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Abstract
This paper studies how certain speculative transitions in financial markets can be ascribed
to a symmetry break that happens in the collective decision making. Investors are assumed
to be bounded rational, using a limited set of information including past price history and ex-
pectation on future dividends. Investment strategies are dynamically changed based on re-
alized returns within a game theoretical scheme with Nash equilibria. In such a setting,
markets behave as complex systems whose payoff reflect an intrinsic financial symmetry
that guarantees equilibrium in price dynamics (fundamentalist state) until the symmetry is
broken leading to bubble or anti-bubble scenarios (speculative state). We model such two-
phase transition in a micro-to-macro scheme through a Ginzburg-Landau-based power ex-
pansion leading to a market temperature parameter which modulates the state transitions in
the market. Via simulations we prove that transitions in the market price dynamics can be
phenomenologically explained by the number of traders, the number of strategies and
amount of information used by agents, all included in our market temperature parameter.

Introduction
Think of a pen held upright on a table with a finger, and imagine to slowly lifting your finger
until the pen suddenly falls in an arbitrary direction as depicted in Fig. 1A-B. What has this in
common with financial market dynamics? Both are systems in which whenever a small fluctua-
tion makes the system cross a critical point, the system moves into one or more definite states.
The phenomenon where a system goes from a symmetric but disordered or random state (the
pen can fall into any given direction) into an ordered state in which the symmetry is broken
and the pattern is well defined (the pen is falling in one specific direction) is what characterizes
a phase transition in physics. In this paper we develop a theoretical framework for financial
markets based on this phenomenological reasoning: the pen in the symmetric state is equiva-
lent to price fluctuations around their fundamental value, whereas the pen falling (the symme-
try is broken) is equivalent to price trends towards herding seen in a bubble phase or anti-
bubble phase of the market.

The key question we face is to explain when and why financial symmetry breaking is taking
place, corresponding to the financial system moving from one state (or mood), where random-
ness in price movements obey no-arbitrage conditions, into another state in which the price
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takes the route towards bubble or anti-bubble formation giving rise to arbitrage conditions.
The first mood is the fundamental state, while the second is the speculative state.

A large body of literature has explored markets seen as complex systems with bounded ra-
tional interacting agents. A possible, while non-exhaustive list of references includes Refs. [1–
9]. The common feature of these studies concerns the way they model dynamical interactions
of agents’ choice, which are stylized within a ‘mean-field’ approach where the intensity of
choice is equivalent to a temperature. In more depth, complex systems are assumed as “. . . dis-
sipative structures that import free energy and export entropy in a way that enables them to
self-organize their structural content and configuration, subject to boundary limits” Ref. [8]. In
such a reasoning, markets are assumed as thermodynamically systems where energy (order)
and entropy (disorder) are struggling against each other moving the markets from one state to
another based on their inner “temperature”.

In our paper we take the same “anti-reductionism” (or “metaphysical”) perspective, where
financial systems are not merely the sum of single parts but, instead, they reflect very complex
dynamics that can be understood only by inspecting the system as a whole, enweaving micro-
to-macro connections within a consistent economic framework that takes into account linear
and non-linear interactions. Instead, conventional economic theory is often unable to describe
such dynamics being based on a “reductionist” approach, in which the micro-economic behav-
ior of a representative agent is first stylized using rational, bounded rational or behavioral
frameworks, then next used in a synthesis of macro behaviors. In other terms, the state (or
mood) of the system is the macroscopic result of many microscopic decisions.

The “dissipative” financial market structure we have in mind is characterized by two macro-
configurations shaped by the spatiotemporal interactions of single agents: (1) a speculative
state, in which single traders take the same direction (all buy or sell), leading to market trends
of bubbles and anti-bubbles; (2) a fundamental state, where traders put different buy and sell
orders leading the price path to move around its fundamental value.

Agents are assumed to be bounded rational, using a limited set of information including
past price history (technical analysts) and expectation on future dividends (fundamentalists).
Investment strategies are dynamically changed based on realized returns within a game theo-
retical scheme with Nash equilibria. In such a setting, the market payoff reflects an intrinsic fi-
nancial symmetry that guarantees invariance inside the system until the symmetry is broken,

Fig 1. A pen falls and a symmetry is broken. The Fig. 1A depicts symmetric state of a pen with no clear direction taken. The state is symmetric since there
is no a priori preferred direction in which the pen would fall. Fig. 1B describes the pen falling in one specific direction corresponding to a symmetry break
when the finger is lifted. The symmetry break happens because a small fluctuation in the positioning of the pen inevitable happens when lifting the finger,
leading to a change of the system from one state (pen held upright on a table with a finger) to another (pen suddenly falls in an arbitrary direction).

doi:10.1371/journal.pone.0118224.g001
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then leading the market towards speculative scenarios. State transitions appear whenever the
“temperature” of the market crosses a critical transition point, which marks the speculative vs.
fundamental behaviors.

Our main innovation is to give a formal, theoretical-based measure to such a
market temperature.

The collective “choice” of the system which we refer to as “aggregate decision making” is
conducive to answer how prices are formed over time and describes states of the market, which
Rational Expectations Hypothesis (REH) or even the bounded REH cannot address. Indeed,
once asset prices and dividends are both included in the decision making process, the REH sug-
gests agents should make their trading decisions based on dividends only, but the matter be-
comes far from trivial if you try to explain generally what will be the collective outcome of N
people’s decision making. Are decisions based on the price of the asset in anticipation of future
price behavior (speculative state), or are rather the anticipation of future dividends the only
driver of agents’ trading decisions (fundamentalist state)?

Our framework is able to give an answer to this question by coarse-graining the agents’ in-
teractions through the well-known Ginzburg-Landau (GL) theory in physics, used to describe
superconducting transition in terms of a complex order parameter field. The adaptation of the
GL theory to our problem allows us to bypass the excessively complicated microscopic descrip-
tion of moods in the markets, by means of an “order parameter” that modulates transitions be-
tween fundamental and speculative states without examining the micro-dynamics of single
agents and their interaction impacts on the price path and connected market transitions.

We proceed as follows. We first describe the multi-agent-based model used to describe the
payoff functions of single agents and related impacts on market returns. Then we describe the
rationale of market phase transitions through the GL theory, next reporting and commenting
results from simulation study. We conclude summarizing our main contributions also outlin-
ing our future research agenda.

Multi-Agent Based Modeling
The theoretical framework used to formalize the speculative and the fundamental states refers
to the “$-Game”multi-agent based modeling approach proposed in Ref. [10], in which single
agents make their investment decisions based on dividends and asset prices with the objective
to maximize their profit payoff function.

The $-Game is an extension of the Minority Game (MG), introduced in Ref. [11] and imple-
mented in many studies on market price dynamics Refs. [12–14]. The basic MG scheme con-
sists in a repeated game where the players choose 1 out of 2 alternatives (buy or sell) at each
time step based on past information, and the winning agents are those in the minority group.
Such a scheme was introduced following the leading principle in Physics for which, in order to
solve a complex problem one should first identify essential factors at the expense of trying to
describe all aspects in detail.

Similarly, the $-Game is our “minimal”model to describe and predict financial market dy-
namics. Although simple in principle, the $-Game yields rich system dynamics, the complexity
of which can be acted upon by the choice of system parameters (memory length, liquidity,
etc.). As will be shown below, this thereby creates a dilemma in terms of the investment strate-
gies of the participants, and the pure cases of speculative vs. fundamentalist states will appear
as special cases of the general theory. Differently fromMG, in the $-Game the best strategies
are not always targeting the minority but are shifting opportunistically between the minority
and the majority.
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The mathematical definition of the model includes N players (or agents) that simultaneous-
ly take part in a one-asset financial market over a time horizon of T periods. At each t period,
with t< T, each player i chooses an action ai(t) 2 {−1, 1}, where the action −1 is a “sell” order
and the action 1 is a ”buy” order. In submitting buy and sell orders, agents can use: (1) techni-
cal analysis strategies, trying to profit from past price trends, and (2) fundamental analysis
strategies, based on expectation of future dividends. The aggregate choices that look at the past
lead to a pure speculative state (technical analysis strategies), and the aggregate choices that
look at the future lead to a pure fundamental state (fundamental analysis strategies). Players
are assumed to be bounded rational, in the sense of using only a limited informational set (past
price trends and dividends) to make their decisions, with no short-sales constraints.

Speculators
In the speculative state a majority of the agents are technical analysts (chartists) who only ana-
lyze past realization of prices, with no anchor on fundamental economic analysis. Each player
observes the history of pastm 2 N price movements in making decision of whether to buy or
sell an asset. Therefore,m denotes the size of the agent’s memory or, putting in other terms,
the length of the signal used in the decision making process. To take decisions the players have
at their disposal a fixed number of s strategies, which are by construction randomly assigned at
the beginning of the game. Thus, a specific strategy j tells whether to buy or sell an equity de-
pending on the past price history of up and down moves, represented as 1 (up) and 0
(down), respectively.

At each time t the i-th player uses his/her best (in terms of payoff see Eq. 1 below) strategy
taking an action a!i ðtÞ of either buying a!i ðtÞ ¼ þ1 or selling a!i ðtÞ ¼ &1 (the ! is used to denote

it is the best strategy). It follows that in general a given strategy aji is a mapping from the set of
histories of sizem to {−1, +1}.

Table 1 shows an example of a given strategy form = 3. For all possible histories of up and
down market moves over the lastm time steps, the strategy suggests a specific action to take at
time t, namely ajiðh

!ðtÞÞ ¼ '1 with h
!ðtÞ 2 f0; 1gm. For instance, if the market went down over

the last m = 3 days, the strategy in Table 1 suggests to buy the stock (000! +1). If instead the
market went down over the last two days and then up today, the same strategy suggests to sell
(001!-1). Note again in Table 1 that, since the price has 2 possible moves (up or down) we
have a space of possible past paths equal to 2m = 8 bit sequences of 0’s and 1’s each one

Table 1. Example of speculative trading strategy.

History ~h tð Þ Action aj
iðtÞ

000 1

001 −1

010 −1

011 1

100 −1

101 −1

110 1

111 −1

The table shows an example of a technical trading strategy for an investor with a history of past price
movements of m = 3 time steps. For all possible histories of up and down market moves over the last m

steps, the strategy suggests a specific action to take at time t, namely buy (aj
iðtÞ ¼ 1) or sell (aj

iðtÞ ¼ &1).

doi:10.1371/journal.pone.0118224.t001
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corresponding to a specific action {−1, +1} suggested by the j strategy. This signifies that the
space of all possible strategies is given by 22

m ¼ 256 alternatives corresponding to each of the 8
bit sequences.

While a single strategy recommends an action for all possible histories (of lengthm), we
also allow for agents to adopt different strategies over time. Namely, agents keep a record of the
overall payoff each strategy would have yielded over the entire market history (i.e. not limited
tom past periods) using a rolling window of size m, and use this record to update which strate-
gy is the most profitable see Eq. (1) below. This renders the game highly non-linear: as the
price behavior of the market changes, the best strategy of a given agent changes, which then
can lead to new changes in the price dynamics.

The action corresponding to the best strategy taken by agent i at time t is denoted

bya!i ðtÞ ¼ '1, while ða!i ðtÞÞi 2 f&1;þ1gN(T is the action profile of the entire market popula-

tion, where a! !ðtÞ ¼ ða!1ðtÞ; . . . ; a!NðtÞÞi 2 f&1;þ1gN corresponds to the action played by the
N agents in period t.

The payoff π of the i-th agent’s j-th strategy, ajiðtÞ, in period t is determined as follows:

p½ajiðtÞ* ¼ ajiðt & 1ÞrðtÞ ð1Þ

In Eq. (1) r(t) denotes the return of the market between time t−1 and t. The payoff in the
$-Game therefore describes the gain/loss obtained by an investment strategy executed at time
t−1 depending on the market return in the following time step t. I.e. $-Game agents are inves-
tors that try to predict and profit from future market movements. r(t) can in turn be expressed
in terms of the global order imbalance,

PN
k¼1a

!
kðtÞ, divided by the liquidity of the market λ, as

discussed below.
As proven in Refs. [15, 16] traders’ actions impact significantly on price returns and liquidi-

ty through a positive autocorrelation in equilibrium imbalances reflected in a positive predic-
tive relation between imbalances and future returns. Price return r(t) from t−1 to t can be then
assumed as proportional to the order imbalance, leading to the following

rðtÞ + lnpðtÞ & lnpðt & 1Þ ¼ l&1PN
k¼1a

!
kðtÞ ð2Þ

with p(,) denoting the price of the stock and λ is a parameter describing the liquidity of the
market with λ/ N. Note that the price goes in the direction of the sign of the order imbalance
according to Refs. [17, 18].

Therefore the payoff function in Eq. (1) can be re-expressed in terms of the return function
in Eq. (2) as:

p½ajiðtÞ* ¼ ajiðt & 1Þ
PN

k¼1a
!
kðtÞ=l ð3Þ

To summarize: in the $-Game technical analysis trading strategies are based on a rewarding
scheme for strategies that at time t—1 predicted the proper direction of the return of the mar-
ket r(t) in the next time step t. The larger the move of the market, the larger the gain/loss de-
pending on whether the strategy properly/improperly predicted the market move. If the agent
correctly anticipates the right direction of the market, the profit will be positive and equal to
N/λ in both the extremes where either all agents sell or buy [-N; +N], having in fact (-1 ×—N+
+1 × +N = N)/λ from Eq. (2).

Financial Symmetry and Moods in the Market

PLOS ONE | DOI:10.1371/journal.pone.0118224 April 9, 2015 5 / 21



Fundamentalists
Differently from pure speculators, fundamentalist make their investment decisions based on
fundamental economic analysis. Each player makes forecasts on future price based on expected
dividends D(t) over the entire time horizon, thereby obtaining a fundamental price pf(t) esti-
mation equivalent to the expectation of all future dividends discounted at a constant risk-free
rate ρ, at which investors can buy or sell the stock:

pf ðtÞ ¼ Et½
R T

t e
&rðt&tÞDðtÞdt* ð4Þ

with Et[D(τ)] = D(t) which implies in the continuum a variation in pf from t to t + dt as a mar-
tingale with σ constant and dZ denoting the standard Brownian motion:

dpf ðtÞ ¼ sdZ: ð5Þ

As result, a change in the fundamental price reflects the arrival of news regarding future
cash flows of the stock.

Buy and sell actions made by fundamentalists at time t, afi ðtÞ, are based on the value of p(t)
vs. pf(t) reflecting the common rule of thumb to sell when price is high (higher than the funda-
mental), and buy when price is low (lower than the fundamental):

afi ðtÞ ¼
&1 if pðtÞ > pf ðtÞ
þ1 if pðtÞ < pf ðtÞ

ð6Þ

(

Furthermore, in order to limit the sell orders whenever p(t)- pf(t), which would rather in-
dicate a speculative scenario[22], we assume a vanishing use of the fundamental strategy ac-

cording to a Poisson process of the form γe−γ with g ¼ pðtÞ&pf ðtÞ
DðtÞ . This assumption provides a

maximum probability in choosing the fundamental strategy in correspondence with a price
variation from its fundamental almost equivalent to the dividend yield, which makes sense
given that the fundamental price is the expectation of future dividends.

The payoff function for fundamentalists is the same as that of speculators (see Eqs. (1)–(3)),
the only change is the action selection mechanism given by (Eq. 6).

Fine-grained market dynamics
The formulation of the decision making process of speculators and fundamentalists via the
$-Game leads to a financial market modeling based on 5 parameters:

• N—The number of market participants which expresses the “physical” size of the market.

• m—The memory length of the signal used by the agents in their decision making process
when they act as speculators. This is expressed in terms of the past number of days the agents
look at when they decide whether to buy or sell an asset.

• s—The number of strategies held by the agents when they act as speculators. By construction
the s strategies of each agent is chosen randomly in the total pool of 22

m
strategies at the

beginning of the game.
• λ—The liquidity parameter of the market. λ will be assumed proportional to N

• D(t)—The future expectations about the dividends paid over the entire time horizon which is
assumed to be constant in time t for simplicity, hence D(t)+ D.

Financial Symmetry and Moods in the Market
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These 5 parameters are mixed together in a reflexive, non-linear $-Game-based market dy-
namics where each agent uses his/her best strategy at every time step giving rise to a complex
system dynamics where, as the market changes, the best strategies of the agents change too,
and as the strategies of the agents change, they thereby change the market.

The dynamics of the $-Game is driven by a nonlinear feedback mechanism because each
agent used his/her best strategy (fundamental/technical analysis) at each time step. The sign of

the order imbalance,
PN

i¼1 a
!
i
~h tð Þ
! "

, in turn determines the value of the last bit b(t) at time t

for the price movement history~h t þ 1Þ ¼ ðbðt &mþ 1Þ; bðt &mÞ; . . . ; bðtÞÞð . The dynamics
of the $-Game can then be expressed in terms of an equation that describes the dynamics of b
(t) as:

bðt þ 1Þ ¼ Y½
PN

i¼1 a
!
i ðhðtÞÞ* ð7Þ

where Θ is a Heaviside function taking the value 1 whenever its argument is larger than 0 and
otherwise 0, and hðtÞ ¼

Pm
j¼1 bðt & jþ 1Þ2j&1 is now expressed as a scalar instead of a vector.

The nonlinearity of the game can be formally seen from:

a!i ðhðtÞÞ ¼ a

n
jjmaxj¼1;...;s

hQ
fajiðhðtÞÞg

io

i ðhðtÞÞ ð8Þ

with

Q
fajiðhðtÞÞg ¼

Pt
k¼1 a

j
iðhðk& 1ÞÞ

PN
i¼1 a

!
i ðhðkÞÞ ð9Þ

Inserting the Eqs. (9) and (10) in Eq. (8) one obtains an expression that describes the
$-Game in terms of just one single equation for b(t) depending on the values of the 5 base pa-
rameters variables (m; s; N; λ; D(t)) and the random variables aji (i.e. their initial random
assignments).

A major complication in the study of this system of equations happens because of the non-
linearity in the selection of the best strategy, and the higher the number of s the complexity of
the system gets bigger and bigger. The case of s = 2 is however simple to deal with, since one
only need to know the relative payoff qi + p½a1i * & p½a2i * between the two strategies Refs. [19–
20]. Indeed, as proven in following proof for this special case the $-Game is in Nash equilibri-
um with only technical analysis strategies (with no cash nor asset constraints) akin to that of
Keynes’ “Beauty Contest”, where it becomes profitable for the subjects to guess the actions of
the other participants. The optimal state is then one for which all subjects cooperate and take
the same decision (either buy/sell) leading the price into a bubble state where it deviates expo-
nentially in time from its fundamental. All subjects profit from further price increases/de-
creases in the bubble state, but it requires coordination among the subjects to enter and stay in
such a state, see the following proof:

We would first like to point out an important difference compared to traditional game theo-
ry since in our game the agents have no direct information of the action of the other players.
The only (indirect) information a given agent have of other agent’s action through the aggre-
gate actions of the past, i.e. the past price behavior. Let the action of optimal strategy a!i be ex-

pressed in terms of the relative payoff, qi, so as to formulate
PN

i¼1 a
!
i ðhðtÞÞ as follows

PN
i¼1 a

!
i ðhðtÞÞ ¼

PN
i¼1fYðqiðhðtÞÞÞa2i ðhðtÞÞ þ ½1&YðqiðhðtÞÞÞa1i ðhðtÞÞ*g ð10Þ

Financial Symmetry and Moods in the Market

PLOS ONE | DOI:10.1371/journal.pone.0118224 April 9, 2015 7 / 21



Inserting Eq. (10) into Eq. (7) and take the derivative of b in t + 1

db
dt

##
tþ1

¼ dð
PN

i¼1 a
!
i ðhðtÞÞÞ

PN
i¼1

(

dðqiðhðtÞÞÞ
dqiðhðtÞÞ

dt ½a2i ðhðtÞÞ & a1i ðhðtÞÞ*

þYðqiðhðtÞÞÞ
da2i ðhðtÞÞ

dt
þ ½1&YðqiðhðtÞÞÞ*

da1i ðhðtÞÞ
dt

)

ð11Þ

Looking inside the bracket of the sum in (11), it follows that a change in
PN

i¼1a
!
i ðhðtÞÞ can

occur either because the optimal strategy changes and the two strategies for a given h(t),
a1i ðhðtÞÞ and a2i ðhðtÞÞ, differ one each other (first term in the bracket). Furthermore, a change

in
PN

i¼1a
!
i ðhðtÞÞ can arise also because the optimal strategy changes its prediction for the given

h(t) (second and third terms in the bracket).
The change in time of the relative payoff qi is computed as follows

dqi
dt

##
t
¼ a2i ðhðt & 2ÞÞ

XN

i¼1
a!i ðhðt & 1ÞÞ

h i
& a1i ðhðt & 2ÞÞ

PN
i¼1 a

!
i ðhðt & 1ÞÞ

$
ð12Þ

"

Using hðtÞ ¼
Pm

j¼1bðt & jþ 1Þ2j&1 and inserting (12) in (11) one obtains:

db
dt

##
tþ1

¼ d
PN

i¼1a
!
i ðhðtÞÞ

! "PN
i¼1 dðqiðhðtÞÞÞ

PN
i¼1a

!
i ðhðt & 1ÞÞ

n

a2i
Pm

j¼1bðt& j& 1Þ2j&1 & a1i
Pm

j¼1bðt& j& 1Þ2j&1
! "!#

(

0

@

2

4

a2i
Pm

j¼1bðt & jþ 1Þ2j&1 & a1i
Pm

j¼1bðt & jþ 1Þ2j&1
! "! "h i

þYðqiðhðtÞÞÞ
da2i ð

Pm
j¼1bðt & jþ 1Þ2j&1Þ

dt
þ 1&YðqiðhðtÞÞÞ
% & da1i ð

Pm
j¼1bðt & jþ 1Þ2j&1Þ

dt

)

ð13Þ

If
PN

i¼1a
!
i ðhðt & 1ÞÞ;

PN
i¼1a

!
i ðhðt & 2ÞÞ; . . . ;

PN
i¼1a

!
i ðhðt &mÞÞ have all the same sign, the

right-hand-side of Eq. (13) becomes 0, thus proving that a constant bit b(t), corresponding to
either an exponential increase or decrease in price, is a Nash equilibrium.

Phase Transitions in a Coarse-Grained Financial System
From the point of view of physics, the mathematical modelling of the agents’ decision making
process described via the b(t) dynamics can be understood as a “magnetism”. Such magnetism
is determined by the “spins” represented by the strategies, in which the interaction between dif-
ferent spins (the products of

PN
i¼1a

!
i ðhð,ÞÞ anda

j
i) are mixed with “free field” terms, namely the

only terms without a payoff function (see Eq. (13)). Spin models are widely used to describe
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the dynamics of traders in financial markets by several researchers implementing statistical
physics to inspect complex dynamics in finance. See for e.g., Refs [34, 35].

We would like to emphasize such a spins’ analogy of interaction in the description of a com-
plex financial system, in which speculators and fundamentalists interact in a non-linear way
with the objective to maximize their payoff function. It suggests another and more general per-
spective in order to understand the market dynamics based on the competition between aji
andafi , namely between technical analysis trading strategies and fundamental analysis trading
strategies. Note that both technical and fundamental strategies can be active for different trad-
ers at the same time depending on the optimal strategies the agents possess at a given instant of
time. Just like there is an interaction between spins in a magnet, there is an indirect interaction
between market participants through their decision making, since the impact of one agents de-
cision making can influence the future decision making of other agents through the
price impact.

Taking this view, the financial market can be conceived as a thermodynamic system where
its different states are characterized via the so-called free energy F, a concept in physics used to
quantify the energy transferred by one system to another. The free energy plays a central role
in physics, since itsminimum determines how the state of the system will appear, and can be
written as

F ¼ E & T S ð14Þ

with E the internal energy of the system, T the temperature and S the entropy which one can
think of as representing how much disorder there is in a given system. From the definition of F
we can see that the state of a system is determined by a struggle between two different forces,
one representing “order”, this is the E term, and the other term representing “disorder” given
by the TS term.

A similar struggle of “forces” can be envisioned in the financial market between speculators
and fundamentalists, where the general tendency to create either a positive/negative price
trend corresponds to “order” state, whereas either the lack of consensus or the mean reversion
to the fundamental price value will destroy such order thus moving the system into “disorder”
state. Transitions and fluctuations in financial market are scrutinized in a number of recent
contributions such as Ref. [36], in which transition between economic states is studied focusing
on stock correlations, and in Ref. [37], where macroscopic “phase-flipping” phenomena are
modeled in a dynamical network setting.

In terms of market macro-dynamics, such a reasoning stresses the importance to look at in-
teractions among agents when trying to explain whether aggregate decisions are based on past
price trend (speculative state), or on expected future dividends (fundamental state). The classi-
cal order (speculative) vs. disorder (fundamentalist) phase transition problem in physics, is
turned over to fundamentalist (disorder) vs. speculative (order) mood (phase) transitions di-
lemma, that we propose to disentangle by picking up the general properties of the system
through an adaptation of the well-known Ginzburg-Landau theory. It is with such a view that
we observe the pen right at the borderline of falling and imagine a price fluctuation around its
fundamental (fundamental state) until the pen breaks the symmetry by taking a clear direction
as the price moves into bubble or anti-bubble mood (speculative state). The key point is to ex-
plain such dynamics through the “temperature” factor in Eq. (14) which moves the system
from one mood to another.
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The Ginzburg-Landau theory
The central importance of the temperature factor can be seen in Eq. (14), in which we note that
for temperature T = 0 the minimum of the energy E is therefore also the minimum of the free
energy F. However as soon as T> 0, the finite temperature will introduce fluctuations in the
system introducing thereby a non-zero contribution to the entropy S. The larger the tempera-
ture T the larger this tendency, until at a certain temperature Tc above which order has
completely disappeared, and the system is in a disordered state. The GL theory explains how
such a phase transition can be expressed in terms of an order parameter thus describing the
general properties of the system without examining their microscopic properties. We do the
same thing by exploring the macro-mechanisms of market transitions, while maintaining con-
sistency in the micro-foundation of individual decision making.

Mathematically, the free energy F in Eq. (14) is assumed to depend on the temperature and
the magnitude of the order parameterm upon which we can expand the series as follows:

FðT ;mÞ ¼ C þ a2ðT Þm2 þ 1

2
a4ðT Þm4 þ . . . ð15Þ

It should be noted that Eq. (15) does not contain odd terms (m,m3, . . .) in the expansion
due to a symmetry argument: there is no difference in the free energy for a spin up, respectively
spin down system. As we will see below a similar financial symmetry exists expressed by the
fact that there is no difference in the profit from a long, respectively short position.

Assume:

a2ðT Þ ¼ aðT & TcÞ; a > 0

a4ðT Þ ¼ b ¼ constant > 0:
ð16Þ

Taking furthermore the derivative in order to find its extreme, we end up with the equation
for a minimum of F(T,m), hence determining the state of the system:

@FðT ;mÞ
@m

¼ 2aðT & TcÞmþ 2bm3; ð17Þ

that has the following solutions:

2aðT & TcÞmþ 2bm3 ¼ 0

1Þ mðT Þ ¼ 0 T . Tc

2Þ mðT Þ ¼ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
b
ðTc& T Þ

r
T < Tc:

ð18Þ

Solution 1) describes a disordered state, while solution 2) is the solution describing an or-
dered state. The second solution determines the value of the critical exponent β when one ex-
presses the order parameter as a function of the temperature near the critical point:

2’Þ mðT Þ ! CðT Þ ¼ ðTc& T Þb T < Tc ð19Þ

thus obtaining the so-called “mean field” or GL exponent of the transition β = 0.5. The GL the-
ory offers through a power expansion a functional description of the free energy by integrating
over the microscopic degrees of freedom, while constraining their average tom(T). By doing
so, the phenomenological parameters assume an unknown functional dependence on the origi-
nal microscopic parameters, as well as on the temperature, in this way accounting for the entro-
py of the short distance fluctuations lost in the coarse-graining (micro-to-macro) procedure.
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Mood transitions and the order parameter
The beauty of the GL theory is that one can describe phase transitions, without handling the
microscopic description of interactions, simply via a power expansion of the order parameter.
The structure of our market price dynamics lends itself to be treated in a similar vein, being
conceivable as a complex system exhibiting an overall payoff function, as if it were the free en-
ergy of a thermodynamic system. Single particle movements are equivalent to the non-linear
agent interactions (since one agent’s decision making can influence other agent’s decision mak-
ing through price impact) that translate into a macro-dynamical environment in which:

• the ordered state corresponds to a speculative state, the price dynamics is going (up/down);

• the disordered state is instead corresponding to the fundamental state, in which the price
moves randomly in a mean reversion process towards its fundamental value (Eq. (21)), thus
destroying the trend in the ordered state.

To make the analogy with our discussion above (Eq. (14)), we introduce what we call the “Mar-
ket Payoff” (MP) given by two terms inMP = P−TS.

• P is the total profit of the ordered state which for T = 0 corresponds to a continuous up/down
trend of the market.

• S is an entropy term that destroys the ordered state, and T is the “temperature” which move
the system from order to disorder and vice versa.

As discussed beforehand, the payoff of a strategy in the $-Game is equivalent to its profit,
and agents use the same strategy over time in a Nash equilibrium. Therefore, the total profit P
at time t for the system of traders can be written as:

PðtÞ ¼
P

ip½a
!
i ðtÞ* ¼

PN
i¼1

PN
l¼1 a

!
i ðt & 1Þa!l ðtÞ with i 6¼ l; ð20Þ

where we note that the interactions among traders is, in a sense, “long-ranged”, since trader l’s
action at time t has an impact on trader i’s profit from the action he/she took at time t—1.

In the GL theory the micro-to-macro thermodynamically description of the free energy
needs consistency between particles micro- and macro-dynamics of the system, and this is ob-
tained via the order parameter. Similar to the general case, for describing the macro-mecha-
nisms of mood transitions we need an order parameter to expand the “Market Profit”, which
also should maintain consistency in the micro-foundation of individual decision making.

As already observed, our trading setup is, in essence, the analog of a “magnetism” deter-
mined by single strategies chosen by the traders, who act as “atomic spins”moving in two pos-
sible directions, up (+1) or down (-1). As a result, the system as a whole moves between (and
within) the two extremes all up (+N) and all down (-N), as in the physicist two-dimensional
square-lattice Ising model, where the order parameter to describe phase transition is measured
by the magnetism, which is just the averaged value of the spins. The Ising model is a model of
ferromagnetism in which the energy E = −J ∑<i, j>sisj with si and sj representing the atomic
“spins” of a material. The<>—notation in the summation indicates that the sum is to be
taken over all nearest neighbors pair of spins. Each spin itself can be thought of as a mini mag-
net. In the two-dimensional Ising model the spin si = +1 if the spin is “up” and si = -1 if the
spin is “down”. Taking the coupling strength between spins J positive, the minimum energy
Emin of the system is simply given by either all spins up si+ +1), or all spins down (si+ -1). Al-
though our trading setup is very similar to the Ising model, there is a major difference that re-
fers to the “interaction”mechanism: in our framework, it is “long-ranged” (trader l’s action at
time t has an impact on trader i’s profit from the action he/she took at time t—1), whereas the
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interaction is local (it only concerns nearest-neighbors) for the Ising model. Therefore, the
order parameter we suggest to use in our market structure is the order imbalance:

οðT Þ ¼ 1

N
PN

i¼1 a
!
kðtÞ; ð21Þ

which gives us a simple way to understand phase transitions characterized by the following two
extreme scenarios:

1. the case of οðT Þ ¼ 1
N

PN
i¼1a

!
kðtÞ ¼ '1 that corresponds to pure order in the system with all

used strategies taking the same direction (buy or sell) and giving rise to a bubble or anti-bubble
price path: this is the pure speculative state;

2. the case of οðT Þ ¼ 1
N

PN
i¼1a

!
kðtÞ ¼ 0 that corresponds, instead, to pure disorder in the sys-

tem, with half of the population of used strategies (“spins”) taking one action and the remain-
ing taking the opposite action, thus giving rise to a price path around its fundamental: this is
the pure fundamentalist state.

Financial symmetry
Applying now the GL idea and expandingMP in terms of o(T), one ends up with the very same
conditions (Eq. (18)) to determine o(T), but since the objective of traders is to maximize their
payoff function, the state of the system is determined by its maximum (maxima), instead of the
minimum (minima), as it was the case forMP(T, o).

Formally, by taking the derivative ofMP(T, o) and solving for o(T) we obtain:

@MPðT ; οÞ
@ο

¼ 2aðT & TcÞοþ 2bο3 ¼ 0

1Þ οðT Þ ¼ 0 T . Tc

2Þ οðT Þ ¼ '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
b
ðTc& T Þ

r
T < Tc:

ð22Þ

Solution 1) givesMP(T, o)+ 0 for o(T) = 0, corresponding to no price trend. This is the fun-
damental state in which randomness in price movements leads to no-arbitrage condition trans-
lating into a financial symmetry with a sort of mean-invariance within the system maintaining
a general equilibrium in the market.

Solution 2) is withMP(T, o)> 0 for o(T)> 0 or o(T)< 0, corresponding to the speculative
state with up or down price movements leading to a bubble or anti-bubble state breaking the fi-
nancial symmetry and with agents getting positive profits by going long or short in the market.

Transitions from fundamental to speculative state are thus modulated through the “temper-
ature” parameter, which play a central role in the macro-dynamic of the market. Indeed, finan-
cial symmetry is broken whenever the parameter crosses a critical transition point, Tc, which
move the system from fundamental (withMP(T, o)+ 0) to speculative state (MP(T, o)> 0.

Fig. 2 illustrates the expansion ofMP (y-axis) as a function of o(x-axis) for the two cases: i)
the T. Tc solution (i.e. the disordered state corresponding to no trend in the price path with o
(T) = 0) can be seen as the maximum of the solid line, whereas the two T< Tc solutions (i.e.
the ordered state corresponding to a specific trend in the price path with o(T) 6¼ 0) can be
found as the maxima of the dashed line. Note that when financial symmetry is “restored” in the
market, the system is in equilibrium with no difference between profits from going long (buy)
or short (sell) in the market (the maximum isMP(T, o)+ 0). When instead financial symmetry
is broken, due to a market temperature being less than the critical transition point (T< Tc), the
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system finds its optima either from going long o(T)> 0) or from going short o(T)< 0) with the
same maximum at (MP(T, o)> 0.

The “market temperature”
One of the main implication of our GL-based theory of mood transitions in the market is the
existence of a nontrivial transition from a “high temperature” symmetric state, where traders
don’t create a trend over time, to a “low temperature” state, characterized by trend following
with a definite trend in the price trajectories (up or down). We will define in the following a
“temperature” linked to the randomness of the agent’s actions and suggest how it should be
measured accordingly.

In our model setup, randomness enters the $-Game through the initial conditions in the as-
signments of the s strategies to the N traders in the game. In order to create a given strategy one
has to assign randomly either a 0 or a 1 for each of the 2m different price histories; therefore the

Fig 2. Market profit, financial symmetry andmarket temperature. The figure illustrates the “Market Profit” ofMP expansion as a function of order
parameter for two different “temperatures” corresponding to T. Tc (solid blue line), and two T< Tc (dashed green line), respectively.

doi:10.1371/journal.pone.0118224.g002
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total pool of strategies increases as 22
m
versusm. However, many of these strategies are closely

related: take for e.g. Table 1 changing just one of the 0’s to a 1, and note that this thereby creates
a strategy which is highly correlated to the one seen in the table.

Refs. [11, 23] showed how to construct a small subset of size 2m of independent strategies
out of the total pool of 22m strategies. As suggested in Refs. [24, 20], a qualitative understanding
of this problem can be obtained by considering the parameter a ¼ 2m

N . Along the same line of
reasoning, Ref. [25] pointed out, however, that the ratio a ¼ 2m

N(s seems more intuitive, since
this quantity describes the ratio of the total number of relevant strategies to the total number of
strategies held by the traders. Based on this intuition, and considering the presence of all rele-
vant technical trading strategies (2m) together with the fundamental strategy, we then intro-
duce the following measure for the market temperature in a speculative vs. fundamental
moods transition financial system:

T ¼ 2m þ 1

N ( s
; ð23Þ

where the “+1” in the numerator is because of the fundamental strategy together with the 2m

uncorrelated speculative strategies.
The relation of T to the fluctuations of the system becomes clear when one consider the fact

that the variance of a small sample is larger than the variance of a large sample. This statement
is called “the law of small numbers” in Psychology/Behavioral Finance and was introduced by
Tversky and Kahneman (Refs. [26–28]). In our setup, we have a similar behavior: when the
sample of strategies s held by the N traders is small with respect to the total pool of relevant
strategies (reflecting in low denominator of T), this corresponds indeed to the large fluctua-
tions, large temperature case. Vice versa a large sample of s strategies held by the N traders (in-
creasing denominator of T), therefore corresponds to a small temperature case as seen from the
definition of T.

Simulation Study
Experimental design
In our numerical experiment, we run Monte Carlo simulations based on the 5 parameters of
our in silico financial system (N, s, λ, D(t)). A number of 200 simulations of the $-Game were
run where each realization of the game were obtained for up to 200 × 2m time steps. Numerical-
ly, we performed the experimental design in two main blocks of parameters: 1) s = 2; 2) s = 18.
In this way we take into account both the case of small number of relevant strategies as well as
the case of large number of strategies, since they substantially impact on our T parameter, as
discussed in the previous section. For both the blocks, simulations were run starting from a
stock price of 100 and varying parameters as follows:

• N = 11, 101. The two cases represent a thin and a large market.

• m = 3, 5, 8. The three values represent the number of past days traders use when forming
their expectation and subsequently taking an action at time t; the parameter ranges from a
short to a relatively long memory of the past;

• λ = 10, 100. We consider two levels of market liquidity which has an impact on price returns
according to (2). The smaller the value of λ the larger the price impact of a given fixed value
of the order imbalance.

• D(t) = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. We used ten possible scenarios for the expected
dividends ranging from 10 to 100 percent of the dividend yield at the start of the simulation
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experiment (the price is set at 100). To simplify the model, the parameter is taken constant in
time t.

The speculative and fundamental states are determined via the price path. Specifically, the
system starts in a fundamental state with a pf(t)+ 100 and is defined to maintain financial sym-
metry whenever price fluctuations remain within a 50 percentage range (at maximum) of the
fundamental price pf(t) converging to it at the end of the experiments. As discussed in the theo-
retical description of the model, people are assumed to trade shares of the company based on
their expectations of future dividends, and the numerical experiment ends with the full price
reflecting the expected dividends payout. This constraint is in line with those used in a large
number of studies running experiments on stock trades (Refs. [29–33]).

The speculative state is instead determined wheneverm successive price changes had oc-
curred. Fig. 3 shows three different results representing typical market behavior corresponding

Fig 3. Three different market phases. The figure depicts three different examples corresponding to (from high to low): fundamental price behavior,
speculative behavior in an increasing and decreasing market scenarios.

doi:10.1371/journal.pone.0118224.g003
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to fundamental price behavior, as well as speculative behavior in an increasing/
decreasing market.

Results
Figs. 4 and 5 show histograms representing respectively speculative behavior (blue) or funda-
mentalist behavior (red) as outcomes of our trading setup. The histograms in Fig. 4 represent
simulations performed with s = 2 whereas the histograms in Fig. 5 were done for simulations
with s = 18. We first notice the somewhat surprising fact that the dividends D(t) as well as the
liquidity of the market λ, only seem to have a quite limited impact on the final state of the mar-
ket. In particular, for the smallestm values (m = 3; 5), increasing dividends appear to have a
somewhat stabilizing effect allowing for slightly more fundamental value states. The same sta-
bilizing trend appears to be at play as one increase the liquidity of the market, but again, this
tendency appears to be very weak. A much clearer tendency is seen with respect to increasing

Fig 4. Fundamental vs. speculative market moods with s = 2. The figure reports histograms representing respectively speculative behavior (blue) or
fundamentalist behavior (red) as outcomes in a setup of the $-Game for s = 2 with given parameter values of (N,m, s, λ, D(t)).

doi:10.1371/journal.pone.0118224.g004
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speculation when increasing the number of traders N, respectively, decreasing the amount of
informationm used in the decision making of the technical analysis trading strategies. A larger
number of strategies s assigned to the traders is also seen to enhance speculation (compare
Figs. 4 and 5).

Let us now explore how a qualitative behavior of this trading experiment can be predicted
depending on our market temperature parameter T. The fact that T determines the outcome of
the trading behavior can be easily seen by changing the nominator and denominator by the
same factor, which then should lead to invariant behavior in terms of trading decisions. This
means that for example the case of short-run memory and thin market (m = 3; N = 11) should
give rise to a T = 0.8182 s−1 trading behavior. Such a trading behavior for a given λ and s
should fall in between the medium-range memory and large market (m = 5; N = 101) (i.e. T =
0.3267 s−1) and long-range memory and large market (m = 8; N = 101) (i.e. T = 2.5446 s−1)
cases. From Figs. 3 and 4 this is seen indeed to be the case. Similarly comparing Figs. 4 and 5 it

Fig 5. Fundamental vs. speculative market moods with s = 18. The figure reports histograms representing respectively speculative behavior (blue) or
fundamentalist behavior (red) as outcomes in a setup of the $-Game for s = 18 with given parameter values of (N,m, s, λ, D(t)).

doi:10.1371/journal.pone.0118224.g005
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is seen that increasing (/decreasing) N and decreasing (/increasing) s by the same amount leads
to two systems behaving similarly in terms of investment profile (compare N = 101 rows in
Fig. 4 to N = 11 rows in Fig. 5). Table 2 reports all values for T corresponding to small (s = 2)
and high (s = 18) number of relevant strategies, respectively, showing how memory and num-
ber of traders impact on market temperature, and in turns on speculative vs. fundamental be-
haviors. Note that memory length seems to play a major role in moving the system between the
two states of speculative, respectively fundamentalist behavior. The larger them the higher the
temperature, thus moving the aggregate market behavior towards a more fundamental invest-
ment oriented state. These results clearly underscore the importance of the parameter T when
it comes to the understanding of the aggregate decision making in the model.

Concluding Remarks
As discussed in Ref. [38], financial systems are complex adaptive system, in which the micro in-
teractions translate into macro dynamics through bottom-up mechanisms, followed by top-
down feedback between the macro and the micro. In this paper we introduced a novel theoreti-
cal framework to describe financial market macro-dynamics in which single agents interact in
non-linear and complex ways. The classical order vs. disorder phase transition problem in
physics is used here to explain the fundamentalist vs. speculative mood transitions in the mar-
kets, that we propose to disentangle through a Ginzburg-Landau-based power expansion. As
observing the pen right at the borderline of falling, we imagine a price fluctuation around its
fundamental until the pen breaks the symmetry by taking a clear direction as the price moves
into bubble or anti-bubble mood.

Our Ginzburg-Landau-based theory of market mood dynamics explains a nontrivial transi-
tion from a “high temperature” symmetric state, with no price trends over time, to a “low tem-
perature” state, with up or down price trends. The key parameter that moves the markets from
one state to another is the “temperature parameter”, which we derive based on the randomness
of the agent’s actions, the number and the memory length of traders.

In our simulation exercise we have shown how a qualitative understanding could be found
depending on just our temperature parameter, thus bypassing the excessively complicated

Table 2. T values.

s = 2 N

m 11 101

3 0.409 0.045

5 1.500 0.163

8 11.682 1.272

s = 18 N

m 11 101

3 0.045 0.005

5 0.167 0.018

8 1.298 0.141

The table reports the values of the ratio the T ratio 2mþ1
N(s run in our simulation experiment with s = 2 and

s = 18. For these two scenarios the corresponding matrices derive by crossing N with m with N = 11, 101
and m = 3, 5, 8.

doi:10.1371/journal.pone.0118224.t002
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microscopic description of moods in the markets. Indeed, the temperature parameter modulates
transitions between fundamental and speculative states without examining the micro-dynamics
of single agents and their interaction impacts on the price path and connected market
transitions.

The main message we offer in this paper is that through a phenomenological explanation of
complex market dynamics, we are able to describe when markets as a whole are expected to
change from fundamental to speculative states and vice versa, only by focusing on three variables:
(1) the number of market traders (N), (2) their trading strategies (s) and (3) their past price
movements memory (m). Together these variables are assembled into the ratio 2mþ1

N(s which is at
the core of the complex market dynamics.

It should be noted that our method provides a framework to test the stability of a given mar-
ket state and understand the influence of an external perturbation. One way to try to drive the
market from one state to another would for example be to perturb (by e.g. forcing a large up/
down price move) artificially the market when the agents have driven it into a fundamental
state (or vice versa into the fundamental state when presently in a speculative state). Whether
the agents would respond by driving the market further along the direction of the perturbation,
or on the contrary, drive the market back to its unperturbed state is far from trivial. In Ref. [21]
it was shown how considering decoupled strategies (see Ref. [21] for definition) was one way to
get information about how the system of agents would reply to perturbations.

The proposed general framework can be used to describe the human decision making in a
certain class of experiments performed in a trading laboratory, allowing us to predict the out-
come of such type of trading experiments in terms of when to expect a fundamental versus a
speculative state. Here we focused only on the theoretical description of the model, but in our
future research agenda we will use our findings to the implementation of trading experiments
performed in a trading laboratory.
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