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ABSTRACT
It is well-known that the application of the Discrete Cosine Trans-
form (DCT) in transform coding schemes is justified by the fact that
it belongs to a family of transforms asymptotically equivalent to the
Karhunen-Loève Transform (KLT) of a first order Markov process.
However, when the pixel-to-pixel correlation is low the DCT does
not provide a compression performance comparable with the KLT.
In this paper, we propose a set of symmetry-based Graph Fourier
Transforms (GFT) whose associated graphs present a totally or par-
tially symmetric grid. We show that this family of transforms well
represents both natural images and residual signals outperforming
the DCT in terms of energy compaction. We also investigate how
to reduce the cardinality of the set of transforms through an analysis
that studies the relation between efficient symmetry-based GFTs and
the directional modes used in H.265 standard. Experimental results
indicate that coding efficiency is high.

Index Terms— Graph Fourier Transform, Discrete Cosine
Transform, Karhunen-Loève Transform, Symmetry, H.265.

1. INTRODUCTION

A signal given as a vector in RN is implicitly represented as a se-
quence of length N w.r.t. the standard basis. In transform coding
schemes [1], an orthogonal transform is used to change the basis
motivated by the fact that transform coding may be more effective
in the transform domain than in the original signal space thanks
to sparsification. The Karhunen-Loève Transform (KLT) [2] is a
particular type of orthogonal transform that depends on the covari-
ance of the source and it allows to achieve the optimal energy com-
paction. However, since the computation time of the associated
eigen-decomposition of the covariance matrix is not negligible and
since a fast implementation is in general not possible for the KLT,
its practical use is actually limited. Under the first-order stationary
Markov condition, the covariance matrix becomes the Toeplitz ma-
trix 
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When the inter-pixel correlation is strong the coefficient ρ is close to
1 and it is proven that the Discrete Cosine Transform (DCT) asymp-
totically becomes the KLT [3]. This is one of the reasons why the
DCT has been so widely used for image/video coding. However,
the first-order stationary Markov condition generally occurs for nat-
ural image and video signals, but for other kinds of data the sample

statistics can be totally different or unknown. For example, even
if in video coding scenarios the DCT is applied on residual signals
obtained from inter or intra-frame prediction, on the other hand in
residual blocks the inter-pixel correlation may be smaller causing
performance decrease of the DCT in terms of approximation ability
when low amplitude coefficients are dropped. Thus, since the opti-
mality of the DCT holds only under stationarity assumptions regard-
ing the pixel statistical distribution, searching for a unitary transform
(or a class of unitary transforms) able to adapt to different inter-pixel
correlation configurations is nowadays a reason of interest [4].

Graph signal processing (GSP) [5] is a novel framework that
models inter-sample relation by edge weights in a graph. Signal val-
ues lie on the vertices of a weighted graph and the corresponding
Graph Fourier Transform (GFT) can be defined through the asso-
ciated graph Laplacian matrix. This model is very useful since it
allows to establish a connection between signal samples and conse-
quently to obtain a transform able to provide for a better energy com-
paction of the underlying signal [6]. As a matter of fact, focusing on
image processing applications, an image block can be represented
as a graph where different connectivity patterns lead to different in-
terpretations in the graph transform domain. Some examples can be
found in [7], [8] and [9] where optimal GFTs have been studied for
inter-predicted video coding, intra-prediction image coding and for
piecewise smooth images, respectively. Furthermore, graphs can be
also learned from data so that sparse covariance matrices can be de-
signed to approximate the KLT. For example, in [10] graph learning
problems are posed as the estimation of graph Laplacian matrices
under given structural constraints.

In this work we propose a set of graphs that allows us to charac-
terize symmetries in a 2-D signal. The study of totally or partially
symmetric grids is mainly motivated by the fact that symmetries are
often present in real-world data [11], [12]. For example, in [13] the
authors have worked with graphs estimated from inter-pixel corre-
lation in residual blocks after predictive coding in H.265 standard,
showing that the blocks considered exhibit different kinds of sym-
metry and indicating that there exist potentially useful 2-D GFTs
with symmetric grids. Furthermore, when L is a bisymmetric matrix
the corresponding GFT allows a fast implementation as in the DCT
case [14]; actually, this condition is true for several types of sym-
metric grids. As such we shall show that the set of symmetry-based
GFTs can be compared with the DCT for both natural images and
residual data, outperforming the classical transform in both cases.

The rest of the paper is organized as follows. In Section 2 we
introduce notation on graphs, focusing on the definition of the GFT.
In Section 3 we define a set of symmetry-based GFTs comparing
their approximation ability with the DCT and showing a significant
performance improvement in terms of energy compaction. In Sec-
tion 4 we show that the set of effective transforms can be reduced
when applied on data corresponding to residuals obtained from intra-
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(a) Example of a signal on a 2-D grid
graph. Positive values are pictured in
blue, negative values in red.
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(b) The GFT in the corresponding
graph spectral domain. Multiple values
correspond to multiple eigenvalues.

Fig. 1: Representation of a signal in the vertex domain and graph
spectral domain.

prediction based on the directional modes adopted in H.265. We
draw some conclusions in Section 5.

2. PRELIMINARIES

In graph signal processing, signals are defined on an undirected, con-
nected, weighted graph G = {V, E ,W}. Such a graph is repre-
sented by a) a set of vertices V = {1, 2, . . . , N} to which the signal
samples are connected, b) a set of edges E that connect the nodes of
the graph that carry the signal values and c) a weighted adjacency
matrix W that has the edge weights as entries, i.e., it establishes the
relations among the signal samples. In Fig. 1a an example of signal
on a graph is shown. Naming D the diagonal degree matrix of G,
we can define the GFT for a given graph through its graph Laplacian
L = D −W. The eigen-decomposition of L is performed, such
that L = TΛT−1: the columns of T represent the basis vectors
of the related GFT. Each transform coefficient is associated to an
eigenvalue related to a corresponding eigenvector. Note that since
the graph Laplacian L is a real symmetric matrix, it has a complete
set of orthonormal eigenvectors, each of them linked to a real, non-
negative eigenvalue. Fig. 1b shows the GFT of the signal in Fig. 1a.

3. SYMMETRY-BASED GFT

In this work we concentrate our preliminary analysis on 4×4 image
blocks. We wish to define a set of graphs whose symmetric grids
may well represent symmetries in a 2-D signal. Indeed we assume
that symmetric graphs are good at representing signals character-
ized by the corresponding kind of symmetry. Several symmetry axes
could be examined by varying angle and position; due to the discrete
nature of a graph, the slopes of the axes that better fit the grid are
basically 0◦, 45◦, 90◦ and 135◦, and for each one of them all the
significant positions are evaluated. Furthermore, in order to evaluate
a complete set of symmetric configurations, all the significant cen-
trosymmetries are taken into account in addition to reflection sym-
metries. The graph construction based on the mentioned symmetries
proceeds as follows (see Fig. 2): for reflection symmetries, nodes in
the specular position w.r.t. the symmetry axis are connected, whereas

(a) UD symmetric configurations.

(b) LR symmetric configurations.

(c) Diagonal and anti-diagonal symmetric configurations.

(d) Centrosymmetric configurations.

Fig. 2: Set of investigated graphs. Blue indicates edges with weight
set to 0.01, red denotes edges with weight set to 1. Green dashed
segments and green circles identify the reflective symmetries and
centrosymmetries, respectively.

for centrosymmetries nodes are linked so that graphs are invariant
under the point reflection. The associated weights are set to 1 (red
edges in Fig. 2). For example, in the first graph of Fig. 2a the sym-
metry axis is drawn as a green dashed line and it is located between
the third and fourth row of the graph, therefore the resulting edges
connect the node in position (3, k) with the one in position (4, k),
for k = 1, 2, 3, 4. By contrast, in the first graph of Fig. 2d the center
of symmetry is marked as a green circle and it is located between the
third and fourth row and first and second column of the graph, and
consequently the node in position (3, 1) is connected with the one in
position (4, 2) and the node in position (3, 2) is connected with that
in position (4, 1). Furthermore, in order to preserve full connectivity
for each graph while selecting its specific symmetry, non participat-
ing nodes remain connected as in a 2-D grid configuration with the
weight set to 0.01 (blue edges in Fig. 2). Indeed, since the eigen-
value λ = 0 of L has multiplicity equal to the number of connected
components of a graph, and since such an eigenvalue is associated
to a constant eigenvector w.r.t. each set of connected nodes, in the
case of fully connected graphs the projection of the signal on the
associated eigenvector will correspond to its mean. Note that the
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(d) 512× 512 Texture mosaic #3.

Fig. 3: PSNR vs number of coefficients performance between the
DCT and our proposed transforms.

ratio between weights identifying a symmetric correspondence and
weights used to preserve a 2-D grid topology has been empirically
set to 100. In particular, considering a smaller value does not allow
to properly characterize the symmetry in signals, whereas a larger
value do not basically change the structure of the eigenvectors of
the associated Laplacian matrix. As a result the defined set includes
graphs characterized by the following symmetries:

• five up-down (UD) symmetries (Fig. 2a);

• five left-right (LR) symmetries (Fig. 2b);

• three diagonal symmetries and three anti-diagonal symmetries
(Fig. 2c);

• twenty-five centrosymmetries (Fig. 2d).

3.1. Representativeness of the symmetry graphs

The symmetry-based GFTs obtained from the graphs in Fig. 2 are
tested in order to evaluate their energy compaction ability. The ex-
periments have been carried out on a variety of standard images ob-
tained from USC-SIPI Image Database [15]. We use a “brute-force”
approach where for each 4 × 4 block of the image all the 41 GFTs
are tested. After applying a non-linear approximation where the K
smallest coefficients (in absolute value) are zeroed, the correspond-
ing 4 × 4 reconstructed blocks are calculated through the inverse
GFTs. A winner is set according to the GFT leading to the smallest
mean squared error (MSE). Finally, the peak signal-to-noise ratio
(PSNR) is computed comparing the original and the reconstructed
image to determine the quality of reconstruction. In Fig. 3 the com-
parison with the DCT1 is depicted for images of different size. The
results indicate that the set of symmetry-based GFTs clearly out-
performs the DCT independently of the type of image (natural or
texture) or its size (256× 256, 512× 512 or 1024× 1024), but this

1For the rest of the paper the acronym DCT is used instead of 2D-DCT.
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Fig. 4: PSNR vs variable rate performance between the DCT and the
proposed transforms.

Tree Lena Man Texture
Delta PSNR 2.7 2.6 2.8 6.5
Delta rate -22% -20% -23% -43%

Table 1: BD rate associated to Fig. 4.

does not take into account signaling overhead. In fact, in a coding
scenario overhead-information is needed to index the optimal GFT
for every block. To introduce this overhead cost, once a different
number of transform coefficients is zeroed 8 bits per coefficient are
attributed to the surviving coefficients for both the DCT and the GFT;
furthermore dlog2 41e = 6 overhead-bits are added to each image
block to obtain final rate of the GFT. Fig. 4 shows the performance
between the graph transforms and the DCT applied to the above
mentioned images. Even in this context, the set of symmetry-based
GFTs continues to exhibit performance significantly better than the
DCT as additionally reported in Tab. 1 through the Bjøntegaard’s
metric (BD rate). It allows to compute the average gain in PSNR or
the average per cent saving in bit rate between two rate-distortion
curves. In the first case a negative (positive) value indicates a de-
crease (increase) of PSNR for the same bit rate, e.g., in Lena the set
of symmetry-based GFTs has an average gain of 2.6 dB w.r.t. the
DCT. In the second case a negative (positive) value identifies a de-
crease (increase) of bit rate for the same PSNR, e.g., in Lena the
set of symmetry-based GFTs requires −20% of bit rate on average
w.r.t. the DCT.

4. EXPERIMENTAL RESULTS IN VIDEO CODING

In the previous section we showed the good approximation ability
for the proposed set of GFTs. Advantageous performance can still
be obtained when an extra-bit cost is added to signal the optimal
transform needed for each block. However, removing or decreas-
ing such overhead information would be desirable to reduce both
the rate and the complexity of a real system. In this section, the set
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Fig. 5: R-D performance for single modes.

of transforms is applied on 4 × 4 residual blocks taken by four test
video signals: BQMall, BasketballDrill, Mobcal and Shields. The
residual blocks have been obtained during the intrapicture predic-
tion phase in H.265 standard. The block database is divided in 35
classes, one for each directional mode adopted in H.265, where each
class contains the blocks predicted by the corresponding directional
orientation. The purpose is to provide an analysis aimed at identify-
ing a connection between directional modes and optimal symmetry-
based GFTs when applied on blocks derived by a specific prediction
mode. In particular, we ask if and in which terms the size of set
of symmetry-based transforms can be reduced based on the direc-
tional mode used to generate the residual. The procedure is similar
to the method described beforehand, and it is intended to be applied
to each class separately. The 4 × 4 residual block is transformed
through the entire set of the symmetry-based GFTs. The signal is
reconstructed keeping the 25% of the transform coefficients, i.e., 4
coefficients, and the corresponding MSE is calculated. The most ef-
ficient transform based on the smallest associated MSE is selected.
At this point of the process the consequent distribution probability
of the transforms returns the best scenario in terms of distortion D,
i.e., the mean of all the MSE values is as small as possible, but the
worst one in terms of rate R corresponding to the overhead-bits to
signal the chosen transform, i.e., it maximizes the number of em-
ployed transforms. To minimize D for a given R all the blocks are
newly processed by considering a new cost function, specifically a
Lagrange multiplier method formulation is adopted as follows:

min{J}
J = D + γR (2)

where J denotes the Lagrangian cost function and γ is the so-called
Lagrange multiplier. For a fixed γ value the best transform is now se-
lected not only based on distortion (MSE) but on rate calculated with
the Huffman coding associated to the probability distribution of us-
ing a particular graph configuration. Once all the blocks have been
processed, the probability distribution is updated and the procedure
is iterated until the convergence is reached returning a rate-distortion
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Fig. 6: Number of transforms used for single modes.

point. Consequently an R-D curve is produced for different values of
γ. Fig. 5 shows the result for the four test video signals: these curves
negligibly change for different modes, for this reason only one mode
is illustrated for each video. For all video signals, independently of
the mode, the performance of our proposed set of transforms signif-
icantly outperforms the DCT also for rate values considerably lower
than the 6 bits per block overhead cost considered in the preliminary
compression scenario described in the previous section. It means
that for each mode a reduced subset of transforms is sufficient to
achieve notable R-D performance. As a matter of fact, in Fig. 6 the
number of transforms actually used in relation to each single mode
is shown. The blue crosses list the set of transforms used for at
least one block, while the green and the black ones consider only
the transforms with probability greater than 10−4 and 10−3 respec-
tively. The results prove that several symmetry-based GFTs can be
discarded from the set of transforms when applied on data corre-
sponding to residuals predicted by a specific directional mode. This
analysis allows to conclude that a significant overhead information
decrease is feasible thanks to the knowledge of the prediction mode
from which the residual is generated.

5. CONCLUSIONS

In this paper we have explored various types of GFTs characterized
by totally and partially symmetric grids. We have compared this set
of transforms with the 2D-DCT on a wide dataset including natu-
ral and texture images and residual signals. The experimental tests
show that the symmetry-based GFTs outperform the 2D-DCT in ap-
proximation ability and even in a preliminary compression scenario.
Furthermore the relation between the symmetry-based GFTs and the
directional modes employed in H.265 standard has been examined
and verified, showing that the cardinality of the set of effective trans-
forms can be reduced. Even if the results presented here are prelim-
inary, the proposed set of symmetry-based GFTs has shown signifi-
cant performance increase in terms of energy compaction leading to
a high efficiency coding.
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