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Abstract: This review paper reports a detailed characterization of some combustion or incineration
residues and by-products produced in a medium-sized city in Northern Italy. The municipal
solid waste incineration (MSWI) generates fly ash, which is a toxic waste. Coal fly ash (CFA) and
flue gas desulfurization (FGD) derive from the thermoelectric coal plant located in the same city.
Along with these ashes, silica fume and rice husk ash are also considered for the stabilization of
fly ash based on their amorphous silica content with the aim to convert them into an inert material.
The characterization of all the investigated ashes was performed using different techniques: X-ray
diffraction, total reflection X-ray fluorescence, scanning electron microscopy, and transmission electron
microscopy. The aim of this work is to describe the reuse possibilities that were proposed for these
ashes, which were determined also on the basis of their structural properties. Several possible
applications of the investigated ashes are proposed, and the most suitable reuse of stabilized fly ash
samples seems to be the production of sustainable plastic composites. This paper shows that the
reuse of the by-product materials can allow natural resources to be preserved following the principles
of a circular economy.

Keywords: fly ash; bottom ash; silica fume; coal fly ash; flue gas desulfurization; rice husk ash;
stabilized sample; circular economy

1. Introduction

Municipal solid waste (MSW) is an abundant waste stream composed of materials and products
that should be recycled because of the raw materials it contains. However, this is not always
feasible, because MSW includes non-homogenous products with a combination of different materials,
such as wood, metals, glass, plastic, etc. [1]. It is known that MSW is composed roughly by organic
and inorganic waste in particular, making it very hard to select suitable technologies for its separation.
According to the circular economy principles, recycling and prevention are fundamental to increased
resource efficiency. However, recycling can require energy and resources that may be higher in
comparison to landfill procedures [2].

In Brescia, a medium-sized urban system in Italy, MSW that cannot be separated is incinerated to
manage waste in a suitable way and recover energy. The waste-to-energy plant provides a significant
contribution to the energy needs of the city. In fact, in addition to producing electricity, it recovers
the heat generated and coveys it to the homes of individual users. This is achieved through a district
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heating network of over 670 km. The plant is composed of three interdependent combustion units
powered by undifferentiated urban waste and special non-hazardous waste. Moreover, in the same
city, a multi-fuel cogeneration thermoelectric plant that uses natural gas and coal to provide district
heating and electricity production is also present [3].

As a consequence, in the city, there is a need to properly manage municipal solid waste incineration
(MSWI), including fly ash (FA), bottom ash (BA), and coal combustion residues. The MSWI process
allows a mass and volume reduction of 70% and 90%, respectively. Bottom ash represents the 80–90%
of the residue (approximately 1 ton of incinerated MSW produces 1/4 ton BA), and the remainder is fly
ash and air pollution control residue [4].

Several activities were done in the last few years (as demonstrated by the published literature
studies) devoted to MSW FA and BA characterization. Various application fields have already been
proposed, mainly for BA: e.g., metal secondary sources and construction building reuse [5]. Indeed,
despite the fact that BA contains a high amount of chloride and metals, such as Fe and Cu [6,7], it is
considered as non-hazardous waste [8], requiring minimal treatments before its reuse. On the contrary,
according to the European Waste Catalogue [9,10], MSWI FA is classified generally as hazardous waste
due to its high content of leachable toxic metals (such as Zn, Ni, Cu, Cr, and Cd) requiring stabilization,
and also because of its landfilling [5,11]. Therefore, its reuse is recommended after the application of a
suitable stabilization treatment process.

Coal fly ash (CFA), which generally has a composition similar to Portland cement [12] is captured
by cyclones in bag-houses and electrostatic precipitators. Flue-gas desulfurization (FGD) residues are
produced inside chemical “scrubber” emission control systems that remove sulfur and oxides from
power plant flue-gas streams and may attain 24% of all coal combustion residues [13].

Because coal combustion ashes are generally not considered toxic, they are valuable by-products
with a vast array of applications, and so are the most common use of CFA in Portland cement [14].
In this context, it is extremely important to properly characterize these ashes to address the by-products
for the most suitable and sustainable applications.

Fly ash recycling is the best strategy for its management, but it can also be seen as one current
example of implementing the concept of industrial symbiosis, where waste for one industry can be
considered a resource for another one. Indeed, in a natural ecosystem, there are no wastes, but only
resources and products. For this aim, research is extremely active in the purpose of reusing all ash
typologies as fillers in several applications. Indeed, about 1300 papers have been published (until
the end of 2019) on the reuse of ash. Figure 1a shows the number of published papers, also reported
per year by the main published source (from the SCOPUS database). It is evident that interest is
exponentially increasing. In addition, the interest sector of reuse, which was originally oriented to
building materials, is now also devoted to polymer applications, with other limited applications in
alternative fields (Figure 1b), such as soil amendment [15,16].

Figure 1. Number of published papers (a) and types of journals publishing the higher number of
papers about ash reuses (b).

In particular, in the frame of the research activity made in the last few years [17–20], some of
the ashes derived from coal combustion are employed to stabilize fly ash deriving from MSWI in the
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present paper. For this aim, ash also derived from rice husk incineration and silica fume (a silica-rich
ash) were used.

This work is devoted to reporting the results of the characterization of ashes that are by-products
derived from coal combustion, rice husk combustion, and silica fume. On the basis of their
characteristics, their reuse possibilities are also presented. Finally, their contribution to MSWI
fly ash stabilization is discussed and the possible use of stabilized material is proposed.

2. Chemical Characterization of Incineration Residues and Combustion By-Products

2.1. Materials

MSWI residues, MSWI fly ash (FA), and bottom ash (BA), were provided by the incinerator power
plant managed by A2A s.p.a. The industrial by-products involved in the MSWI FA stabilization were
silica fume (SF, from Metalleghe spa, Italy), rice husk ash (RHA, from Curtiriso s.r.l., Pavia, Italy),
coal fly ash (CFA), and flue gas desulfurization (FGD) produced by a coal thermal power plant in
Brescia. The coal combustion ash was produced at 1200–1700 ◦C [21], silica fume at about 2000 ◦C [22],
MSWI residues at nearly 1000 ◦C [23], and rice husk ash at 800 ◦C [24].

MilliQ water (Millipore DirectQ-5 purification system) was used for the preparation of
stabilized materials.

2.2. Characterization Techniques

The minerals and phases identification and amorphous phase quantification and the chemical and
detailed imaging of surface morphology of the waste materials were performed by X-ray diffraction
(XRD), scanning electron microscopy, X-ray microanalysis (SEM-EDX), and transmission electron
microscopy (TEM).

The XRD measurement was performed by a Panalytical X’Pert Pro diffractometer supplied with
the X’Celerator detector and Cu anode (CuKα 1.5406Å), operating at 40 kV and 40 mA. The spectra
samples were collected between 5 and 80◦ (2θ).

The SEM analysis (FEI NOVA 600 Dual Beam (FEI, currently Thermofisher, Eindhoven,
The Netherlands)) was performed using an acceleration voltage set from 5 to 25 KeV and acquiring
secondary electrons. The elemental composition of materials was performed by an energy dispersive
X-ray spectroscopy (EDX) microprobe (EDAX analyzer (AMETEK BV, The Netherlands)) connected to
the SEM.

The TEM analysis (JEOL-JEM 2100; JEOL, Italy) was performed at 120 kV. The material powders
were sonicated for 10 min in 1 mL of MilliQ water and then 3 µL of the suspensions were deposited on
Formvar carbon-coated 200 mesh copper grids (Agar Scientific, USA) before drying overnight in a
desiccator. An energy dispersive X-ray analysis (EDX) with the X-Flash Detector 5030 (Brüker, Italy)
coupled with the microscope was used for the element identification performed at 120 KV in TEM or
STEM mode.

3. Reported Results of Characterization

3.1. Silica Fume (SF)

Silica fume, or microsilica, is a fine non-crystalline powder generated in electric arc furnaces.
It is a by-product of silicon or ferro-silicon alloy processing. SF consists of the fine particles with a
specific surface about six times larger than cement. It is known that SF comes in the three forms of
powder, condensed, and slurry. Its color varies from light to dark grey as a function of manufacturing
processes, such as wood chip composition, furnace temperature, ratio of wood chip to the coal used,
exhaust temperature, and type of metal produced [25]. The characterization of SF showed that its
particles had a diameter ranging from 20 to 500 nm [26,27], with a specific surface area of 220 m2/g,
bulk density of 200–350 kg/m3, and porosity of 0.84. Figure 2 shows the TEM and EDX analysis of
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SF powder. The TEM images revealed the presence of spherical particles assembled in agglomerates,
which are formed during collection and cooling processes. The elemental analysis showed a high
percentage of silicon and oxygen, as confirmed by the literature [28,29].

Figure 2. TEM images (a,b) of silica fume sample. Energy dispersive X-ray (EDX) analysis in TEM
mode was also reported (data are expressed in weight %).

The X-ray diffraction (XRD) pattern revealed the presence of an amorphous phase, a broadened
peak at around 2θ = 22◦, and cristobalite, which describes the small presence of crystalline SiO2 formed
during the production process (see Figure 3) [26,30,31].

Figure 3. XRD spectra of rice husk ash (RHA) (gray) and silica fume (black).

Thus, the mineral characterization of amorphous silica showed silica and/or silico-aluminate-rich
materials. In the frame of the COSMOS (Colloidal Silica Medium to Obtain Safe inert: the case of
incinerator fly ash) project [32], it was demonstrated that the presence of amorphous silica in SF
was fundamental to heavy metal stabilization. The chemical composition of SF showed that other
oxide metals, such as CaO, Al2O3, MgO, Na2O, and K2O, could also be present, counted only in
small percentages. A low amount of MgO was detected in most of the raw materials; however, a
slightly higher quantity was found in the Fe-Cr-Si fume, which may not be deleterious to concrete.
The percentage of carbon varied between 0.5 and 2%. SF had a different mineralogical composition
compared to the natural pozzolans that essentially consisted of an amorphous silica structure with
very little crystalline particles. Therefore, SF was the most active pozzolan [33]. Further studies have
tested the mechanical properties of cement and concrete after SF addition [34–36].
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Bearing in mind that SF is a by-product of a well-controlled process, its variation in chemical
composition would be expected to be insignificant.

3.2. Rice Husk Ash (RHA)

Rice husk (RH) is an agricultural by-product material, which represents approximately 20% of the
rice weight. RH is characterized by 50% cellulose, 25–30% lignin, and 15–20% silica [33]. Rice husk
ash (RHA), generated when rice husk is burnt, is classified as an artificial pozzolan ash and is a very
reactive material. Calculations demonstrate that nearly 50 kg of RHA is developed when 200 kg of
RH is burnt. Burning conditions affect the particle size and specific surface area of ash. Therefore,
the temperature and environment of burning yields are the key parameters that cause differences in
the RHA composition. Furthermore, completely burnt RH is grey to white in color, while partially
burnt RHA is blackish. Upon burning, cellulose and lignin are removed from RH, leaving behind silica
ash. Indeed, the chemical composition of RHA has demonstrated that nearly 90% is composed by
SiO2, and the other part by metal oxides, such as Al2O3, MgO, Fe2O3, CaO, Na2O, and K2O [24,33–38].
The relevant amount of SiO2 makes this kind of ash highly porous and lightweight, with a very
high external surface area. Moreover, this waste ash material may be used as a precursor of silica
gel [39,40]. The efficiency of heavy metal stabilization from MSWI fly ash using RHA during the
COSMOS-RICE (Colloidal Silica Medium to obtain Safe Inert, from RICE husk ash) project has already
been proven [32,40]. The advantage of this low-cost technology is the sustainability, using wastes as
raw materials. The mixing of RHA with other MSW derived from incineration has resulted in an
effective approach for heavy metal entrapment [37,39,41]. After RH burning, the amorphous silica
is converted in its crystalline phase. In the literature, different studies have already highlighted the
temperature and time effect on the silica transition phases [42,43]. The XRD pattern of RHA is reported
in Figure 3, where it is compared with the SF spectrum. The RHA spectrum shows the presence of
cristobalite (SiO2) as the only crystalline phase, as reported by Bosio [40]. The SF spectrum appears
similar to that of RHA; however, cristobalite peaks are poorly developed due to the predominance
of the amorphous phase, which is important during heavy metal immobilization. As explained by
Bosio [40] in the extracted silica, the cristobalite phase was not identified, increasing the reactivity of
silica for heavy metal stabilization in this way.

3.3. Coal Fly Ash (CFA)

CFA is a by-product generated during the pulverized coal combustion process in thermal
power plants. The characterization of CFA by means of XRD revealed quartz (SiO2) and mullite
(Al4.75Si1.26O9.63) as the major non-magnetic fractions present in the crystalline phase, confirming the
data reported by Bosio et al. (2014), since CFA powders have the same origin [40]. Other studies
report that the magnetic phases most present in CFA are magnetite and hematite [44,45]. According
to the American Society for Testing and Materials (ASTM) [46], CFA can be categorized as class F fly
ash or C·fly ash on the basis of the silica, alumina, and iron amount. In particular, the percentage
weight of SiO2 + Al2O3 + Fe2O3 is higher than 70% or between 50% and 70% for CFA class F and C,
respectively [47].

On the contrary of SF, the elemental composition of CFA varied, owing to coal heterogeneity.
This variation was confirmed by an elemental chemical analysis of leachates performed by the total
reflection X-ray fluorescence (TXRF) [17,18]. The obtained results revealed that CFA was mostly
aluminosilicate material and the major constituent elements were the following: Al, Ca, Fe, K,
and Si [33]. The literature results also confirm the presence of unburned carbon and other elements
in trace amount, some of which could become toxic elements due to their ability to accumulate over
time [46]. Particle size was the major factor in determining the CFA toxicity. The smaller the size of
the particle, the greater its surface area to volume ratio, and the higher its chemical and biological
reactivity [48]. A SEM analysis was employed to investigate the morphological characteristics of CFA.
The parameters that influence the CFA morphology are combustion temperature, cooling rate, and also
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the chemical composition of CFA particles [49]. The SEM images, reported in Figure 4, demonstrated
the presence of irregular, rough surfaces to smooth, spherical shapes with sizes ranging from 0.2–25 µm.
Furthermore, the aggregation of the microspheres with small particle sizes connected to surfaces
was identified.

Figure 4. SEM images at different magnifications (4000X (a) and 8000X (b)) of coal fly ash (CFA) powder
acquired in secondary electron mode.

As reported by Zanoletti [50], the EDX analysis revealed that the predominant elements in CFA
are generally C, O, Si, Al, S, K, Ca, and Fe in various proportions. Sometimes, some residual amounts
of other elements can be detected [51].

The TEM analysis confirmed the spherical shape of CFA particles and the presence of agglomerates,
as is shown in Figure 5. Moreover, EDX maps allow the elemental distribution of the sample to
be investigated. The EDX chemical analysis showed a non-homogeneous elemental distribution.
Indeed, Al is found in the proximity of Si and often co-localized, reflecting the presence of
alumina-silicate compounds and also the mullite phase, corroborating the results of the XRD patterns
and SEM analysis [52]. On the contrary, Fe and Ca demonstrate a homogenous distribution on the
agglomerate surface. Our TEM data agreed with the finding of Chen [53], who reports the presence of
alumina-silicate phases.

Figure 5. EDX maps in STEM mode of CFA (a,b), Si (c), Al (d), Ca (e), and Fe (f).
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3.4. Flue Gas Desulfurization Residue (FGD)

FGD is another by-product resulting from current coal combustion processes. The use of dry
processes, based on lime or sodium reagents, is widespread for sulfur dioxide (SO2) emission removal in
the coal thermal power plant. The FGD material produced from these processes is generally landfilled
together with BA and FA materials. In the frame of waste management technologies, the physical and
chemical characterization of FGD enables a more detailed assessment of beneficial and safe end-use
options. Moreover, it provides a greater level of understanding relative to proper landfill management
or the operational considerations for their correct reuse.

The composition of FGD residues is very variable. The residues derived from forced oxidation
processes are mainly characterized by 80% of gypsum mixed with fly ash, although many residues
contain less gypsum (20–50% of the bulk material). FGD residues are very stable in atmospheric
conditions at room temperature [54].

The FGD residues contain two main components: a silico-aluminous fly ash part and calcic FGD
phases. The FGD XRD pattern identified portlandite (Ca(OH)2) as the main mineral phase present in
this material, followed by calcium sulphite hemihydrate (hannebachite, CaSO3·0.5H2O) and gypsum
(CaSO4·2H2O) [17,55]. In the literature, the XRD spectrum of FDG residues also revealed the presence
of SiO2, mullite, and hematite, which derived from the presence of FA in the sample. On the other
hand, the semi-dry FGD ash showed the existence of some amorphous vitreous material and unburned
carbon [54].

The elemental chemical analysis of leachate FGD pointed out S and Ca as the major
constituents [18,39,56]. Other than S and Ca, FGD ashes are dominated by the presence of Al, Fe, and
Si [57].

The leaching solution of FGD enhances the lack of large amounts of soluble heavy metals. A low
Zn amount was found in the FGD leaching solution, while Pb was lower than the detection limit.
A quantitative analysis revealed that Cr, Mn, Fe, and Cu were found in trace concentrations [17].

The changes in the elemental content of FGD were mainly due to the addition of gypsum granules
in the desulfurization tower and the SO2 removal by CaO/CaCO3. The increase of S and Ca in FGD
residues could be related to the entrainment of dissolution and gypsum slurry, where S and Ca in
gypsum and limestone were the main elements [58].

The morphology of FGD particles before and after desulfurization by SEM was performed.
Before desulfurization, the particles were fairly dispersed with an irregular spherical shape, while
the agglomerates increased after desulfurization. As reported in Figure 6, the FGD particles were
agglomerated together to form irregular and dense structures. A further study focused on the
comparison of the morphology of FGD residues deriving from a plant and steel factory revealed
noticeable differences [54]. The FGD particles from steel factories were characterized by irregular
shapes, smooth surfaces, and loose constructions, while semi-dry FGD ash from the thermal power
plant included some FA, had a rough surface, and a micro-porous structure. Particle size was another
difference between two types of FGD. The FGD particles deriving from the power station are usually
bigger in size than those of the steel factory—around 1–50 µm and 0.5–25 µm, respectively.
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Figure 6. SEM images of flue gas desulfurization (FGD) reported at different magnifications.

3.5. Stabilized Fly Ash (FA)

It has already been reported that SF (COSMOS project) [56] and RHA (COSMOS RICE project) [37]
can be used to stabilize FA deriving from the incineration of municipal solid waste. Recently, in the
frame of the RENDERING (Recupero ENergetico dei fanghi di DEpurazione e loro Riutilizzo, IN
alternativa ad alcune risorse naturali, per la produzione di compositi Green) project, it was also
demonstrated that BA [17] could be applied as a heavy metal stabilizer. This is an example of a
zero-waste treatment. Indeed, this stabilization technology involved the use of ashes (FA and BA)
derived from the same industrial process.

COSMOS concerned a mixing of 220 mL of MilliQ water with 130 g of FA, 30 g of CFA, 40 g of
FGD, and 20 g of SF. The COSMOS RICE was prepared by mixing 200 mL of MilliQ water with 97.5 g
FA, 15 g of CFA, 20 g of FGD, and 8.65 g of RHA [24]. Finally, the last process (RENDERING project)
required the mixing of 200 mL of MilliQ water, 130 g of FA, 30 g of CFA, 40 g of FGD, and 20 g of BA.

After the mixing, the compounds were left out at room temperature for two months to allow
the solidification and stabilization of the samples. The leaching test (according to CEN EN 12457-2
normative) reported in previous works [17] revealed the stabilization of heavy metals (such as Pb and
Zn) contained in the MSWI FA. The stabilization process was attributed to the presence of amorphous
silica (derived from SF or RHA or BA) and carbonation reaction [59,60]. The carbonation reaction had
twofold advantages. First of all, it reduced the leachate pH and, consequently, made the heavy metal
stabilization more efficient. Secondly, it involved the CO2 sequestration from the environment. It was
recently calculated that the stabilized material (obtained with BA) can sequestrate 90 kgCO2/kg of
ashes [60].

The XRD pattern of the stabilized samples with RHA, prepared according to the procedure
reported [39,40], revealed the presence of the following phases: calcite (CaCO3), halite (NaCl), gypsum
(CaSO4·2H2O), thaumasite [Ca(SO4)[Si(OH)6](CO3)·12H2O], quartz (SiO2), and potassium chloride
(KCl) [37].

In the literature, the elemental chemical composition of RHA from different origins has already
been reported [24]. It was demonstrated that the soils influenced the chemical composition of RH.
Some studies reported a barrier effect of husk: some heavy metals accumulated more in the rice husk
instead of the rice [61]. The application of RHA as a possible stabilizer of MSWI FA was studied.
A comparison between the elemental concentration of raw powders and the stabilized sample using
RHA highlighted a reduction in the potentially toxic metals’ leachability [37].

The TEM observations (see Figure 7) revealed that the stabilized sample with RHA contained
solid spherical particles ranging from approximately 0.16 to 0.21 µm in diameter. The presence of
these particles, similar to agglomerates in an amorphous matrix (Figure 7a,b) or similar to some fibrils
(Figure 7c), was observed (see the arrows). The TEM images ascribed that this sample had a somewhat
filamentous matrix compared to the sample stabilized with bottom ash [17]. Moreover, in this sample,
the presence of crystals (NaCl, KCl) was observed.
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Figure 7. TEM images of stabilized sample with RHA showing the presence of solid spherical particles
resembling agglomerates in an amorphous matrix (a,b) and in fibrils (c).

Figure 8 shows the TEM-EDX maps of Si, Fe, P, and Pb obtained from the stabilized sample
with RHA.

Figure 8. TEM image (a) and EDX maps of Si (b), Fe (c), P (d), and Pb (e) distribution in suspended
stabilized sample obtained by mixing MSWI FA, CFA, FGD, and RHA.

The EDX maps in STEM mode, which are reported in Figure 8a–e, were performed from a single
particle localized in a small portion of the stabilized sample. The elemental distribution showed that
Pb was mostly co-localized in proximity to silicon (Figure 8e), as already proven with the bottom
ash stabilized sample [17]. Fe appeared to be co-localized with a SiO2 particle. P demonstrated a
homogeneous distribution, and the more intense area suggested the presence of P salts in the stabilized
sample. The EDX analysis reported Si and Fe as the major elements, with percentages of 77.2 and 19.3,
respectively, while the P and Pb concentrations were lower than 2%.

The application of BA in the field of heavy metal stabilization is strongly supported, since it
is considered as a new urban mining source. According to Assi [17], the stabilization technology
was attributed to the carbonation process and the formation of calcium silicate hydrate (C-S-H)
compounds. Moreover, thanks to the pozzolanic properties of BA, it is recommended to use the finest
particles with the aim of increasing the specific surface area and the reactivity of the amorphous
phases. On the contrary, the bigger particles of BA are commonly employed in construction and
building engineering.
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4. Applications

4.1. Silica Fume

The reduction of Portland cement content for economic reasons, the increase the strength,
the durability of concrete, and the reduction of alkali-aggregate reactions is considered the main
cornerstone for the silica fume application in building engineering [14]. For this reason, it is known
as a super pozzolan for the improvement properties of the cements. Indeed, the application of silica
in concrete dates back to early 1950 [33]. Although, its incorporation has benefits on the cement
concrete properties, the maximum amount of SF instead of cement should be between 7% and 9% by
the mass of cementation materials. In addition, the possible presence of sulfate and chloride in SF has
a relevant role in this application field. Indeed, a high concentration of sulfate may contribute to the
expansive reactions in concrete causing the concrete cracking phenomenon, while the chloride ions
may migrate through the concrete over time and an accelerated corrosion reaction may initiate if there
is any embedded steel [62].

For these reasons, SF can be applied as a replacement for fine aggregates in material constructions
(such as cement, concrete, bricks, and ceramic tiles) and filler in plastics [63,64] and paints. Recently,
SF was also employed to produce mesoporous silica [65]. It was also demonstrated that SF can be
used to trap the As contained in coal fly ash. Different studies revealed that mixing SF with other
ashes, such as FA, BA, CFA, and FGD, allows the concentrations of leachable heavy metals, particularly
Pb and Zn, to reduce [17,66]. Moreover, this low-cost technology, based on the use of wastes and
by-products containing amorphous silica, promotes the CO2 sequestration [60].

Being classified as a light-weight material, SF is a feasible candidate to be incorporated in phase
changes material for thermal energy storage in buildings [67,68].

In the last few years, in the frame of Azure Chemistry [69], a new porous and sustainable material
(SUNSPACE “Sustainable materials Synthesized from by-Products and Alginates for Clean air and
better Environments”) was synthesized to promote PM sequestration in urban areas [26]. SUNSPACE
synthesis involves the use of industrial by-products and low-cost materials, such as sodium alginate
and sodium bicarbonate. The thermal decomposition of bicarbonate at a low temperature (70 ◦C)
allows the formation of ink bottle-shaped pores. This particular shape is suitable for the capturing of
fine and ultrafine PM, which is the most dangerous for human health. Various experimental designs
were tested with the aim of investigating the capacity of a new porous hybrid material to trap fine and
ultrafine PM [26,70]. It is estimated that the SUNSPACE ability of PM entrapment is equal to 30 g/m2.
SUNSPACE used as a coating on all city surfaces (for example on walls, roofs, and so on) appears very
promising to reduce airborne PM in urban areas. In addition, SUNSPACE can be regenerated by rainfall,
as demonstrated in previous works [26,69,71]. From an environmental point of view, the sustainability
of this material was evaluated according to a new method proposed in [72]. The energies required in
the SUNSPACE synthesis are very low in comparison to other materials that are widely used in air
filter realization [69].

4.2. Rice Husk Ash

RHA is commonly used as an alternate source of silica [41,73].
The main application field of RHA counts in the concrete and cement materials [74–76].

Different advantages are promoted using RHA in cement and concrete as a pozzolanic material.
Some of these are the improvement of mechanical properties (strength and durability), the reduction
of material costs due to cement saving, and the environmental benefits related to the reuse of waste
material and the reduction of CO2 emissions. It is worth pointing out that RHA may be obtained with
high pozzolanic activity if the burning temperature is below 700 ◦C. The existence of non-reactive silica
minerals, such as cristobalite and tridymite, affects the pozzolanic activity of the ash. Although grinding
is proposed to increase the fine fraction of the pozzolanic material, Mehta [77] has claimed that this
procedure, with a high degree of fineness, should be avoided, since the pozzolanic activity is mainly
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given by the internal surface area of the particles. An addition of RHA to the concrete mixtures
increases the cohesiveness and makes the concrete slightly stiffer. The higher the amount of RHA in the
concrete mixture, the lower the slump of the mixture. Zhang studied the influence of the substitution
of 10% of RHA instead of cement [78]. This replacement in concrete highlighted a higher compressive
strength than the control concrete mixture, but lower than the concrete where silica fume was added.
Other studies that focused on the investigation of the RHA’s role on the sulfate resistance of concrete
revealed an increase of the compressive strength of up to 2 months. This is probably related to the
hydration of calcium silicates and the pozzolanic reactions of blended cements [79]. Cements with a
high content of RHA have lower porosity because of improved particles packing the density of the
blended material, leading to a reduced volume of larger pores [80].

Another explored RHA application is its employment for metal absorption, such as Pb and
Zn [81,82], which are the main contaminants of wastes. In this frame, RHA has already been tested
as a stabilizing agent for heavy metal entrapment on MSWI FA due to the presence of amorphous
silica [18,24,41]. The high content of amorphous silica in RHA and the porous structure of the
particles with a very large surface area are two key parameters responsible for its reactivity. Indeed,
the combination of burning temperature and time of up to 700 ◦C for less than 1 h is reported as the
optimum solution for having silica in an amorphous form [43,83]. At a higher burning temperature,
crystalline silica is produced and, thus, reduces the reactivity of RHA. Nevertheless, the transition of
amorphous silica to the crystalline phase affects either its stabilization properties or health issues: for
example, inhalation can lead to silicosis disease. Therefore, the presence of crystalline silica reduces
the potential application markets for RHA.

Furthermore, RHA owns excellent insulating and absorbent properties. These features enable its
application in industrial processes, such as steel factories, and in the manufacturing of insulation for
houses and refractory bricks, or to absorb oil on hard surfaces, as well as to filter arsenic from water.

4.3. Coal Fly Ash

Recycling CFA can not only be a valuable alternative to landfill, but can also bring economic
and environmental benefits. A large portion of CFA is generally reemployed in cement and
concrete manufacturing [84,85]. Other application fields of CFA reported in literature are: soil
amelioration, catalysis, environmental protection, depth separation, zeolite synthesis, and valuable
metal recovery [84,86]. Nevertheless, other application fields are foreseen for the complete reuse of
this abundant by-product.

Globally, it is estimated that about 7.8 billion tons of CFA are produced per year—only 53.3%
of which are currently recycled [85,87]. New applications of CFA are demonstrated in the field of
pollutants adsorption [88]. Hence, CFA has successfully been tested as an adsorbent of anionic
surfactants [14,50]. CFA was used as a sustainable and low-cost material instead of activated carbon,
the commercial adsorbent widely used in adsorption processes. CFA has shown good performance
in the removal of sodium dodecyl sulfate (SDS) as a model of anionic surfactants, with up to 96%
with 100 g/L of CFA. The sustainability of the adsorbent was evaluated in terms of embodied energy
(EE) and carbon footprint (CF) according to the new simplified method reported in recent works [72].
Although the CO2 emission during the production of activated carbon and CFA is comparable, a great
difference is evaluated in terms of energy primary production. Indeed, the EE values are estimated as
higher than 20 MJ/kg and lower than 1 MJ/kg for activated carbon and CFA, respectively.

CFA could be used as a source of raw material for the synthesis of nanoparticles, as well as
the extraction of useful metals, such as Al, Si, V, Fe, and Ni, due to its mineralogical composition.
Vitrification seems to be a valuable technology in the field of industrial waste reuse. The results are
encouraging for this application possibility due to the total destruction of toxic trace elements and
the solidification of heavy metals into the glass matrix generated during the vitrification at a high
temperature and the consequent nucleation and crystallization heat processes [89,90].
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The application of CFA is related to two different classes (C or F). Class C of CFA is more suitable
for the synthesis of CaO-Al2O3-SiO2 (CAS) system glass ceramics. This CAS system can be applied in
the field of construction due to its excellent mechanical properties, dimensional stability, and resistance
of abrasion and corrosion. On the contrary, class F of CFA is unsuitable for the CAS glass ceramic
system and cement additives due to the high amount of MgO and Fe2O3. Instead, this class is endorsed
for the synthesis of MgO-Al2O3-SiO2 (MAS) system glass ceramic, whose cordierite or mullite are the
principal phases. Thanks to the elevated thermal stability and good chemical durability of this MAS
system glass ceramic, it is commonly applied in the high temperature field, where an excellent thermal
shock resistance is required [47].

4.4. Flue Gas Desulfurization Residue

Agriculture is one of the major application fields of FGD thanks to its suitable physical and chemical
properties in the remediation of soil quality and crop growth. In this frame, several studies highlight
the benefits of FGD product uses on agricultural lands, such as a soil amendment [91], ameliorating
acidic soils, improving soil structure to increase infiltration and water storage, reducing soil erosion and
the movement of sediments, remediating sodic soils, providing a nutrient source for crops, increasing
crop yield, and stabilizing and enriching organic composts [92]. In the case of the alfalfa herb plant
(Medicago sativa L.), FGD residue is considered a readily available B source that is mostly necessary in
the growing season when native soil B availability decreases [93]. Other than B, FGD incorporation
into soil also causes an increase of other elements, such as Mo, Se, and extractable Ca. The uses of FGD
residues at an optimum rate (around 2.5%) has an advantage on crop establishment, alleviating surface
acidity, as well as B and Mo deficiencies [94].

It is known that FGD also contains potentially toxic elements. The presence of gypsum in FGD has
somehow limited its uses in agriculture compared to other industries. Therefore, strong attention to
the long-term studies of the FGD gypsum impact on soil conditions, heavy metal uptake and transfer,
crop growth and quality, and continuous soil and water monitoring is required [95].

On the other hand, FGD gypsum is presented as an advantageous alternative to be used in place
of natural gypsum in cement composition [96]. Due to the high CaSO4 content in desulfurization
gypsum, it has been widely used to produce wallboard, cement retardant, and gypsum board in
concrete engineering [97,98]. Further cases of FGD applications count for the production of Portland
cement in flowable fill in mine reclamation and in aerated concrete blocks.

FGD residues in cement compositions may not only be used as a retarder, but also to enhance
the strength of cement mortar and reduce the amount of water needed under the condition of normal
cement consistency. For this reason, important attention should be paid to control the ratio between
desulphurization residues and gypsum in order to modulate the cement setting time effectively [99].

The application of FGD residues as a filler in gneiss-based asphalt mixture has significant benefits
both from an environmental and economic point of view. The results enlighten that FGD residues can
partly improve the moisture resistance and crack resistance of the gneiss asphalt mixture [100].

FGD has demonstrated a good capacity in the heavy metal immobilization of fly ash deriving
from the municipal solid waste incinerator [101].

Nowadays, there is a growth demand of ammonium sulfate amounts, since it is a valuable nutrient
source for both nitrogen and sulfur for growing plants. It is considered an attractive solution to
convert some of the FGD-gypsum to ammonium sulfate, which also reduces problems related to their
disposal. Currently, it is assessed that the production of ammonium sulfate from FGD residues react
with ammonium carbonate in an aqueous solution [102].

4.5. Stabilized Fly Ash

The reuse of stabilized FA as a filler of several composites was proposed [14,20,37].
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The most promising results were obtained using these powders as a filler in plastic composites [103].
Several examples have already been proposed, while also discussing the mechanical performances of the
obtained composites in comparison to the composites containing natural resources (calcite-CaCO3) [104].

The production of polypropylene (PP) composite materials using the stabilized FA as a filler
through the injection molding machine was made. The stabilized ash was obtained by mixing the
ashes FA, CFA, FGD, and BA with tap water at room temperature using the pilot plant located in the
Brescia incinerator, as already reported by Assi [17]. In order to promote the carbonation reaction
that contributes to the stabilization of heavy metals, the material obtained after the mixing process
was aged for 1 year, as discussed by [60]. As mentioned by Assi [104], a periodic leaching test was
performed in order to control the stability of the sample.

Figure 9 shows the scheme of the machine used to produce the samples that were fed by granules of
PP and stabilized fly ashes with different percentages by mixing the two components before introducing
them into the machine. Figure 9 also shows that using endless screws adopted by the injection molding
machine helped not only to melt and push the material outside through the extruder, but also to
mix and obtain more homogeneous material. The complete mold filling depended on the viscosity
of the composite material, which depended also on the filler charge set and the geometry complex.
Figure 10 shows a set of composite samples obtained by the injection molding process with different
filler percentages. Figure 10c,d shows that some streaks were present on the surface of the samples
with more percentage of filler due to the crushing of stabilized ash grains. This problem can be resolved
by adding some colorant product to the mixture.

Figure 9. Injection molding machine.

Figure 10. Sample products with different % of ash: (a) PP, (b) 10%, (c) 20%, (d) 30%.

4.6. Mechanical Experimental Tests

This chapter reports new results, which have not been published before, about the mechanical
tests performed on composite materials, obtained as described in paragraph 3.5 and compared to the
literature data. These tests were obtained on the composites described in Section 4.5.

4.6.1. Tensile Testing

The tensile test was performed according to (UNI ISO 527). The specimen geometries used were
the dog-bone specimen. The test was conducted by applying a uni-axial load through the ends of the
specimen. The results of the test are reported in Table 1 and show that as the weight fraction of filler
increased in the composites up to 20 wt%, the results of the tensile strength decreased up to 26.5 MPa,
the elongation percentage decreased from 121.3% as the initial value of PP without filler to 11.4%, and
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the tensile modulus increased at high fly ash content. This can be attributed to the fillers that occupied
the interstitial volume. There might have been less PP matrices that could have contributed to the
tensile strength, as reported by Paliwal [105], and to a bad interfacial bonding between the fly ash and
the matrix [106]. Furthermore, as reported by Srivastava [107], the inhibition and propagation of the
crack inside the composite material can be attributed to the presence of fly ash particles. The results
obtained from the tensile modulus, tensile strength, and breaking elongation were similar to the results
reported by Maiti [108] by using CaCO3 as a filler of the PP composite material.

4.6.2. Three Point Bending Test

The flexural modulus was obtained through a three-point bending test performed by means of
an electromechanical dynamometer according to (UNI ISO 178). The flexural modulus determines
how much a sample will bend when a given load is applied, calculated from the slope of the stress
vs. The strain deflection curve, as reported by Assi [104]. As reported in Table 1 and as expected,
increasing the filler amount in the PP matrix increased the flexural modulus [109]. Due to the addition
of fly ash in the composite material, the crystalline of composites increased and the flexural modulus
increased. This resulted in an agreement with the results obtained by Gummadi [110] for smaller
particle sizes of fly ash, due to higher contact surface. As reported by Sengupta [111], due to the strong
interfacial bonding between the fly ash and the PP matrix, the flexural property increased. The results
obtained using fly ash as a filler were similar to those obtained using CaCO3, as reported by Yang [112].

4.6.3. Impact Strength Test

The impact test (Izod test) was performed according to (UNI ISO 180) and the ASTM standard.
The results of the impact test of the composite material are reported in Table 1. The values of the
impact strength decreased, so the energy absorbed in the process of plastic deformation of the matrix
material/reinforcement interface decreased by more than 150% by increasing the percentage of filler.
This can be attributed to the high surface occupied by the particles of fly ash, as reported by Gupta [113],
and by making the material more brittle due to the limited ability of adopting the deformation [114],
and the particles can act as a microcrack initiator [115]. Maiti [108] also reports that increasing the
percentage of CaCO3 as a filler of the PP composite decreases the impact strength.

Table 1. Data of mechanical experiments.

Material Breaking
Elongation [%]

Tensile
Strength [MPa]

Tensile
Modulus [MPa]

Flexural
Modulus [MPa]

Impact
Strength [J/m2]

PP 121.3 27 377.3 1176 5.4
PP + 10% stabilized

fly ash 16.3 27.1 412 1437 3.6

PP + 20% stabilized
fly ash 11.4 26.5 455.3 1627 2.4

5. Conclusions

In this review, the results of the characterization of different by-products, incineration residues,
and combustion materials produced in a medium-sized city are reported. The characterization of these
materials is realized by using various techniques, such as XRD, TXRF, SEM, and TEM, that allow us not
only to investigate the material characteristics, but also to better recognize the most suitable strategies
to employ them.

The review also resumes the stabilization processes that can be applied to reduce the heavy metal’s
leachability of toxic wastes. Indeed, due to its toxicity, MSWI fly ash treatment was required before its
reuse. To satisfy the circular economy principles and apply the azure chemistry approach, waste and
by-products were mixed to obtain a stable and safe material. For example, MSWI fly ash stabilization
was performed by mixing this waste with the other residues containing amorphous reactive phases.
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As reported in the literature, the stabilization of fly ash significantly promotes the possibility
of investigating the value-added applications of this waste, such as its use as a filler, for example,
in plastic composites. Moreover, other investigated promising application fields are presented.

Figure 11 highlights the most suitable applications determined for each type of ash.

Figure 11. Possible applications of coal fly ash (CFA), silica fume (SF), flue gas desulfurization (FGD),
and stabilized fly ash (stabilized FA) with RHA or bottom ash.

For example, the reuse of stabilized fly ash to produce sustainable plastic composites allows
natural resources to be preserved, offering environmental and economic benefits.
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