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Purpose of review

Machine learning (ML) algorithms have augmented human judgment in various fields of clinical medicine.
However, little progress has been made in applying these tools to video-endoscopy. We reviewed the field
of video-analysis (herein termed ’Videomics’ for the first time) as applied to diagnostic endoscopy,
assessing its preliminary findings, potential, as well as limitations, and consider future developments.

Recent findings

ML has been applied to diagnostic endoscopy with different aims: blind-spot detection, automatic quality
control, lesion detection, classification, and characterization. The early experience in gastrointestinal
endoscopy has recently been expanded to the upper aerodigestive tract, demonstrating promising results in
both clinical fields. From top to bottom, multispectral imaging (such as Narrow Band Imaging) appeared to
provide significant information drawn from endoscopic images.

Summary

Videomics is an emerging discipline that has the potential to significantly improve human detection and
characterization of clinically significant lesions during endoscopy across medical and surgical disciplines.
Research teams should focus on the standardization of data collection, identification of common targets,
and optimal reporting. With such a collaborative stepwise approach, Videomics is likely to soon augment
clinical endoscopy, significantly impacting cancer patient outcomes.
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INTRODUCTION

Artificial intelligence is beginning to transform clin-
ical medicine in specialties where large datasets of
annotated images are an essential element of the
clinical workflow. The use of machine learning (ML)
algorithms has augmented human judgment by
identifying adverse events in the operating room
[1], detect diabetic retinopathy [2], and even iden-
tify skin cancer [3]. From radiology to pathology,
deep learning [4] has promise in reaching a diagnos-
tic accuracy comparable with that of human experts
from automating the detection of pneumonia on
chest roentgenograms [5] and CT scans [6], to iden-
tifying clinically occult nodal metastasis in breast
cancer [7]. This rapid pace of innovation suggests
that the development of expert systems will soon be
applicable in everyday clinical settings, providing
real-time assistance to the physician in a variety of
diagnostic tasks, using computer technology to
improve the human vision and judgment.

Notwithstanding these promises, at present, lit-
tle progress has been made in applying deep
t © 2021 Wolters Kluwe
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learning algorithms to video-endoscopy, which
plays a prominent role in otorhinolaryngology,
head and neck surgery, pulmonary medicine, and
gastroenterology, as well as in thoracic and abdomi-
nal surgery. For the purpose of this review, we
explore how automated analysis of unstructured
data obtained by video-endoscopy can provide valu-
able information during initial diagnosis, measuring
treatment-response, and assessing prognosis. Endo-
scopic evaluation has always been a crucial compo-
nent of head and neck oncology (HNO), since tumor
r Health, Inc. All rights reserved.
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KEY POINTS

� The rapid pace of innovation suggests that the
development of expert systems will soon be applicable
in everyday clinical settings, providing real-time
assistance to the physician in a variety of
diagnostic tasks.

� We herein propose the term ’Videomics’ to denote a
burgeoning field where several methods of computer
vision and deep learning are systematically used to
interpret the unstructured data of video obtained during
diagnostic video-endoscopy.

� As of today, efforts have been directed toward different
lines of analysis: (1) blind-spot detection and automatic
quality control; (2) lesion detection; (3) lesion
classification; and (4) lesion characterization.

� Video-endoscopic evaluation of the upper aerodigestive
tract poses even more challenges than gastrointestinal
endoscopy since this anatomic region is structurally
more complex, composed of a wide variety of tissues,
and easily shaded.

� Research teams should focus on standardization of data
collection, identification of common targets, and
optimal reporting.

Head and neck oncology
superficial spread assessment has a significant
impact on treatment selection and may not be
adequately quantified by conventional radiologic
imaging. Often seen as inherently descriptive, deep
learning has helped to convert subjective assess-
ment into objective findings based on systematic
evaluation of visual data seen on video, analogous to
findings obtained by conventional techniques in
genomics and proteomics.

Here, in fact, we propose the term ’Videomics’ as
a burgeoning field wherein several methods of com-
puter vision and deep learning are systematically
used to organize the unstructured data of video
obtained during diagnostic endoscopy. Indeed, in
this review of the literature, we argue that based on a
growing number of publications, a new discipline is
emerging within the large field of computer vision
and pattern recognition. Herein, we review this
promising new field, assessing preliminary findings,
potential and limitations, and consider future
developments.
MACHINE LEARNING IN ENDOSCOPY

Because of the higher caseload compared with HNO,
gastrointestinal endoscopy was the first field in
which ML was effectively applied. For this reason,
it is useful to first analyze the progress in this branch
of endoscopy to identify potential advances that are
 Copyright © 2021 Wolters Kluwer H
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applicable to evaluation of the upper aerodigestive
tract (UADT). Even in this broader research field,
reports assessing the role of ML are scarce. As of
today, efforts have been directed toward different
lines of analysis, in particular: (1) blind-spot detec-
tion and automatic quality control; (2) lesion detec-
tion; (3) lesion classification; and (4) lesion
characterization. This approach is strictly related
to the perceived needs in digestive system endos-
copy, and has given promising results and potential
real-life applications.

Concerning blind-spot detection, Wu et al. [8]
developed a convolutional neural network (CNN)-
based system aimed at detecting early gastric cancer
although avoiding blind-spots during esophagogas-
troduodenoscopy. The algorithm was trained to
identify the different subsites of the esophagus
and stomach to ensure the complete visualization
of the entire gastroesophageal mucosa. Further-
more, CNN was trained to distinguish between nor-
mal mucosa and early gastric cancer. In both tasks,
the accuracy was remarkable (>90%). The same
authors [9

&

] validated the efficacy of this blind-spot
detection system in a randomized controlled trial,
showing a significantly lower blind-spot rate in
CNN-assisted endoscopy vs. a control group (5.9%
vs. 22.5%).

In the same perspective, Su et al. [10] developed
an automatic quality control system aimed at
improving diagnostic accuracy during colonoscopy.
The system was based on CNN models for timing the
withdrawal phase, supervise withdrawal stability,
evaluate bowel preparation, and detect colorectal
polyps. A randomized controlled trial showed that
this CNN-based quality control system significantly
increased lesion detection (adenomas and polyps)
during colonoscopy compared to that without
CNN assistance.

Lesion detection and characterization remain the
main objective of ML-based strategies in gastrointes-
tinal endoscopy. Texture analysis has shown good
preliminary results in detecting mucosal abnormali-
ties (e.g., colon polyps) [11], and CNNs proved to be a
key instrument in this field. In fact, the vast majority
of recent reports on automatic lesion detection and
classification have taken advantage of this algorithm
architecture. Different authors have described its
significant potential in the detection and diagnosis
of gastric, esophageal, and small bowel cancers, as
well as gastrointestinal polyps [12–16]. Furthermore,
CNNs are also useful in classification tasks, distin-
guishing between normal and inflamed mucosa (gas-
tritis), and identifying early gastric cancer using
magnifying endoscopy [17–19].

Interestingly, although some authors employed
conventional white light (WL) endoscopy, most
ealth, Inc. All rights reserved.
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studies have applied ML evaluation to Narrow Band
Imaging (NBI) pictures or videos. In this view, mul-
tispectral imaging may have the potential to further
improve detection and characterization of mucosal
lesions in the field of automatic analysis, adding
more definition to tumor margins and highlighting
features of submucosal vascularization that are not
evident during WL endoscopy. In 2012, Takemura
et al. [20] demonstrated the value of NBI in the
classification of colonoscopy magnified images
using support vector machines. This aspect was
explicitly investigated by Horie et al. [14], who
reported that NBI had a higher sensitivity compared
with conventional WL endoscopy (although not
reaching a statistically significant difference).

Finally, ML has shown promise in the in-depth
characterization of known lesions of the gastroin-
testinal tract and may also provide risk stratification
for malignant transformation of nonneoplastic
mucosa. Specifically, recent studies [21,22] have
demonstrated that CNNs can differentiate between
early and deeply infiltrating gastric cancer. This
result shows the potential of Videomics approaches
to go beyond simple diagnosis and extract more
extensive information on the lesion itself. Nakahira
et al. [22] further confirmed this potential by show-
ing that CNN is able of correctly stratify the risk of
gastric tumor development by analyzing the non-
neoplastic mucosa at video-endoscopy.
MACHINE LEARNING APPLICATIONS IN
UPPER AERO-DIGESTIVE TRACT
ENDOSCOPY

Video-endoscopic evaluation of the UADT poses
even more challenges than gastrointestinal endos-
copy [23]. This anatomic region is, in fact, structur-
ally more complex, composed of a wide variety of
tissues [24,25], and easily shaded. Furthermore,
deglutition, gag, and cough reflexes often come into
play, interrupting or limiting the observation. The
oral cavity and oropharynx are the most accessible
sites; however, their video-endoscopic evaluation is
not standardized and may be performed using rigid
or flexible endoscopes, or even external cameras.
Therefore, this factor adds an adjunctive layer of
complexity to image analysis since data collection
should be ideally standardized and characterized by
low variance.
Oral cavity and oropharynx

Different authors [26,27] have recognized the value
of ML in the evaluation and screening of oral cancer
and potentially malignant lesions. Song et al. [28]
developed a smartphone-based automatic image
 Copyright © 2021 Wolters Kluwe
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classification system for oral dysplasia and malig-
nancy employing CNNs. The system aimed to screen
high-risk populations in middle- and low-income
countries and took advantage of dual-modality
images (WL and autofluorescence). The authors
demonstrated the potential of dual-modal image
analysis, which showed better diagnostic perfor-
mance than single-modal images. The final model
reached an accuracy of 87%, sensitivity of 85%, and
specificity of 89%.

Mascharak et al. [29
&

] were the first to use ML to
better identify oropharyngeal tumor margins using
a simple naı̈ve Bayesian classifier (color and texture).
Interestingly, the diagnostic performance was sig-
nificantly enhanced by multispectral NBI compared
with conventional WL video-endoscopy. Five-fold
cross-validation yielded an area under the curve
(AUC) above 80% for NBI models and below 55%
for WL endoscopy models (P<0.001).

Finally, Paderno et al. [30
&

] published prelimi-
nary data showing that it is possible to obtain real-
time oral and oropharyngeal tumors segmentation
using different fully CNNs applied to NBI endo-
scopic images, identifying potential confounding
factors and technical drawbacks.
Larynx and hypopharynx

In general, laryngo-pharyngeal lesions are those
more frequently investigated when assessing the
role of automatic analysis by ML. This is due to
use of a standardized endoscopic approach through
trans-nasal or transoral video-endoscopy and the
relative similarity with gastrointestinal subsites. In
2014, Huang et al. [31] proposed an automatic sys-
tem aimed at recognizing images of the glottis and
classifying different vocal fold disorders. The tech-
nique was based on a support vector machine clas-
sifier and reached an accuracy of 99%. However, the
patterns to be classified were limited to ‘normal
vocal fold,’ ‘vocal fold paralysis,’ ‘vocal fold polyp,’
and ‘vocal fold cyst,’ and did not include dysplasia
or malignancy.

A preliminary attempt at automatic detection
and classification of laryngeal tumors has been
described by Barbalata et al. [32]. The authors used
anisotropic filtering to analyze the submucosal vas-
culature of normal and neoplastic laryngeal mucosa
during NBI video-endoscopic examination, obtain-
ing an overall classification accuracy of 83%.
Although not employing adaptive algorithms, the
study confirmed the value of NBI in maximizing
feature extraction in endoscopic images.

Subsequent studies, focusing on the diagnosis
and classification of pharyngo-laryngeal lesions at
video-endoscopy, extensively employed CNNs and
r Health, Inc. All rights reserved.
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demonstrated remarkable results. A work by Laves
et al. [33] used CNNs to segment a novel 7-class
(void, vocal folds, other tissue, glottal space, pathol-
ogy, surgical tools, and tracheal tube) dataset of the
human larynx during transoral laser microsurgery.
The dataset, consisting of 536 manually segmented
endoscopic images, was tested to monitor the mor-
phological changes and autonomously detect
pathologies. Different CNN architectures were
investigated, and a weighted average ensemble net-
work of UNet and ErfNet (two of the most used
CNNs in the current literature on this topic) was
the best suited for laryngeal segmentation with a
mean Intersection-over-Union (IoU) evaluation
metric of 84.7%.

Xiong et al. [34] developed a CNN-based diag-
nostic system trained using 13,721 laryngoscopic
images of cancer, premalignant lesions, benign
alterations, and normal tissue collecting exams
across several centers in China. The CNN distin-
guished malignant/premalignant lesions from
benign ones and normal tissues with an accuracy
of 87% (sensitivity 73%, specificity 92%, and AUC
92%). Ren et al. [35] described a similar approach,
training the CNN with a total of 24,667 laryngos-
copy images (normal, vocal nodule, polyps, leuko-
plakia, and malignancy), and achieving an overall
accuracy of 96%. Strikingly, the CNN-based classi-
fier outperformed physicians in the evaluation of
the abovementioned conditions.

Further detection and classification attempts
have mainly taken advantage of NBI images, which
yielded superior results in terms of diagnostic per-
formance, as previously demonstrated by
Mascharak et al. [29

&

] in the oropharyngeal site,
and confirmed by Tamashiro et al. [36

&

]. These stud-
ies [36

&

–38
&

] were performed in the setting of transo-
ral esophagogastroduodenoscopy and were aimed at
detecting incidental laryngo-pharyngeal cancer dur-
ing the procedure. However, direct comparisons
between the different studies may be misleading
because of the heterogeneous definition of ‘correct
diagnosis.’

Tamashiro et al. [36
&

] focused on pharyngeal
cancer and reported an accuracy, sensitivity, and
specificity of 67%, 80%, and 57%, respectively.
These results were slightly improved when limiting
the analysis to NBI frames only. The authors trained
a ‘Single Shot MultiBox Detector’ with a total of
5,403 images. Adequate detection was considered as
frames including less than 80% of the area with
noncancerous sites. Kono et al. [37

&

] showed similar
results in pharyngeal cancer detection by using a
mask region-based CNN trained with 4,559 images.
Each frame was judged as cancer when its probabil-
ity score was �0.60, and its dimensions overlapped
 Copyright © 2021 Wolters Kluwer H
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with the cancer area by a factor of �0.20. Accuracy,
sensitivity, and specificity were 66%, 92%, and
47%, respectively.

Finally, Inaba et al. [38
&

] trained a CNN-based
algorithm (RetinaNet) with sequential sets of images
until reaching 400 frames of superficial laryngo-
pharyngeal cancer and 800 frames of normal
mucosa. The diagnostic accuracy gradually
improved with the sequential addition of training
images until reaching an accuracy, sensitivity, and
specificity of 97%, 95%, and 98%, respectively. The
definition of correct diagnosis was set with an IoU
parameter >0.4.
FUTURE PERSPECTIVES AND
CONCLUSIONS

Videomics is an emerging discipline that has the
potential to significantly improve human detection
of clinically significant lesions during video-endos-
copy across medical and surgical disciplines. Prelim-
inary reports have shown promising diagnostic
potential and demonstrated the ability of ML algo-
rithms to provide adjunctive information on tumor
characteristics, such as depth of infiltration and,
hence, infer important tumor-related issues such
as extra-visceral extension, submucosal spread,
and risk of regional/distant metastases. However,
as early ‘proof-of-concept’ studies are published, it
is important to note that these efforts are not yet
part of routine endoscopic examination. In this
view, further advances may allow obtaining an
ever-growing amount of data from video-endo-
scopic sequences, thus assisting in tumor staging,
margin recognition, treatment planning, and prog-
nostic assessment. Furthermore, features extracted
from video-endoscopy may be integrated into
broader ‘-omic’ models (including radiomics, geno-
mics, proteomics, salivaomics, etc.), thus creating a
precise representation of a given tumor and/or fine-
tune the assessment of a specific patient. This is a
crucial step in the perspective of tailoring treatment
and personalized medicine.

For Videomics to flourish and to deliver practical
tools for clinicians in daily practice, it is imperative
to create large-scale image and video repositories.
Currently, many ongoing efforts are fragmented and
highly variable in their approach: the anatomical
regions investigated (upper or lower digestive
tracts), quality of images (definition, focus, illumi-
nation, and color balance), type of spectral filters
(WL, NBI, autofluorescence, others), and setting
(office-based, intraoperative) vary widely. Nonethe-
less, the current bottleneck for the development of
ML-based video-analysis techniques is represented
by the need to manually annotate training images.
ealth, Inc. All rights reserved.

Volume 29 � Number 2 � April 2021



Bringing deep learning to diagnostic endoscopy? Paderno et al.
In this view, the development of self-supervised
learning techniques using unlabeled data for CNN
pretraining and training may significantly and pro-
gressively improve algorithms without the need for
human intervention [39].

Finally, study objectives (detection, classifica-
tion, or segmentation) are often not clearly stated
or distinguished in each study. Last but not least, the
statistical definition of correct and incorrect diag-
nosis is subjectively determined by each author,
leading to significant variation in diagnostic perfor-
mance metrics (e.g., accuracy, sensitivity, specific-
ity, and AUC). For this reason, at this early stage in
the field, research teams should focus on standardi-
zation of data collection, identification of common
targets, and optimal reporting. With such a collab-
orative stepwise approach, Videomics is likely soon
augment human detection during endoscopy
and improve cancer treatment and subsequent out-
comes.
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