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Abstract

Since its appearance in AI, model-based diagnosis is intrinsically set-oriented. Given a sequence of observations, the diagnosis
task generates a set of diagnoses, or candidates, each candidate complying with the observations. What all the approaches in the
literature have in common is that a candidate is invariably a set of faulty elements (components, events, or otherwise). In this
paper, we consider a posteriori diagnosis of discrete-event systems (DESs), which are described by networks of components that
are modeled as communicating automata. The diagnosis problem consists in generating the candidates involved in the trajectories
of the DES that conform with a given temporal observation. Oddly, in the literature on diagnosis of DESs, a candidate is still a
set of faulty events, despite the temporal dimension of trajectories. In our view, when dealing with critical domains, such as power
networks or nuclear plants, set-oriented diagnosis may be less than optimal in explaining the supposedly abnormal behavior of
the DES, owing to the lack of any temporal information relevant to faults, along with the inability to discriminate between single
and multiple occurrences of the same fault. Embedding temporal information in candidates may be essential for critical-decision
making. This is why a temporal-oriented approach is proposed for diagnosis of DESs, where candidates are sequences of faults.
This novel perspective comes with the burden of unbounded candidates and infinite collections of candidates, though. To cope with,
a notation based on regular expressions on faults is adopted. The diagnosis task is supported by a temporal diagnoser, a flexible
data structure that can grow over time based on new observations and domain-dependent scenarios.
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1. Introduction

As the name suggests, model-based diagnosis [19, 10] aims to find out the causes of the supposedly faulty behavior
of a system based on its model. When the system is static, like a combinational circuit, the (behavioral) model of a
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component (for instance, a logical gate) is represented by a mapping from the possible input to the expected output.
In a dynamical system, time comes into play and model-based diagnosis needs to account for the state of the system
too [22]. For various reasons, a dynamical system may be conveniently modeled as a discrete-event system (DES) [8],
where the DES changes state over discrete time. However, the way the DES is represented is varying, typically as a
monolithic finite-state machine [17], as a network of components [15], each of them being modeled as a communicat-
ing automaton [6], or as a Petri net [2, 9]. Although the automaton of a DES component can represent just the nominal
(correct) behavior [18], usually each state transition is either normal or abnormal, as in the seminal work by [20, 21].

In the literature, diagnosing a DES amounts to generating a set of candidates based on a given temporal obser-
vation, namely a sequence of temporally-ordered observations, where a candidate is a set of faults, with each fault
being an abnormal event or transition. The diagnosis of a DES is a form of abductive reasoning, as the candidates
are generated based on the trajectories (sequences of state transitions) of the DES that conform with the temporal
observation. The classical approach in [20] performs the abduction offline, by compiling the DES models into a di-
agnoser, a data structure that is exploited online in order to produce a new set of candidates upon the reception of
each new observation (monitoring-based diagnosis). By contrast, in the active-system approach [1, 15], the abduction
can be carried out online by focusing on the trajectories that conform with the temporal observation. Specifically, the
diagnosis output is the set of candidates relevant to the (possibly infinite) set of trajectories of the DES that produce
the temporal observation. Since the domain of faults is finite, both the candidates and the diagnosis output are finite
and bounded.

Still, in both the diagnoser approach and the active-system approach, a candidate is a set of faults. This sounds
strange considering that a candidate is the projection of a trajectory, which is not a set, but a sequence of state
transitions. The point is, since a set is a collection of unordered elements without duplicates, both the temporal ordering
of faults and their multiple occurrences are completely lost within a set. When the diagnosis task focuses on critical
systems or processes, such as a large power network, a nuclear plant, or even the evolution of a pandemic like the
current COVID-19, set-orientated diagnosis may be less than optimal in explaining a supposedly abnormal behavior,
owing to the lack of any temporal information relevant to faults, along with the inability to discriminate between single
and multiple occurrences of the same fault. Hence, embedding temporal information in candidates may be essential
for critical-decision making.

To this end, we introduce the notion of a temporal fault, which is a sequence of temporally-ordered faults associated
with a trajectory of the DES. Despite the preservation of the temporal information in a candidate, the act of replacing a
sequence for a set comes with two problems, however: (1) the length of candidates is possibly unbounded, and (2) the
set of candidates may be infinite. Fortunately, the set of candidates that explain a temporal observation turns out to be a
regular language on faults, thus it can be represented as a regular expression. In other words, both the unboundedness
of candidates and the infinity of the set of candidates can be concisely represented by regular expressions on faults.

Given the notion of a temporal fault, a diagnosis technique is proposed based on a data structure (namely, a finite
automaton) called a temporal diagnoser, which allows for the efficient a posteriori diagnosis of a DES. A temporal
diagnoser is generated offline in its entirety, so that any temporal observation can be explained online efficiently.
This approach is only ideal, however, as in real DESs the size of a temporal diagnoser grows exponentially with the
number of components in the DES. Although a temporal diagnoser retains legitimacy as a formal reference (as is for
the diagnoser in [20]), a more practical approach is presented in the next sections, which introduce a partial temporal
diagnoser, this being initially generated offline as a prefix of the temporal diagnoser.

Remarkably, given a temporal observation that is not included in the language of the partial temporal diagnoser,
the latter can be extended online while solving the relevant diagnosis problem. Moreover, a partial temporal diagnoser
can be enriched based on domain-dependent behavioral scenarios [3, 4, 5]. A scenario is a concise way to specify a
collection of evolutions of the DES (e.g. all the trajectories that include three occurrences of a specific transition or all
the trajectories that are affected by a single fault). This notion comes in handy to specify the (interesting and/or critical
and/or frequent) evolutions to be added to the partial temporal diagnoser. In recent work by the authors, scenarios were
applied to both monitoring [4, 5] and a posteriori diagnosis of DESs [3], the latter being the same task that is dealt with
in this paper. However, while a set-oriented perspective on diagnosis results is adopted in [3], a new temporal-oriented
approach is proposed in this paper.
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t Description o f

s1 The sensor detects a threatening external event ko and generates the open event sen ε
s2 The sensor detects a liberating external event ok and generates the close event sen ε
s3 The sensor detects a threatening external event ko, yet generates the close event ε f1
s4 The sensor detects a liberating external event ok, yet generates the open event ε f2

b1 The breaker reacts to the open internal event by opening bre ε
b2 The breaker reacts to the close internal event by closing bre ε
b3 The breaker does not react to the open internal event and remains closed ε f3
b4 The breaker does not react to the close internal event and remains open ε f4
b5 The breaker reacts to the close internal event by remaining closed bre ε
b6 The breaker reacts to the open internal event by remaining open bre ε
b7 The breaker reacts to the close internal event by opening bre f5
b8 The breaker reacts to the open internal event by closing bre f6

Fig. 1. Models of sensor and breaker of DES P (left), details of component transitions (table in the center), and space P∗ (right).

2. Modeling a DES

A DES X is a network of components, where the behavior of each component is modeled as a communicating
automaton [6]. A component is endowed with input and output pins, where each output pin is connected with an
input pin of another component by a link. A component reacts to events (occurring either outside the DES or inside
it) by performing a transition. When performing a transition, a component consumes the triggering (input) event and
possibly generates new events on its output pins, which are bound to trigger the transitions of other components.
This results in a sequence of component transitions, called a trajectory of X, at the end of which X becomes idle,
namely without any internal event to be consumed. A contiguous subsequence of a trajectory is called a trajectory
segment. At the occurrence of a component transition, X changes its state, with a state of X being a pair of the array
of the current component states and the array of the (possibly empty) current events placed in links. Formally, the
(possibly infinite) set of trajectories of X is specified by a deterministic finite automaton (DFA), namely the space X∗
of X, X∗ = (Σ, X, τ, x0, Xf ), where Σ (the alphabet) is the set of component transitions, X is the set of states, τ is the
deterministic transition function mapping a state and a component transition into a new state, τ : X × Σ �→ X, x0 is the
initial state, and Xf is the set of final (idle) states. For diagnosis purposes, the model of X needs to be enriched with a
mapping table. Let T be the set of component transitions inX, O a finite set of observations, and F a finite set of faults.
The mapping table µ of X is a function µ(X) : T �→ (O∪ {ε})× (F∪ {ε}), where ε is the empty symbol. The table µ(X)
can be represented as a finite set of triples (t, o, f ), where t ∈ T, o ∈ O∪{ε}, and f ∈ F∪{ε}. The triple (t, o, f ) defines
the observability and normality of t: if o � ε, then t is observable, else t is unobservable; likewise, if f � ε, then t is
faulty, else t is normal. Based on µ(X), each trajectory T in X∗ can be associated with a temporal observation. The
temporal observation of T is the sequence of observations involved in T , Obs(T ) =

[
o | t ∈ T, (t, o, f ) ∈ µ(X), o � ε

]
.

In the literature, a trajectory T is also associated with a diagnosis, namely the set of faults involved in T . As such,
a diagnosis does not indicate the temporal relationships among faults, nor does it account for multiple occurrences
of the same fault. On the other hand, treating a diagnosis as a set of faults guarantees that the domain of possible
diagnoses is finite, being bounded by the powerset of the domain of faults. In contrast with this classical perspective,
we introduce the notion of a temporal fault, which, in our view, better supports critical decision-making.

Definition 1. Let T be a trajectory of a DES. The temporal fault of T is the sequence of faults in T , Flt(T ) = [ f | t ∈
T, (t, o, f ) ∈ µ(X), f � ε ].

Since the length of T is in general unbounded, so too is in general the length of both Obs(T ) and Flt(T ). A
contiguous subsequence of a temporal fault is called a temporal-fault segment.

Example 1. With reference to Figure 1, we consider a DES P (protection) that includes two components, a sensor s
and a breaker b, and one link from s to b. The models of s and b are outlined on the left of the figure, where circles and
arcs denote states and transitions, respectively. Each component transition is described in the table. The observations
o and faults f associated with the component transitions, namely the mapping table µ(P), are listed on the right side of
the table. Only one observation is provided for both the sensor and the breaker, namely sen and bre, respectively, each
being associated with several transitions. Six faults are defined as follows. f1: the sensor commands the breaker to close
rather than to open; f2: the sensor commands the breaker to open rather than to close; f3: the breaker remains closed
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instead of opening; f4: the breaker remains open instead of closing; f5: the breaker opens instead of remaining closed;
f6: the breaker closes instead of remaining open. The space of P, namely P∗, is depicted on the right side of the figure,
where each state is identified by a number (details of component states and events are omitted), with 0 being the initial
state and {0, 3, 4, 7} being the set of final states (double circled). Owing to cycles, the set of possible trajectories of P
is infinite, one of them being T = [s3, b5, s1, b3, s4, b3, s2, b5]. Based on µ(P), we have Obs(T ) = [bre, sen, sen, bre]
and Flt(T ) = [f1, f3, f2, f3]. In a set-oriented perspective, the diagnosis of T would be the set {f1, f2, f3} , rather than a
sequence, where neither the temporal ordering of faults nor the double occurrence of f3 is embedded.

3. Temporal Diagnosis

The goal in diagnosing a DES is generating the set of candidates relevant to a temporal observation O. In contrast
with the classical set-oriented perspective, here a candidate is a temporal fault that is produced by a trajectory that
entails O. The (possibly infinite) set of candidates is the temporal diagnosis of O, as formalized in Definition 2.

Definition 2. Let O be a temporal observation of X. The temporal diagnosis of O is the set of temporal faults relevant
to the trajectories that conform with O, namely ∆(O) = {Flt(T ) | T ∈ X∗,Obs(T ) = O }.

A temporal diagnosis may include an infinite number of temporal faults. Still, any temporal diagnosis can be
concisely represented by a regular expression on a set of faults, as shown in the next example.

Example 2. Let O = [bre, sen] be a temporal observation of the DES P defined in Example 1. Based on the space P∗
and the observations associated with the component transitions and defined in Figure 1, the language of the trajectories
generating O can be represented by a regular expression, namely s3b5s1b3(s4b3)∗. Hence, ∆(O) = f1f3(f2f3)∗, which
is represented by a regular expression on the faults f1, f2, and f3. In a classical set-oriented perspective, the set of
candidates would be {{f1, f3}, {f1, f2, f3}}, in which case we know that both fault f1 and f3 have certainly occurred,
whereas the occurrence of fault f2 is uncertain. Besides, we have no hint about how many times such faults have
manifested themselves and in which temporal order. If, instead, the regular expression is given, we know for sure
that fault f1 has occurred just once and it was the first, while f3 was the second. In addition, we know that, if f2 has
occurred, then it has occurred after them, and it may have occurred several times, every time being followed by f3. All
these details may be essential to understand what has happened inside the system in order to make critical decisions,
including appropriate recovery actions.

In order to support the efficient generation of the temporal diagnosis of any temporal observation, a temporal
diagnoser is introduced. The temporal diagnoser acts somewhat as a counterpoint to the diagnoser data structure
which is exploited in classical set-oriented diagnosis of DESs [20, 21].

4. Temporal Diagnoser

The temporal diagnoser of a DES X is an NFA resulting from the (offline) compilation of X. The alphabet of the
temporal diagnoser is a set of triples (o,L, f ), where o is an observation of X, L is a language on the faults of X, and
f is a (possibly empty) fault. Roughly, each state of the temporal diagnoser (namely a fault space) embodies a sort of
local explanation defined by languages (in fact, regular expressions) on faults.

Definition 3. Let X∗ be the space of X having mapping table µ(X), F the set of faults of X, and x̄ a state in X∗. The
fault space of x̄ is an NFA X∗x̄ = (Σ, X, τ, x0, Xf ), where Σ = F ∪ {ε} is the alphabet, X is the subset of the states of X∗
that are reachable from x̄ by unobservable transitions, x0 = x̄ is the initial state, Xf is the set of final states (the states
that are final in X∗), and τ : X × Σ �→ 2X is the transition function, where 〈x1, f , x2〉 is an arc in τ iff 〈x1, t, x2〉 is a
transition in X∗ and (t, ε, f ) ∈ µ(X). Each state x ∈ X is marked with the language of the temporal-fault segments
of the trajectory segments in X∗ from x̄ to x, denoted L(x). The diagnosis language of the fault space X∗x̄ is a regular
language on the set of faults of X defined as follows:

L (X∗x̄
)
=


∅ if Xf = ∅
L(x) if Xf = {x}
L(x1) ∪ . . . ∪ L(xn) if Xf = {x1, . . . , xn}.

(1)
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Fig. 2. Genesis of the fault space P∗1.

Example 3. With reference to the DES P introduced in Example 1, shown in Figure 2 is the genesis of the fault space
P∗1 based on Definition 3. The graph on the left represents the portion of the space P∗ that is reached by unobservable
transitions starting from the state 1. Then, the identifiers of the transitions are replaced with the corresponding faults,
thereby obtaining the graph in the center. The actual fault space is depicted on the right of Figure 2, where states 1
and 4 are marked with relevant regular expressions on faults. Based on eqn. (1), we have L(P∗1) = L(4) = f3(f2f3)∗.

The decoration of the states in the fault space displayed in Figure 2 can be carried out by inspection of the NFA
shown in the center of the figure. However, a general technique allowing for the automatic decoration of the states
within a fault space is needed. To this end, we have adapted the algorithm proposed in [7] in the context of sequential
circuit state diagrams. Essentially, this algorithm takes as input an NFA and generates the regular expression of the
language accepted by this NFA. Still, in a fault space, all states need to be marked with the relevant regular expres-
sions. Thus, we have extended the algorithm to decorate all the states in one processing of the NFA (rather than one
processing for each state).

Definition 4. Let X∗ = (Σ, X, τ, x0) be the space of X, O the set of observations of X, F the set of faults of X, and
L the set of regular languages on F ∪ {ε}. The temporal diagnoser of X is an NFA X∆ = (Σ′, X′, τ′, x′0, X

′
f ), where

Σ′ ⊆ O×L× (F∪{ε}) is the alphabet, X′ is the set of states, where each state is a fault space of a state of X∗, x′0 = X∗x0

is the initial state, X′f is the set of final states (the fault spaces including at least one final state in X∗), and τ′ is the
(nondeterministic) transition function, τ′ : (X′ × X) × Σ′ �→ 2(X′×X), where 〈(x′1, x1), (o,L(x1), f ), (x′2, x2)〉 is an arc in
τ′ iff x1 is a state in x′1, 〈x1, t, x2〉 ∈ τ, (t, o, f ) ∈ µ(X) with o � ε, and x′2 = X∗x2

.

Example 4. With reference to the DES P, shown in Figure 3 is the temporal diagnoser P∆, where the states (fault
spaces) are renamed 0 · · · 7. Unlike component transitions within fault spaces, which are represented with plain arcs,
the transitions between states of P∆ are depicted as dashed arcs that are marked with the relevant triples.

Fig. 3. Temporal diagnoser of the DES P, namely P∆.
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Algorithm 1 Ideal Diagnosis
1: procedure Ideal Diagnosis(X∆, O, R)
2: input X∆ = (Σ, X, τ, x0, Xf ): the temporal diagnoser of a DES X, and O: a temporal observation of X
3: output R: a regular expression whose language is the temporal diagnosis ∆(O) (cf. Definition 2)

4: C← {(x0, ε)}
5: for all observation o ∈ O do
6: Cnew ← ∅
7: for all (x′, r′) ∈ C do
8: for all arc 〈(x′, x), (o, r, f ), (x′2, x2)〉 in τ do
9: r2 ← r′r f

10: if (x′2, r
′
2) ∈ Cnew then

11: Substitute (x′2, (r
′
2|r2)) for (x′2, r

′
2) in Cnew

12: else
13: Insert (x′2, r2) into Cnew
14: end if
15: end for
16: end for
17: C← Cnew
18: end for
19: Remove from C every context (x, r) where x does not include any final state
20: if C = {(x, r)} then
21: R ← rL(x)
22: else if C = {(x1, r1), . . . , (xk, rk)} where k > 1 then
23: R ← (r1(L(x1))) | . . . | (rk(L(xk)))
24: end if
25: end procedure

5. Ideal Diagnosis

A temporal diagnoser X∆ is compiled knowledge built offline that allows for the efficient online generation of a
temporal diagnosis ∆(O) of X by means of an algorithm called Ideal Diagnosis. The “ideal” qualifier indicates that
the actual generation of the whole temporal diagnoser is prohibitive in real applications, owing to the exponential
explosion of the number of states. Roughly, X∆ is traversed based on O and the regular expressions marking the
transitions of X∆ are concatenated in the given order. When the transition relevant to the last observation in O is
traversed and a final state xf is entered, the regular expression composed so far is eventually appended with the
diagnosis language L(xf ), which was itself precomputed offline. Since X∆ is an NFA, several paths can generate the
same temporal observation O; therefore, the final regular expression is in general composed by the alternative of
several subexpressions. The pseudocode of Ideal Diagnosis is listed in Algorithm 1 (lines 1–25). It takes as input a
temporal diagnoser X∆ and a temporal observation O, and generates as output a regular expression R whose language
equals ∆(O). To this end, the algorithm exploits a set of contexts, namely C, each context being a pair (x, r), where x is
a state of X∆ and r a regular expression on the faults of X. Initially, C includes just the initial context (x0, ε), where x0
is the initial state of X∆ (line 4). Then, a loop is performed on the observations in O (lines 5–18). At each iteration, a
new set of contexts, namely Cnew is generated based on the current content of C. Specifically, for each context (x′, r′)
in C and for each arc of X∆ exiting x′ and marked with the triple (o, r, f ), where o is the current observation, a regular
expression r2 = r′r f is computed (line 9). In fact, r′ accounts for the faults up to x′, r accounts for the faults up to the
internal state x of x′, and f is the (possibly empty) fault associated with the component transition that is observable
by means of o. The update of Cnew is performed in lines 10–14, depending on whether a context involving the reached
state x′2 exists in Cnew or not. If a context (x′2, r

′
2) exists, then its regular expression is extended with the alternative

r2, thereby yielding the updated context (x′2, (r
′
2|r2)) (line 11). Otherwise, a new context (x′2, r2) is created (line 13).

Before the end of the iteration, C is replaced with Cnew (line 17). When all the observations have been considered
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Fig. 4. Partial temporal diagnoser Pδ, prefix of P∆ (left), and Pδ upgraded based on the observation pattern O∗S shown on the right of Figure 5.

(termination of the outer loop), every context (x, r) in C that does not include any final state is removed (line 19),
as there is no trajectory ending in x. Eventually, the regular expression R is determined (lines 20–24). Two cases are
possible for C: it contains either one context (x, r) or k > 1 contexts. In the first case (lines 20–21), R is generated by
appending r with the diagnosis language of x, thereby obtaining R = rL(x). This is because r accounts for the faults
up to the initial state of x, while L(x) accounts for the faults within x (up to any final state within x). In the second
case (lines 22–23), since several contexts exist, the same operation is performed for each context (xi, ri), i ∈ [1 .. k],
thereby yielding the regular expression R that is composed of the alternatives ri(L(xi)).

Example 5. With reference to the temporal diagnoser P∆ displayed in Figure 3, let O = [bre, sen] be the temporal
observation of DES P. Based on line 4 of Algorithm 1, we have C = {(0, ε)}. On the first observation, namely bre,
two arcs are involved in the loop (line 8), namely 〈(0, 2), (bre, f1, ε), (0, 0)〉 and 〈(0, 2), (bre, f1, f5), (7, 7)〉. With the
first arc, we have r2 = f1 and, with the second arc, r2 = f1f5. Thus, Cnew = {(0, f1), (7, f1f5)} (line 13). On the
observation sen (second iteration of the outer loop), we have C = {(0, f1), (7, f1f5). Now, the arcs involved in line 8
are 〈(0, 0), (sen, ε, ε), (1, 1)〉 and 〈(7, 7), (sen, (f1f4)∗, ε), (6, 6)〉. With the first arc, we have r2 = f1 and, with the second
arc, r2 = f1f5(f1f4)∗. Thus, Cnew = {(1, f1), (6, f1f5(f1f4)∗)}. Since there is no further observation, the loop terminates
(line 18). In line 19, the context ((6, f1f5(f1f4)∗) is removed from C because there is no final state in 6. Eventually, since
C includes just one context, R is computed in line 21, namely R = f1L(1) = f1f3(f2f3)∗. Remarkably, the language of
R equals the temporal diagnosis ∆(O) that was determined in Example 2 by inspection of the space P∗.

6. Practical Diagnosis

In real applications, assuming that a temporal diagnoser is available in its entirety is impractical, even if the gener-
ation of the diagnoser is performed offline, because of the exponential explosion of the set of states involved. Hence,
we propose a viable approach called practical diagnosis, in which a partial temporal diagnoser is generated upfront
and subsequently extended either offline, based on meaningful behavioral scenarios, or when being operated online.
A similar consideration applies to the space X∗, whose construction is assumed to be impractical. Hence, hereafter, a
notation like 〈x, t, x′〉 ∈ X∗ does not assume that X∗ is available: it is only a shorthand for stating that the component
transition t is triggerable at the state x of X.

Definition 5. Let X∆ be the temporal diagnoser of X. A partial temporal diagnoser of X, denoted Xδ, is a connected
subgraph of X∆ that includes the initial state of X∆.

Example 6. With reference to the temporal diagnoser P∆ displayed in Figure 3, a partial temporal diagnoser Pδ is
shown on the left of Figure 4. In particular, Pδ is a prefix of P∆ at distance 1, that is, the subgraph of P∆ that includes
all the states and transitions that can be reached (from the initial state) by one (dashed) transition.

Once an initial partial temporal diagnoser Xδ has been somehow generated, for instance a prefix of the (whole)
temporal diagnoser X∆, it can be upgraded in several ways, such as by integrating into it the knowledge about the
evolutions concisely represented by some behavioral scenarios [5, 3, 4].
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Fig. 5. DFA of scenario S (left), abduction P∗S (center), and observation pattern O∗S (right).

Definition 6. Let X be a DES and T a subset of the component transitions in X. A behavioral scenario of X is a pair
S = (T,L), where L is a regular language on T.

Example 7. A scenario where the only malfunction is the breaker being stuck closed can be defined as S = (T,L),
where T = {s3, s4, b1, b2, b3, b4, b7, v8} and L = b3b+3 (repetition of b3 at least twice).

To upgrade a partial temporal diagnoser Xδ so that it embeds the set of temporal observations generated by a
scenario S, we need to synchronize S with the behavior of X, as described below.

Definition 7. Let S = (T,L) be a scenario of X. The restriction of a trajectory T in X∗ on T is the sequence
TT = [ t | t ∈ T, t ∈ T ]. The abduction of S, X∗S, is a DFA whose language is the set { T | T ∈ X∗, TT ∈ L }.

In other words, the abduction of a scenario S is a subspace of X∗ where each trajectory T conforms with a string
of the scenario, in the sense that the subsequence of the component transitions in T that are in T is a string in L.

Example 8. With reference to the behavioral scenario S defined in Example 7, shown in Figure 5 are the DFA
recognizing S (left) and the abduction P∗S (center). Each state of P∗S is a pair (p, d), where p is a state of P∗ and d is
a state of the DFA. A state is final when d is final (d = 2).

The next step is to distill the observation language of the abduction, namely the set of temporal observations
generated by the trajectories in the abduction (the observation pattern).

Definition 8. Let X be a DES and O the domain of observations involved in the mapping table µ(X). An observation
pattern O∗ of X is a DFA whose language is a set of strings on O.

The definition of an observation pattern is general in nature. Still, meaningful observation patterns can be derived
from abductions. Specifically, each symbol t marking a transition 〈a, t, a′〉 in an abduction X∗S is replaced with a
(possibly ε) observation o, where (t, o, f ) ∈ µ(X). The resulting NFA is then determinized into an equivalent (possibly
minimized) DFA, which is by definition the observation pattern of the scenario S, denoted O∗S. Remarkably, the
language of O∗S is the set of temporal observations associated with the set of trajectories in the abduction, with each
trajectory being a mode in which the scenario S manifests itself in X∗.

Example 9. With reference to the scenario S defined in Example 7 and the abduction P∗S displayed in the center of
Figure 5, shown on the right of Figure 5 is the observation pattern O∗S.

To upgrade a partial temporal diagnoser Xδ based on an observation pattern O∗, Algorithm 2 is used (lines 1–28).
Each state xδ in Xδ is assumed to be marked with a labeling set (initially empty), denoted Λ(xδ), which contains states
of O∗. This serves to synchronize Xδ with O∗ avoiding duplications of Xδ states, as well as endless loops caused by
cycles in O∗. A unmarked state ω in Λ(xδ) means that the transitions exiting ω in O∗ need to be synchronized with
the transitions exiting xδ in Xδ. If a transition is missing in Xδ, it is created, possibly along with its target state, a
fault space, which is marked with the relevant labeling set (line 18). Once all transitions exiting ω in O∗ have been
processed, ω is marked in Λ(xδ) (line 24). The run terminates when there is no unmarked ω in any labeling set.

Example 10. Let Pδ be the partial temporal diagnoser defined in Example 6 and shown on the left of Figure 4. Let
O∗S be the observation pattern displayed on the right of Figure 5. The partial explainer resulting from the application
of Algorithm 2 on Pδ and O∗S is displayed on the right of Figure 4.

Assuming a partial diagnoser, the Ideal Diagnosis specified in Algorithm 1 needs to be revised. Specifically, when
considering a new observation o ∈ O in line 5, we have to check whether the transition function of the relevant state
in the partial temporal diagnoser needs to be extended by o. If so, the partial temporal diagnoser is upgraded in a way
that is similar to the mode in which Algorithm 2 works. As such, this new algorithm, called Practical Diagnosis, not
only generates the temporal diagnosis ∆(O), but possibly upgrades the partial temporal diagnoser when required.
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Algorithm 2 Diagnoser Upgrade
1: procedure Diagnoser Upgrade(Xδ, O∗)
2: input Xδ: a partial temporal diagnoser of X, and O∗: an observation pattern for X, with initial state ωo

3: side effects: the partial temporal diagnoser Xδ is upgraded based on O∗

4: Insert ω0 into the (initially empty) labeling set Λ(xδ0), where xδ0 is the initial state of Xδ
5: repeat
6: Let Λ(xδ) be a set including an unmarked pattern state ω
7: for all unmarked pattern state ω ∈ Λ(xδ) do
8: for all transition 〈ω, o, ω′〉 in O∗ do
9: if there is a transition exiting xδ marked with (o,L, f ) then

10: for all transition 〈xδ, (o,L, f ), x′δ〉 in Xδ do
11: Insert ω′ into Λ(x′δ), unless ω′ is included in Λ(x′δ) already
12: end for
13: else
14: for all x ∈ xδ, 〈x, t, x′〉 ∈ X∗, (t, o, f ) ∈ µ(X) do
15: Let x′δ denote the fault space of x′, namely X∗x′
16: if Xδ does not include the state x′δ then
17: Create the state x′δ = X∗x′ in Xδ
18: Mark x′δ with the (singleton) labeling set {ω′}
19: end if
20: Create the transition 〈xδ, (o,L(x), f ), x′δ〉 in Xδ
21: end for
22: end if
23: end for
24: Mark the pattern state ω within the labeling set Λ(xδ)
25: end for
26: until there is no labeling set Λ including an unmarked state
27: Empty all the nonempty labeling sets Λ in Xδ
28: end procedure

7. Conclusion

A shift from a set-oriented to a temporal-oriented perspective in diagnosis of DESs has been proposed in this paper.
The motivation for this shift is grounded on critical-decision making, where the temporal information embedded
in candidates may be essential for a crystal clear explanation of the temporal observation. This temporal-oriented
paradigm is novel inasmuch all approaches to diagnosis of DESs in the literature, including the seminal diagnoser
approach [20] (along with all its variants), are set-oriented. In contrast with a set-oriented setting, where a candidate is
a finite set of faults, with neither temporal ordering nor duplicates, in our temporal-oriented perspective a candidate is a
(possibly unbounded) sequence of faults, with reciprocal temporal ordering and multiple occurrences of the same fault
being manifested. The supposedly unacceptable burden of unbounded candidates and/or infinite sets of candidates is
dominated by a notation based on regular expressions on faults.

Fault detection in DESs has been generalized in [11] to the recognition of a supervision pattern, this being a DFA
that can represent the ordered occurrences of (possibly multiple) faults. Thus, it is tempting to believe that diagnosis
with supervision patterns somewhat resembles the approach proposed in this paper. Still, each supervision pattern
requires the specification of a finite automaton whose regular language is a set of strings of transitions. By contrast,
the approach in this paper is not given any automaton upfront recognizing a language; instead, it generates a regular
expression representing the language of the faults of all the trajectories that imply the temporal observation. Moreover,
the output of the supervision pattern approach only clarifies whether the pattern has occurred. In doing so, however,
it does not compute the number of its occurrences, nor does it show the reciprocal order of these occurrences and
those of individual faults within the trajectories implying the temporal observation. In the view of the current paper,
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instead, if a fault is associated with a pattern, this can be part of a temporal fault as all other faults are. In other words,
supervision patterns, as well as other “complex” faults [13, 16], can be embedded in temporal faults and treated
homogeneously.

Future research includes an extensive experimental activity based on synthetic benchmarks as well as the adoption
of temporal diagnosis for other classes of DESs, including complex DESs [12, 14]. Applying the approach described
in this paper to a real-world case study is also a challenge for the future. Several applications domains could be targeted
besides the one that inspired the running example in this paper, namely protection apparata for power transmission
networks, including home automation and pandemic monitoring.
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