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ABSTRACT

The Discrete Cosine Transform (DCT) is widely deployed by mod-
ern image and video coding standards such as JPEG and H.26x. In
most cases, the DCT is applied in a separable manner to rows and
columns, which limits its ability to represent signals with diagonal
orientation. As an alternative, non-separable transforms can repre-
sent signals with different orientations, but are significantly more
computationally complex. To address this problem, in this paper
we propose a set of non-separable Symmetry-Based Graph Fourier
Transforms (SBGFTs), whose symmetric structures lead to a faster
implementation. We study a practical image coding scenario that ex-
ploits the proposed SBGFTs, where for each intra predicted image
residual block the optimal graph is chosen by solving a graph-based
Rate-Distortion (R-D) problem. Experimental results indicate a cod-
ing efficiency higher than JPEG and JPEG2000.

Index Terms— Graph Fourier Transforms, symmetry, non-
separable directional transforms, intra prediction image coding, fast
implementation.

1. INTRODUCTION

Typically, the 2-D transform at the core of well-established image
coding algorithms is separable. For example, both DCT in JPEG and
wavelets in JPEG2000 are implemented in a separable manner along
the vertical and horizontal directions. Separable transforms lead to
lower computational complexity as compared to non-separable 2-D
transforms, and provide good de-correlation for blocks with strong
vertical or horizontal orientations. However, many image blocks
may exhibit other types of directional correlation, e.g., due to the
presence of oriented structures such as edges. Traditional separable
2-D transforms may not be able to efficiently represent these block
types, since the corresponding eigenvectors do not provide orienta-
tions other than the vertical or horizontal one [1].

To overcome such a drawback, directional transforms have been
proposed. Some approaches, such as Curvelets [2], Contourlets [3],
Bandelets [4] or Directionlets [5], are more general, while others
have focused specifically on directional transforms applied to image
and video coding. For example, in [6] pixels in image blocks are
re-ordered according to a given direction, and then classical trans-
forms are applied. As an alternative, lifting-based methods are used
to modify the conventional transforms to make them directional, as
suggested in [7, 8] for image coding and in [9, 10] for video coding.
In cases where directional prediction is used, this can be exploited
so that a different directional transform is constructed based on the
statistics of residual data within each prediction mode [11]. Some
directional transforms are indeed separable, i.e., filtering is first per-
formed along a dominant direction and then towards the orientation
orthogonal to that. However, the separability constraint still neces-
sarily reduces the directional selectivity.

Our proposed approach is based on Graph Signal Processing
(GSP) [12, 13]. Graphs are models that represent complex inter-
actions among data samples [14] by selecting edge weights between
nodes. For a given graph, the Graph Fourier Transform (GFT) is
often defined as the set of eigenvectors of the graph Laplacian matrix
of that graph. If we consider an image processing application, an
image block can be modeled as a graph with nodes as pixels and
with different edge weights between nodes as a function of how
correlated they are expected to be. Indeed, the DCT can be obtained
as the GFT of a 2-D grid graph with equal unity weights (shown
in Fig. 1a). In [15, 16, 17] different GFTs have been studied for
the compression of inter and intra predicted video residuals and
piecewise smooth images. Graph structure can also be learned from
data. For example, in [18] graph learning problems are posed as the
estimation of graph Laplacian matrices from some observed data.

In this paper, we propose a set of non-separable GFTs with di-
rectional bases that aim at achieving a sparse signal representation
and thus higher image compression performance, while preserving
low computational complexity. To that end symmetry properties in
data, that are useful in a variety of signal processing tasks, e.g.,
[19, 20], can be exploited. In this work, symmetry is exploited
to achieve highly efficient computation of the GFTs by restricting
ourselves to pre-defined symmetric graphs. In particular, computa-
tion complexity lower than that typically obtained by non-separable
transforms can be reached [21]. We will show that our proposed
transforms can achieve a factor of 2 reduction in complexity with re-
spect to non-separable approaches, and can achieve complexity com-
parable to that of separable transform when there exist more than one
direction of symmetry in the graph (see results in Table 1).

In this paper, we extend our previous work [22], which only
dealt with symmetric and near-symmetric graphs built on top of 2-D
4× 4 grids, to the case of 8× 8 image blocks. We focus exclusively
on graphs having exact symmetry, and thus lower complexity imple-
mentation. We will show that our proposed Symmetry-Based GFTs
(SBGFTs) have symmetry properties that lead to efficient represen-
tation of residual blocks with strong directional correlation. They
are obtained by adding symmetric connections to the original DCT
grid graph (see Fig. 1b). These symmetric connections in the graph
will lead to transform basis functions having directional properties.

In what follows, we first show that allowing an encoder to select
among multiple SBGFTs, each having different orientations, leads
to better energy compaction than the DCT. Clearly, choosing among
several possible transforms (rather than just using the DCT for all
blocks) is key to the improved performance. Other approaches us-
ing multiple transforms, such as the mode dependent KLT [23], have
been proposed in the past and have been shown to achieve better ap-
proximation as well. There are two significant differences between
our approach and [23]: 1) our proposed transforms are not data-
driven and are instead motivated by the existence of directional pat-
terns on image blocks, and 2) their symmetry properties lead to faster
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Fig. 1: Preliminary concepts on symmetric graphs.

implementations, not available for KLTs. The preliminary study of
the performance conducted in [22] was limited to the energy distri-
bution in the transform domain. Instead, here we propose a practical
image coding implementation using our SBGFTs. By comparing its
rate-distortion (R-D) with respect to that of the most popular stan-
dard image coders (JPEG and JPEG2000), we prove that the pro-
posed method achieves superior performance.

The rest of the paper is organized as follows. Section 2 defines
the set of SBGFTs for the considered symmetric graphs. In Section 3
the approximation and compression performance that the SBGFTs
lead to are described. Finally, conclusions are drawn in Section 4.

2. GFTS FOR SYMMETRIC GRAPHS

In graph signal processing, a GFT is a transform associated to a
graph G = {V, E ,W}, where V and E represent the set of vertices
and edges, respectively, and the matrix W is the adjacency matrix
whose entry wij indicates the edge weight between the nodes i and
j. Naming D the diagonal degree matrix of G, the graph Laplacian
matrix is defined as L = D−W. Then, the GFT related to G is the
matrix U of eigenvectors of L. A graph signal x is a vector where
each scalar entry is associated to one of the nodes of the graph. Then,
the GFT of x is the vector of transform coefficients y = U>x.

In this paper, a new set of symmetric graphs is constructed for
8×8 image blocks. The GFTs of graphs exhibiting symmetric struc-
ture will be called Symmetry-Based GFTs (SBGFTs). To design
these graphs, we consider different reflection symmetries based on
the angle and the position of the symmetry axis with respect to the
data grid (Fig. 1). First, since we want to guarantee the preserva-
tion of the signal mean in the transform domain, we impose that
each graph has to be fully connected. Indeed, if the graph is fully
connected the eigenvalue λ = 0 of L will be simple, and the corre-
sponding eigenvector will be the all 1 vector, which exactly matches
the first basis function for the DCT. To guarantee a connected graph,
our graph construction consists of a 2-D grid, with all the weights set
to a constant value a, as shown in Fig. 1a, on top of which symmet-
ric edges are added to incorporate symmetry into the graph (and thus
orientation to the basis functions). This is done by selecting a sym-
metry axis and then adding edges perpendicular to it, so that nodes
in specular position with respect to the symmetry axis are connected.
Edge weights for these additional symmetric edges are set to a differ-
ent constant value s. The graph parameters have been set to a=0.01
and s = 1. Such ratio a/s has been experimentally found to be a
reasonable choice, allowing to properly characterize the symmetry
of graph signals.

(a) Up-down symmetries.

(b) Left-right symmetries.

(c) Diagonal symmetries.

(d) Anti-diagonal symmetries.

Fig. 2: Proposed set of symmetric graphs. Blue indicates edges with
weight set to a = 0.01, red denotes edges with weight set to s = 1.
Green dashed segments mark the symmetry axes.

Due to the discrete nature of a graph, the slopes of the axes that
better fit the grid are basically 0◦, 45◦, 90◦ and 135◦: those pass-
ing through the center of the grid are shown in Fig. 1b. For each
axis orientation all the significant positions are evaluated. Specifi-
cally, the defined set contains graphs identified by the 40 following
symmetries, depicted in Fig. 2:

(a) 11 up-down (UD) symmetries (Fig. 2a);

(b) 11 left-right (LR) symmetries (Fig. 2b);

(c) 9 diagonal (D) symmetries (Fig. 2c);

(d) 9 anti-diagonal (AD) symmetries (Fig. 2d).

For example, let us consider the second graph of Fig. 2b: the symme-
try axis is marked as a green dashed line and it is placed between the
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Fig. 3: 8 eigenvectors with smallest eigenvalues corresponding to
the SBGFT of the 2nd graph in Fig. 2c.
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Fig. 4: 8 eigenvectors with smallest eigenvalues corresponding to
the SBGFT of the 2nd graph in Fig. 2d.

second and the third column of the graph. Accordingly, the resulting
edges connect the nodes in position (2, i) with the ones in position
(3, i) and the nodes in position (1, i) with the ones in position (4, i),
with i = 1, . . . , 8.

To illustrate with an example, Figs. 3–4 show the first eight
eigenvectors corresponding to the SBGFTs of the second graph in
Fig. 2c and the second one in Fig. 2d, respectively. These figures
are particularly interesting because they indicate how the bases can
achieve orientation also in D- and AD-symmetries where such sym-
metries cannot be obtained with separable transforms.

A property of all our proposed graphs is that their respective
GFTs admit computational speedup techniques. In [21], the authors
have shown that butterfly-based speedup methods can be exploited
when all the edges and self loops of G are symmetric about the struc-
tures shown in Fig. 1b, that is:

1. central horizontal axis;

2. central vertical axis;

3. the northwest-to-southeast diagonal;

4. the northeast-to-southwest diagonal.

We can prove that the graphs in (a), (b), (c) and (d) are symmetric
with respect to the axis indicated in 1), 2), 3) and 4), respectively.
Indeed, let (ei,j)k,l be the edge associated to the k-th node of column
i and the l-th node of column j. Then, it is straightforward to observe
that:

• (ei,j)k,l = (ei,j)N+1−k,N+1−l for graphs in (a);

• (ei,j)k,l = (eN+1−i,N+1−j)k,l for graphs in (b);

• (ei,j)k,l = (ek,l)i,j for graphs in (c);

• (ei,j)k,l = (eN+1−k,N+1−l)N+1−i,N+1−j for graphs in (d).

Since these conditions satisfy the symmetry requirements with re-
spect to the symmetry axis as described by 1), 2), 3) and 4), respec-
tively, then all the graphs in Fig. 2 admit a fast implementation. Note
that the sixth graphs in Figs. 2a and 2b are simultaneously UD- and

Grid type Number of multiplications

UD-symmetry N4/2

LR-symmetry N4/2

D-symmetry N2(N2 + 1)/2

AD-symmetry N2(N2 + 1)/2

Both UD- and LR-symmetry N4/4
N<9∼ 2N3

Both D- and AD-symmetry N2(N2 + 1)/4
N<9∼ 2N3

Non-separable, no symmetry N4

Separable, no symmetry 2N3

Table 1: Types of grid symmetries and the number of multiplications
to compute the corresponding speeded up GFTs, compared with the
cost of separable and non-separable transforms (last two rows).

LR-symmetric, whereas the fifth graph in both Fig. 2c and 2d are si-
multaneously D- and AD-symmetric. The number of multiplications
for the symmetric graph types described above are summarized in
Table 1. The reader is referred to [21] for more details on how lower
complexity can be achieved for the various types of symmetries con-
sidered here.

3. EXPERIMENTAL RESULTS

First, in order to evaluate the approximation ability of the SBGFTs
associated to the graphs in Fig. 2 with respect to the DCT, a PSNR-
quantization analysis is presented. The experiments have been car-
ried out on a variety of standard images obtained from the USC-SIPI
Image Database [24]. Two types of procedures have been followed.
In the first case, the transforms have been applied directly on the
original image. In the second scenario, the DCT and the SBGFTs
have been applied on the image residual blocks obtained after intra
prediction. The residuals are calculated by considering the 35 pre-
diction modes adopted for intra-frame prediction in H.265 [25, 26].

Basically, a “brute-force” strategy is adopted in which all the 40
SBGFTs are tested for each 8 × 8 block. Note that an exhaustive
search is computationally inefficient, but this does not affect the de-
coding stage where the complexity still remains low. Furthermore,
recently proposed methods can reduce transform selection by ex-
ploiting the graph representation [27]. We will include these speed
up techniques in future work.

Transform coefficients are quantized with different quantiza-
tion steps, and the corresponding de-quantized blocks are inverse-
transformed by using the inverse-SBGFTs. The graph leading to
the smallest mean squared error (MSE) is selected as the optimal
graph used for that block. The same method is used for both of the
two aforementioned procedures. The only difference is that when
intra prediction is considered, the search for the optimal graph is
combined with the investigation of the best prediction mode. Fi-
nally, the peak signal-to-noise ratio (PSNR) corresponding to the
error between the original and the reconstructed images is used to



26 28 30 32 34 36 38

Quantization step

32

34

36

38

40

P
S

N
R

SBGFT - intra

DCT - intra

SBGFT

DCT

(a) Lena.

26 28 30 32 34 36 38

Quantization step

28

30

32

34

36

38

P
S

N
R

SBGFT - intra

DCT - intra

SBGFT

DCT

(b) Baboon.

Fig. 5: PSNR-quantization curves for selected images. Dashed lines
indicate that the transforms are applied on the original image blocks,
whereas solid lines signify that the transforms are applied on the
intra predicted residual blocks.

quantify quality.
In Fig. 5 performance curves are shown for the Lena and Baboon

images, both of size 512 × 5121. Results show our proposed sym-
metric graphs can outperform the DCT in terms of approximation
ability. Interestingly, even when the SBGFTs are applied directly on
the original image blocks, the achieved PSNR values are still higher
than the ones obtained by using the DCT after intra prediction. Note
that no bits overhead has been taken into account to choose the trans-
form. Indeed, these results are intended to remark the quality of the
graph transforms in terms of energy compaction, without consider-
ing a realistic image coding scenario.

The second set of experiments instead compares the real coding
performance of the proposed SBGFTs and two popular standard im-
age coders: JPEG and JPEG2000. Since Fig. 5 has shown a higher
performance when the SBGFTs are applied following intra predic-
tion, then in these next experiments the graph transforms will be
applied on intra prediction residuals. Since JPEG and JPEG2000
do not use intra prediction, the curve obtained using intra predicted
DCT is reported as well to prove that the performance gain of the
proposed transforms is not just due to the employment of intra pre-
diction. The prediction mode and the prediction error signal (i.e.,
the quantized coefficients) are transmitted to the decoder, as for intra
frame prediction in H.265. This information is binarized and entropy
coded using Context-Based Adaptive Binary Coding (CABAC) [28],
introduced in H.264/AVC and now used in the latest HEVC standard
as well. In order to signal the index of the graph used for each block,
a fixed-length bit sequence is sent. Note that this actually represents
the worst-case graph index coding scenario, i.e., we do not consider
how the selection of the optimal graph in a given block is potentially
correlated to the graphs and prediction modes selected in neighbor-
ing blocks, and in addition there is no entropy coding exploiting the
probability distribution of SBGFTs for a given mode. Thus, each
graph is represented by a sequence of dlog2 40e = 6 bits. The anal-
ysis for a better graph index representation is subject of our current
studies.

The choice of coding parameters is based on R-D optimization.
For each block an unconstrained optimization problem is solved,
namely:

min
(coding parameters and graphs)

JG = DG + λ ·RG (1)

where JG is the Lagrangian cost function, DG is the distortion, λ
is a quantization-based non-negative Lagrangian multiplier and RG
is the rate, i.e., the number of bits required to signal the prediction

1The results shown in this section are consistent with those that have been
obtained on other images in the considered dataset.
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Fig. 6: R-D curves for selected images.

Lena Baboon

J2K JPG DCT intra J2K JPG DCT intra

∆ PSNR 1 3.4 0.76 1.2 3.92 0.8
∆ rate -18.2% -53.5% -15.5% -15.3% -47% -10.3%

Table 2: BD rate associated to Fig. 6.

mode and the quantized coefficients. Clearly, the selection of the
optimal SBGFT has a strong effect on both the distortion and rate.

In Fig. 6 the performance of our set of transforms is illustrated.
Each R-D point is computed by calculating the PSNR between
the original and the reconstructed images for a fixed quantization
step. The curves show that the SBGFTs outperform both JPEG and
JPEG2000, as well as DCT with intra prediction, even considering
6 overhead bits for each block to signal the optimal graph index.
In Table 2 the corresponding Bjøntegaard’s metric (BD rate) is also
reported in order to show the average gain in terms of PSNR and
the average bit rate saving percentage between the compared rate-
distortion curves. In the first row a positive value indicates a PSNR
increase for the same bit rate, whereas in the second row a negative
value identifies a decrease of bit rate for the same PSNR. For exam-
ple, in Lena the set of SBGFTs has an average gain of 1 dB and it
requires −18.2% of bit rate on average with respect to JPEG2000.

4. CONCLUSIONS

In this paper, we have proposed a new set of transforms based on
graphs for image coding. These graphs are built on 8 × 8 grids
and have some specific symmetric configurations. We have shown
that the corresponding Symmetry-Based Graph Fourier Transforms
(SBGFTs) have a fast implementation, making the proposed trans-
forms useful in a practical image coding scenario. We have com-
pared this set of transforms with the DCT both on natural images
and intra predicted image residuals. The experimental results indi-
cate that the SBGFTs outperform the DCT in terms of energy com-
paction, thanks to its ability to represent signals exhibiting oriented
structures. Furthermore, a graph-based image coder has been imple-
mented and it shows performance higher than JPEG and JPEG2000.

To signal the graph index used for each block, a fixed-length
sequence bit is sent. This is a worst-case scenario in which no cor-
relation is supposed to exist between the optimal graph chosen for a
given block and the graphs and prediction modes selected in neigh-
boring blocks. Future work will be focused on studying potential
dependencies between selected graphs in order to obtain a more effi-
cient graph signaling coding, and introducing some additional speed
up techniques.
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