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a b s t r a c t 

Mixed-Integer Linear Programming models often optimize the sum, or average, of different outcomes. 

In a deterministic setting, each outcome may be associated with an agent, for example a customer, an 

employee, or a time period. In a stochastic setting, each outcome may be associated with a discrete 

scenario. The average approach optimizes the overall efficiency of the solution, but neglects the possible 

unfair distribution of outcomes among agents or the risk of very bad scenarios. In this paper, we exploit 

the analogies of the two settings to derive a common optimization paradigm bridging the gap between k - 

sum optimization in the deterministic setting and Conditional Value-at-Risk optimization in the stochastic 

setting. We show that the proposed paradigm satisfies properties that make it an attractive criterion. 

To illustrate the proposed paradigm, we apply it to the multidimensional knapsack problem and the p - 

median/ p -center problem. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Mixed-Integer Linear Programming (MILP) is one of the most

relevant tools in Operations Research, and is applied to a huge

spectrum of situations. In many cases, the objective is the sum,

or average, of outcomes (costs or profits), each associated with a

distinct agent, for example a customer, an employee, or a time pe-

riod. 

The optimization of the average outcome is aimed at improving

efficiency, i.e., the overall system performance. However, a most

efficient solution may imply large variability on the individual

outcomes. In a MILP model aimed at capturing uncertainty, dis-

cretized through a set of scenarios, an agent may be a scenario

and the average over all scenarios as optimization criterion is usu-

ally adopted. An optimal solution does not take into account the

variability of the outcome. 

A classical remedy to avoid the worst outcomes and control

the variability on individual outcomes is using the Minimax (or

Maximin) criterion ( Wald, 1950 ). This criterion looks for solutions

where the worst outcome is at least as good as the worst outcome

of any other feasible solution. The Minimax criterion is consistent

with the Rawlsian theory of justice ( Rawls, 1971 ) and is one of the

most important models in robust decision making in general. How-
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ver, the robustness of the decisions taken according to this prin-

iple comes with a price in terms of efficiency, and this price may

e high (see Bertsimas and Sim, 2004 ). 

Attempts have been made to trade-off between the search for

fficiency of the average criterion and the search for control on

he extreme outcomes of the Minimax criterion. The first one is

o consider a convex combination of the average and the Mini-

ax objective. This approach was proposed and analyzed in the

ontext of location theory ( Halpern, 1976; 1978 ), and treats the

verage and the Minimax as two conflicting objectives. However,

t is well-known that in bi-objective MILP models there may be

ondominated solutions that cannot be captured in this way (see

hrgott, 2006 ). 

A different approach is based upon the observation that both

he average and the Minimax criteria are extreme cases of a

ore general concept, called k -sum optimization ( Gupta and Pun-

en, 1990 ). In k -sum optimization, the adopted criterion is the av-

rage of the k worst outcomes, where k is a positive integer chosen

y the decision maker. The Minimax criterion is in fact a 1-sum

riterion, whereas, if S is the total number of agents generating

utcomes, the average criterion is an S -sum criterion. A natural for-

ulation of the k -sum criterion for a general MILP model involves

n exponential number of constraints ( Gupta and Punnen, 1990 ).

his is probably the reason why k -sum optimization has been

pplied to specific combinatorial problems where MILP models are

ot used. The criterion of the k largest distances minimization was

ntroduced in location problems in Slater (1978) as the so called

 -centrum model. If k = 1 , the model reduces to the standard

https://doi.org/10.1016/j.cor.2019.01.010
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 -center model while with k = S it is equivalent to the classical

 -median model. Early works on the concept ( Andreatta and

ason, 1985a; 1985b; Slater, 1978 ) were focused on the case

f the discrete single facility location on tree graphs. Later,

amir (2001) has presented polynomial time algorithms for solv-

ng the multiple facility k -centrum on path and tree graphs,

hile Ogryczak and Tamir (2003) have shown that the criterion

an be modeled with an auxiliary set of simple linear inequal-

ties, thus simplifying several k -centrum models. Later, Puerto

nd Tamir (2005) have analyzed the problem of locating a tree-

haped facility using a k -centrum criterion on a tree network.

omputational aspects of related problems have been studied in

rygiel (1981) , Punnen (1992) , and Punnen and Aneja (1996) . In

achine scheduling, the problem of minimizing the sum of the k ,

mong S , maximum tardiness jobs on a single machine without

reemption was shown to be polynomially solvable for any fixed

alue k ( Woeginger, 1991 ). The partial sum criterion was also

onsidered for Steiner trees in graphs and shortest paths ( Duin

nd Volgenant, 1997; Garfinkel et al., 2006 ), for fair resource allo-

ation in networks Ogryczak and Śliwi ́nski (2002) , as well as for

atroids and minimum spanning trees ( Gupta and Punnen, 1990 ).

ore recently, Puerto et al. (2017) have provided a general tool for

olving a variety of k -sum optimization problems and improving

he complexity bounds of several ad-hoc algorithms previously

eported in the literature for specific combinatorial problems

see Puerto et al., 2017 for additional references). Finally, k -sum

ptimization can also be seen as a particular case of ordered

edian optimization, a concept that has been especially applied

n location analysis (see Nickel and Puerto, 2005; Puerto and

odríguez-Chía, 2015 for further details). 

In this paper, we exploit the potential of the k -sum criterion for

eneral MILP models applied to a deterministic setting where the

verage outcome over the k worst agents is optimized or a stochas-

ic setting, discretized through scenarios, where the average out-

ome is computed over the k worst scenarios. We show that the

 -sum criterion is strictly related to the Conditional Value-at-Risk

CVaR) criterion, a very popular measure in risk management, ap-

lied to a discrete distribution ( Rockafellar and Uryasev, 20 0 0 ). 

The contributions of this paper are the following: 

• we extend the k -sum criterion to a general MILP model with

different weights on the outcomes, and for this reason we call

it β-average; 
• using only concepts of LP theory, we derive a compact linear

formulation for the corresponding optimization problem; 
• we establish a precise connection between the β-average and

the CVaR, and we prove that, as a risk measure, the β-average

is coherent according to Artzner et al. (1999) ; 
• we show that the β-average is also a suitable inequality mea-

sure. 

A few authors have investigated the relation between opti-

ization of a coherent risk measure and robust optimization.

ertsimas and Sim (2004) consider a linear programming model

here the constraint matrix coefficients are uncertain. They pro-

ose a robust approach where it is assumed that, for each con-

traint i , at most �i coefficients will vary with respect to the ex-

ected values. The values of �i control the conservativeness of

he approach, and the resulting robust formulation retains linear-

ty. The connection between Bertsimas and Sim’s approach, where

nly a fraction of the uncertain coefficients may assume a bad

ehaviour, and optimization of risk measures where only a frac-

ion of the worst outcomes is taken into account, is recognized

y Bertsimas and Brown (2009) , who show that the optimization

f a coherent risk measure is equivalent to robust optimization

nder an appropriately defined uncertainty set. More specifically,

ertsimas and Brown (2009) suggest that a coherent risk mea-
ure can guide the choice of the uncertainty set in robust opti-

ization. A similar result is given in Ogryczak (2014) , where for a

eneral class of optimization problems including MILP it is shown

hat CVaR optimization is equivalent to a properly defined robust

ptimization approach. Though these results establish a relation

etween two seemingly different fields, there is no evidence that

 robust optimization approach is computationally more efficient

han the direct optimization of CVaR. 

The paper is structured as follows. In Section 2 , we introduce

he general MILP setting we study and the notation. The β-average

easure is presented in Section 3 , and a compact MILP formulation

s derived for both the minimization and the maximization case.

n Section 4 , we prove relevant properties of the β-average and its

trong relation to the CVaR measure. In Section 5 , to illustrate the

roposed model, we apply the β-average optimization to classical

ombinatorial optimization problems. Finally, some conclusions are

rawn in Section 6 . 

. Average and Minimax in MILP 

We consider a general MILP model in minimization form: 

min c � x 
ubject to Ax = b 

x B ∈ Z 

| B | 
+ 

x N ≥ 0 , 

(1) 

here c is a real n -vector, A is a real m × n matrix, b is a real m -

ector, x is the n -vector of variables. The index set { 1 , 2 , . . . , n } is

artitioned in two subsets B and N , where B contains the indices

f the integer variables and N contains the indices of the continu-

us variables. If B is empty, the model is a plain LP model. Notice

hat we consider linear constraints in standard form, but any other

orm would work as well. For the sake of simplicity, we assume

hat the feasible set 

 = { x ∈ R 

n : Ax = b, x B ∈ Z 

| B | 
+ , x N ≥ 0 } (2)

s nonempty and bounded. 

We assume that c is the average over a finite number S of real

ost vectors c � of appropriate dimension, � = 1 , . . . , S. A cost vec-

or is associated with an agent , for example a customer, a job, or a

eriod of a discretized time horizon. We assume that all cost vec-

ors have the same importance, i.e., they have the same (unitary)

eight. This assumption is often satisfied in practical applications.

hen, 

 = 

1 

S 

S ∑ 

� =1 

c � . (3) 

For any x ∈ X , we define the � th outcome of x as 

 � (x ) = (c � ) � x, 

ith � = 1 , . . . , S. Since outcomes represent costs, lower outcomes

re preferred to higher ones. In order to rank the feasible solu-

ions, the outcomes can be assessed according to different crite-

ia. The most common criterion is the average (or total) outcome,

aken over all the agents. We denote the average outcome of a so-

ution x as 

(x ) = 

1 

S 

S ∑ 

� =1 

y � (x ) = 

1 

S 

S ∑ 

� =1 

(c � ) � x = c � x. 

e call the model where M ( x ) is minimized the Minavg model .

ere, we search for a solution that has the best possible average

utcome. This corresponds to maximizing the system overall effi-

iency. An optimal solution x avg of the Minavg model is such that 

(x avg ) = min { M(x ) : x ∈ X } . 
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As X is nonempty and bounded, the above expression is well de-

fined. 

If the Minimax criterion is adopted, then the objective function

becomes 

μ(x ) = max { (c � ) � x : � = 1 , . . . , S} = max { y � (x ) : � = 1 , . . . , S} . 
The corresponding minimization model, known as Minimax model ,

selects a solution x max such that 

μ(x max ) = min { μ(x ) : x ∈ X } . 
The Minimax model is only focused on the worst outcome and,

thus, takes into account only a small part of the available informa-

tion. On the other hand, the Minavg model uses all the available

information but it does not consider variability in the outcomes

and the existence of very poor possible outcomes. The trade-off

between the Minavg and the Minimax models could be shown in

several different situations. We focus here on a simple assignment

problem. 

Example 1. To give an example without entering into excessive

technical details, we consider a simple case. Consider the problem

of assigning n tasks to S operators. Assume the operators are not

identical, and let c i � be the time required by operator � to complete

task i . The goal is to minimize the total (average) working time of

operators. The feasible set of this problem is described as 

X = 

{ 

x ∈ { 0 , 1 } n ×S : 

S ∑ 

� =1 

x i� = 1 , i = 1 , . . . , n 

} 

. (4)

Model (1) turns out to be the following simple semi-assignment

problem: 

Assign : min 

{ 

n ∑ 

i =1 

S ∑ 

� =1 

c i� x i� : x ∈ X 

} 

. 

Notice that the constraint coefficient matrix in X is totally unimod-

ular (TUM). The integrality requirements can then be relaxed and

model (1) is equivalent to a LP model. The Assign model is a Mi-

navg model, where the agents are the operators. 

In the Assign objective, the contribution of every operator is

taken into account, but the optimal solution may be such that

some of the operators work much more than others. Thus, the so-

lution may be unfair and unsatisfactory. To take this concern into

account, a makespan objective may be adopted, where the working

time of the most loaded operator is minimized. This implies using

a Minimax model, that can be formulated as 

MinMaxAssign : min 

{ 

u : u ≥
n ∑ 

i =1 

c i� x i� , � = 1 , . . . , S; x ∈ X 

} 

. 

Notice that in MinMaxAssign the integrality requirements cannot

be relaxed. The problem corresponds to the basic unrelated parallel

machine scheduling problem R || C max ( Pinedo, 2012 ). 

Whereas the Assign model pursues the efficiency objective, the

MinMaxAssign model pursues the objective of fairness among op-

erators. As a drawback, every operator which is not the most

loaded does not contribute to the objective function, and thus the

workload of most of the agents is neglected. 

The discussion about Minavg and Minimax models can be ex-

tended to problems where the coefficients of the objective function

are uncertain and uncertainty is modeled through a finite num-

ber of scenarios with equal probability (see, e.g., Kaut and Wal-

lace, 2007 ). We identify scenarios with agents. In this way, model

(1) minimizes the average system performance with respect to the

scenarios. The outcome y � ( x ) measures the performance of solution

x under the � th scenario. In the Minavg model, an optimal solution
 

avg is such that the average outcome, taken over all the scenarios,

s optimized. In the Minimax model, an optimal solution x max is

uch that the outcome in the worst scenario is optimized. Again,

he trade-off between the Minavg and the Minimax models could

e shown in several different situations. We focus here on a classic

roblem that we use also in the computational experiments. 

xample 2. Let us consider the multidimensional knapsack prob-

em ( MKP ) ( Kellerer et al., 2004 ). A set of n activities is given. A

rofit c j is associated with each activity j , j = 1 , . . . , n . A set of m

esources is used by the activities, each available in a maximum

mount b i , i = 1 , . . . , m . Each activity j requires a quantity a ij of re-

ource i . The problem is to select a subset of the activities, with

aximum total profit, while guaranteeing that the constraints on

he maximum availability of the resources are satisfied. The prob-

em is formulated as a binary linear program, with a binary vari-

ble x j associated with each activity j . Its feasible set may be ex-

ressed as follows 

 = 

{ 

x ∈ { 0 , 1 } m : 

n ∑ 

j=1 

a i j x j ≤ b i , i = 1 , . . . , m 

} 

, (5)

here all parameters a ij and b i are positive integers. The MKP is

hen formulated as ( Kellerer et al., 2004 ) 

kp : max 

{ 

n ∑ 

j=1 

c j x j : x ∈ X 

} 

, 

here all coefficients c j are integers. The classical knapsack prob-

em is the MKP with one constraint only. 

Assume that activities correspond to investments and the prof-

ts c j are the returns of these investments. It is often the case

hat such returns are not known with precision. Combining market

orecasts, historical data, opinions of experts, one may build up a

et of S equiprobable scenarios describing the uncertainty. In other

ords, we assume that S vectors c � = (c � 1 , c � 2 , . . . , c � n ) are given,

or � = 1 , . . . , S, and that a probability π� = 1 /S is assigned to each

ector. For consistency, we define c j = 

∑ S 
� =1 π� c � j for j = 1 , . . . , n .

n this case, the MKP model maximizes the average total profit on

ll scenarios. Hence, it is a Minavg model with reversed sign in the

bjective function, i.e., a Maxavg model. 

Activities with average high profit may have a very variable

rofit (very low in some scenarios and very high in others). Con-

ersely, activities with average low profit may have quite stable

rofit. For a risk-averse decision maker, the goal is to control the

orst possible scenarios. A minimax approach leads to maximize

he minimum profit among the scenarios and, considering the re-

ersed sign of the profits, to a Maximin model: 

kp-maxmin : max 

{ 

u : u ≤
n ∑ 

j=1 

c � j x j , � = 1 , . . . , S; x ∈ X 

} 

. 

In summary, in the uncertainty setting the Minavg model im-

lies risk indifference, whereas the Minimax model implies as high

s possible risk aversion. In the variability setting, the Minavg

odel implies that the only goal is system efficiency and there

s no concern about fairness, whereas opposite concerns are taken

nto account in the Minimax model. 

. The Minimax( β) model 

Let X be defined as in (2) , let x ∈ X , and let y (x ) =
(y 1 (x ) , y 2 (x ) , . . . , y S (x )) � be the corresponding vector of outcomes.

otice that M ( x ) is the average outcome. Moreover, μ( x ) is

he largest outcome associated with an agent, i.e., the largest
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verage outcome associated with a subset of agents with cardinal-

ty 1. These observations suggest the following definition. 

efinition 1. For any fraction β , with β ∈ (0, 1], and for any x ∈
 , the β-average M β ( x ) of the outcome vector y ( x ) is the largest

verage outcome attainable by a subset of � βS � agents. 

The β-average optimization problem, that we also call

inimax( β) model, aims at finding a solution x ∗ such that 

 β (x ∗) = min { M β (x ) : x ∈ X } . (6)

hen β = 1 the Minimax( β) model becomes the Minavg model,

hereas for 0 < β ≤ 1/ S the model is the Minimax model. When

= k/S, with k ∈ { 1 , 2 , . . . , S} , then the β-average is the largest av-

rage outcome attainable by a subset of k agents. In a determin-

stic setting, the Minimax( k / S ) model corresponds to k -sum opti-

ization. In a stochastic setting, the Minimax( β) model is strictly

elated to CVaR optimization on discrete distributions, as we shall

ee later. 

Let 

(1) , τ (2) , . . . , τ (S) 

e a valid permutation of the outcome indices, that is a permuta-

ion such that 

 τ (1) (x ) ≥ y τ (2) (x ) ≥ . . . ≥ y τ (S) (x ) . (7)

he permutation τ actually depends on x ∈ X , but, to ease nota-

ion, we take such a dependence for granted. Let y τ ( x ) be the or-

ered vector of outcomes. Whereas y j ( x ) indicates the j th compo-

ent of the original vector y ( x ), y τ ( j ) ( x ) indicates the j th component

f the ordered vector y τ ( x ). 

We can now express the β-average, with β ∈ (0, 1], in formula

s 

 β (x ) = 

1 

� βS� 
� βS� ∑ 

j=1 

y τ ( j) (x ) . (8)

xample 3. Suppose that S = 10 and that, for a given solution x ∈
 , we have: 

 (x ) = (12 , 3 , 1 , 7 , 18 , 9 , 4 , 12 , 15 , 13) � . 

hen, we consider the valid permutation τ : 5, 9, 10, 1, 8, 6, 4, 7, 2,

, which orders the vector of outcomes. The corresponding ordered

ector is 

 

τ (x ) = (18 , 15 , 13 , 12 , 12 , 9 , 7 , 4 , 3 , 1) � . 

e note that an alternative valid permutation τ ′ : 5, 9, 10, 8, 1, 6,

, 7, 2, 3, where indices 1 and 8 are swapped would result in the

ame ordered vector. 

Using formula (8) , we can compute M β ( x ) for different values

f β . If β = 2 / 10 , then M 0 . 2 (x ) = (y 5 + y 9 ) / 2 = 16 . 5 . If β = 4 / 10 ,

hen M 0 . 4 (x ) = (y 5 + y 9 + y 10 + y 1 ) / 4 = 14 . 5 . If β is not a multiple

f 1/ S , we round the value up to the closest multiple. For example,

f β = 0 . 35 , which is included between 3/10 and 4/10, then � βS� =
 and we obtain M 0 . 35 (x ) = M 0 . 4 (x ) = 14 . 5 . 

The β-average is not affected by the specific valid permutation

f outcomes. Indeed, directly from Definition 1 and expression (8) ,

he following statement follows. 

roposition 1. For any given x ∈ X , and for any β ∈ (0, 1], the β-

verage is a symmetric function of y 1 ( x ), y 2 ( x ), . . . , y S ( x ), i.e., given

wo valid permutations τ ′ and τ ′ ′ , the value M β ( x ) obtained with

ermutation τ ′ is identical to the value obtained with permutation
′ ′ 
. u  
.1. Optimizing the β-average 

Solving the Minimax( β)model defined in (6) with M β ( x ) formu-

ated as in (8) is not practical, since it relies on a permutation of

he outcomes, that is, a function of x ∈ X . In this section, we show

ow to model the β-average optimization problem with an effi-

ient LP expansion of the original MILP model, i.e., by adding a

imited number of linear constraints and continuous variables. 

roposition 2. For any β , with β ∈ (0, 1], the β-average is given by

 β (x ) = max 

{ 

1 

� βS� 
S ∑ 

� =1 

y � (x ) z � : 
S ∑ 

� =1 

z � = � βS� , z � ∈ { 0 , 1 } , � = 1 , . . . , S 

} 

. 

(9) 

The above proposition is straightforward. Indeed, the binary

ariables describe the incidence vectors of the outcome subsets.

he unique constraint imposes that only subsets of cardinality

 βS � are chosen. The objective function maximizes the average

utcome of the selected subset. 
Proposition 2 allows a practical formulation for the Minimax( β)

odel. As the matrix of the coefficients of the constraint in (9) is
otally unimodular, we can relax the integrality constraints, obtain-
ng the equivalent linear program 

 β (x ) = max 

{ 

1 

� βS� 
S ∑ 

� =1 

y � (x ) z � : 
S ∑ 

� =1 

z � = � βS� , 0 ≤ z � ≤ 1 , � = 1 , . . . , S 

} 

. 

(10) 

roblem (10) is feasible and bounded for any β ∈ (0, 1] and x ∈ X . Thus,

e can switch to the dual, obtaining 

 β (x ) = min 

{ 

� βS� u + 

S ∑ 

� =1 

v � :� βS� (u + v � ) ≥ y � (x ) , v � ≥ 0 , � = 1 , . . . , S 

} 

.

eplacing the outcomes with their explicit expression in terms of x ∈
 , we are able to express the Minimax( β) model for the minimization

roblem (1) as 

min � βS� u + 

S ∑ 

� =1 

v � 

ubject to � βS� (u + v � ) ≥ (c � ) � x � = 1 , . . . , S 

Ax = b 

v � ≥ 0 � = 1 , . . . , S 

x B ∈ Z | B | + , x N ≥ 0 . 

(11) 

We remark that (11) is still a MILP model. With respect to the

riginal (1) , it has S + 1 additional continuous variables and S addi-

ional inequality constraints. Moreover, the objective function and

he new constraints have integer coefficients, provided the out-

omes are integer valued. 

.2. Case of maximization 

We consider here the case where the original MILP problem is

ormulated in maximization form as 

max c � x 
ubject to Ax = b 

x B ∈ Z 

| B | 
+ 

x N ≥ 0 . 

(12) 

In this case, the vectors c � , � = 1 , . . . , S, represent profits, and a

igher outcome is preferred to a lower one. Then, the β-average

s the smallest average outcome attainable by a subset of � βS �
gents. The simplest way to derive the Maximin( β) optimization

odel is to transform problem (12) in minimization form and then

se the Minimax( β) optimization model (11) . With some algebraic



160 C. Filippi, W. Ogryczak and M.G. Speranza / Computers and Operations Research 105 (2019) 156–166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Plot of function F y ( x ) ( ξ ) for y ( x ) as in Example 3 . 

Fig. 2. Plot of function F 
(−1) 

y (x ) (ξ ) for y ( x ) as in Example 3 . 
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calculations, considering that u is a free variable, we obtain the

following Maximin( β) optimization problem: 

max � βS� u −
S ∑ 

� =1 

v � 

subject to � βS� (u − v � ) ≤ (c � ) � x � = 1 , . . . , S 
Ax = b 
v � ≥ 0 � = 1 , . . . , S 

x B ∈ Z 

| B | 
+ , x N ≥ 0 . 

(13)

4. Properties of the β-average 

In this section, we describe the relation between the β-average

criterion and the well-known CVaR risk measure ( Rockafellar and

Uryasev, 20 0 0 ). Then, we show that, in a stochastic setting, the β-

average is a coherent risk measure and that, in a deterministic set-

ting, the β-average is an appropriate measure of inequality. 

4.1. Relation between β-average and CVaR 

Several approaches have been proposed in finance to shape a

loss distribution associated with a portfolio of assets. The Value-

at-Risk (VaR) and the CVaR have become very popular concepts.

Given a specified probability level α, the α-VaR of a loss dis-

tribution is the lowest amount ν such that, with probability α,

the loss will not exceed ν . For continuous distributions, the α-

CVaR is the conditional expectation of losses above that amount

ν (see Rockafellar and Uryasev, 20 0 0 ). For distributions with dis-

continuities, e.g., discrete distributions defined by scenarios, the

definition of α-CVaR is more subtle and requires some notation

( Rockafellar and Uryasev, 2002 ). 

Let F Y ( ξ ) be the cumulative distribution function of the loss Y .

For any α ∈ (0, 1), we have α-VaR (Y ) = min { ξ : F Y (ξ ) ≥ α} . More-

over, let 

F αY (ξ ) = 

⎧ ⎨ 

⎩ 

0 , if ξ < α-VaR (Y ) , 

F Y (ξ ) − α

1 − α
, if ξ ≥ α-VaR (Y ) . 

Then, we have 

α-CVaR (Y ) = 

∫ + ∞ 

−∞ 

ξdF αY (ξ ) . 

We can also define the “lower” CVaR ( Sarykalin et al., 2008 ) as 

α-CVaR 

−(Y ) = E [ Y | Y ≥ α-VaR (Y )] , 

where E is the expectation operator. For general distributions, 

α-CVaR 

−(Y ) ≤ α-CVaR (Y ) , 

where the inequality holds strictly on every discontinuity of F Y ( ξ )

(see Rockafellar and Uryasev, 2002 for details). While the VaR has

some undesirable features, the CVaR has all the desirable char-

acteristics needed to be defined a coherent risk measure (see

Artzner et al., 1999 ). 

To highlight the relation between the β-average and the CVaR,

we interpret any vector x ∈ X as a feasible portfolio, and the as-

sociated distribution of outcomes y 1 (x ) , y 2 (x ) , . . . , y S (x ) as a prob-

abilistic distribution of losses, each with probability 1/ S . We need

to define some functions, starting from the right-continuous func-

tion: 

F y (x ) (ξ ) = 

1 

S 

S ∑ 

� =1 

δ� (ξ ) , where δ� (ξ ) = 

{
1 if y � (x ) ≤ ξ

0 otherwise, 

(14)
hich, for any real value ξ , provides the fraction of outcomes

maller than or equal to ξ . Note that function F y ( x ) ( ξ ) is, in fact, the

umulative distribution function of a discrete random variable that

akes the values y 1 (x ) , y 2 (x ) , . . . , y S (x ) , each with the same proba-

ility 1/ S . In Fig. 1 , we show function F y ( x ) ( ξ ) for Example 3 . 

Similarly, the left-continuous right tail function 

 y (x ) (ξ ) = 

1 

S 

S ∑ 

� =1 

δ� (ξ ) , where δ� (ξ ) = 

{
1 if y � (x ) ≥ ξ

0 otherwise , 

(15)

an be defined which, for any real value ξ , provides the fraction

f outcomes greater than or equal to ξ . Note that F y (x ) (ξ ) = 1 −
 y (x ) (ξ ) for ξ �∈ { y 1 (x ) , y 2 (x ) , . . . , y S (x ) } . 

Next, we introduce the quantile function F (−1) 
y (x ) 

as the left-

ontinuous inverse of F y ( x ) ( x ), i.e., F (−1) 
y (x ) 

(α) = inf { ξ : F y (x ) (ξ ) ≥ α}
or α ∈ (0, 1]. The quantile function F (−1) 

y (x ) 
is the nondecreas-

ng stepwise function F (−1) 
y (x ) 

(α) = y τ (S− j+1) (x ) for ( j − 1) /S < α ≤
j/S. Similarly, we introduce the right tail quantile function F 

(−1) 
y (x ) 

s the left-continuous inverse of F y (x ) , i.e., F 
(−1) 
y (x ) (α) = sup { ξ :

 y (x ) (ξ ) ≥ α} for α ∈ (0, 1]. Actually, F 
(−1) 
y (x ) (α) = F (−1) 

y (x ) 
(1 − α) . Note

hat the function F 
(−1) 
y (x ) is the nonincreasing stepwise function

 

(−1) 
y (x ) (α) = y τ ( j) (x ) for ( j − 1) /S < α ≤ j/S. In Fig. 2 , we show

unction F 
(−1) 
y (x ) (ξ ) for Example 3 . 
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Fig. 3. Plot of M β ( x ) (black line) vs. (1 − β) -CVaR (x ) (gray line) for y ( x ) as in 

Example 3 . 
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is a coherent risk measure. 
Recalling expression (8) , we obtain 

 β (x ) = 

1 

� βS� 
� βS� ∑ 

j=1 

y τ ( j) (x ) = 

1 

� βS� 
� βS� ∑ 

j=1 

F 
(−1) 

y (x ) 

(
j 

S 

)

= 

S 

� βS� 
∫ � βS� 

S 

0 

F 
(−1) 

y (x ) (ν) dν. (16) 

Given a specified probability level β , we denote as

(1 − β) -CVaR( x ) the (1 − β) -CVaR value of the distribution

 1 (x ) , y 2 (x ) , . . . , y S (x ) . This right tail mean can be expressed as

see Rockafellar and Uryasev, 20 0 0 ): 

(1 − β) -CVaR (x ) = 

1 

β

∫ β

0 

F 
(−1) 

y (x ) (ν) dν. (17)

Since S / � βS � ≤ 1/ β and (1 − β) -CVaR( x ) is a nonincreasing

unction of β , (16) and (17) imply the following. 

roposition 3. For all β ∈ (0, 1], we have M β (x ) ≤ (1 − β) -CVaR (x ) .

n particular, 

 β (x ) = 

(
1 − � βS� 

S 

)
-CVaR (x ) , 

hat is, the β-average coincides with the 

(
1 − � βS� 

S 

)
-CVaR. 

In Fig. 3 , we plot functions M β ( x ) and (1 − β) -CVaR (x ) with re-

pect to parameter β for the outcome vector of Example 3 . 

The above result implies, in case of a uniform discrete distribu-

ion, 

 β (x ) = ( 1 − β) -CVaR 

−(x ) . (18)

.2. The β-average is a coherent risk measure 

It is well known that the CVaR is a coherent risk measure. Ac-

ording to Rockafellar and Uryasev (2002) , this is a “formidable

dvantage not shared by any other widely applicable measure

f risk yet proposed.” We have seen above that, in case of a

niform discrete distribution, the β-average is equivalent to the

lower CVaR” ( 1 − β) -CVaR 

−(x ) . An interesting point is that, for

eneral discrete distributions, CVaR 

− is not a coherent risk mea-

ure ( Rockafellar and Uryasev, 2002 ). In this section, we prove that

he β-average is a coherent measure. As a corollary, we have that

VaR 

− is coherent on uniform discrete distributions. 
We first note that the β-average of x ∈ X is actually a com-

osite function. To stress this point, we write M β (x ) = μβ(y (x )) .

y Proposition 2 and the total unimodularity of the constraints in
roblem (9) , we have: 

β (y (x )) = max 

{ 

1 

� βS� 
S ∑ 

� =1 

y � (x ) z � : 
S ∑ 

� =1 

z � = � βS� , 0 ≤ z � ≤ 1 , � = 1 , . . . , S 

} 

.

(19) 

hus, the β-average is described by the optimal value of a feasible and

ounded LP in maximization form, where the outcome vector is the ob-

ective coefficient vector. In the following, we use y ( x ) �y ( x ′ ) to denote the

xistence of two valid permutations τ and τ ′ such that y τ (� ) (x ) ≤ y τ ′ (� ) (x ′ )
or � = 1 , . . . , S. Let 1 denote a vector of S ones. 

heorem 1. For any x, x ′ ∈ X and β ∈ (0, 1], function μβ satisfies the follow-

ng properties: 

i. μβ(y (x ) + c · 1 ) = μβ(y (x )) + c for any constant c (translation-

invariance); 

ii. μβ(y (x ) + y (x ′ )) ≤ μβ(y (x )) + μβ(y (x ′ )) (subadditivity); 

iii. μβ(cy (x )) = cμβ(y (x )) for all c > 0 (positive homogeneity); 

iv. y ( x ) �y ( x ′ ) ⇒ μβ ( y ( x )) ≤μβ ( y ( x ′ )) (monotonicity); 

roof. All properties essentially follow from characterization (19) . 

Property i . We have: 

β (y (x ) + c · 1 ) 

= max 

{ 

1 

� βS� 
S ∑ 

� =1 

(y � (x ) + c) z � : 
S ∑ 

� =1 

z � = � βS� , 0 ≤ z � ≤ 1 , � = 1 , . . . , S 

} 

= max 

{ 

1 

� βS� 
S ∑ 

� =1 

y � (x ) z � + c : 

S ∑ 

� =1 

z � = � βS� , 0 ≤ z � ≤ 1 , � = 1 , . . . , S 

} 

= max 

{ 

1 

� βS� 
S ∑ 

� =1 

y � (x ) z � : 
S ∑ 

� =1 

z � = � βS� , 0 ≤ z � ≤ 1 , � = 1 , . . . , S 

} 

+ c 

= μβ(y (x )) + c. 

Property ii . We have: 

β (y (x ) + y (x ′ )) 

= max 

{ 

1 

� βS� 
S ∑ 

� =1 

(y � (x ) + y � (x ′ )) z � : 
S ∑ 

� =1 

z � =� βS� , 0 ≤ z � ≤ 1 , �=1 , . . . , S 

}

≤ max 

{ 

1 

� βS� 
S ∑ 

� =1 

y � (x ) z � : 
S ∑ 

� =1 

z � = � βS� , 0 ≤ z � ≤ 1 , � = 1 , . . . , S 

} 

+ max 

{ 

1 

� βS� 
S ∑ 

� =1 

y � (x ′ ) z � : 
S ∑ 

� =1 

z � = � βS� , 0 ≤ z � ≤ 1 , � = 1 , . . . , S 

} 

= μβ(y (x )) + μβ(y (x ′ )) . 

Property iii . It follows immediately from characterization (19) . 

Property iv . By the symmetry of the feasible region in problem (19) , if

 τ (� ) (x ) ≤ y τ ′ (� ) (x ′ ) for � = 1 , . . . , S, then we have: 

β (y (x )) = μβ(y τ (x )) ≤ μβ(y τ
′ 
(x ′ )) = μβ(y (x ′ )) . 

�

In the framework of Artzner et al. (1999) , a risk measure is a

unctional on a linear space of random variables expressing losses.

n our framework, for any x ∈ X , the role of the random vari-

ble is taken by the outcome vector y ( x ), equivalent to a discrete

andom variable Y ( x ) taking value y � ( x ) with probability 1/ S , for

 = 1 , . . . , S. Then, the relation y ( x ) �y ( x ′ ) is equivalent to first-order

tochastic dominance of Y ( x ) over Y ( x ′ ). The role of the risk mea-

ure is taken by the β-average, in the form μβ ( y ( x )). It turns out

hat the above properties ( i )-( iv ) are the four axioms required by

rtzner et al. (1999) to define coherency. This leads to the follow-

ng statement. 

orollary 1. The β-average is a coherent risk measure. 

As a consequence of (18) , we also have the following. 

orollary 2. In case of a uniform discrete distribution, ( 1 − β) -CVaR 

−
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4.3. The β-average is a measure of inequality 

We have introduced the β-average to trade-off between system

efficiency and outcome variability. Since in a deterministic setting

large variability means unequal distribution of outcomes among

agents, it is pertinent to wonder whether the β-average is an ap-

propriate measure of inequality. 

Inequality measures have a central role in applied welfare eco-

nomics, a branch of economics devoted to the development of an-

alytical tools to evaluate the level of inequality in the distribution

of resources and the application of these tools to actual data. It

is known that Schur-convexity is the key property for an inequal-

ity measure, since from the Hardy–Littlewood–Polya’s theorem it is

equivalent to monotonicity with respect to the Lorenz order or the

Pigou–Dalton principle of transfers ( Marshall et al., 2011 ). In other

contexts, inequality measures are also called fairness measures

( Ogryczak et al., 2014 ) or equitability measures ( Kostreva et al.,

2004 ). 

We recall that a function f : R 

S �→ R is Schur-convex if, for any

y, y ′ ∈ R 

S such that there exist two valid permutations τ , τ ′ with

y τ (� ) ≤ y ′ 
τ ′ (� ) , we have f ( y ) ≤ f ( y ′ ). This corresponds to Property iv

of Theorem 1 , and thus we have the following. 

Corollary 3. For any β ∈ (0, 1], the β-average is a Schur-convex func-

tion of the outcome vector y ( x ) . 

5. Computational experiments 

The aim of this section is to illustrate the concepts presented

above by using two classic combinatorial optimization problems.

The first one is the MKP , which gives rise to MILP models with a

maximization objective and will be used as an example where the

risk involved by the uncertainty in the objective function coeffi-

cients is an issue. The second one is the p -median/ p -center prob-

lem, which gives rise to MILP models with a minimization objec-

tive, and will be used as an example where the fairness of the

outcome distribution is an issue. We test the different models on

benchmark instances taken from the OR-library ( Beasley, 1990 ), as

detailed below. All used instances are available at http://people.

brunel.ac.uk/ ∼mastjjb/jeb/orlib/files . 

All tests have been performed on a 64-bit Windows machine,

with Intel Xeon processor E5-1650, 3.50 GHz, and 16 GB of RAM.

All models have been built and solved using IBM ILOG CPLEX Op-

timization Studio 12.6 (64 bit version) with default solver settings,

except for the maximum running time, set to 7200 s for each

model-instance pair. 

5.1. Example of uncertainty: the multidimensional knapsack problem 

In Example 2 , we have introduced the mkp model and its
Maximin counterpart mkp-maxmin . In this context, a MaxMin( β)
model aims at maximizing the total profit earned under the k =
� βS� worst scenarios. This leads to the following model 

mkp( β) : 

max 

{ 

ku −
S ∑ 

� =1 

ν� :ku −kν� ≤
n ∑ 

j=1 

c � j x j , �=1 , . . . , S;ν� ≥ 0 , �=1 , . . . , S; x ∈ X 

}

where set X is defined in (5) . In our computational tests, the value of βS is

integer. In this case, β-average optimization and (1 β)-CVaR optimization

are in fact equivalent (see Proposition 3 ). 

We compare the solutions obtained by the three models mkp ,

mkp-maxmin , and mkp( β) , on a set of medium size benchmark

instances taken from the OR-library, namely the instances con-

tained in file mknapcb1.txt . These are 30 randomly generated

instances where n = 100 and m = 5 , the profit c j is correlated to∑ m 

i =1 a i j for all j = 1 , . . . , n, and b i = α
∑ n 

j=1 a i j , i = 1 , . . . , m, with
being the tightness ratio . In the first 10 instances, α = 0 . 25 ; in

he next 10 instances, α = 0 . 50 ; in the last 10 instances, α = 0 . 75

see Chu and Beasley, 1998 for details). As we will see, the hard-

ess of the instances is inversely correlated with α. 

For each instance, S scenarios are generated, for different S val-

es. We assume that for each object j , the original profit c j is ac-

ually the maximum possible one, and we generate independently

 values by drawing uniformly distributed integers in the interval

 −0 . 75 c j , c j ] . As a consequence, the expected profit of object j is

.125 · c j , for all j = 1 , . . . , 100 . A similar scheme has been used in

gryczak and Śliwi ́nski (2003) to generate rates of return in a port-

olio optimization problem. 

We first analyse in detail the results concerning instances #11–

0, where α = 0 . 50 , fixing S = 100 . The four models mkp-maxmin ,

kp(0.10) , mkp(0.30) , and mkp are run on each instance. To get

 fair comparison, in this experiment we identify the distribution

f profits with the set of generated scenarios. Thus, for each in-

tance, the average profit vector used in model mkp is the aver-

ge over the generated scenarios, see (3) . In Table 1 , the solution

eturned by each model is evaluated with respect to the objec-

ive of the other models. More precisely, we have four rows per

nstance, each row corresponding to a model. Column Min con-

ains the percentage differences between the minimum total profit

btained under the worst scenario and the optimal value of the

kp-maxmin model. Similarly, column M 0.10 (resp. M 0.30 ) contains

he percentage differences between the average profit under the

 0.10 × S � (resp. � 0.30 × S � ) worst scenarios and the optimal value

f the mkp(0.10) (resp. mkp(0.30) ) model. Column Avg contains the

ercentage differences between the average profit under all sce-

arios and the optimal value of the mkp model. In other words,

hese four columns contain the percentage regrets that the solu-

ion of each model implies with respect to every considered objec-

ive. Such regrets are computed in negative form, to emphasize the

act that they correspond to a reduction with respect to the opti-

al value. For example, it turns out that in instance #11 the worst

ossible profit for the solution returned by the mkp(0.30) is 92.74%

ower than the worst possible profit for the solution returned by

he mkp-maxmin . 

Finally, column Time reports the CPU time in rounded seconds

equired to obtain the solutions, and column Gap that contains

ercentage optimality gap for instances not solved to optimality

ithin the time limit of 7200 seconds. These are all instances of

he mkp-maxmin model, which turns out to be very hard to solve

or CPLEX. On the other extreme, CPLEX is very fast in solving

he classical mkp model. mkp(0.10) and mkp(0.30) instances are all

olved to optimality with a CPU time ranging from 22 to 2994 s.

igures in column Time suggest a strong inverse correlation be-

ween the β value and the hardness of the instance for CPLEX. It is

lso interesting to note that for instance #11 , models mkp-maxmin

nd mkp(0.10) return the same solution, but while CPLEX required

553 s to prove optimality with respect to the former model, it

equires just 35 s to prove optimality with respect to the latter

odel. 

Column Min suggests a strong negative correlation between the

value and the value of the worst possible profit, though the mag-

itude of the regret value is clearly related to the adopted pertur-

ation. The positive correlation between the β value and the value

f the average profit is less pronounced, and there are some cases

f non-monotonicity. 

To give a better view of the differences among the solutions re-

urned by the different models, in Fig. 4 we show the cumulative

requency function of the four solutions for instance #15, taken as

n example. More specifically, the values on the horizontal axis

re the possible profits, while the values on the vertical axis are

ractions of the scenarios. For example, in the mkp-maxmin solu-

ion, 65% of the scenarios imply a profit not greater than 50 0 0. In

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files
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Table 1 

Multidimensional knapsack instances with uncertain profits and 100 scenarios: percentage deviations on the 

optimal objective values. 

Instance Model type Min M 0.10 M 0.30 Avg Time Gap 

11 mkp-maxmin – 0.00 −6.15 −13.26 1553 –

... mkp(0.10) 0.00 – −6.15 −13.26 35 –

... mkp(0.30) −92.74 −11.40 – −9.69 22 –

... mkp −129.56 −60.40 −20.13 – 0 –

12 mkp-maxmin – −1.45 −9.98 −13.82 3184 –

... mkp(0.10) −16.20 – −5.20 −7.02 141 –

... mkp(0.30) −103.73 −13.55 – −9.11 27 –

... mkp −249.80 −77.95 −26.57 – 0 –

13 mkp-maxmin – −2.16 −7.90 −15.01 7201 4.11 

... mkp(0.10) −23.03 – −1.19 −10.51 249 –

... mkp(0.30) −64.67 −14.43 – −10.42 69 –

... mkp −139.48 −65.92 −25.90 – 0 –

14 mkp-maxmin – −1.31 −6.87 −9.07 5796 –

... mkp(0.10) −18.23 – −4.63 −10.78 237 –

... mkp(0.30) −94.52 −21.91 – −6.71 22 –

... mkp −130.27 −52.82 −19.26 – 0 –

15 mkp-maxmin – −2.10 −8.22 −18.74 7201 6.07 

... mkp(0.10) −6.34 – −3.96 −14.50 2994 –

... mkp(0.30) −32.29 −14.32 – −9.98 40 –

... mkp −130.93 −67.78 −32.40 – 0 –

16 mkp-maxmin – −1.36 −8.21 −12.64 7200 4.42 

... mkp(0.10) −15.93 – −3.97 −12.77 547 –

... mkp(0.30) −48.82 −12.45 – −8.16 60 –

... mkp −132.76 −55.08 −20.84 – 0 –

17 mkp-maxmin – −1.98 −7.13 −14.14 7201 5.03 

... mkp(0.10) −1.94 – −4.49 −13.72 476 –

... mkp(0.30) −74.33 −14.90 – −11.69 22 –

... mkp −167.20 −71.10 −24.71 – 0 –

18 mkp-maxmin – −2.00 −6.05 −12.38 7201 5.82 

... mkp(0.10) −10.14 – −3.85 −12.55 2140 –

... mkp(0.30) −81.91 −17.64 – −8.40 225 –

... mkp −183.47 −68.97 −28.57 – 0 –

19 mkp-maxmin – -1.56 −6.88 −14.12 3540 –

... mkp(0.10) −7.00 – −4.89 −13.47 150 –

... mkp(0.30) −32.34 −7.82 – −11.34 26 –

... mkp −205.90 −83.99 −33.68 – 1 –

20 mkp-maxmin – −2.37 −3.86 −15.02 7201 5.90 

... mkp(0.10) −6.95 – −3.75 −15.73 809 –

... mkp(0.30) −81.51 −18.95 – -10.95 53 −- 

... mkp −111.51 −74.29 −31.74 – 0 –

Fig. 4. Cumulative frequency plots for instance #15 in mknapbc1 . 
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he mkp(0.10) solution, the percentage reduces to 59% and in the

kp(0.30) solution a 49% is reached. Finally, in the mkp solution,

1% of the scenarios imply a profit not exceeding 50 0 0. To improve

eadability, we fill the discontinuities with vertical segments. 

The plot shows a common pattern: the distributions for models

kp-maxmin and mkp(0.10) are quite similar, with a large number
f payoffs concentrated on the right of the worst payoff, though

he solutions of the mkp( β) models tend to slightly dominate the

olution of the mkp-maxmin , in the sense that for any value δ, the

ercentage of scenarios with profit not exceeding δ is smaller in

he mkp(0.10) solution. The distribution corresponding to the mkp

s very different, with a bold left tail that includes a fraction of

ad payoffs. The distribution corresponding to the mkp(0.30) tends

o mediate between these two patterns. 

Having assessed the quality of the obtained solutions, we evalu-

te more closely the computational effort required by MKP( β) . We

x β = 0 . 30 and consider all 30 instances in mknapcb1.txt , gen-

rating an increasing number of scenarios, from 100 to 500. The

esults are summarized in Table 2 , where α is the tightness ratio

f the instances and t.l. indicates that the time limit of 7200 s is

eached. Notice that, along each row of Table 2 , the increment of S

s obtained by adding scenarios to the existing ones. We see that,

t least for CPLEX, the hardness of the instances is increasing with

 and decreasing with α. None of the instances with α = 0 . 25 are

olved to optimality for S = 400 and S = 500 . Moreover, the opti-

ality gap may be as high as 23.6%. Conversely, all instances with

= 0 . 75 are solved to optimality well before the time limit. 

In general, the computational effort increases with S , but the

elation is not monotone. For example, in instance #12, S = 400
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Table 2 

Multidimensional knapsack instances with uncertain profits and increasing number of scenarios: times, gaps and objective values with model MKP(0.30) . 

N. of scenarios S = 100 200 300 400 500 

α Instance Time Gap M 0.30 Time Gap M 0.30 Time Gap M 0.30 Time Gap M 0.30 Time Gap M 0.30 

0.25 1 288 – 1753.20 t.l. 3.87 −28.53 t.l. 4.54 −35.25 t.l. 15.01 −44.53 t.l. 19.08 −48.48 

2 40 – 1995.53 962 – −34.15 1352 – −38.84 t.l. 3.03 −44.97 t.l. 11.24 −54.12 

3 32 – 1808.23 5887 – −29.34 t.l. 2.31 −44.17 t.l. 11.72 −49.13 t.l. 10.20 −50.58 

4 28 – 2249.93 235 – −32.06 3331 – −40.68 t.l. 2.44 −45.40 t.l. 14.59 −53.62 

5 65 – 1883.73 574 – −24.33 2589 – −34.43 t.l. 4.57 −41.93 t.l. 13.61 −49.28 

6 51 – 1778.00 545 – −24.54 t.l. 2.71 −34.63 t.l. 9.64 −41.00 t.l. 11.30 −45.64 

7 27 – 2178.37 360 – −19.39 2110 – −31.80 t.l. 6.11 −41.07 t.l. 4.21 −43.18 

8 49 – 2039.97 5722 – −37.69 t.l. 4.41 −48.30 t.l. 16.79 −59.92 t.l. 23.63 −61.76 

9 30 – 1824.97 4352 – −30.48 6107 – −34.11 t.l. 6.49 −39.46 t.l. 13.11 −44.76 

10 31 – 2193.83 772 – −29.79 3115 – −40.58 t.l. 11.05 −48.10 t.l. 10.80 −48.71 

0.5 11 22 – 3705.37 65 – −17.15 587 – −28.49 6394 – −31.82 t.l. 1.17 −30.45 

12 122 – 3513.10 1162 – −18.59 2237 – −20.51 4026 – −24.59 1459 – −26.18 

13 56 – 3886.27 398 – −14.99 3169 – −23.85 t.l. 1.66 −27.15 t.l. 1.05 −32.72 

14 30 – 4414.87 155 – −23.95 460 – −30.60 t.l. 0.49 −32.77 t.l. 2.01 −35.72 

15 46 – 3610.20 616 – −17.45 685 – −21.64 1384 – −24.40 t.l. 2.00 −28.99 

16 27 – 3529.37 464 – −12.22 279 – −17.96 832 – −21.08 t.l. 2.43 −25.78 

17 42 – 3869.30 329 – −19.39 2663 – −27.56 944 – −28.00 4916 – −32.09 

18 125 – 3751.53 1051 – −9.03 3678 – −18.94 t.l. 2.10 −21.75 t.l. 3.53 −24.60 

19 115 – 4115.47 1116 – −21.49 t.l. 1.16 −27.42 3357 – −27.85 t.l. 2.40 −33.59 

20 20 – 3917.50 521 – −18.35 705 – −24.85 5024 – −27.55 t.l. 2.29 −32.35 

0.75 21 1 – 5089.63 14 – −16.62 83 – −20.58 78 – −22.60 142 – −22.43 

22 3 – 5763.67 20 – −12.97 127 – −21.84 1952 – −24.01 818 – −26.31 

23 3 – 5152.53 4 – −9.66 31 – −11.22 125 – −17.10 579 – −21.35 

24 2 – 4639.60 1 – −4.69 21 – −12.55 24 – −16.19 66 – −19.03 

25 2 – 5236.70 22 – −9.55 25 – −21.38 121 – −25.08 180 – −24.87 

26 1 – 5475.20 4 – −15.49 33 – −25.37 29 – −30.15 15 – −34.05 

27 1 – 5747.90 18 – −19.94 88 – −27.76 193 – −31.94 373 – −32.47 

28 2 – 4686.43 4 – −5.42 32 – −12.29 57 – −12.25 200 – −13.18 

29 3 – 4807.63 15 – −7.62 250 – −12.96 59 – −11.75 77 – −13.62 

30 2 – 5029.83 13 – −14.92 4 – −21.48 9 – −20.65 44 – −24.82 
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requires 4026 s, whereas S = 500 requires 1459 s to be solved.

Moreover, in instance #19, S = 300 cannot be solved within the

time limit, but S = 400 is solved in 3357 s. For this class of prob-

lems, we may conclude that the number of scenarios (agents) is

not the main factor determining the hardness of an instance. 

In order to evaluate the effect of the increasing number of sce-

narios on the objective value, we take the case of S = 100 sce-

narios, always solved to optimality by model MKP(0.30) , as the

base case. For the base case, we report in column M 0.30 the op-

timal objective values (bold figures). For all the other cases, we

report in column M 0.30 the percentage difference with respect to

the base case. We see that the differences are remarkable. The fig-

ures referred to the instances with α = 0 . 75 are more significant,

as in this case all instances are resolved to optimality. For these in-

stances, we see that the differences are increasing with the num-

ber of scenarios, but the rate of increment is clearly decreasing.

This can be explained as follows. In this example, β-average op-

timization is used on a set of scenarios that is a sample from a

theoretical distribution. Thus, the optimal value obtained by model

MKP(0.30) is an approximation of the real value of M 0.30 . As the

cardinality of the sample increases, the quality of the approxima-

tion improves, converging to the real value. For a discussion on

scenario generation techniques, we refer the reader to the special-

ized literature (see, e.g., Guastaroba et al., 2009 ). Concerning the

results of the optimization process, we mention that not only the

objective values, but also the returned solutions differ considerably.

The interested reader may find details in the supplementary mate-

rial. 

5.2. Example of variability: a facility location problem 

Let us consider a set of S customers, each with unit demand,

a set of m potential locations for p facilities, and an m × S matrix
 = [ c i� ] of distances from potential locations to customers. The

 -median problem is to select p potential facilities in order to

inimize the total distance from customers to selected facilities,

ssuming that each customer is supplied from the closest selected

acility ( Drezner and Hamacher, 2004 ). The feasible set of the

uncapacitated) p -median problem is described as 

 Y = 

{ 

x ∈ { 0 , 1 } m ×S , y ∈ { 0 , 1 } m : 

m ∑ 

i =1 

x i� = 1 , � = 1 , . . . , S;

m ∑ 

i =1 

y i = p , x i� ≤ y i , i = 1 , . . . , m, � = 1 , . . . , S 

} 

. 

he classic p -median problem is described as follows: 

p-median : min 

{ 

m ∑ 

i =1 

S ∑ 

� =1 

c i� x i� : (x, y ) ∈ X Y 

} 

. 

To include the p -median in our framework, we have to consider

he distance matrix C as the average over S different cost functions,

ach one corresponding to an agent, in this case a customer. For-

ally, this can be done by expanding C into S cost vectors c � of mS

ntries, with � = 1 , . . . , S, defined as 

 

� 
k = 

{
c i� if k = (� − 1) m + i 

0 otherwise , 

here i = 1 , . . . , m and k = 1 , . . . , mS. In other words, all entries of

 

� 
k 

are set to zero, except for the entries from k = (� − 1) m + 1 to

 = �m, that correspond to the � th column of C , i.e., the � th cus-

omer. To avoid cumbersome notation, we shall not use explicitly

his expansion. 

The p -center problem requires to minimize the maximum dis-

ance between a customer and its closest facility. This corresponds
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Table 3 

Facility location instances with 100 customers from the OR-library. 

Instance Model Max M 0.05 M 0.10 Avg Time 

pmed1 P -center – 7.08 11.33 47.45 7 

... P -median(0.05) 0.00 – 1.50 21.12 251 

... P -median(0.10) 0.79 0.34 – 21.60 199 

... P -median 4.72 2.02 2.04 – 1 

pmed2 P -center – 4.68 7.92 44.40 70 

... P -median(0.05) 1.56 – 2.02 21.81 935 

... P -median(0.10) 7.81 2.68 – 22.09 936 

... P -median 19.53 17.56 14.51 – 5 

pmed3 P -center – 2.13 2.96 35.22 4 

... P -median(0.05) 1.57 – 0.42 24.40 143 

... P -median(0.10) 0.00 0.00 – 27.18 159 

... P -median 59.06 27.00 15.13 – 1 

pmed4 P -center – 1.68 5.10 40.15 5 

... P -median(0.05) 3.70 – 0.72 21.96 238 

... P -median(0.10) 11.85 1.38 – 18.44 267 

... P -median 31.85 6.88 2.95 – 1 

pmed5 P -center – 6.51 10.98 43.07 5 

... P -median(0.05) 2.59 – 0.79 25.59 382 

... P -median(0.10) 8.62 2.79 – 21.40 376 

... P -median 29.31 13.20 7.62 – 1 
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Fig. 5. Cumulative frequency plots for instance pmed2 . 
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Table 4 

Facility location instances from the OR-library: 

times and gaps. 

Instance S Time Gap 

pmed1 100 199 –

pmed2 100 936 –

pmed3 100 159 –

pmed4 100 267 –

pmed5 100 376 –

pmed6 200 80 –

pmed7 200 3255 –

pmed8 200 774 –

pmed9 200 540 –

pmed10 200 1093 –

pmed11 300 3087 –

pmed12 300 4370 –

pmed13 300 2221 –

pmed14 300 6885 –

pmed15 300 3979 –

pmed16 400 t.l. 1.71 

pmed17 400 t.l. 6.88 

pmed18 400 t.l. 5.06 

pmed19 400 t.l. 6.53 

pmed20 400 t.l. 5.94 
o using a Minimax model, formulated as 

p-center : min 

{ 

u : u ≥
m ∑ 

i =1 

c i� x i� , � = 1 , . . . , S; (x, y ) ∈ X Y 

} 

. 

In this context, a Minimax( β)model aims at minimizing the

otal distance travelled by the k = � βS� customers with largest

istances from their closest facilities. This leads to the following

odel 

p-median( β) : min 

{ 

ku + 

n ∑ 

� =1 

ν� : ku + kν� ≥
m ∑ 

i =1 

c i� x i� , � = 1 , . . . , S;

ν� ≥ 0 , � = 1 , . . . , S; (x, y ) ∈ X Y 

} 

. 

We compare the solutions obtained by the three models above

n a set of 20 benchmark instances taken from the OR-library,

amely those described in files pmed z .txt with z = 1 , 2 , . . . , 20 .

n all instances, the customer set and the potential location set

re the same. To assess the quality of the obtained solutions,

e first focus on the 5 smallest instances, having 100 customers,

.e., S = 100 . On each instance, we test four models: P -center , P -

edian(0.05) , P -median(0.10) , and P -median . The value of p is fixed

o 5 for all instances. The obtained solutions are compared in

able 3 . 

The structure of Table 3 is similar to Table 1 , except for col-

mn Gap , that has been omitted as all instances are solved within

he time limit of 7200 s. Columns Max –Avg are filled similarly to

olumns Min –Avg in Table 3 , but taking into account that we have

 minimization problem. The objective of the P -center model is

o minimize the maximum possible distance of a customer from

he closest active facility, the objective of the P -median( β) is to

inimize M β , i.e., the average of the � βS � worst distances from

he closest facility, and the objective of the P -median model is to

inimize the distance from the closest facility averaged over all

ustomers. To emphasize the fact that in this case the regrets cor-

espond to increments with respect to the optimal value, they are

omputed in positive form. 

According to the results, models P -median(0.05) and P -

edian(0.10) always offer a compromise solution between P -

enter and P -median in terms of regrets. More precisely, the
P -median(0.05) and P -median(0.10) models ensure a much better

erformance than the P -center model in terms of average ob-

ective at the expense of a reasonable increment of the largest

istance from an active facility. 

From Table 3 it is clear that the P -median and the P -center

odels are much easier to solve for CPLEX. This phenomenon

ight be explained by the fact that CPLEX default parameters and

ettings are optimized over sets of benchmark instances for classi-

al models like P -median and P -center . 

In Fig. 5 , we plot the cumulative frequency distribution (14) for

nstance pmed2 , taken as an example. The pattern is found in all

nstances: for most distances δ from the closest facility, the solu-

ion of the P -median model dominates the solution of the P -center

odel, in the sense that the percentage of customers with distance

ot exceeding δ is larger in the P -median solution. However, for

he largest distances, the role is swapped, and the P -median solu-

ion allows a certain fraction of customers to have a very large dis-

ance from their facilities. From the figures it is also clear that the

P -median(0.05) and the P -median(0.10) solutions mediate between

he Minimax criterion and the Average criterion, not only in terms

f values (average and maximum) but also in terms of distribution.

To better evaluate the computational effort required by P -

edian( β) , we fix β = 0 . 10 and consider instances pmed z with

 = 1 , . . . , 20 . Here, the number of customers S increases from

00 to 400. The results are summarized in Table 4 , where the
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positive correlation between S and the computational effort is ap-

parent. In fact, we also tried to solve instances pmed21 , . . . , pmed25 ,
where S = 500 , but none of them could be solved within the time

limit. We notice however that the optimality gaps returned for

such instances were not significantly larger than those returned for

pmed16 , . . . , pmed20 and reported in Table 4 . 

6. Conclusions 

In this paper, the role of k -sum optimization as an attractive cri-

terion to trade-off between a conservative Minimax/Maximin cri-

terion and an aggressive minimum total cost/maximum total profit

criterion in MILP models has been revised. Starting from the defi-

nition of β-average, that generalizes the concept of k -sum, and us-

ing only LP theory and basic statistical concepts, it has been shown

how to embed the β-average measure in a MILP model. We have

shown several nice properties of the β-average criterion, and clar-

ified its strong connection with the Conditional Value-at-Risk. The

proposed concepts and models have a great potential for applica-

tion in many different areas where fairness or uncertainty is a con-

cern. 

Several research directions remain to be explored. First, the β-

average measure could be extended to the case of weighted agents,

enlarging its applicability. Second, as the illustrative examples sug-

gest, the β-average optimization problem poses new computa-

tional issues, concerning the most effective exact solution method

and the most appropriate valid inequalities. Benders decomposi-

tion (or L-shaped method) seems a natural starting point (see, e.g.,

Künzi-Bay and Mayer, 2006 and Sarin et al., 2014 ). Moreover, the

analysis of local search techniques for β-average models is also

worth of investigation, for their impact on the design of efficient

heuristics. Finally, it would be interesting to embed the β-average

optimization model in specific optimization problems. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.cor.2019.01.010 
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