
Entropy production and efficiency in longitudinal
convecting-radiating fins.

Abstract

The properties of the entropy production in convecting-radiating fins are analyzed. By taking
advantage of the explicit expression for the distribution of heat along the fin, we investigate the
possibility to assess the efficiency of these devices through the amount of entropy produced in the
heat transfer process. The analysis is performed both for purely convecting fins and for convecting-
radiating fins. A comparison with standard definitions of efficiency is given.
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1. Introduction

The longitudinal fins are widely used in applications to enhance heat dissipation from a given
device or from a suitable surface. The main mechanisms of heat dissipation are conduction, con-
vection and radiation. While for the first two mechanisms, by making the proper simplifying
assumptions (e.g. thermal coefficients independent of temperature), the mathematical models of
temperature distribution along the fin are linear, if radiation is added, the models become intrinsi-
cally non-linear and the analyses very challenging. In this work we investigate the role of entropy
in assessing the efficiency of the fin. We introduce a novel indicator of the capability of a fin
to dissipate heat by considering the rate of entropy produced by the fin in its steady state. The
contribution to the entropy rate taken into account are from convection and radiation. The anal-
ysis takes advantage of the explicit analytical results for the distribution of the temperature in
convective-radiative fins obtained in [2].

The work is organized as follows: in section (2) we introduce the main equations describing
the evolution of the temperature along the fin and the corresponding boundary conditions. The
rate of entropies produced by convection and radiation by the fin are also introduced. In section
(3) an entropy-based indicator for the effectiveness of the fin to dissipate heat is introduced and
discussed. In section (4) the formulae introduced are applied to the case of purely convective
fin: the efficiency of a rectangular fin is calculated and a comparison with the classical results
from literature is given. In section (5) the case of a fin dissipating by convection and radiation is
presented. Some of the results given in [2] are reported for easy of readiness and the application of
the method to some relevant cases is illustrated. Finally, in the conclusions, we discuss our results
and their possible generalizations.
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Figure 1: The longitudinal fin with a profile described by a suitable f0(x) with the coordinate system, the
cross-sectional area and the geometrical properties. The case shown corresponds to ft = f0(`) = 0.

2. The entropy of the steady-state

We consider a longitudinal fin of arbitrary profile attached to a base at a temperature Tb. The
fin length is L, whereas the fin thickness at a distance x from the base is 2 f0(x) ≥ 0. The half
thickness at the base is fb = f0(x = 0), whereas at the fin tip, located at x = `, the half thickness
is denoted by ft = f0(`). We assume that the Fourier law of heat conduction holds inside the fin
and that the temperature varies only along the x direction. The variation of the internal energy
is assumed to be equal to the energy gains (or losses) by conduction, radiation and convection.
If ρ is the density of the homogeneous material, c its specific heat, κ the thermal conductivity,
h the convective heat transfer coefficient and σ the Stefan-Boltzmann constant, the evolution of
temperature T (x, t) is governed by the following equation:

ρc f0(x)
∂T
∂t

= κ
∂

∂x

(
f0(x)

∂T
∂x

)
− 2h

(
1 + 2

f0

L

)
(T − T0) − 2σε

(
1 + 2

f0

L

)
(T 4 − T 4

1 ), (1)

where T0 is the temperature of the fluid adjacent to the fin and T1 represents the temperature of
the effective radiation environment (i.e. the radiant energy absorbed by the fin per unit of time and
surface is εσT 4

1 ) and ε is the emissivity of the fin.
If the fin thickness is small compared to its length, then the term f0/L can be ignored and we obtain

ρc f0(x)
∂T
∂t

= κ
∂

∂x

(
f0(x)

∂T
∂x

)
− 2h(T − T0) − 2σε(T 4 − T 4

1 ) (2)

In the following we assume the fin to be in general non-gray, with T 4
1 = kT 4

0 , where k is the ratio
between the absorptivity and the emissivity of the fin [9]. For a gray fin one has to set k = 1 [9].

Equation (2) must be supplied with the initial and boundary conditions: we assume the bound-
ary conditions to be given by [2]

f0(x)
dT
dx

∣∣∣∣∣
x=0
− η0(T − Tb)|x=0 − ξ0 (T 4 − kT 4

b )
∣∣∣
x=0

= 0. (3)
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and

f0(x)
dT
dx

∣∣∣∣∣
x=`

+ η1(T − T0)|x=` + ξ1 (T 4 − kT 4
0 )

∣∣∣
x=`

= 0. (4)

The initial condition is given by T |t=0 = T (x, 0) = Tin(x).
In (3) and (4) ηi and ξi, i = 0, 1, are positive constants proportional to the Biot and radiation-

conduction numbers of the ends of the fin.
We are interested in the entropy production due to heat exchange, so we assume that the main

contribution to the entropy production comes from convection and radiation. The entropy pro-
duced by the friction of the fluid on the fin has been taken into consideration elsewhere (see e.g.
[10]). For a process starting from a temperature distribution at t = 0 given by Tin(x) up to the
temperature T (x, t) at some time t > 0, the contribution at x to the entropy production due to the
convection is given by 2h(L + 2 f0) ln (T/Tin) . Hence, for the entire fin we obtain

ṡh|Tin→T =

∫ `

0
2h(L + 2 f0) ln

(
T
Tin

)
dx (5)

The contribution to the entropy production due to the radiation can be explicitly calculated under
suitable assumptions. We assume that the surface of the fin is diffuse gray [9], i.e. it absorbs a
fixed fraction of incident radiation for any direction and at any frequency and emits a fixed fraction
of the blackbody radiation. For a blackbody radiation, the mean occupation number for the photon
gas is given by

< n >=
1

e
hν

KBT − 1
(6)

where h is the Planck constant and KB the Boltzmann constant. The density of states per unit
volume and per unit solid angle is given by

ρ(ν) =
gν2

c3 (7)

where c is the speed of light and g is the degeneracy factor which takes into account the two
possible polarizations of the photons: it is equal to 2 for unpolarized photons (like in our case) and
equal to 1 for polarized photons. The contribution to the entropy for each given frequency ν can
be written as

s(v) = KB ((1+ < n >) ln(1+ < n >)− < n > ln(< n >)) . (8)

Equation (8), together with (6) and (7) give, for the total entropy of the blackbody radiation

S =
8πVK4

BT 3

h3c3

∫ ∞

0
x2

[(
1 +

1
ex − 1

)
ln

(
1 +

1
ex − 1

)
−

(
1

ex − 1

)
ln

(
1

ex − 1

)]
dx (9)

In this case the integral can be evaluated explicitly: indeed, with an integration by parts, we get∫ ∞

0
x2

[(
1 +

1
ex − 1

)
ln

(
1 +

1
ex − 1

)
−

(
1

ex − 1

)
ln

(
1

ex − 1

)]
dx =

1
3

∫ ∞

0
x4 ex

(ex − 1)2 dx. (10)
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The integral on the right can be evaluated thanks to the following identity (see e.g. [4])

Iα(y) .=
∫ ∞

0

xα

ex−y − 1
dx = α!

∑
k=1

eky

kα+1 . (11)

For simplicity we can assume α ∈ R+ and y ∈ R−. By taking the derivative of I4(y) with respect to
y and evaluating it to 0 we get∫ ∞

0
x4 ex

(ex − 1)2 dx = 4!
∞∑

k=1

1
k4 =

4
15
π4 (12)

giving

S =
32πVK4

BT 3π5

45h3c3 =
16σ
3c

VT 3 (13)

This result, limited to the balckbody radiation when the number of photons is in equilibrium, is
well-known (see e.g. [12] ). Whit an interaction of the radiation with the matter the number of pho-
tons is no more conserved and the mean occupation number is reduced due, e.g., to the processes
of absorption, emissions and reflections (see e.g. [3]). As a consequence, the spectral energy irra-
diance is reduced too. This reduction is accounted for by the emissivity ε of the material, so we
can write

< nε >=
ε

e
hν

KBT − 1
. (14)

By repeating all the steps linking equation (6) for < n > to equation (13) for S for the balckbody
radiation, we get, in the case of a diffuse gray material with emissivity ε

S ε =
16σ
3c

I(ε)VT 3 (15)

where I(ε) is a dimensionless integral giving the dependence of the radiation entropy by emissivity,
explicitly given by

I(ε) =

∫ ∞

0
x2

[(
1 +

ε

ex − 1

)
ln

(
1 +

ε

ex − 1

)
−

(
ε

ex − 1

)
ln

(
ε

ex − 1

)]
dx. (16)

The entropy rate for unit surface dṡ is obtained from (15) as [5], [7]:

dṡ =
16σ

3
I(ε)T 3 (17)

From (5) and (17) it follows that the total contribution to the entropy production (in W/◦K) of the
fin by convection and radiation can be written as:

ṡ|Tin→T = ṡh|Tin→T + ṡσ|Tin→T =

∫ `

0
2(L + 2 f0)

(
h ln

(
T
Tin

)
+

16σ
3

I(ε)(T 3 − T 3
in)

)
dx (18)
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and, by using the same approximation as in equation (2):

ṡ|Tin→T = 2L
∫ `

0

(
h ln

(
T
Tin

)
+

16σ
3

I(ε)(T 3 − T 3
in)

)
dx (19)

It is now appropriate to introduce dimensionless variables. In particular, let z = x/` and
τ = κt/ρc`2 denote the dimensionless coordinates. Moreover we define θ = T/Tb, θin = Tin/Tb,
α = 2h`2/( fbκ), β = 2σε`2T 3

b/( fbκ) and f (z) = f0(z`)/ fb. Equation (2) becomes

f (z)
∂θ

∂τ
=
∂

∂z

(
f (z)

∂θ

∂z

)
− α(θ − θ0) − β(θ4 − kθ4

0) (20)

with initial conditions θ(z, τ)|τ=0 = θ(z, 0) = θin(z) and boundary conditions

f (z)
dθ
dz

∣∣∣∣∣
z=0
− Bi0(θ − 1)|z=0 − N0(θ4 − k)

∣∣∣
z=0

= 0,

f (z)
dθ
dz

∣∣∣∣∣
z=1

+ Bi1(θ − θ0)|z=1 + N1(θ4 − kθ4
0)
∣∣∣
z=1

= 0,
(21)

where the Biot numbers Bi j = η j`/ fb, j = 0, 1, and the radiation-conduction numbers N j = ξ j`/ fb,
j = 0, 1 were introduced.

3. The role of entropy in assessing efficiency

A common indicator of the capability of a fin to dissipate heat is given by the efficiency [8],
[6], [9]. To define this efficiency, it was necessary to introduce a reference state given by the fin
at constant temperature equal to the base temperature Tb (θ = 1). Accordingly, the efficiency η of
the fin is defined as the ratio of the actual heat transfer to the ideal heat transfer for a fin of infinite
thermal conductivity in the reference state. It can be shown that, for the steady state solution of
equation (20), the efficiency can be calculated as [2]:

η =
Bi1(θ0 − θ(1)) + Bi0(1 − θ(0)) + N1(kθ4

0 − θ(1)4) + N0(k − θ(0)4)

α(1 − θ0) + β(1 − kθ4
0)

. (22)

In order to make a comparison with the efficiency as above defined, the calculation of the
entropy production ṡ is performed by taking the same reference state. Hence, ṡ is given by

ṡ := ṡ|T→Tb
= ṡ|Tin→Tb

− ṡ|Tin→T (23)

and applying (19) it follows

ṡ = 2L
∫ `

0

(
16σ

3
I(ε)(T 3

b − T 3) − h ln
(

T
Tb

))
dx. (24)
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In order to get clearer formulae, we introduce the reference entropy production due to convection,
ṡ0,h, and the reference entropy production due to radiation, ṡ0,σ, as follows:

ṡ0,h = 2L`h, ṡ0,σ = 2L`
16σ

3
I(ε)T 3

b , (25)

so that the expression of the entropy production reduces to

ṡ =

∫ 1

0

(
ṡ0,σ(1 − θ3) − ṡ0,h ln (θ)

)
dz. (26)

Notice that the entropy rate ṡ0,σ corresponds to the entropy produced by a fin at θ = 0 (i.e. T = 0),
whereas the entropy rate ṡ0,h corresponds to the entropy produced by a fin at θ = exp(−1) ∼ 0.368
(i.e. T ∼ 0.368Tb).

As pointed out in [2], a large class of steady state solutions of equation (20) with the bound-
ary conditions (21) are such that the dimensionless temperature θ(z) is bounded from below by
the (dimensionless) fluid temperature, θ0 = T0/Tb, and from above by the (dimensionless) base
temperature, θb = Tb/Tb = 1, i.e. θ ∈ (θ0, 1).

We are now able to define an entropy-based indicator for the effectiveness of the fin to dissipate
heat by convection and radiation. This can be done by defining

ηs = 1 −

∫ 1

0

(
ṡ0,σ(1 − θ3) − ṡ0,h ln (θ)

)
dz(

ṡ0,σ(1 − θ3
0) − ṡ0,h ln (θ0)

) . (27)

If θ(z) = θ0, then ηs = 0, whereas ηs = 1 when θ(z) = θb = 1. We notice that the ratio of the
reference entropies ṡ0,σ and ṡ0,h is related to the ratio of the dimensionless convective and radiative
coefficients α and β (see the definitions before equation (20)) by

ṡ0,σ

ṡ0,h
=

16
3

I(ε)
ε

β

α
(28)

so that equation (27) can be written also in the following form:

ηs = 1 −

∫ 1

0

(
16
3

I(ε)
ε
β(1 − θ3) − α ln (θ)

)
dz(

16
3

I(ε)
ε
β(1 − θ3

0) − α ln (θ0)
) (29)

In the next section, we will investigate the reliability of this definition by analyzing the purely
convective case and making a comparison with the classical definition of efficiency (22).

4. Analysis of the pure convective case

In this section we take into account a fin dissipating heat solely through the convective mech-
anism. In this case formula (27) reduces to

ηs = 1 −
1

ln(θ0)

∫ 1

0
ln(θ)dz (30)
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The simplest case is that of a rectangular longitudinal profile, meaning f (z) = 1 for the dimension-
less profile f (z). The steady state temperature θ(z), solution of the equation (20) with the boundary
conditions (21), has been given in [2] as

θ(z) = θ0 + (1 − θ0)Bi0
m cosh(m(1 − z)) + Bi1 sinh(m(1 − z))

m(Bi0 + Bi1) cosh(m) + (m2 + Bi0Bi1) sinh(m)
. (31)

From the previous formula it is possible to get the temperature distribution along a fin with an
insulated tip and with a base at T = Tb. Indeed, when N0 and N1 are both zero, the boundary
condition corresponding to an insulated tip is obtained by taking Bi1 = 0 in (21), whereas the
boundary condition corresponding to a base at T = Tb is obtained by taking the limit Bi0 → ∞ in
(21). Hence, equation (31) reduces to

θ(z) = θ0 + (1 − θ0)
cosh(m(1 − z))

cosh(m)
. (32)

By equation (30), the corresponding value of entropic efficiency is

ηs = −
1

ln(θ0)

∫ 1

0
ln (1 + a cosh(my)) dy, (33)

where a = 1−θ0
cosh(m)θ0

. It is interesting to look at what happens when θ0 is close to 1. In this limit
θ0 → 1, it is possible to show that one has:

ηs =
tanh(m)

m
+

1
8

sinh(2m) − 2m
2m(1 + cosh(2m))

(1 − θ0) + O((1 − θ0)2) (34)

For a temperature profile given by (32), the classical efficiency (22) (i.e. the ratio of the actual heat
transfer to the ideal heat transfer for a fin of infinite thermal conductivity) is given by [2], [6]:

η =
tanh(m)

m
(35)

so formula (34) can be also rewritten as

ηs = η +
1
8

sinh(2m) − 2m
2m(1 + cosh(2m))

(1 − θ0) + O((1 − θ0)2) (36)

From this example it is evident that (30) can be seen as an extension of the classical definition
of the efficiency based on the quantity of heat dissipated by the fin. In figure (2) we report a plot
of the formula (33) as a function of θ0 and m. For comparison, the Gardner’s result (35) is also
reported.

A further support to the above point of view is given by looking at the efficiency corresponding
to the more general profile temperature (31) in the same limit θ0 → 1. Now we get, from formulae
(31) and (33):

ηs = Bi0
Bi1(cosh(m) − 1) + m sinh(m)

m
(
m(Bi0 + Bi1) cosh(m) + (m2 + Bi0Bi1) sinh(m)

) + O(1 − θ0). (37)

Again, the first term in the series is exactly the efficiency obtained by applying the classical defi-
nition of efficiency (22) (see [2], where the formulae for different other profiles have been given).

In the next section we will look at the more general convective-radiative case.
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Figure 2: The plot of the efficiency ηs (33) as a function of θ0 and m (blue) and the classical Gardner’s
formula (35) (in red).

5. Entropic efficiency in the convecting-radiating fin.

The case of a fin dissipating both by convection and radiation is more challenging since the
differential equation, describing the steady state temperature along the fin, is non-linear and the
general solution of the differential equation cannot be written explicitly. In [2] the authors have
been able, thanks to a change of variables, to write down a family of explicit solutions (in terms of
an auxiliary function y(z)) of equation (20) in the steady case with the boundary conditions (21).
For the sake of completeness we report the main formulae and restrict the discussion to gray fins
(i.e. we set k = 1 in equations (20) and (21)).

If the change of variables

θ(z) = θ0 + wy(z)2 (38)

is inserted into the equation corresponding to the steady version of (20), and assuming the further
constrain f (z) dy

dz = 1, then the resulting equation for y(z) can be integrated to give the following
implicit formula for y(z) [2]:

−
A
y

+ E1 arctan
(

y
b1

)
+ E2

(
arctan

(
y + a2

b2

)
+ arctan

(
y − a2

b2

))
+ F2 ln

(
(y + a2)2 + b2

2

(y − a2)2 + b2
2

)
=
βw3

2
(z + c),

(39)
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where the values of A, E1 E2 and F2 are given by:

E1 = −
1

b3
1

(
a2

2 + (b1 − b2)2
) (

a2
2 + (b1 + b2)2

) ,
E2 =

1
4

(
(a2

2 − 3b2
2)(a2

2 + b2
1 − b2

2) − 2b2
2(3a2

2 − b2
2)
)

(
a2

2 + (b1 − b2)2
) (

a2
2 + (b1 + b2)2

) (
a2

2 + b2
2

)3
b2

,

A =
1

b2
1(a2

2 + b2
2)2
, F2 =

1
8

(
(b2

2 − 3a2
2)(a2

2 + b2
1 − b2

2) + 2a2
2(3b2

2 − a2
2)
)

(
a2

2 + (b1 − b2)2
) (

a2
2 + (b1 + b2)2

) (
a2

2 + b2
2

)3
a2

.

In these expressions the coefficients b1, a2 and b2 are explicit functions of the dimensionless fluid
temperature θ0, the ratio α/β and the parameter w appearing in (38). More explicitly one has:

b1 =

√
2θ0 + b

w
, a2

2 =
b − 2θ0 + 2

√
2θ2

0 + b2

4w
, b2

2 =
2θ0 − b + 2

√
2θ2

0 + b2

4w
. (40)

where the value of b is fixed by the unique real solution of the following equation:

α

β
= b(b2 + 2bθ0 + 2θ2

0). (41)

At this point it remains to fix the values of the constant c appearing in (39) and of the constant w
in (38). They can be fixed by the boundary condition at z = 0: indeed, it is possible to show (see
[2]) that in terms of y(0) = y(z = 0), the first of the two boundary conditions (21) can be written
as the following polynomial equation for y(0):

Bi0(wy(0)2 − (1 − θ0)) + N0

(
(wy(0)2 + θ0)4 − 1

)
− 2wy(0) = 0. (42)

Further, for fixed values of the parameters Bi0, N0, θ0 and w, this equation possesses always one
real negative solution (see [2]), say y−. The initial condition for y is then y(0) = y−.

For consistency with the assumed constraints f (z)dy
dz = 1 and f (0) = 1, it is possible to show

that the value of w must be fixed by the following equation

f (0) = 1 =
2

βy2
−

(
wy2
− + 2θ0 + b

) ((
wy2
− + θ0 −

b
2

)2
+ θ0(θ0 + b) + 3

4b2
) , (43)

whereas the value of c is fixed by equation (39) evaluated at y = y− and z = 0. Consequently,
the values of y as a function of z are implicitly determined by equation (39) for any choice of the
parameters β, a and b (i.e. of the parameters θ0, α and β of the steady version of the differential
equation (20)), giving, through equation (38), the corresponding values of the dimensionless tem-
perature in the steady state θ(z). Now we will apply the methodology reported above to describe
the dependence of the entropic efficiency (29) on the dimensionless convection and radiation co-
efficients α and β and on the emissivity ε.
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Figure 3: The plot of the efficiency ηs as a function of β for θ0 = 0.5 and four different values of α

Figure 4: The plot of the efficiency ηs as a function of β for θ0 = 0.1 and four different values of α
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Figure 5: The plot of the classical efficiency η (from [2]) as a function of β for θ0 = 0.1 and θ0 = 0.5 and
four different values of α.

For simplicity we analyze the case of a fin with a base at T = Tb, i.e. θ(0) = 1, corresponding
to Bi0 → ∞ and/or N0 → ∞. In this case the value of w can be written also as:

w =
1
2

(
α(1 − θ0) + β(1 − θ4

0)
)
. (44)

We fix the value of the emissivity ε to be equal to 0.5. The corresponding value of the integral
I(ε) (16) is given by I(ε) ∼ 5.097. We consider two different values of θ0: θ0 = 0.1 and θ0 = 0.5.
For each value we consider four different values of α (i.e. α = {0.1, 0.5, 1, 2}) and twenty different
values of β (from β = 0.1 to β = 2). Then, we calculate the distribution of temperatures along
the fin, corresponding to to the given values of parameters, according to equations (38) and (39).
Finally, we obtain the amount of entropic efficiency of each state through equation (29). The
results are reported in figures (3) and (4): the efficiency decreases with increasing β in each cases
and decreases with increasing α. These behaviors are in agreement with those of the classical
efficiency (22) by performing similar variations of the parameters. For comparison we report in
figure (5) the values of the efficiency calculated with formula (22) (given in [2]) by using the same
choices of the parameters as above.

6. Conclusions

We introduced a novel indicator giving the efficiency of the performances of longitudinal fins
based on the amount of entropy produced by the fin in its steady state. The contributions to the
entropy taken into account have been those coming from convection and from radiation. It has been
shown that this definition gives values of efficiency that are compatible, in a first approximation,
to those given by the classical definition of efficiency based on the analysis of the heat transfer by
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convection and radiation. In our opinion our definition is however more flexible: the role of the
fluid temperature is explicit and this is particularly evident for example from equation (36). For
the analysis of the convective case and of the full convective-radiative case we took advantage of
the results appeared in [2], where explicit solutions of the relevant equations for the distribution
of temperature along the fin have been obtained. This work can be considered a starting point of a
more deeper analysis of the efficiency of fins with different profiles and with different mechanisms
of heat dissipation: indeed the methodology given is general and, also if here has been applied to
few simple cases, it is worth of more consideration.
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