomyocytes have been 
extensively used to model heart pathophysiology, in par-
ticular genetic arrhythmias such as long QT syndrome, 
CPVT, Brugada syndrome, and atrial fibrillation [9, 27, 31, 

38]. Being patient- and pathology-specific, hiPSC-derived 
cardiomyocytes are the perfect tools for studying in vitro 
both the pathological mechanisms and drug response [24]. 
Moreover, this model overcome the problem of the paucity 
of the human cardiac cell availability.

Fig. 4   If current in pacemaker pCMs is modulated by sympathetic 
and parasympathetic agonists. a Time course of If current elicited by 
voltage steps at − 80 mV at d30 during perfusion of 1 μM isoprotere-
nol (Iso). b Overlapped If traces in Tyrode (Tyr), during iso perfusion 
and after wash-out (WO). c Dose–response curve for isoproterenol. d 
Time course of If current elicited by voltage steps at −95 mV at d30 
during perfusion of 100 nM carbachol (Cch). e Representative If cur-
rent traces recorded before (Tyr), during (CCh), and after carbachol 

wash-out (WO). f Plot of dose–response curve for CCh. Continuous 
lines in panels c and f represent the best fitting to the Hill equation. 
g Time course of If current elicited by voltage steps at − 95  mV at 
d30 during perfusion of 100 nM iso alone and Iso + Cch 100 nM. h 
Overlapped If traces in Tyrode (Tyr), during superfusion of Iso (Iso), 
and during Iso+CCh.. i Dot plot of the shifts of the If activation curve 
caused by 100 nM CCh with or without pre-stimulation with 100 nM 
Iso, as indicated. *P = 0.0096
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The main limitation of iPSC-derived cardiac cell as a 
model to study working cardiomyocytes consists in their 
immature electrical phenotype. A functional marker of this 
immaturity is the permanence of spontaneous pacemaker 
activity which is associated with the persistently high 
expression of the If current and the very low levels of IK1 
[23]. Interestingly, however, these two features are the pro-
totypical functional markers of sinoatrial cells. Thus, hiPSC-
derived cardiomyocytes may represent a favourable model 
for studying human pacemaker activity of sinoatrial-like 
cells. For this reason, this paper characterized the If cur-
rent restricting the electrophysiological recordings to only 
pCMs, that is those cells showing a regular spontaneous 
beating activity.

Under our experimental conditions, we observed that 
the If current density remained constant over time in cul-
ture. Our values are comparable with those previously 

reported in the literature both for hESC-CMs and iPSC-
CMs [10, 30]; however, they are slightly smaller than 
those observed in diseased human SAN cells [39]. Of 
note, despite we did not employed any specific selection 
to enrich the culture in SAN-like myocytes, the mean 
If densities reported here for pCMs (− 4.3, − 5.8, − 5.2 
at −125 mV, at days 15, 30, and 60 respectively) are com-
patible with the If density reported by Protze et  al. in 
selected sinoatrial-like cells (~ 4.5 pA/pF at −120 mV) and 
much higher than that reported for ventricular-like cells 
(~ 1.5 pA/pF at −120 mV) [34]. This evidence suggests 
that the choice of spontaneously beating cells is a conveni-
ent and reliable method to select bona fide sinoatrial-like 
cells, when culture purity is not an issue.

Between day 15 and day 30, we observed a slightly but 
significant leftward shift of the V1/2 of the activation curves. A 
similar shift has been previously demonstrated in hESC due to 

Fig. 5   Spontaneous rate 
of pCMs is modulated by 
sympathetic and parasympa-
thetic agonists. a Representa-
tive time course of the action 
potential rate in clusters of 
pCMs at 30 days of differen-
tiation before, during 1 µM 
isoproterenol perfusion, and 
after washout, as indicated. b 
Representative time course of 
the action potential rate before, 
during, and after washout of 
100 nM acetylcholine (ACh) 
perfusion. c, d Representative 
action potential traces recorded 
before (solid line) and during 
(dashed line) isoproterenol 
(c) and Ach (d) stimulation; 
traces correspond to points 1 
and 2 in of the respective time 
courses. e, f Dot plot of the 
percentage change in firing rate 
during 1 µM Iso (e) and 100 nM 
Ach (f). Mean ± SEM value is 
reported as filled square and 
whiskers
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a specific HCN4-Caveolin-3 interaction [10], shift that can be 
reverted by caveolae disruption with Methyl-β-cyclodextrin or 
by disruption of the caveolin-binding motif of HCN4 [6]. The 
mean V1/2 value reported in our study is within the physiologi-
cal range for If to contribute to the DD, and close to the values 
reported for hESC-derived cardiomyocytes at similar matura-
tion stages [10], and in mature rabbit SAN [3]. However, it 
differs by 20 mV from that reported for human SAN cells 
(around − 97 mV). This difference, and in particular a negative 
V1/2 may be due to methodological reasons (such as failure to 
reach current steady-state activation at depolarized voltages 
or from the presence of different extent of current run-down 
[20], and/or from the remodelling of the pathological human 
SAN cells analysed by Verkerk et al. [39].

The maturation of the properties of the funny current with 
time in pCMs is also indicated by changes in the τ of activa-
tion. pCMs at day 15 have significantly faster τ than at days 
30 and 60. At these later stages, τ values are comparable 
with those found in the literature for rabbit SAN cells [3] 
and for human SAN cells [39]. Slower activation kinetics and 
more negative activation voltages (for the same current–den-
sity) would lead to a lower contribution of If during the slow 
diastolic depolarization and consequently a decreased rate. 
Accordingly, we found that spontaneous rate of pCMs sig-
nificantly decreased from 1.27 ± 0.31 Hz at day 15 (n = 20) to 
0.88 ± 0.47 Hz at day 30 (n = 26; P = 0.0025, data not shown).

Fully activated I-V relation of If shows a slight out-
ward rectification and the expected reversal potential 
around −20 mV, compatible with the mixed Na+/K+ selectiv-
ity typical of both rabbit If [20] and heterologously expressed 
human HCN channels [29]. This is further confirmed by the 
dependence of If on the external Na+ and K+ concentra-
tions. In agreement with data of DiFrancesco et al. in calf 
purkinje fibres [14] and in rabbit SAN cells[20], increasing 
[K+]o induced a small positive shift of Erev and a fourfold 
increase in conductance, while lowering [Na+]o concentra-
tion resulted only in a more negative Erev. Furthermore, 
2 mM Cs in the external solution reduced the inward com-
ponent of If without affecting the conductance at potentials 
more positive than the Erev [20].

In the human heart, HCN channels are widely distributed 
and their isoform expression ratio changes according with 
the type, function, and maturation of the cardiomyocytes. 
The conduction system, and in particular the sinus node 
of many mammalian species, expresses mostly HCN4 and 
HCN1, while the working myocardium expresses predomi-
nantly the HCN2 isoform [7]. In the mouse, HCN4 is the first 
isoform expressed during cardiogenesis when the primary 
myocardium forms, and later in development, its expression 
remains restricted to the sinoatrial node and the conduction 
system [2]. Here we show that pCMs express HCN4 and 
HCN1 mRNA as the predominant isoforms. These data are 
also in agreement with data obtained from SAN-like cells 

obtained after selection/enrichment procedure [34, 37] and 
from human SAN cells [13, 28].

It is now well established that the properties of the native If 
do not depend exclusively on the specific HCN subunits but also 
on their interaction with several accessory subunits, which influ-
ence channel trafficking, subcellular localization, and fine tune 
conductance and kinetics [35]. The accessory subunits MiRP1 
SAP97, KCR1, and caveolin3 are all expressed in pCMs.

Finally, we provided here, for the first time, the whole 
dose–response curves of human If to autonomic stimulation. 
Increasing doses of isoproterenol progressively shifted the acti-
vation curve to more positive voltages with a maximum shift 
recorded of around 6 mV at saturating doses, a shift similar to 
that previously reported for rabbit SAN cells [4]. Hill fitting 
revealed an EC50 value close to that previously reported in rab-
bit SAN [40]. The muscarinic agonist carbachol progressively 
shifted the activation curve to more negative voltages with an 
EC50 of 11.6 nM, equal to that obtained in rabbit SAN [21, 
40]. However, maximal shift with CCh was only of ~ 3 mV 
compared to the more than 6 mV reported in rabbit SAN [42]. 
We believe that the reason for the small effect of CCh in our 
pCMs is the low level of cAMP; indeed, pre-stimulation of 
the adenylate cyclase with 100 nM isoproterenol increased the 
response to 100 nM CCh to 6.4 mV compared to the 2.9 mV 
without pre-stimulation. These data clearly rule out the lack 
of expression of either muscarinic receptors or associated G 
proteins and that instead pCMs functionally express important 
proteins necessary for autonomic modulation of the If current 
and spontaneous rate. The low level of cAMP may for example 
derive from the high activity of phosphodiesterases (PDEs). 
The role of PDEs and in particular PDE3 and PDE4 in hiPS-
CM has been recently shown in various works in which their 
inhibition resulted in the increase of basal cAMP level [22, 
25, 26]. We may speculate that the low level of cAMP and 
high PDE activity may also explain the significantly slower 
time constant of the isoproterenol-mediated rate acceleration 
(7.6 ± 1.0 s) than the time constant of the rate slowing due to 
muscarinic receptors activation (3.4 ± 0.8 s).

Finally, we evaluated how these rate-modulators affect 
the beating activity of pCMs clusters; as expected and in line 
with the low cAMP levels, 1 µM Iso doubled the rate, while 
100 nM ACh decreased it only by 13%; the same concentra-
tion of ACh applied to rabbit SAN cells led to a 68% decrease 
in the action potential rate [21]. Interestingly, a linear regres-
sion analysis of basal rate vs agonist-induced rate change 
revealed that, while the isoproterenol-induced increase in rate 
results mildly but significantly correlated to basal rate (Pear-
son’s r value =  − 0.56, P < 0.05), the Ach-induced decrease in 
rate is not correlated (Perason’s r value = 0.35, P = 0.43). All 
these data suggest that in our model, the muscarinic pathway 
is present and functional but because of the low basal cAMP 
levels, the response is blunted.
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In conclusion, this work provides the first complete 
description of the properties of If in human-induced pluri-
potent stem cell (iPSC)–derived pacemaker cardiomyocytes. 
The set of kinetics and modulatory parameters provided here 
may represent useful comparative elements for future studies 
of cardiac diseases in which alterations of the If current or 
of HCN channels may play an important role in the onset of 
the pathology, as recently demonstrated [9].
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