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Abstract

Summary: Exome sequencing approach is extensively used in research and diagnostic laborato-

ries to discover pathological variants and study genetic architecture of human diseases. However,

a significant proportion of identified genetic variants are actually false positive calls, and this pose

serious challenge for variants interpretation. Here, we propose a new tool named Genomic

vARiants FIltering by dEep Learning moDels in NGS (GARFIELD-NGS), which rely on deep learning

models to dissect false and true variants in exome sequencing experiments performed with

Illumina or ION platforms. GARFIELD-NGS showed strong performances for both SNP and INDEL

variants (AUC 0.71–0.98) and outperformed established hard filters. The method is robust also at

low coverage down to 30X and can be applied on data generated with the recent Illumina two-

colour chemistry. GARFIELD-NGS processes standard VCF file and produces a regular VCF output.

Thus, it can be easily integrated in existing analysis pipeline, allowing application of different

thresholds based on desired level of sensitivity and specificity.

Availability and implementation: GARFIELD-NGS available at https://github.com/gedoardo83/

GARFIELD-NGS.

Contact: edoardo.giacopuzzi@unibs.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA analysis through exome sequencing is now the main tool to

discover disease related variants (Koboldt et al., 2013; Wang et al.,

2013). However, variants identified by exome sequencing often car-

ries a significant proportion of false positive calls, especially

INDELs, and this pose serious challenges for variants interpretation

(Damiati et al., 2016; Jiang et al., 2015; Zhang et al., 2015).

Advanced methods based on machine learning have been developed

for large datasets, while few effective solutions are available for

small experiments. Here, we propose a new tool, GARFIELD-NGS,

that rely on deep learning models to effectively classify true and false

variants in exome sequencing experiments performed on both

Illumina or ION platforms.

2 Materials and methods

Starting from 23 high-coverage exome sequencing experiments on

NA12878 reference sample, we assembled two pools of 178 450

Illumina variants (173 116 SNVs/5334 INS/DELs) and 181 479 ION

variants (177 362 SNVs/4117 INS/DELs). True and false variants

were determined based on the comparison with NA12878 high confi-

dence calls from NIST v.3.3.2 (Zook et al., 2014). Variants in each

group were splitted randomly in four independent datasets (pre-train-

ing, training, validation and test). Additional 60X and 30X test sets

were produced by random sub-sampling of the original sequencing

data, while HiSeqX test set was based on three experiments produced

on HiSeq X platform. We evaluated 18 features for ION variants and

10 for Illumina variants (Supplementary Table S1) to generate four
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distinct prediction models based on multi-layer perceptron algorithm

as implemented in H2O v.3.10.4.5 deep learning method (http://

www.h2o.ai): Illumina INS/DELs, Illumina SNVs, ION INS/DELs,

and ION SNVs. After hyper-parameters optimization using random

search, performances of the final models were assessed on test sets

and validated on the replication sets, composed by four additional

experiments not used in model development. GARFIELD-NGS per-

formances on test and replication sets were compared to well estab-

lished hard-filters, including GATK VQSR method for Illumina data

(Van der Auwera et al., 2013) and previously published hard-filters

for ION data (Damiati et al., 2016). Finally, we assessed how our

models filter variants from data not processed by our pipeline, includ-

ing 35 Illumina and 32 ION WES experiments, as well as a set of 211

variants previously validated by Sanger sequencing. Detailed methods

are reported in Supplementary Material.

3 Results

3.1 Prediction models performances
Using H2O deep learning algorithm, we developed four prediction

models optimized for INS/DELs and SNVs for Illumina and ION

platforms (Supplementary Table S2). Our tool calculates for each

variant a confidence probability ranging from 0.0 to 1.0, with higher

values associated with true variants. Area under the receiver operat-

ing characteristic curve (AUROC) values>0.90 are obtained for

Illumina INS/DELs, ION INS/DELs and ION SNVs, while Illumina

SNVs model shows slightly reduced performances with AUROC

0.7998 (Fig. 1). Accuracy is>0.90 for all variants categories

(Supplementary Table S3). GARFIELD-NGS correctly classifies

more than 95% of true variants and significantly reduces false posi-

tive variants (Supplementary Fig. S1). These performances were con-

firmed when applying GARFIELD-NGS on the low-coverage sets

(60X/30X) and HiSeqX set (Fig. 1), as well as on the replication sets

(Supplementary Table S4). GARFIELD-NGS models perform well

also on WES experiments not processed with our pipeline

(Supplementary Fig. S2) and on a set of Sanger validated variants

from real-world diagnostic setting. Here, we obtain 0.958 and 0.878

accuracy on Illumina INS/DELs and SNVs, respectively; and 0.804

and 0.955 accuracy for ION INS/DELs and SNVs, respectively

(Supplementary Table S5). Additional results including models

details, analysis of features contribution, detailed description of per-

formances and characterization of filtered variants are provided in

Supplementary Material.

3.2 Comparison with hard-filters and VQSR
GARFIELD-NGS outperforms hard-filters in Illumina INS/DELs,

ION INS/DELs and ION SNVs groups, showing higher accuracy,

while it obtains comparable performances on Illumina SNVs

(Supplementary Fig. S3 and Supplementary Table S3). Largest

improvements are seen for INS/DELs. Accuracy of GARFIELD-NGS

reaches 0.93 and 0.91 for Illumina and ION INS/DELs, respectively,

compared to 0.86 and 0.80 calculated using hard-filters. When

applied on INS/DELs variants GARFIELD-NGS outperforms GATK

VQSR, as well. VQLOD reaches an AUROC value of 0.6783, while

GARFIELD-NGS reaches 0.92 AUROC (Supplementary Fig. S4).

Detailed results of performance comparisons are reported in

Supplementary Material.

4 Discussion

Even if alternative pipelines have been proposed such as GotCloud

(Jun et al., 2015), SNPSVM (O’Fallon et al., 2013) and DeepVariant

(Poplin et al., 2018), which combine variant calling and machine

learning based variant filtering, the most applied variant callers for

Illumina and Ion data are still GATK (DePristo et al., 2011; Van der

Auwera et al., 2013) and TVC. Only few tools are available to dir-

ectly refine SNVs and INS/DELs called using these widely adopted

variant callers. GARFIELD-NGS can be applied directly to variant

callers output and outperforms previous filtering strategies, obtain-

ing robust performances even on low coverage data. The maximum

accuracy thresholds retain>95% of true calls, while reducing false

calls by 36–80%, depending on variant category. Even at 0.99 TPR,

GARFIELD-NGS maintains>0.86 accuracy. When applied to a ca-

nonical pipeline for prioritization of disease related variants,

GARFIELD-NGS significantly reduces the proportion of false candi-

dates, thus improving identification of diagnostic relevant variants.

These results define GARFIELD-NGS as a robust tool for all type of

Illumina and ION exome data. GARFIELD-NGS script performs

automated variant scoring on VCF files and it can be easily inte-

grated in existing analysis pipelines.
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