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We investigate the spatial nonlinear localization of light on a quasi-plane-wave background with a harmonic
perturbation induced by modulation instability in a quadratic nonlinear optical medium. In particular, we
demonstrate experimentally the excitation of deterministic Akhmediev breathers and thus the growth-decay
dynamics of modulation instability in a LiNbO3 slab waveguide. The results should stimulate new interest
in modulation instability, extreme events, turbulence, recurrence, and supercontinuum generation in quadratic
nonlinear optics.
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Introduction. Instabilities and chaotic dynamics occur fre-
quently in a wide class of wave phenomena when intense
waves propagate through a nonlinear medium [1]. One salient
form of instability in a distributed nonlinear system is its
response to a harmonic modulation. Such instability is gen-
erally known as modulation instability (MI) [2,3]. MI leads
to the exponential growth of an initial harmonic perturbation
at the expense of a strong pump background. MI dynamics
has been deeply investigated since the early days of nonlinear
optics [4] but it has remained a somewhat complex and
mysterious process. The breakup and self-filamentation of an
optical beam as a result of MI was one of the first nonlinear
spatial effects observed in the 1960s and early 1970s [5].
The temporal breakup of a continuous wave (cw) field as a
result of MI was observed in an optical fiber in the 1980s
[6]. Dynamical MI was demonstrated in photorefractive and
quadratic nonlinear crystals in the 1990s [7,8].

Nowadays, the investigation of MI in nonlinear optics is
once again the subject of tremendous interest boosted by
the strong link of MI with the formation of deterministic
breathers [9,10], statistics of anomalous waves [11,12], tur-
bulence [13,14], supercontinuum generation, and frequency
combs [15]. Of great importance has been the discovery that
the dynamics of MI can be described by analytic families of
periodic solutions, in particular Akhmediev breather solutions
in cubic nonlinear media [16]. In fact, Akhmediev breathers
describe the MI growth-decay cycle of unstable waves starting
from a regular background, significantly enhancing the wave
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amplitudes during the envelope compression until reaching
a precise saturation point, and finally declining the envelope
back to a regular state. Moreover, the growth-decay dynam-
ics in breathers constitutes a manifestation of the universal
nonlinear phenomenon known as Fermi-Pasta-Ulam (FPU)
recurrence. Deterministic Akhmediev breathers, MI growth-
decay cycles, and FPU recurrence have been experimentally
characterized and demonstrated in the temporal domain in
cubic nonlinear fiber optics with long interaction lengths
[9,10,12–15,17–20]. Very recently, FPU recurrence and its
exact dynamics have also been demonstrated in the spatial
domain in cubic nonlinear photorefractive crystals [21].

However, observations of breather growth-decay dynamics
in the spatial domain based on fast electronic nonlinearities
have been elusive so far because the small cubic nonlinearities
in common crystals would require enormous intensities. In
noncentrosymmetric crystals the intensity requirements can
be reduced by a proper enhancement of the effective nonlinear
refraction due to cascaded quadratic nonlinearities [22]. The
existence of Akhmediev breathers and Peregrine walking
solitons has indeed been recently predicted in the regime
of quadratic cascading [23,24]. This system is especially
interesting because just by tuning the wave-vector mismatch
of the quadratic nonlinear interaction we can adjust the degree
of approximation in describing the quadratic nonlinear system
with a cubic nonlinear model providing experimental infor-
mation on the robustness of breather solutions against system
disturbances.

In this Rapid Communication, we investigate the spa-
tial nonlinear localization of light on a quasi-plane-wave
background with a harmonic modulation in a LiNbO3 slab
waveguide. We experimentally unveil the existence of de-
terministic Akhmediev spatial breather-like beams and thus
the MI growth-decay cycle in a quadratic waveguide system
where the waveguide mode is coupled to its second harmonic.
On the one hand, our results pave the way to the reinterpreta-
tion of quadratic MI dynamics in terms of shaping-invariant
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solitons and breathers instead of only solitons as essential
actors of MI phenomena [8,25–28]. On the other hand, our
system constitutes a renewed spatial platform for the inves-
tigation of light localization, offering with simple camera
observation new possibilities to investigate extreme MI events
and the recurrence and robustness of breather solutions.

Experimental and theoretical methods. We considered spa-
tial light dynamics in a titanium indiffused LiNbO3 Y-cut
slab waveguide with a length L = 47 mm which was fabri-
cated in the 1990s by Sohler’s group in Paderborn for the
experimental demonstration of quadratic solitons [27] and
MI measurements [28]. Type I second-harmonic generation
(SHG) can be implemented by coupling a fundamental fre-
quency (FF) ordinary polarized transverse magnetic (TM0)
mode at a wavelength of 1.32 μm to extraordinary transverse
electric (TE) modes at the second-harmonic (SH) frequency
at a wavelength of 0.66 μm. Temperature tuned birefringent
phase matching occurs at 297 ◦C to the TE0 mode and at
344 ◦C to the TE1 mode. For controlling the phase matching,
the crystal was housed in an oven. The waves propagate along
the z direction and are guided along the y coordinate, and the
light localization is observed in the x direction.

Theoretical modeling is based on the standard descrip-
tion of SHG with one resonance in a slab waveguide [27].
The electric field beams E1,2(x, y, z) at the FF and SH
frequency ω1,2 (ω2 = 2ω1) are expressed as E1,2(x, y, z) =
e1,2(y) a1,2(x, z) where e1,2 are the waveguide modes nor-
malized to a unit power flow per film width (p0 = 1W/m);
a1,2 are the effective beam envelopes with I1,2 = |a1,2|2 p0

representing the power flow per film width. The beams a1,2

obey the nonlinear, not integrable, coupled equations:
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k1,2 are the wave numbers, �k = 2k1 − k2 is the wave-vector
mismatch. The mode overlap integrals K (2) = ∫

e1e1e∗
2dy and

K (3) = ∫
e1e1e∗

1e∗
1dy determine the nonlinear strengths to-

gether with the nonlinear susceptibilities d and χ (3). α1 and
α2 describe losses. All parameters have been measured [29]
(see Refs. [27,28,30] for waveguide details). The intrinsic
cubic nonlinearity for the FF wave has also been considered
in Eqs. (1) because of the large experimental peak intensities.
We emphasize that in reality, SH resonances to both the SH
TE0 and TE1 modes contribute to the effective nonlinear
refraction. However, the two resonances are well separated.
Consequently, the dominant one with the smaller phase mis-
match can be described with the SH Eqs. (1) while the other
is considered only approximately by adding its effective cubic
nonlinearity to the χ (3) term.

Far from the phase-matching conditions, neglecting losses,
Eqs. (1) may be reduced to a nonlinear Schrödinger (NLS)
equation for the FF beam [27]:
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FIG. 1. Experimental setup.

where the effective cubic nonlinearity reads γ =
1
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4p0
. Varying the temperature, the

wave-vector mismatch is controlled and thus the cascading
contribution. Under the condition γ > 0 Akhmediev
breathers are solutions of Eq. (2). With the normalization
ψ = a1/a1p, s = x

√
γ a2

1pk1 , and ξ = zγ a2
1p, where a1p

describes the plane-wave background intensity a2
1p p0 = I1P,

the well-known analytical form of the Akhmediev breather is
obtained (see Ref. [23]):
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 is the normalized modulation frequency. a = 1
2 (1 − 
2/4)

determines the frequencies that experience gain when 0 <

a < 1
2 . b = √

8a(1 − 2a) is the growth factor of the instabil-
ity. Thus, exploiting Akhmediev breather solutions (3) and the
transformation mapping to Eq. (2), the FF breather dynamics
of Eqs. (1) should exist in the x-z plane of the quadratic slab
waveguide.

Breather excitation and measurement technique. Exper-
imentally, breathers can be deterministically excited from
an unstable quasiconstant background with an initial finite-
amplitude periodic perturbation with amplitude and phase pat-
tern equal to the breather field at a fixed ξ before the breather
maxima. We used a frequency-doubled Nd:YAG-pumped op-
tical parametric amplifier (OPA) with cw-seeding delivering
5.5-ps-long pulses at a wavelength of 1.32 μm with up to
450 kW peak power. With a cylindrical telescope the laser
beam was transformed into a very wide Gaussian elliptical
beam (1.4 mm × 8 μm) providing the background. The beam
was end-fire coupled into the FF TM0 mode. Power scaling
with calibrated power meters enabled absolute measurements
of the average input power. The input power is converted to
the temporal peak intensity I1P in the mode in the center of
the input beam. A few % of the FF beam were separated
after the telescope and coupled with a tilt and good overlap
to the main FF beam into the waveguide. The interference
between the two FF beams produced a spatial modulation
of the input with adjustable period and modulation depth
m = (I1,max − I1,min)/I1,max. Figure 1 shows a sketch of the
experimental setup. The beam width of 1.4 mm along the x
coordinate can be considered large enough in the compromise
between available power and infinite beam width so that a FF
beam with a transverse modulation with periods between 130
and 300 μm well approximates a quasiconstant background
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with a harmonic modulation which would approximate the
amplitude pattern but not the phase profile of a straight
propagating breather in its growing stage. This problem has
previously been solved with the input of a second tilted beam
[21]. However, as discussed in Ref. [31] our one-sideband
excitation has an important advantage: The missing sideband
is generated shortly after the input. Contrary to the two-
sideband excitation where the phase between the harmonic
modulation and the background needs to be controlled, our
one-sideband excitation is phase insensitive. Measured spatial
spectra showed the generation of the missing sideband. As
predicted, we did not observe a dependence on the phase of
the tilted input beam.

Because the pure Akhmediev breather in Eq. (3) is a sepa-
ratrix between two doubly periodic breather solution families
[19,32] it can never be observed in that purity. Inevitable
small perturbations of the input force the beam evolution
into these solutions with closed trajectories in the complex
field plane near the heteroclinic orbits of the pure Akhme-
diev breather, reducing the ideally infinite ξ periodicity to
finite values in all breather experiments. In addition, it has
been suggested that systems with growing deviations from
an ideal NLS model have solutions with amplitude-phase
trajectories deviating increasingly from the closed loops of
the doubly periodic solutions [32,33]. However, the doubly
periodic solutions are pretty robust and for our approximately
NLS system with approximative breather initial conditions
we find easily parameters where we observe at least one
cycle of breather localization where the field trajectory is
still close to the heteroclinic orbit of the Akhmediev breather.
So we can characterize the main cycle of a breather where
the light is highly localized between areas with growing and
decaying MI.

Our sample is housed in an oven and we do not have access
to the spatial dynamics of the beam along the evolution z
coordinate. We can only observe the beam at the input and
output of the waveguide by imaging into cameras. Never-
theless, it has been demonstrated that the breather dynamics
may be characterized by varying the input intensity [9] or
nonlinearity [21]. For given modulation depth and intensity
of the excitation the breather maxima develop at a specific
and analytically predicted distance from the input [31,34].
For increasing intensity this distance decreases. Therefore,
every scan of a breather at a desired ξ can be sampled at the
waveguide output facet just by changing the intensity as long
as it exceeds the threshold for MI. Each scan is normalized
with respect to its power. The composition of the normalized
scans visualizes self-localization of light in breathers. Strictly,
each scan for a new intensity belongs to a different breather
with modified parameters 
, a, and b. A slight readjustment of
the experimental spatial periodicity could keep these parame-
ters constant yielding—from theory known—the breather pic-
tures with constant normalized modulation frequency. How-
ever, experimental results are preferably presented for con-
stant real-world modulation frequency, preventing the need of
changing simultaneously two parameters in one measurement
set.

Results and discussion. In the cascading regimes, we
succeeded in exciting clean Akhmediev breather dynam-
ics. Figures 2–4 report typical normalized spatial FF beam

FIG. 2. Normalized intensity distribution I1(x, I1P ) of the FF
beam at the waveguide output: (a) measurement and (b) simulation,
T = 287.5 ◦C, �kL = 113π at the TE0 resonance, modulation pe-
riod 185 μm, m = 0.6.

characterizations at the waveguide output along the x coor-
dinate varying the FF input intensity I1P.

In Fig. 2 at a temperature of T = 287.5 ◦C quadratic
cascading contributes 63% to the total effective cubic non-
linearity γ , with 51% from the TE0 and 12% from the TE1

resonance. The remaining 37% come from the intrinsic χ (3).
Figure 2(a) refers to measurements and Fig. 2(b) to simula-
tions based on Eqs. (1). The simulations take all experimental
details without any fit parameters into account: the one-
sideband excitation, and waveguide details like mode char-
acteristics, losses, nonuniformities, and material data. Only
the pulsed excitation is considered by simple time averaging,
neglecting temporal dispersive effects. This approximation

FIG. 3. Normalized intensity profiles I1(x) of the FF beam:
(a) input spot, (b) waveguide output at I1P = 7 W/μm, (c) I1P =
95 W/μm, and (d) I1P = 215 W/μm under the experimental condi-
tions of Fig. 2. Black-solid lines indicate experimental and red-dotted
lines numerical results.
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FIG. 4. Color-coded normalized intensity evolution of the
growth-decay cycle of breathers with different spatial periods: (a) pe-
riod 300 μm, m = 0.6, T = 285 ◦C; (b) period 133 μm, m = 0.35,
T = 287.5 ◦C.

works well for the FF spatial dynamics in the cascading
regimes with the applied large wave-vector mismatch and
low SH fields, as proved by comparison to time-resolved
calculations, even with a significant group velocity mismatch
between the FF and the SH waves [35]. Figure 2 shows at low
intensities linear propagation and at ≈50 W/μm the initial
stage of MI with exponentially amplified harmonic modula-
tion. This growth dynamics has been characterized in previous
studies [8,26,28] and used for MI gain measurements. By
increasing the intensity the amplification and compression
saturate, the beams develop their maxima, and then a decay
dynamics takes place as predicted by the Akhmediev breather
solution. The decay state is disturbed by secondary maxima
between the breather maxima [see also Fig. 3(d)]. This is an
incipient higher-order breather [36,37] because also higher
harmonics of the breather pattern start to experience MI gain
at intensities above 180 W/μm.

The comparison of measured output scans of the FF beam
profile with numerical calculations for specific input intensi-
ties in Fig. 3 highlight the excellent quantitative agreement
between experiments and simulations.

The color-coded intensity of a breather with a larger pe-
riodicity in Fig. 4(a) shows the stronger beam compression
with the typical broad depletion areas between the maxima.
The field zeros near the maxima are recognizable but faded
by the time averaging. Very nicely the generation of the
second sideband, missing in our one-sideband excitation, is
visible in a breather with smaller period in Fig. 4(b). For
intensities below the MI threshold of 100 W/μm we see
in principle the interference fringes between main and tilted
input beams propagating with half the tilt angle. Therefore,
the fringes at the input and output are shifted along x. With
increasing intensity the shift decreases. When MI sets in above
100 W/μm the position of the output maxima is locked close
to the position of the input fringes indicating the formation of
the second sideband.

Because the breathers develop on a 1.4-mm-wide Gaussian
beam instead of an infinitely wide background, an intensity
dependence of the position of different breather maxima in
one row can be observed in Figs. 2 and 4. In the lower intensity
edges of the beam higher input intensities are required to
observe a breather maximum at the waveguide output [see also
Fig. 5(b)].

We investigated Akhmediev breathers for the whole range
of the interesting parameters: initial harmonic modulation

FIG. 5. (a) Effective cubic nonlinearity γ . (b) Input intensity
I1P for the observation of the breather maxima at the waveguide
output, modulation period 185 μm, m = 0.6 for red objects, m =
0.35 for dark objects. Circles refer to measurements, solid lines to
simulations. The dashed lines show analytical predictions from [31].
Dotted blue vertical lines indicate phase-matching temperatures for
TE0 and TE1 resonances. The dashed blue vertical line indicates the
temperature where the different nonlinear contributions cancel each
other.

strength and modulation period, and finally we changed
the effectively acting cubic nonlinearity. By varying the
wave-vector mismatch with temperature we control the non-
linear refraction parameter γ with a dependence shown in
Fig. 5(a). The decrease (increase) of the initial strength of
the harmonic modulation increases (decreases) the spatial dis-
tance between the initial excitation and the breather maxima,
thus the necessary input intensity for the observation of the
breather maxima increases (decreases). This dependence is
reported in Fig. 5(b) by comparing input modulation strengths
of m = 0.6 and m = 0.35 at the fixed harmonic period of
185 μm. In particular, Fig. 5(b) shows the necessary input
intensity for detecting the maxima of the breathers at the
waveguide output. The measured intensity versus temperature
T —or nonlinearity γ —is compared to simulations and ana-
lytical predictions for cw beams. In our pulsed experiment the
required intensity was ≈20% larger than the cw prediction
from [31].

Breathers have been detected at all temperatures with a
positive effective nonlinearity γ . As the SHG resonances are
approached, the corresponding cascading effective nonlinear-
ity increases and the input intensity for breather maxima at
the output drastically decreases. Towards lower temperatures
<100 ◦C the cascading contribution diminishes and the power
for a breather maximum at the output would approach a
value above 220 W/μm of a pure χ (3) breather. At the
resonance temperatures 297 ◦C and 344 ◦C, the SHG process
dominates with strong SH conversion and breathers can-
not be excited. At 307 ◦C, quadratic cascaded contributions
of TE0, TE1, and the intrinsic cubic nonlinearity perfectly
compensate and no nonlinear dynamics can be observed at
all.

Conclusions. Our results represent the first deterministic
experimental characterization of spatial Akhmediev breathers
describing the growth-decay MI dynamics on a quasi-plane-
wave background with an initial harmonic modulation in a
quadratic waveguide. All details of the observed first row of
highly localized light spots correspond qualitatively as well as
quantitatively to the characteristics of the Akhmediev breather
solution in the vicinity of its maxima, namely, the formation
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of a maximum between regions of MI growth and decay.
Breathers have been demonstrated in a wide parameter range
of positive net cascading nonlinearities and different initial
harmonic modulation strengths and periods. The first row of
light localization maxima was very robust against changing
the system from very cubic-like for large wave-vector mis-
match to the cascading regime, closer to phase matching. At
phase matching with strong conversion to the SH, no breather-
like beams were observed. Remarkably, these results lead to
the reinterpretation of quadratic MI studies [8,25–28] in terms
of shaping-invariant solitons and breathers, rather than only

solitons, as main actors of complex MI phenomena. Moreover,
the demonstration of Akhmediev breathers in the quadratic,
not integrable system Eqs. (1) feeds the open discussion
on FPU recurrence in Hamiltonian systems, as opposed to
integrable systems only [34,38,39].
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