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Abstract

Despite the remarkable success in a broad set of sensing applications,
state-of-the-art deep learning techniques struggle with complex reasoning
tasks across a distributed set of sensors. Unlike recognizing transient
complex activities (e.g., human activities such as walking or running)
from a single sensor, detecting more complex events with larger spatial
and temporal dependencies across multiple sensors is extremely difficult,
e.g., utilizing a hospital’s sensor network to detect whether a nurse is
following a sanitary protocol as they traverse from patient to patient.
Training a more complicated model requires a larger amount of data–
which is unrealistic considering complex events rarely happen in nature.
Moreover, neural networks struggle with reasoning about serial, aperiodic
events separated by large quantities in the spatial-temporal dimensions.

We propose Neuroplex, a neural-symbolic framework that learns to
perform complex reasoning on raw sensory data with the help of high-level,
injected human knowledge. Neuroplex decomposes the entire complex
learning space into explicit perception and reasoning layers, i.e., by main-
taining neural networks to perform low-level perception tasks and neu-
rally reconstructed reasoning models to perform high-level, explainable
reasoning. After training the neurally reconstructed reasoning model us-
ing human knowledge, Neuroplex allows effective end-to-end training
of perception models with an additional semantic loss using only sparse,
high-level annotations. Our experiments and evaluation show that Neu-
roplex is capable of learning to efficiently and effectively detect complex
events–which cannot be handled by state-of-the-art neural network mod-
els. During the training, Neuroplex not only reduces data annotation
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requirements by 100x, but also significantly speeds up the learning process
for complex event detection by 4x.

1 Introduction

Temporal and spatial relationships are natural elements that occur in human
learning tasks such as language, motion, and vision [18]. During the past decade,
deep learning researchers have achieved great success simulating human cogni-
tive processes using sensors for associated tasks such as object detection, activity
classification, and autonomous driving. While demonstrating excellent perfor-
mance on different sensing tasks, deep neural networks rely on large volumes
of training data. Complex spatial-temporal classification tasks suffer from data
scarcity, thus making it challenging to design robust learning frameworks. Fur-
ther, state-of-the-art frameworks are currently limited to a few thousand-time
steps while sacrificing interpretability[7]. For instance, deep learning models
can currently be trained to detect whether a nurse is sitting or standing in a
video stream. However, it would be intractable to train a model that can de-
tect a nurse who does not follow a sanitary protocol before moving between
patients—a task that spans arbitrarily long periods, an arbitrary combination
of spaces, and time-dependent constraints, and for which a large dataset would
not be available. Intuitively, if a set of deep learning classifiers are utilized to
detect the simpler activities that happen on the order of seconds, e.g., the nurse
entering a room or washing his hands, a human would be able to identify a
logical sequence of events that correspond to a violation.

In this paper, we introduce Neuroplex, a neural-symbolic framework that
splits the entire learning space into a perception space and a reasoning space.
For the perception task, it trains deep neural networks to get low-level symbolic
concepts; while accepting the injection of symbolic human knowledge for high-
level reasoning. The entire model can be trained end-to-end with only high-level
annotations, which also alleviates the burden of data annotation. In comparison
to prior work that combines symbolic and neural reasoning [22, 34, 36], we focus
on injecting symbolic knowledge expressed as finite state machines and logical
rules, which capture the complex temporal and spatial dependencies for these
complex tasks. Given the hierarchical reasoning approach, we formulate the
problem as a complex event processing (CEP) problem as was done in previous
works [42]. In this work, we provide end-to-end training as opposed to just the
forward path.

To summarize, Neuroplex makes these important contributions:

• Neuroplex adapts neural-symbolic approaches that combine deep learn-
ing perception with semantic logical models to enable end-to-end learning
for detecting complex events from raw sensor data streams. To enable
learning, Neuroplex leverages a differentiable Neurally Reconstructed
Logic (NRLogic) model, which is a neural network trained by a logical
machine through a knowledge distillation[11].
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• Neuroplex is able to train itself using only data with sparse, high-level,
complex event labels. By propagating gradients through the differentiable
NRLogic model, perception modules receive feedback from complex events
labels and are trained accordingly. The training could happen both at
the initialization stage, where a perception module is untrained, as well as
during the fine-tuning stage, where a perception module is a pre-trained
off-the-shelf model and needs to be fine-tuned to a specific environment.
Neuroplex also applies a semantic loss on the intermediate symbolic
layer, forcing the perception module to generate a reasonable symbolic
output to improve the learning performance.

• We evaluate the Neuroplex framework on three complex event datasets,
and compare its performance with state-of-the-art neural network models
and neural-symbolic methods. Results show that guided by injected hu-
man knowledge, Neuroplex can effectively and efficiently learn to detect
complex events that other approaches cannot handle. It not only improves
the training speed by 4X times, but can also achieve superb performance
while using only 2 orders of magnitude less training data.

This paper is organized as follow: In section 2 we formally define what com-
plex event detection is, and discuss the challenge of learning in complex event
detection; Section 3 formulates the problem we are solving and gives an overview
of Neuroplex system; Section 4 details the inference and training pipeline of
Neuroplex, and describes how models are trained in both perception and rea-
soning module1; In section 5, we perform a set of experiments on three different
complex event dataset, and demonstrate the effectiveness and efficiency of Neu-
roplex, and discuss the current limitations and future directions in section 6;
Section 7 lists a set of related works, and section 8 concludes the paper.

2 Background and Motivation

Neuroplex aims to detect complex events with intricate spatial and temporal
dependencies across multiple sensors. In this section, we formally define what
complex events are and discuss the motivation of Neuroplex.

2.1 Simple and Complex Events

A simple event is an event that happens over a short period of time, which
usually can be succinctly described by a single word label or a short phrase
[22], and can be captured by a single sensor. Modern deep learning models
have shown remarkable performance in detecting simple events. For example,
a simple event can be the occurrence of a particular object in a given image
(e.g., a truck or a suitcase), an audio segment in a waveform (e.g., a siren or a
gunshot), or a specific action/activity performed by the subject in the camera

1The data and codes of Neuroplex are available at https://github.com/NESL/Neuroplex

3



feed or IMU sensor trace (e.g., walking or opening a door). Simple events are
the atoms composing complex events.

Definition 1 (Complex event). In this paper, a complex event is strictly
defined as a particular pattern or sequence of ≥ 2 instances of simple events
that have spatial and/or temporal dependencies.

Under this definition, a complex event must be composed of multiple simple
events that may evolve over long periods of time in different spatial contexts
with various participants. One important distinction between a complex event
and a complex activity is that, although both of them can be decomposed to
a set of atomic events, the composing events of a complex event may or may
NOT be consecutive in time and space. For example, the ”long-jump” sport-
ing event is considered a complex activity that consists of five sub-activities:
”standing still”, ”running”, ”jumping”, ”landing”, and ”standing up”. These
activities are consecutive and can be captured from a single sensor. An example
of complex event is a sanitary protocol violation event in a hospital scenario:
a nurse could violate the sanitary protocol if she or he processes one patient,
and then processes another patient without proper sanitation. In this case, the
related events (processing patients and hand-washing) need to be detected and
analyzed over a broad temporal and spatial range.

Figure 1: Complex Event: Violation of sanitary protocol.

As illustrated in Figure 1, these essential events are separated by interme-
diate, unrelated events such as medication preparation and inventory checking.
Although deep learning models can excel at identifying each composing event,
developing a robust inferencing mechanism for the associated complex event is
challenging.
Complex Event Detection Systems Although the complex event detection
task is challenging, it is of great importance and spans numerous applications
in distributed sensor networks, e.g., detecting suspicious activities for security
surveillance or the aforementioned protocol violations in hospitals. Recent works
have proposed to use neural-symbolic systems [42, 22, 34] to detect complex
events. With a hybrid approach, pre-trained neural network models are applied
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to recognize simple events from multimodal sensory data, and rule-based logic
models are used to perform high-level reasoning over a sequence of simple events
extracted by deep learning models. The logic models are defined via a set of logic
rules, specifying the temporal and spatial relationship between simple events.
The logic rules are given by users based on human knowledge.

2.2 Learning for Complex Event Detection

Although hybrid neural-symbolic systems have shown to work well on complex
event detection tasks, the existing works only focus on the inference stage, where
it is assumed that pre-trained deep learning models for detecting simple events
are available.

However, this assumption is not practical in real scenarios. First, off-the-
shelf deep learning models are trained on standard population-scale datasets
and may not perform well when deployed without fine-tuning in a personalized
environment. Second, the definition of complex events involves a set of simple
events, which may not be included in the output directory of pre-trained deep
learning models. For example, when detecting an unsanitary nursing event, if
the pre-trained activity classification model can only have a label set of [”wash-
ing hands”, ”walking”, ”running”] without a ”processing patient” label, then the
complex event detection system would not work unless a new activity classifica-
tion model supporting ”processing patient” is trained. Third, the performance
of neural-symbolic systems relies primarily on the performance of deep learning
models for simple events. Since the complex event definition fixes the logic, the
final detection result can be totally different if the deep learning model out-
puts change. Also, the system’s performance degrades when the accuracy of the
detection models decreases[22].

Thus, enabling training in complex event detection systems is of great impor-
tance. A training pipeline allows the system to fine-tune itself during runtime
when deployed in a new environment. Further, the system can train newly
added, untrained deep learning models from scratch using only high-level anno-
tations, i.e., it is possible to train an activity classification model supporting a
”processing patient” activity only with the high-level ”unsanitary nursing event”
annotations. High-level annotation significantly reduces the simple event label-
ing effort for users.

3 Problem Formulation and Overview

In this section, we first formalize the complex event detection problem, and then
describe Neuroplex’s design overview.
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3.1 Complex Event Problem Formulation

Without loss of generality, we consider a sensor streaming data continuously.2

At every time step i, the sensor generates a triple of raw data information,
di = {xi, ti, ci}, where: xi is raw data of a certain modality captured by the
sensor; ti is the timestamp of the raw data sample; and ci corresponds to any
domain-specific metadata or attributes of the data sample. The attributes can
represent any physical features or context related to the piece of data, e.g. the
location of the sensor. Depending on the usage scenario, a machine learning
model fθ maps raw information xi to a set of symbolic classes or values fθ(xi),
which we refer to as a simple event, wi, and where θ is the parameter of model
f. A primitive event denoted as ei = {wi, ti, ci}, is the abstraction of the raw
data sample di.

The problem that Neuroplex addresses is learning and reasoning about
a data stream of length K. We assume that the length is either user-defined
or determined by the limitations of the implemented system. At any given
sample point i ≥ K, Neuroplex should be able to determine if a complex
event exists for the previous K samples, i.e., {ei−K+1,...,ei−1, ei}. Further,
we assume that a set of logical rules, φ, can be utilized from prior knowledge,
e.g., human knowledge, to describe the logical dependencies between primitive
events to compose complex events. The logical rules, φ, are comprised of both
a pattern definition, ω, as well as any additional logical constraints, ψ, for the
primitive events, i.e., φ = {ω,ψ}. Formally, we define a complex event as a
sequence or pattern of primitive events ω = eCE1 , eCE2 , ...eCEk that may have an
additional set of logical constraints, ψ. The primitive events eCEi , (i = 1, 2, ..., k)
correspond to the composite primitive events for a complex event, and k is the
number of primitive events in this complex event. Each rule in ψ specifies a
logical relationship between primitive events composing the complex event. For
a complex event to be detected, all of the logical constraints in ψ must be
satisfied. Based on this definition, it is possible to have different complex events
happening at the same time when they have the same terminal primitive event,
i.e., eCE1

k1
= eCE2

k2
. It is also possible to have multiple complex events of the same

type happening at the same time if more than one set of satisfying primitive
events are detected within the time window K.

At training time, the goal of Neuroplex is to train a perception model f
for each raw sensor data stream, i.e., to learn the optimal set of parameters θ
using only streams of raw sensory data di = {xi, ti, ci} and a complex event
label.

3.2 Neuroplex Overview

Neuroplex uses a hybrid neural-symbolic framework to detect complex events.
The deep learning models for detecting simple events compose the perception
module, and a high-level, human-input logical reasoning machine is referred to

2Although we are discussing learning of Neuroplex in a single sensor scenario, it can be
generalized to cases where there exist multiple sensors with different modalities.
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Figure 2: Neuroplex system with Perception module and dual form Reasoning
module.

as the reasoning module, as illustrated in figure 2. Given human knowledge
injected into the system in the form of logic rules defining complex events,
Neuroplex enables both a forward inference path and a backward training
path. In order to support training, Neuroplex tackles the challenge of how
to make the reasoning module differentiable while maintaining its function, and
how to perform effective training over perception module with only high-level
complex event annotations. The details of our methodology are described in
the next section.

4 Neuroplex Design

In this section we detail the design of the Neuroplex framework. We first
discuss how Neuroplex is initialized before describing how the framework is
trained.

4.1 Neural-Symbolic Initialization of Neuroplex

Before Neuroplex can be trained, we first need to provide a mechanism to
initialize the learning framework. The initialized structure without training
would be semantically equivalent to an inference-only, hybrid neural-symbolic
framework such as DeepCEP [42]–depicted in Figure 3.

4.1.1 Reasoning Module Initialization

The reasoning module is initialized by a logical machine in the form of a complex
event processing (CEP) engine, which takes user-defined complex event patterns
and generates the corresponding machinery for detection. We previously formu-
lated a complex event as a pattern or sequence, ω, of primitive events, together
with some logical constraints, ψ, that impose fine-grained limits on temporal
and event attributes. Thus, we decompose the set of logical rules φ = {ω, ψ} to
a finite-state-machine (FSM) model ω and additional logical constraints ψ. The
FSM model ω describes the temporal ordering of primitive events of a complex
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event, and the logical constraints ψ describe the arithmetic logical relations that
are not covered by ω. For example, for the complex event of a nurse violating
a sanitary protocol (Figure 1), the FSM pattern detector, ω, would model the
pattern of the nurse’s activities to detect two instances of a nurse processing
a patient that was not separated by a disinfection process activity. The logi-
cal constraints, ψ, would correspond to checking whether the pattern happened
within a particular time frame as well as to ensure the primitive events cor-
respond to the appropriate sensors (e.g., the two instances of a patient being
processed happened at different locations).

To formalize these definitions, we present a complex event grammar in
Backus-Naur Form (BNF) that enables the injection of human knowledge into
Neuroplex.
CEP reasoning module grammar. The Backus-Naur Form grammar for
Neuroplex’s CEP engine is defined in Figure 4 and builds upon the grammar
of a previous work [42]. We utilize the <input-title> and <complex-event-
title> clauses to label the source of a primitive event stream and the associated
complex event, respectively. The <format-pattern> clause defines the afore-
mentioned FSM by describing what the candidate primitive event patterns are.
The <constraint> clause defines the logical constraints ψ.

Unlike the prior work [42], our grammar’s semantics carry a significantly
different meaning at training time. The goal of the Neuroplex design is to
utilize these definitions to bootstrap the training for the reasoning layer of a
CEP engine. Without training enabled, the framework would be semantically
equivalent to the previous hybrid neural-symbolic inferencing frameworks [42,
24]–as shown in Figure 3. In this context, the human-defined logical machine will
be utilized as a ground truth at training time. Thus, we define the semantics for
how a defined pattern detector processes primitive events as well as how logical
constraints are enforced.
Semantics of primitive event pattern detection. The primitive event
pattern specified by the <format-pattern> clause is a derivative of the CEP
language for SASE [37]. The formats supported by our CEP grammar are:

SEQ(A1, A2, ..., An)(t) ≡ {A1A2...An}
PATTERN(A1, Ak, ..., An)(t) ≡ {A1(.∗)Ak(.∗)...An}

Where the right-hand side of the equations are the associated regular expres-
sions. The SEQ format represents a sequence of consecutive primitive events
that occur in a strict order, while the PATTERN format represents a sequence
of nonconsecutive primitive events. At runtime, the defined logical machine will
utilize finite state machines (FSMs) to represent each regular expression and
maintain the current state of the pattern detector.

When Neuroplex initializes the logical machine, the CEP engine first reads
a CE definition and creates an FSM model. It then creates and initializes
both the event buffer and the event state stack with a size K. Currently, the
size number K is a fixed number, where the memory only stores the latest K
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events with a sliding window for each subsequent event.3 When a new event
arrives, the CEP engine first updates the event buffer by pushing in the new
event information and popping out the oldest event. It then updates the event
state stack by removing the active states associated with the popped event and
updating all the dependencies. If the final state is activated, it means a complex
pattern is detected and the CEP engine will output the sequence of events that
triggered the final state. This sequence of events will then be fed into the selector
model to be checked against the associated logical constraints.
Semantics of logical constraints. As discussed, logical predicates can be
defined to filter or select candidate complex events as shown in Figure 3. Event
attribute constraints are used to describe the spatial dependencies as well as
additional temporal constraints of complex events. They are expressed as a set
of logical predicates in the CEP language. Neuroplex is intended to support
any logic language that can express spatial-temporal properties and has an as-
sociated theorem prover. Currently, Neuroplex utilizes ProbLog [2] to express
the <logic-expression> clause. This choice is due to the fact that deep learn-
ing typically outputs a probabilistic result for a primitive event. The reasoning
framework aims to propagate the associated probability of a detected primitive
event to the probability of a composed complex event. The overall constraint
is a Boolean combination (using logical connectives ∨ and ∧) of the associated
predicates. The complex event is valid only when both the combination format
and attribute constraints are satisfied.

When the logical machine is initialized, the CEP Engine creates the selector
model in ProbLog based on the user’s complex event definition. The associated
parser identifies which events to be taken into account as well as the constraints
to be applied to those events. No code transformation is needed as the user
defines the logical constraints in ProbLog. At run time, when a complex pattern
is detected, the list of events that can form the complex event is passed to
ProbLog to check if all of the constraints are satisfied and to calculate the
probability of the event happening.

4.1.2 Perception Module Initialization

As previously discussed, the perception module should have a set of deep learn-
ing models that can abstract the raw data for each sensor in the network. The
event symbols that are used by the human to define complex event patterns and
constraints should be a subset of the label set for the associated perception mod-
ule, i.e., users can only define reasoning rules based on event labels generated
by the deep learning models. We assume that each provided model is initial-
ized either with random weights or with pre-trained weights, i.e., Neuroplex
can be initialized with off-the-shelf models trained on population-scale data–as
depicted in Figure 3. However, the pre-trained weights are not necessary for
Neuroplex’s training process.

3It is possible to have a memory with a variable size for a fixed time length.
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4.2 Neuroplex Training Framework Design

The training pipeline for Neuroplex decomposes the original end-to-end learn-
ing problem into two sub-problems of perception and reasoning. Neuroplex
can learn each part separately with the aid of injected semantic knowledge to
significantly reduce the learning space.

When the logic rules of complex events are known, we need to train the
perception module to connect the path between raw data and complex events.
However, because logic is not differentiable, we first propose a deep learning
model called NRLogic, which approximates the function of the original logical
machine in the reasoning module. Depending on the application, this NRLogic
model can be trained using knowledge distillation [11] with only synthetic data
labeled by the logical machine. During this process, only the reasoning model is
updated. Once trained, the reasoning module has a dual form of representation:
a logical representation and a neural representation. This enables the training
of the perception module to be performed in a supervised manner. With the
annotation of complex events, we freeze the parameters of the NRLogic model
and calculate the gradient of the loss with respect to the deep learning models
in the perception module. Additionally, logical constraints can be added to the
intermediate symbolic layer between perception and reasoning module, imposing
another regularization term for training. In this phase, the reasoning module
is only used to propagate the gradients, and its parameters are kept intact to
preserve its functionality. Figure 5 shows the training pipeline of Neuroplex’s
perception module.
Training of the NRLogic network. In Neuroplex, the intermediate
layer between the perception module and the reasoning module is symbolic.
For example, if we want to detect a set of composed complex activities, then
the perception module could be an activity classifier, and the reasoning module
is the logical machine expressing the pattern and constraints between atomic
activities. The corresponding primitive event in the intermediate layer is a
classified activity result with the associated timestamp and attributes, et =
{fθ(xi), ti, ci}. The reasoning module here has both structured input space and
structured output space, so we can easily generate data sequence samples, and
use logical machine φ to get the ground truth annotations y.

Because the logical machine φ used in complex event detection contains
arithmetic logical constraints ψ and finite state machine ω, we use a recur-
rent neural network structure p(E) to mimic the reasoning module. The input
Ei = {ei−K+1, .., ei−1, ei} denotes all the primitive events happening in the past
time window K. The training procedure of the NRLogic model can be regarded
as a knowledge distillation process [11]. The logical machine is the teacher—
which provides ground truth values to the generated primitive events, and the
primitive event sequence and label pairs {Ei, yi} are then used to train the
student NRLogic network.

Since the ground truth annotation yi describes instances of multiple complex
events, it is possible to have different complex events occurring multiple times
in a given time window. Therefore, we formulate this problem as a multi-label
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regression problem. The annotation yi and prediction p(Ei) would be an m-
dimensional vector, where m is the number of complex events we are detecting.
Each entry yji represents the number of complex events j happening at the
current time sample i.

The NRLogic model is trained using a number of synthetic data as a prepa-
ration step for the perception module training. Since the dimension of the input
primitive event data is not large, the RNN model employed here can be rela-
tively simple, and thus, the training process would not introduce significant
overhead. We keep training the NRLogic until it converges.
Training of the perception module. Once the NRLogic model p is well-
trained, we can integrate it as a layer in the training pipeline,i.e., we concatenate
it with the perception module we need to train. The new integrated model
still complies with the structure of Neuroplex, where the reasoning module
follows the perception module, but the reasoning module is expressed in its
neural network form. In this way, we successfully build a differentiable path
between raw data and complex event labels.

Since the NRLogic network is pre-trained to mimic the logical machine, we
freeze its weights to preserve its functionality. We then calculate the gradient
of the complex event prediction loss with respect to the perception model only,
∂L(yt, p(Et))/∂θ, and use this gradient to update the model. The loss L for the
regression task is the mean squared error:

LMSE =
1

N

N∑
t=1

(p(Et)− yt)2 (1)

Because of the frozen NRLogic, the perception model is forced to learn to
predict the corresponding event types. After the training finishes, the perception
model ideally performs as if trained with fully-annotated event-level data.
Semantic Loss on an Intermediate Layer. One of the most significant
features of Neuroplex is that it has a symbolic intermediate layer. Since the
primitive event ei in the intermediate layer contains the event type information
wi, which is usually expressed in the form of a softmax score, we can impose an
additional semantic loss on it to further facilitate training.

We use the idea from [45]: in a multi-class classification task, a well-trained
model should give output with exactly one of the classes being true, and the
others being false. With this idea, a semantic loss function is introduced to
force the mass of the softmax vector to accumulate for a single class, i.e.,

LSemantic = − log

m∑
i=1

pi
∏
j 6=i

(1− pj) (2)

where m refers to the number of classes in a softmax vector. The intuition here
is to minimize the negative log probability of generating a state that satisfies
the logical constraints with sampling probabilities equal to the softmax values.
When the probabilities of classes are evenly distributed, the loss value would be

11



a large value close to 1, and if only one of the classes has a probability of 1 and
the rest being 0, the loss value is equal to 0.
Therefore, training the perception network entails optimizing a combined loss:

L = λ× LSemantic + (1− λ)× LMSE (3)

and the gradient used to update the network becomes:

(1− λ) · ∂LMSE(yt, p(Et)) + λ · ∂Lsemantic(fθ(Xt))

∂θ

The λ is the hyper-parameter that controls the strength of semantic regu-
larization.

5 Evaluation

In this section, we empirically evaluate the proposed training method for Neu-
roplex on three complex event datasets. The goal is to evaluate whether Neu-
roplex is capable of learning and detecting complex events, and how it per-
forms compared with state-of-the-art deep learning methods and neuro-symbolic
methods. We further perform an ablation study to evaluate how it improves
training by adding a semantic loss on the intermediate symbolic layer.

Neuroplex is implemented using Tensorflow and Keras frameworks, and
evaluated on a desktop machine with an Nvidia RTX Titan GPU. We first
conduct an evaluation on a synthesized MNIST sequence data to thoroughly
analyze the performance of Neuroplex’s method, while comparing it with a
set of strong baselines. Then we test Neuroplex on a complex audio event
dataset and a complex nursing event dataset, both of which are constructed
using real sensory data.

5.1 MNIST Sequence Complex Events

To explicitly control the complexity of the logic in complex events, we synthesize
our dataset using MNIST [20] digit images which we refer to as the MNIST Se-
quence Complex Event dataset. This dataset is generated by randomly creating
sequences of MNIST images. Each image in an MNIST sequence is assigned
with an increasing timestamp t and an attribute ID c. To get the ground-truth
label of every MNIST sequence, we randomly generate a set of logical rules
φ = {ω, ψ}, and then apply these rules to the sequence to see if the complex
events exist. For instance, a complex event in this context, CE1, can be a pat-
tern of {eCE1

1 : ”1” ⇒ eCE1
2 : ”3” ⇒ eCE1

3 : ”9”}. The primitive events eCE1
1 ,

eCE1
2 , and eCE1

3 , must happen in a sequential order with the corresponding digits
1, 3, and 9 as the event types. Additionally, temporal and spatial constraints can
be added to the complex event definition, e.g., the set of temporal constraints
ψ ≡ eCE1

2 .time()− eCE1
1 .time() < 10s and eCE1

3 .time()− eCE1
1 .time() > 3s and

spatial constraints dist(eCE1
1 .location(), eCE1

2 .location(), eCE1
3 .location()) < 100

limit the complex events to those that satisfy the generated rules.
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We say that a complex event CE1 is happening if a sequence contains the
pattern of primitive events [eCE1

1 , eCE1
2 , eCE1

3 ]—with primitive event eCE1
3 being

the last event in the sequence—and if all the logical constraints ψ are satisfied.
Each sequence of primitive events is one sample fed to the complex event de-
tection system. The goal of this dataset is to detect the occurrence of different
complex events for each raw image sequence.

The complex event detection system has a maximum time window of length
K, which means that at most K recent primitive events are considered when
making a detection. Thus, we generate the MNIST sequence data with length
equals to K. Apparently, as window length K increases, the difficulty of complex
event detection increases as well. It is because that not only the system requires
a larger memory to store and process the latest events, but also the input space
and complex events arrangement increase exponentially. In our experiment,
we change the size of window length K in different simulations, to test the
robustness of Neuroplex as the complex event detection task becomes more
difficult.
Experimental setup. In our experiment, we used a LeNet convolution net-
work [20] as the perception model for digit classification, and an LSTM network
as the NRLogic model. Specifically, the LeNet is a CNN architecture with two
convolution modules (convolution layer + Relu activation + maxpooling) with
a 5-by-5 kernel, followed by two fully-connected layers. It achieves about 99.2%
testing accuracy when trained on MNIST training data directly and tested on
MNIST testing set.

In the NRLogic model, we use a simple network with one LSTM layer with
64 hidden units plus one fully-connected layer to capture the logic of complex
events. Since it is a regression model, the output layer has m nodes and linear
activations, where m is the number of complex events types. The optimal λ
value in function (3) is set to 1e − 4, and we use a grid search to find reason-
able parameters. The experiments here use an Adam regularizer with a 0.001
learning rate for training both the NRLogic model and the perception model,
and the batch size is set to 256. The NRLogic model is pre-trained on randomly
generated data until convergence within 200 epochs.
Performance measure. We evaluated the learning performance by looking at
the Mean Absolute Error (MAE) of the complex event prediction. However, this
term sometimes cannot reflect the model performance directly. We therefore
compare the predicted scores with the ground truth values and calculate the
prediction accuracy (Acc) by rounding the prediction numbers:

Acc =

∑N
i=1

∑m
j=1 1(round(p(Ei)

j) == yji )

m×N

The superscript j refers to the j-th entry of the prediction, and m represents
the types of complex events. The accuracy is calculated as the average correct
prediction rate for all types of complex events on a testing dataset with N
samples.

Additionally, for models with a similar structure as Neuroplex, we also
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evaluate the performance of the LeNet on the MNIST testing dataset after
training to measure the actual learning performance on the perception model.
Learning comparison with strong baseline methods. We first test the
learning performance of Neuroplex on an MNIST sequence dataset, as shown
in Table 2, simulation 1. Here we are considering 4 different complex events
happening in a window of 10 primitive events. The logic rules of complex
events are randomly generated, while each complex event is composed of two
to three primitive events, and the average length of the complex events is 2.8.
The number of unique primitive event types is 10, which means that these four
complex events cover all the 10 digits in MNIST.

We compared Neuroplex with mainstream deep learning baselines:

• (1) CRNN network: It has exactly the same structure as the model
we are using in Neuroplex: CNN+LSTM structure, inspired by [30].
The only difference is that in the CRNN model, human knowledge is not
injected, so the LSTM layer is not pre-trained.

• (2) C3D model: The C3D network has a similar 3D convolutional struc-
ture as [21] to capture temporal dependencies between image frames. The
total number of parameters is around 4.1 million, which is much more
complex compared with our model with 1.3 million parameters.

• (3) Neuroplex w/o semantic loss: We also perform an ablation study
by removing the semantic loss imposed on the intermediate layer of Neu-
roplex to see the extent to which it helps training.

• (4) Oracle: The oracle method uses a neural-symbolic approach with
perfectly pre-trained perception models and 100% correct human-defined
logical rules. This method only represents the theoretically best perfor-
mance we can get, since pre-trained networks tuned to specific environ-
ments are usually not available because of the heterogeneity of different
domains and different task requirements.

Although Neuroplex has human knowledge injected and distilled to NRLogic
model, the pre-training overhead is pretty small. This is because the NRLogic
model is not complex, and it has symbolic input and output space. The model
converges to optimum within a few minutes during the pre-training process.

As shown in Figure 6, we train different models on a training dataset of 10K
sequences for 200 epochs, and plot the learning curves on 2K validation dataset
in terms of MAE. Clearly, Neuroplex learns faster than other baselines, and it
trains the best final model with a performance close to the oracle approach. The
C3D model learns slowly, and it fails to converge to the optimum in 200 epochs.
Though having the same structure as Neuroplex, the CRNN model struggles
to capture the dependencies between raw data and complex events due to the
high task complexity. In the ablation study, the model without semantic loss
has an inferior performance compared with the original Neuroplex, proving
that the semantic loss indeed helps training and regularizing the model.
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Oracle Neuroplex Neuroplex (w/o) CRNN C3D
Perception Acc 99.19% 98.87% 70.55% 10.09% NA
Validation MAE 0.002 0.013 0.065 0.523 0.176
Converted Acc 99.85 99.39% 96.02% 69.98% 88.47%

Table 1: Performance comparison on MNIST Sequence
We also measure the performance of different methods in Table 1. Clearly,

Neuroplex could achieve the lowest MAE on the complex event prediction,
and the converted accuracy is higher than 99%. The LeNet in the perception
module is also well-trained to get an accuracy of 98.87%, which is pretty close
to the model trained on the original MNIST training data (99.2%). The CRNN
model which has the same network architecture but without human knowledge
injected does not capture the complex events well, and the LeNet on the CRNN
could not perform image recognition effectively.

Figure 7 shows that, as training progresses, the performance of LeNet is
improving with the entire model. Also, since the NRLogic model is frozen
and not trainable, it perfectly maintains the functionality of the original logic
models. As we expected, the overall complex detection performance is totally
dependent on the ability of the perception module.
Comparison with neural-symbolic methods. We performed a prelimi-
nary investigation using the state-of-the-art complex event detection method
described in [35], which is a neuro-symbolic architecture that combines a neu-
ral network—which processes raw data—and logic programming—to express the
patterns that define a complex event. The system allows for end-to-end learning
using DeepProbLog[24]. However, the probabilistic logic programming aspect
of this system makes it quite inefficient in terms of training time. In a prelim-
inary investigation in this direction, while Neuroplex takes 5.4 milliseconds
in training over a CPU—and even less on GPUs—a DeepProbLog instance is
around four orders of magnitude slower. We believe that the flexibility of hav-
ing a human-understandable and easily manipulable logical regularisation will
be valuable for articulated complex event detection rules, but that first requires
a coordinated effort of the neuro-symbolic community to improve the engineer-
ing of DeepProbLog.
Learning with a limited amount of training data. To evaluate how Neu-
roplex performs in the scarce data scenario, we synthesize a new complex event
setting, as per Table 2, simulation 4. In this dataset, the complexity of a com-
plex event is greatly reduced to ensure that all the baseline models can learn.
The length of the event window is 3, and three unique events are considered in
5 different complex events which have an average length of 2. We adjust the
number of available training data, from only 10 samples to 21K samples, and
train all models for 200 epochs.

As shown in Figure 8, regardless of the training dataset size, the proposed
Neuroplex method steadily shows the best performance, especially in the case
when training data is very limited. Removing the semantic loss on Neuroplex
would incur a small performance drop and it again proves the benefits of a sym-
bolic layer and the corresponding logical constraints for training. The CRNN
trained from scratch cannot learn and reason about complex events effectively
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even with 21K data, and the complex C3D model begins to show acceptable per-
formance (greater than 85%) only when the amount of training data is greater
than 10K. Neuroplex is shown to be robust to the data scarcity problem as it
can achieve over 90% accuracy with only 20 data samples.

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5
Window Length 10 20 30 3 2
Number of Unique Events 10 10 10 3 3
Number of CE 4 4 7 5 4
Avg. CE Length 2.8 2.8 3.43 2 2
Neuroplex/ Perception 99.39% / 98.87% 99.56% / 99.17% 98.65% / 98.91% 100.00% / 99.84% 99.98% / 99.78%
CRNN model 69.98% 7.79% 1.83% 86.37% 99.99%
C3D model 88.47% 83.73% 86.91% 98.56% 99.72%

Table 2: Summary of CE datasets and training performance of different meth-
ods. Simulation 1, 2 and 3 are complex event tasks with normal complexity.
Simulation 4 and 5 are the simple complex event scenarios that all the systems
can train on.
Performance on different tasks. To further test whether Neuroplex scales
well for complex event detection, we conduct a set of different experiments with
datasets of various complexity. As shown in Table 2, simulations 1, 2, and 3 are
tasks with increasing complexity, and simulations 4 and 5 are two simple tasks
that all the testing models are able to learn.

From our formulation, the complexity of complex event detection would in-
crease when the window length increases. A longer time window with more
primitive events implies that the input space increases exponentially. The num-
ber of unique events and the length of a complex event, on the other hand,
control the complexity of the complex event itself.

In simulation 3, the task is detecting 7 complex events composed of 3 or 4
primitive events in a window of 30 primitive events. Even though the CRNN
shows poor performance in this setting, Neuroplex could still train the per-
ception model well and achieve high accuracy for the complex event detection
task. The fifth row of learning performance in Table 2 shows both the converted
validation accuracy of Neuroplex on the complex detection task as well as the
testing accuracy of the perception module. The performance of the C3D model
in simulation 3 is better than simulation 2, even though the complexity of the
task increases. One possible reason is that in simulation 3, the number of com-
plex events we detect grows to 7, meaning that more feedback information is
provided for a single event sequence sample since the annotation increases from
4 to 7.

In the simple task simulation 5, we notice that the CRNN model’s perfor-
mance is unnoticeably better than the proposed Neuroplex. This is because
both the CRNN baseline and Neuroplex use the same network structure, and
Neuroplex keeps part of its parameters frozen so that Neuroplex could be
less flexible when finding the optimal solution. Besides, in Neuroplex, we de-
compose the entire learning space into the perception space and the reasoning
space and learn them separately. This leads to a simplified problem and a im-
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Event types Length Num
CE 1 cooking ⇒ eating ⇒ dishwashing 3 1213
CE 2 social activity ⇒ cooking ⇒ eating 3 1198
CE 3 working ⇒ other 2 2898
CE 4 watching tv ⇒ vacuum cleaner 2 2904
CE 5 absence ⇒ eating 2 2844
CE 6 dishwashing ⇒ cooking 2 2888
CE 7 absence ⇒ social activity 2 2919

Event types: 9 . Avg length: 2.29. Dataset size: 16162

Table 3: Summary of Complex Audio Event Dataset
proved learning speed, but the summation of optimalities in two sub-spaces is
not necessarily the optimality of the entire space. However, this does not affect
the efficacy of the proposed method since Neuroplex can get near-optimal
performance with great compute, data efficiency, and speed.

5.2 Synthetic Complex Audio Events

In this experiment, we show how Neuroplex can be applied to real audio event
data. We construct a complex audio event dataset by sampling a subset from
the DCASE 2018 challenge task 5 [3] and synthesizing complex events. The
audio event data has 9 different classes: absence, cooking, dish-washing, eating,
other, social activity, vacuum cleaning, watching TV and working. Each data
sample is an audio recording of 10 seconds.

When creating the complex audio event data, we define the rules of complex
audio events and build our logical machine based on it to provide annotations.
The pattern is defined arbitrarily, as specified in Table 3. Some of them are
defined based on regular human activities. For example, the complex event
No.1 (CE 1) defines a regular dinner activity with a pattern of [”cooking” ⇒
”eating” ⇒ ”dish-washing”].

For generating raw complex audio event waveforms, we first create an empty
long audio data sample with a length of 100 seconds and then overlay random
audio samples selected from the audio dataset. Since the labels of the audio
samples are known, we use the logical machine to get the ground-truth com-
plex event annotation for each generated long audio waveform. Table 3 gives a
summary of the complex audio event dataset we generate.

With a given large audio file, the system is expected to extract the audio
features from raw waveforms and make predictions about the occurrence of
complex audio events inside this long period of time. In this experiment, we used
the CNN model from DCASE 2018 [4] as our perception module. This CNN
model contains two convolution blocks followed by two fully-connected layers
with Relu activation. It has 17.8K parameters in total. Batch normalization
and dropout are used to add robustness to the model.

The input to the model is the log mel-band energies for audio in a 10-second
window. Therefore, to analyze the 100-second-long audio waveform, our system
first used a sliding window to extract the mel-band features for every 10 seconds
in a non-overlapping manner. The features are extracted from the raw data and
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Neuroplex Neuroplex (w/o) CRNN ConvNet
Perception Acc 89.44% 84.93% 0.22% NA
Validation MAE 0.1015 0.1032 0.1671 0.3884
Converted Acc 92.53% 92.39% 89.50% 85.09%

Table 4: Model performance on complex audio event data
then processed by the perception module to generate primitive events. The
NRLogic model is also an LSTM network with one hidden layer analyzing the
logic between audio events.

Similar to the MNIST sequence simulation, our first baseline model is also
a CRNN network using the exact same structure as Neuroplex but without
semantic knowledge injected. The second baseline model has a similar structure
as the baseline CNN, but with twice the dimensions and a total of 55.8K pa-
rameters. We use this model to test if the deep learning model that works well
on short time-series data would scale well on a much longer time series. These
strong baseline models represent the performance of modern deep learning ap-
proaches well.

We train all the models for 200 epochs using the Adam optimizer with a
learning rate equal to 0.001 and a batch size of 256. In Figure 9 we can see
the learning curves of different methods in terms of validation MAE. Both the
CRNN and Neuroplex models can capture the complex audio event, but the
baseline CNN model does not converge to optimal. The CNN baseline model
fails to learn in this task with a longer time series, which shows the limitation
of mainstream deep learning models on complex event tasks.

In Table 4, we can see that the Neuroplex method could learn complex au-
dio events with the lowest validation MAE and the highest accuracy of 92.53%.
Additionally, the perception module performs well (with an accuracy of 89.44%)
on the testing audio dataset—given that the same network trained using fully-
annotated audio event data can only get an accuracy of 91.14%. The ablation
study shows that Neuroplex without semantic loss also shows good perfor-
mance but a little bit inferior to Neuroplex, which further proves that the
semantic loss helps training.

5.3 Complex Nursing Events Detection

The third experiment is conducted on a complex nursing event dataset based on
a public dataset from Nursing Activity Recognition Challenge[17]. The dataset
contains nurse activity data collected from three sources: Motion Capture, Med-
itag, and Accelerometer sensors, and it includes six different activities performed
by eight subjects (nurses). These are C1: Vital signs measurements, C2: Blood
collection, C3: Blood glucose measurement, C4: Indwelling drip retention and
connection, C5: Oral care, and C6: Diaper exchange and cleaning of area. Each
of these activities is performed 5 times by each nurse. The data is divided into
1-minute segments.

Because of the noisy and missing data problem in Motion capture and Med-
itag data, we only use the accelerometer data in our experiment. The data
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Complex Nursing
Event Name

Complex Nursing
Event logic

Complex
Event

Physiological
Measurement

Vital sign ⇒
blood glucose measure ⇒
blood collection

Indwelling Drip
Vital sign ⇒
Indwelling drip

Patient Cleaning
Oral care ⇒
Diaper exchange

Protocol
Violation

Unsanitary Operation
No.1

Diaper exchange ⇒
blood collection

Unsanitary Operation
No.2

Area cleaning ⇒
blood glucose measure

Unsanitary Operation
No.3

Diaper exchange ⇒
indwelling drip

Table 5: Logic of Complex Nursing Events

segments with less than 50 seconds are removed from the dataset. To extract
features from the variable-length, un-uniformly sampled accelerometer data, we
first divide the segment into 30 non-overlapping windows where the duration of
each window is 2 seconds. For the data segments with a length smaller than 60
seconds, we perform imputation by filling the missing features with feature val-
ues of the last time window. We split the original dataset into a training set and
a validation set. The data in the training set is used to generate complex nurs-
ing events data, and the validation set is used for evaluating the performance
of the perception module.

To construct complex nursing events, we follow a similar approach as previ-
ous experiments. In the first simulation(Sim 1 in table 7), we randomly sample
10 data segments from the Nursing Activity dataset and concatenate them to-
gether representing a nursing activity sequence that takes over 10 minutes. The
logic of our complex nursing events can be categorized into two groups as shown
in table 5: complex nursing events, and violations of sanitary protocol. The con-
structed complex nursing events dataset has 2319 samples in total, each of which
is an accelerometer sequence of ten minutes.

In this experiment, we use a convolutional LSTM structure [41] that is usu-
ally used to analyze IMU data. The model contains two 2-D convolution blocks
with one LSTM layer and one fully-connected layer. A 0.5 dropout is applied to
every layer. As the high-level reasoning logic have the same level of complexity,
we keep using the one-layer LSTM network as the NRLogic model. We compare
Neuroplex with three different baseline models:

• ConvLSTM: Like the previous experiments, this baseline has exactly the
same network architecture as Neuroplex, but without human knowledge
injected.

• ConvLSTM-2: This model has a similar structure to ConvLSTM. In-
stead of adding another LSTM network after the Conv-LSTM network, it
learns to output the label of the complex event directly.

• LSTM-Attention: This model is inspired by [10], which demonstrates
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Neuroplex ConvLSTM ConvLSTM-2 LSTM-Attention
Perception Acc 77.59% 1.72% NA NA
Validation MAE 0.0027 0.1430 0.1860 0.6245
R-Square 1.000 0.882 0.807 0.002
Converted Acc 100% 93.67% 89.28% 78.81%

Table 6: Model performance on complex nursing event datagood performance in the Nursing Activity Challenge. Instead of using
the GRU layer, this model uses two layers of LSTM, and the sequence of
hidden states are aggregated using the attention mechanism to get a score
vector. Two score vectors from two LSTM layers are concatenated, and a
fully-connected layer is added to get the softmax result.

All the models above are trained for 400 epochs with Adam optimizer and
0.001 learning rate. The batch size is set to 256. In addition to the converted
accuracy, we use the metric R-square to evaluate the performance of the regres-
sion task. R-Square measures how well the model fits the dependent variables.
The value is usually between 0 to 1, and a bigger value indicates a better fit
between the predicted and actual value. R-Square is calculated as follows:

R2 = 1− (
∑
i

(yi − fi)2)/(
∑
i

(yi − y)
2
)

Table 6 shows that the proposed Neuroplex performs well on complex
nursing event detection with raw accelerometer data, and the perception model
also gets near-native accuracy. (80% accuracy when perception network trained
directly on Nursing activity dataset). The other deep learning baselines fail to
show comparable performance, and the Neuroplex shows the best performance
in all different metrics.
Detection over long period of time. To further test whether Neuroplex
scales well on complex nursing event detection, we conduct a set of experiments
with increasing length of the time window, and keep the definition of the complex
nursing event the same as that in the simulation 1. We test the Neuroplex
with the other three baseline models, and measure their performance based on
R-square and converted accuracy. As shown in table7, as the length of time
window increases, the complex event detection becomes harder, and the model
performance degrades. We notice that when the time window length is less than
30 minutes, Neuroplex can successfully learn to detect complex event at high
accuracy. As the time window length grows, it takes more time for the model
to converge, and 400 epochs are not sufficient to get the optimum, although it
already performs pretty well and beats other baselines by a large margin. In
simulation 6, we can see that the Neuroplex model can still get about 80%
detection accuracy in a one-hour-long time window, proving that Neuroplex
is robust to long-term reasoning.

The other neural-network-based models all suffer from the long temporal
range. As we can see, in simulation 1, the ConvLSTM models is able to detect
complex events with acceptable performance. However, as the length of time
window increases, their performance drops quickly. The ConvLSTM-2 model
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performs better than ConvLSTM, suggesting that the added LSTM network in
ConvLSTM does not help capture temporal dependencies without human knowl-
edge injected. Although it demonstrates good performance on other tasks, the
AttentionNet can not learn complex event on accelerometer data. It basically
gets an approximate zero R-square value in all the simulations (the R-square
is negative in some cases because the model performs worse than the null hy-
pothesis). The converted accuracy in sim 1 is 78.81% because it outputs small
fraction numbers which are rounded to zeros.

Methods Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6
Time window
(minutes)

10 20 30 40 50 60

R-square
Neuroplex 1.00 0.99 1.00 0.90 0.88 0.85
ConvLSTM 0.88 0.90 0.66 0.32 0.33 0.35
ConvLSTM-2 0.81 0.76 0.80 0.76 0.75 0.70
AttentionNet 0.02 0 0 0 -0.01 -0.02

Converted Accuracy
Neuroplex 100% 98.90% 100% 83.59% 79.00% 79.63%
ConvLSTM 93.67% 83.29% 67.75% 40.79% 39.03% 37.47%
ConvLSTM-2 89.28% 80.08% 75.70% 60.30% 45.83% 39.48%
AttentionNet 78.81% 2.60% 0.62% 0.50% 0.11% 0.02%

Table 7: Experiment result of complex nursing activity detection as the length
of time window increases.

6 Discussion

The design of Neuroplex framework is inspired by the human learning process:
the perception ability is trained in a data-driven approach, and the mid- to high-
level reasoning ability can be taught in an efficient manner—the knowledge is
passed in a condensed form of logic rules. Human can know what complex event
is even without seeing any examples before. On the other hand, human store
knowledge in neurons inside the brain, so high-level logic should be expressed
as a neural network as well.

In Neuroplex, we create a dual form of the reasoning module so that the
system learns by back-propagation in a standard supervised manner. During
the inference stage, even though the NRLogic is also available for the forward
propagation, we use the logical machine instead. This is because the logical
machine is more reliable and explainable than the NRLogic model. Additionally,
the logical rules are often more compact than deep neural networks, so they can
usually be executed quickly over sensor networks with minimal computation
overhead. We enumerate the limitations of the current approach and future
research directions as follows:
Distribution of complex sensor reasoning. The hybrid architecture of
Neuroplex is designed to thrive in emerging distributed computation archi-
tectures that push sensor inferencing towards edge devices. However, primitive
events that stem from edge device inferences are currently fused at a single
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CEP node. Future work can focus on distributing the reasoning module across
heterogeneous sensor networks with dynamic computation placement.
Prior knowledge of complex event reasoning logic. We have assumed
that the higher-level logic of a complex event is provided by the user. This
is a reasonable assumption, and it is broadly used not only in neural-symbolic
systems [22, 42, 34], but also in earlier works on rule-based activity recognition
[26, 33], activity decomposition using sensory grammar[23], and complex event
processing [9, 8, 28]. During training, the use of prior knowledge reduces the
burden of data annotation and accelerates the learning process significantly.
Additionally, we use the CEP language with a BNF grammar like DeepCEP[42]
to formally define the logic rules, which standardizes and simplifies the coding
of human knowledge.

However, the system may be deployed in a new or evolving sensor network
environment–where the definition of complex events provided by the user may
not present robust detection. Future efforts can focus on learning or fine-tuning
the reasoning module by freezing the trained perception module and updating
the NRLogic module. After learning, the FSM can be extracted from the trained
RNN network to provide human-understandable logic.
Complexity of logical reasoning. In the context of complex event detection,
the NRLogic model is trained to capture the logic of a complex event, which
could be arbitrarily complex. The Neuroplex framework can be generalized
to a wide range of scenarios, and NRLogic is able to capture not only temporal
logic, but also spatial logic over sensory networks. For all experiments in this
paper, the complex event logic can be captured effectively by an LSTM network
with one hidden layer. However, as the complexity of logic increases, deeper
and more sophisticated networks need to be used to approximate the logical
function. Future research will investigate what the most efficient structure is to
capture the reasoning logic of different complexity in different settings.
Annotation of complex event sensor data. In the problem of complex event
detection, we only care about the occurrence of complex events at the current
time. Thus, the user would only make annotations when complex events are
actually happening and do not need to care about simple events. This greatly
reduces the labeling burden for numerous applications. In this work, we for-
mulate the complex event detection as a regression problem, which requires
annotations of complex events happening times. This is sometimes not a trivial
task because sensors with events happening over long periods could generate
multiple primitive events of the same type, leading to an increase in complex
event instances. Also, in real-world scenarios, the complex event labels may
not have accurate spatial-temporal metadata, e.g., inaccurate timestamps. Fu-
ture research will investigate how robust the proposed Neuroplex is when the
annotation is noisy, and how to aggregate and learn from events of the same
type.
Generalization to real multimodal scenarios. Although Neuroplex is
evaluated on complex events from a single modality in this paper, we believe
that it can be extended to multimodal complex event learning tasks as well. We
envision a framework similar to [27, 25], with multimodal data streams input
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as different channels. While the performance of Neuroplex in multimodal
scenarios is not presented in this paper as the on-going pandemic conditions
prevent us from conducting the requisite experimental study, we plan to address
it in future work.

7 Related Work

A body of earlier work studied complex events in sensor networks [23, 48, 47];
however, we focus on detecting complex events over unstructured data using
deep learning models. We first provide an overview of the state-of-the-art deep
learning methods related to complex activity detection. After highlighting the
scalability and data efficiency issues of these approaches, we describe how prior
works have attempted to integrate human logic directly into the deep learning
models. Although these approaches help to regularize and bootstrap the asso-
ciated learning processes, they fail to address the notions of scalability in the
spatial-temporal domains. We then highlight a recent class of neuro-symbolic
approaches that combine deep learning with explicit symbolic reasoning, and
discuss modern approaches to complex event detection using hybrid systems.
Deep learning for complex activities. Prior work on deep learning methods
has explored learning and analyzing time-series data such as human activities.
In particular, several works in video classification have proposed solutions for
detecting complex activities over short periods [39, 15]. Images [43] and audio [6]
are also considered to contain complex events, and several studies [38, 14] use
multimodal information to perform classification. Similarly, anomalous event
detection [44] utilizes motion features to extract temporal-spatial localization
features for complex event detection.

Although the aforementioned works have shown promising results in their
respective domains, they do not have a clear definition of complex events. Gen-
erally, they use the term to describe events that contain interactions between
different elements. Furthermore, these works typically only consider processing
information from a single input instead of a distributed set of heterogeneous
sensors. Although multimodal data fusion has been explored, they fail to fuse
the information at a semantic level so as to provide a clear explanation of the
result. Additionally, these learning-based models alone cannot learn extremely
long temporal dependencies well, even with the help of the LSTM [12] structure
and the Attention mechanism[1]. They typically reason about events on the
order of seconds. Finally, in order to have effective models that generalize well,
learning-based methods necessitate the consumption of large amounts of data
with an expensive annotation process [7].

Intuitively, integration of human logic would address these issues in an inter-
pretable way. We next review how prior works have integrated logic reasoning
with machine learning (ML).
Combining logic reasoning with ML. Combining reasoning with learning
is a popular topic in the AI field, and one interesting direction is integrat-
ing symbolic human knowledge with ML models. One approach to integra-
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tion is to instrument logical formulae into an embedding space while preserv-
ing the logical meaning and the relationship between formulae. ConvNet En-
coder [16] and TreeLSTM [32, 19, 46] embed formulae using different network
structures. LENSR [40] first converts logical formulae into d-DNNF DAGs and
use a Graph Convolutional Network to perform an embedding. Another ap-
proach uses knowledge to impose additional logic loss to help augment the orig-
inal training objective [45, 31, 5, 29]. In [13], a distillation method is used to
transfer knowledge from a rule-regularized teacher network to a standard stu-
dent network. [45] imposes a semantic loss on predicted probability by quantify-
ing the probability of generating a satisfying assignment by randomly sampling
from the predictive distribution.

However, the preceding methods are not designed for reasoning about spa-
tial and temporal events at scale. Therefore, we next discuss neural-symbolic
frameworks that allow a hierarchy of reasoning between deep learning and hu-
man logic.
Hybrid Neural-symbolic frameworks for complex tasks. Building hybrid
systems that utilize the power of both human logic and deep learning is becoming
a hot trend. Caesar [22] proposes a system that uses both deep learning models
and rule-defined complex activity graphs to recognize complex activities in a
multi-camera video surveillance setting. [34] shows that it is possible to fuse
proxy deep learning models and use ProbLog [2] defined rules to perform crime
detection. In [42], simple events are first captured by deep data abstractors
and then reasoned about by a complex event processing (CEP) engine that
takes human definitions as logic rules. All of these works use either existing or
newly defined languages to inject human knowledge into the system to perform
reasoning to detect complex events. They utilize pre-trained neural network
models and only focus on the inference path of the problem as learning is beyond
their scope.

The ability to learn is of great importance, especially when the system is
deployed in a new environment. SATNet [36] sits at the boundary between
end-to-end deep learning models and neural-symbolic hybrid approaches. It
introduced a differentiable SAT solver that can be integrated into deep learning
models as a MAXSAT layer. This logical structure can be learned using a
supervised end-to-end approach. However, the SATNet does not have symbolic
representation, nor is the MAXSAT layer explainable.

DeepProbLog [24] provides a generalized probabilistic logic programming
language that incorporates deep learning into ProbLog. The parameters of both
neural networks and logical rules are learned in an end-to-end manner using
αProbLog while supporting symbolic representation. An important feature for
DeepProbLog is that it supports symbolic representation inside the system.
Therefore, unlike black-box deep learning models, the results of DeepProbLog
are explainable. While DeepProbLog is designed to handle complex problems
where the logic can be expressed as combinational logic, it struggles to represent
the sequential logic in ProbLog as the number of nodes grows exponentially.

Unlike prior works, in our approach, logical knowledge is not used to augment
training objectives, but rather perform individual reasoning tasks. Trained to
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mimic the logic rules, the NRLogic is plugged into the system as a layer to
perform learning tasks.

8 Conclusion

In this work, we presented Neuroplex, a neural-symbolic framework for de-
tecting complex events. Using semantic knowledge to guide the learning, Neu-
roplex can learn to detect complex events with much fewer and sparse anno-
tations. Results on different datasets proved the effectiveness, reliability, and
robustness of Neuroplex. Future work will focus on the deployment of Neu-
roplex in real-world scenarios with multimodal sensory data.
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Figure 3: Neuroplex neural-symbolic initialization. The reasoning module is
initialized with human-defined pattern detectors and logical constraints, while
the perception module is initialized with a set of deep learning models that may
or may not be pre-trained for each raw data source.

〈complex-event〉 ::= 〈input-title〉 〈complex-event-title〉 〈format-pattern〉 〈constraint〉? EOF;

〈input-title〉 ::= INPUT : 〈event-stream-source-id〉;
〈complex-event-title〉 ::= CE : 〈complex-event-stream-id〉;
〈format-pattern〉 ::= 〈combo-format〉 : { 〈event-list〉+ };

〈combo-format〉 ::= FORMAT-SEQ | FORMAT-PATTERN | FORMAT-
PATTERN-WITHOUT;

〈event-list〉 ::= 〈event〉 (, 〈event〉)*;

〈event〉 ::= 〈event-id〉 : 〈event-type-id〉;
〈constraint〉 ::= CONSTRAINT : { 〈logical-predicate-list〉 };

〈logical-predicate-list〉 ::= logic-expression (, logic-expression)*;

Figure 4: Simplified CEP Grammar, whose syntax semantics are significantly
adapted from [42]. In this context, the grammar is used to initialize the training
framework as opposed to define an explicit CEP engine.

Figure 5: Training on Neuroplex’s perception module.
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Figure 6: Prediction MAE (on the validation set) changes as training progressed
in simulation-1

Figure 7: The performance of perception model increases as training processed
in Neuroplex
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Figure 8: The performance changes with size of training data

Figure 9: Learning Curves on Complex Audio Events
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