
Reinforcement Learning Algorithms for Online

Single-Machine Scheduling

Yuanyuan Li∗, Edoardo Fadda†, Daniele Manerba‡,

Roberto Tadei† and Olivier Terzo∗

∗LINKS Foundation - Advanced Computing and Applications, 10138 Torino, Italy

Email: {yuanyuan.li, olivier.terzo}@linksfoundation.com
†Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy

Email: {edoardo.fadda, roberto.tadei}@polito.it
‡Department of Information Engineering, University of Brescia, 25123 Brescia, Italy

Email: daniele.manerba@unibs.it

Abstract—Online scheduling has been an attractive field of re-
search for over three decades. Some recent developments suggest
that Reinforcement Learning (RL) techniques have the potential
to deal with online scheduling issues effectively. Driven by an
industrial application, in this paper we apply four of the most
important RL techniques, namely Q-learning, Sarsa, Watkins’s
Q(λ), and Sarsa(λ), to the online single-machine scheduling
problem. Our main goal is to provide insights on how such
techniques perform. The numerical results show that Watkins’s
Q(λ) performs best in minimizing the total tardiness of the
scheduling process.

I. INTRODUCTION

P
RODUCTION scheduling is one of the most important

aspects to address in many manufacturing companies (see

[1]). The optimization problems arising within production

scheduling can be of static or dynamic type (see [2]). In

contrast with the static case, in which specifications and

requirements are fully and deterministically known in advance,

in the dynamic one, additional information (e.g., new orders,

changes of available resources) may arrive during the produc-

tion process itself. In this paper, we will consider the latter

case, commonly called online scheduling, mainly fostered by

our experience on an industrial project (Plastic and Rubber

4.01) in which frequent occurrences of unexpected events call

for more dynamic and flexible scheduling (see [3]).

In particular, we will focus on online single-machine

scheduling problems with release dates and preemption al-

lowed, in which the objective is to minimize the total tardiness.

Let us consider a set J of jobs that are released over time.

As soon as a job arrives, it is added to the end of a waiting

queue. For each job j ∈ J , let dtj be its due time and ctj
its completion time. The goal of the problem is to arrange the

jobs of the queue, so to minimize the total tardiness calculated

as Γ =
∑

j∈J
taj , where taj := max{0, ctj − dtj}. The

motivation of studying a single-machine problem relies on the

1Plastic&Rubber 4.0. Piattaforma Tecnologica per la Fabbrica
Intelligente (Technological Platform for Smart Factory), URL:
https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/fondo-euro\
\peo-sviluppo-regionale-fesr/ricerca-sviluppo-tecnologico-innovazione/piatta\
\forma-tecnologica-fabbrica-intelligente

fact that, in the plastic and rubber manufacturing, the process

of transforming raw material into a final product just goes

through one or two machines. On the other hand, even for

those manufacturing requiring multiple-machine scheduling

problems, each machine represents a basic block of a chain.

Thus improper usage of a machine can slow down the whole

production process.

The easiest way to deal with scheduling in a dynamic con-

text is the use of the so-called dispatching rules. These rules

first prioritize jobs waiting for being processed and then select

the job with a greedy evaluation whenever a machine gets

free (see Section II for more details). While most dispatching

rules simply schedule on a local view basis, other smarter ap-

proaches can be used to provide better results in the long run.

For instance, Reinforcement Learning (RL) is a continuing and

goal-directed learning paradigm, and it represents a promising

approach to deal with online scheduling. The potential of RL

on online scheduling has been revealed in several works (see,

e.g., [4], [5], [6]). However, while most works compare a

single RL algorithm with commonly-used dispatching rules,

they lack in comparing different RL algorithms. A research

question naturally arises: how do different RL algorithms

perform on online scheduling?

Motivated by investigating the applicability of RL algo-

rithms on online single-machine scheduling in detail, in this

work, we will compare the following approaches’ perfor-

mance:

• a random assignment (Random) which simply selects a

job randomly;

• one of the most popular dispatching rules, namely the

earliest due date (EDD) rule;

• four RL approaches, namely Q-learning, Sarsa, Watkins’s

Q(λ), and Sarsa(λ).

Furthermore, we will test the algorithms under different oper-

ating conditions (e.g., the frequency of job arrivals). Watkins’s

Q(λ) seems the most promising method in most of the cases.

Therefore, we contribute the literature on two different as-

pects: getting insights on the compared methods, and giving

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 277–283

DOI: 10.15439/2020F100

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 277

practitioners suggestions on selecting the best method against

the specific situation. Notice that comparing and evaluating

different algorithms against various aspects and performance

indicators is a commonly adopted research methodology (see,

e.g., [7], [8], [9], [10], [11], and [12]). The specific comparison

of RL algorithms can be found, for instance, in the game field.

In [13], the authors compared two RL algorithms (Q-learning

and Sarsa) through the simulation of bargaining games. Even

though the two algorithms present slight differences, they

might have essentially different simulation results, as reflected

in our experiment (see Section IV).

Finally, we also propose some preliminary results obtained

by the use of Deep Q Network (DQN), which utilizes the

power of neural networks to approximate the value function

(see [14] for a review about DQN). However, our experiments

will show that DQN is better suited for high-dimensional

inputs. In contrast, with smaller input settings, DQN has a

longer training time and obtains results that are far from the

performance of Watkins’s Q(λ).

The rest of the paper is organized as follows. Section II is

dedicated to a general overview of RL techniques, while Sec-

tion III introduces and reviews some previous works using RL

approaches on scheduling problems. Section IV describes the

algorithmic framework for the online single-machine problem.

Section V defines the simulation procedure, and the simulation

results from three different types of experiments (Section VI).

Finally, in Section VII, the paper concludes with a summary

of the findings and some future lines.

II. REINFORCEMENT LEARNING

RL is a branch of Machine Learning that improves au-

tomatically through experience. It comes from three main

research branches: the first relates to learning by trial-and-

error, the second relates to optimal control problems, and the

last relates to temporal-difference methods (see [15]). The

three approaches converged together in the late eighties to

produce the modern RL.

RL approaches can be applied to scenarios in which a

decision-maker called agent interacts with a set of states called

environment by means of a set of possible actions. A reward

is given to the agent in each specific state. In this paper, we

consider a discrete time system, i.e. defined over a finite set

T of time steps with its cardinality being called time horizon.

As shown in Figure 1, at each time step t ∈ T , an agent

in state St takes action At, then, the environment reacts by

changing into state St+1 and by rewarding the agent of Rt+1.

The interaction starts from an initial state, and it continues

until the end of the time horizon. Such a sequence of actions

is named an episode. In the following, E will represent the set

of episodes.

Each state of the system is associated with a value function

that estimates the expected future reward achievable from that

state. Each state-action pair (St, At) is associated with a so-

called Q-function Q(St, At) that measures the future reward

achievable by implementing action At in state St. The agent’s

goal is to find the best policy, which is a function mapping the

set of states to the set of actions, maximizing the cumulative

reward. If exact knowledge of the Q-function is available, the

best policy for each state is defined by maxa Q(St, a).

Fig. 1. The agent-environment interaction in RL [15].

To estimate the value functions Q(s, a) and discover the

optimal policies, three main classes of RL techniques exist

Monte Carlo (MC)-based, Dynamic Programming (DP)-based

methods, and temporal-difference (TD)-based methods. Unlike

DP-based methods, which require complete knowledge of all

the possible transitions, MC-based methods only require some

experience and the possibility to sample from the environment

randomly. TD-based methods are a sort of combination of MC-

based and DP-based ones: they sample from the environment

like in MC-based methods and perform updates based on

current estimates like DP-based ones. Moreover, TD-based

methods are also appreciated for being flexible, easy to im-

plement, and computationally fast. For these reasons, in this

paper, we will consider only RL algorithms belonging to the

TD-based methods. Even if several TD-based RL algorithms

have been introduced in the literature, the most used are

Sarsa (an acronym for State-Action-Reward-State-Action), Q-

learning and their variations, e.g. the Watkins’s Q(λ) method

and the Sarsa(λ) (see [16]).

III. LITERATURE REVIEW

Since online scheduling has been an active field for several

decades, an in-depth analysis of the literature review is out of

scope for the present paper. Thus, in this section, we recall

some of the most traditional approaches to online scheduling,

and we review the main applications of RL to this problem.

Differently from tailored algorithms (heuristic and exact

methods), which might require effort in implementation and

calibration over a broad set of parameters, dispatching rules

are widely adopted for online scheduling for their simplicity

(see, e.g., [17]). For instance, the earliest due date (EDD)

dispatching rule is one of the most commonly used ones in

practical applications [18]. EDD simply schedules first the job

with the earliest due date. Again, in [19], the authors propose

a deterministic greedy algorithm known as list scheduling

(LS), which simply assigns each job to the machine with the

smallest load. For more details, we refer the reader to the

work [20] that classified over one hundred dispatching rules.

In [21], the authors designed a deterministic algorithm and

a randomized one for online machine sequencing problems

using Linear Programming techniques. At the same time,

278 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

in [22], the authors proposed an algorithm to make jobs

artificially available to the online scheduler by delaying the

release time of jobs.

In online scheduling, a decision-maker is regularly schedul-

ing jobs over time, attempting to reach the overall best

performance. Therefore, it is reasonable that RL represents

one of the possible techniques able to exploit such a setting.

In [4], the authors interpreted job-shop scheduling problems

as sequential decision processes. They try to improve the

job dispatching decisions of the agent by employing an RL

algorithm. Experimental results on numerous benchmark in-

stances showed the competitiveness of the RL algorithm. More

recently, in [6], the authors modeled the scheduling problem as

a Markov Decision Process and solved it through a simulation-

based value iteration and a simulation-based Q-learning. Their

results clearly showed that such RL algorithms could achieve

better performance concerning several dispatching heuristics,

disclosing the potential of RL application in the field. In the

context of an online single-machine environment, in [23], the

authors compared the performance of neural fitted Q-learning

techniques using combinations of different states, actions, and

rewards. They proved that taking only the necessary inputs of

states and actions is more efficient.

While all the discussed works revealed the competitiveness

of RL on scheduling problems, a further comparison of the

performance among various RL algorithms is still missing in

the scheduling literature. With the knowledge of the available

studies showing the potential of RL and the demand from the

industrial application, we are motivated to compare different

RL approaches’ performance on online scheduling for getting

more insights. In particular, we carry out experimental studies

on four of the most commonly used model-free RL algorithms,

namely Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ). Our

comparison methodology is inspired by [23], in which the best

configuration for minimizing maximal lateness is pursued. In

our work, instead, we aim at minimizing the total tardiness of

the scheduling process. Moreover, another major difference

with their work lies in the way we evaluate the results.

While they used the result from one run, our results come

from 50 runs with different random seeds, and two different

time step sizes are tested (the interaction between agent and

environment is checked in each step). Also, we further test

a neural network-based RL technique showing that it is not

necessary to use such a combination when the state space is

limited.

IV. REINFORCEMENT LEARNING ALGORITHMS FOR

ONLINE SCHEDULING

In this section, we describe the algorithmic framework used

to deal with our online single-machine scheduling problem. In

particular, we provide several variants based on different RL

techniques.

A. States, actions, and rewards

To be approached by RL techniques, we define our problem

setting along the lines used in [23]. In particular:

• state: a state is associated with each possible length of

the jobs in the waiting queue;

• action: if not all the jobs are finished, the action is

either to select one new job from a specific position of

the waiting queue and start processing it (we recall that

preemption is allowed), or to continue processing the job

which has been already assigned to the machine in the

previous step;

• reward: since RL techniques aim at maximizing rewards

while our problem aims at minimizing the total tardiness,

we set the reward of a state as the opposite value of its

total tardiness.

When the action implies the selection of a job from a certain

position in the waiting queue, it is important to decide the

order in which jobs are stored inside the queue. Therefore, we

implemented three possible ordering of jobs which provide

very different scheduling effects:

• jobs are unsorted (UNSORT), i.e., they have the same

order as the arrivals;

• jobs are sorted by increasing value of due time (DT);

• all unfinished jobs are sorted by increasing the value of

the sum of due time and processing time (DT+PT).

For instance, by using DT, if the action is to select a job in the

second position of the queue, the job with the second earliest

due time will be processed.

B. RL algorithms adopted

We have decided to implement four different RL algorithms,

namely Q-learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ). They

are described in the following. Here are some notations used:

• s state;

• a action;

• S set of nonterminal states;

• A(s) set of actions possible in state s;

• St state at t;

• At action at t;

• Rt reward at t.

1) Q-learning: Q-learning is a technique that learns the

value of an optimal policy independently of the agent’s action.

It is largely adopted for its simplicity in the analysis of the

algorithm and for the possibility of early convergence proofs

by directly approximating the optimal action-value function

(see [16] and [15]). The updating rule for the estimation of

the Q-function is:

Q(St, At)← Q(St, At)+

α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]. (1)

The Q(St, At) function estimates the quality of state-action

pair. At each time step t, the reward Rt+1 from state St

to St+1 is calculated and Q(St, At) is updated accordingly.

The coefficient α is the learning rate (0 ≤ α ≤ 1); it

determines the extent that new information overrides the old

information. Furthermore, γ is the discount factor determining

YUANYUAN LI ET AL.X: REINFORCEMENT LEARNING ALGORITHMS FOR ONLINE SINGLE-MACHINE SCHEDULING 279

the importance of future reward and finally, maxa Q(St+1, a)
is the estimation of best future value.

The values of the Q-function are stored in a look-up table

called Q table. Figure 2 displays an example of Q table storing

Q-function values for states from 0 to 10 (in row) and actions

from selecting Job 1 to Job 5 (in column). By overlooking the

Fig. 2. An example of Q table.

actual policy being followed in deciding the next action, Q-

learning simplifies the analysis of the algorithm and enabled

early convergence proofs.

2) Sarsa: Sarsa is a technique that updates the estimated

Q-function by following the experience gained from executing

some policies (see [24] and [15]). The updating rule for the

estimation of the Q-function is:

Q(St, At)← Q(St, At)+

α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]. (2)

The structure of formula (2) is similar to (1). The only

difference is that (2) considers the actual action implemented

in the next step At+1, instead of the generic best action

maxa Q(St+1, a).
As for Q-learning, also in Sarsa the values of the Q-function

are stored in a Q table. Despite the more expensive behaviour

with respect to Q-learning, Sarsa may provide better online

performances in some scenarios (as shown by the Cliff Walking

example in [15]).

3) Watkins’s Q(λ): Watkins’s Q(λ) is a well-known variant

of Q-learning. The main difference with respect to classical

Q-learning is the presence of a so-called eligibility trace, i.e.

a temporary record of the occurrence of an event, such as the

visiting of a state or the taking of an action. The trace marks

the memory parameters associated with the event as eligible

for undergoing learning changes. A trace is initialized when

a state is visited or an action is taken, and then the trace gets

decayed over time according to a decaying parameter λ (with

0 ≤ λ ≤ 1). Let us call et(s, a) the trace for a state-action pair

(s, a). Let us also define an indicator parameter ✶xy that takes

value 1 if and only if x and y are the same, and 0 otherwise.

Then, for any (s, a) pair (for all s ∈ S , a ∈ A), the updating

rule for the estimation of the Q-function is:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) (3)

where

δt = Rt+1 + γmax
a′

Qt(St+1, a
′)−Qt(St, At) (4)

and

et(s, a) = γλet−1(s, a) + ✶sSt
✶aAt

(5)

if Qt−1(St, At) = maxa Qt−1(St, a), and ✶sSt
✶aAt

other-

wise.

As the reader can notice, by plugging Eq. (4) into Eq. (3),

we obtain an equation similar to (1) but with the additional

eligibility term that increments the value of δt if the state and

action selected by the algorithm are one of the eligibility states.

In the rest of the paper we use Q(λ) referring to Watkins’s

Q(λ).

4) Sarsa(λ): Similarly to Q(λ), the Sarsa(λ) algorithm rep-

resents a combination between Sarsa and eligibility traces to

obtain a more general method that may learn more efficiently.

Here, for any (s, a) pair (for all s ∈ S , a ∈ A), the updating

rule for the estimation of the Q-function is:

Qt+1(s, a) = Qt(s, a) + αδtet(s, a) (6)

where

δt = Rt+1 + γQt(St+1, At+1)−Qt(St, At) (7)

and

et(s, a) = γλet−1(s, a) + ✶sSt
✶aAt

(8)

Unlike Eq. (5), there is no other condition (set the eligibility

traces to 0 whenever a non-greedy action is taken) added. A

deeper discussion about the interpretation of the formulas is

given in [15].

V. SIMULATION PROCEDURE

In order to perform the comparison under interest, we create

an online scheduling simulation procedure as described in

Algorithm 1.

Algorithm 1 Online scheduling simulation through RL algo-

rithms

Require: |E| number of episodes; |T | number of time-steps;

1: Initialize Q(s, a) = 0, ∀ s ∈ S, a ∈ A;

2: for η ← 1 to |E| do

3: Initialize S

4: for t← 1 to |T | do

5: if new jobs arrive then

6: Update waiting list L

7: end if

8: if L is not empty then

9: Take At in St, observe Rt, St+1

10: Calculate At+1 and update Qt

11: St ← St+1, At ← At+1

12: end if

13: end for

14: end for

We first update Q tables through a training phase then use

the Q tables to select actions in the test phase.

The arrival time of job j are distributed according to an

exponential distribution, i.e., Xj ∼ exp(r) with the rate

280 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

parameter valued r = 0.1. It is simulated in this way: at the

first time step, a random number of jobs (from 1 to 6 jobs)

and an interval time (following the exponential distribution)

are generated. Once a job is generated (simulating the arrival

of the job), it will be put into the waiting queue immediately.

Then at the next time step, if the interval time is passed,

new jobs will be generated and put into the waiting queue;

meanwhile, a new interval time will be created. Otherwise,

nothing is created. Then the same procedure repeats till

reaching a final state.

For the settings regarding RL algorithms:

• In the policy, ǫ = 0.1 enabling highly greedy actions

while keeping some randomness in job selections;

• In the value function, α = 0.6, i.e., there is a bit higher

tendency to explore more possibilities while a bit lower

in keeping exploiting old information, whereas γ = 1.0,

which means it strives for a long-term high reward;

• In the eligibility traces, λ is 0.95, a high decaying value

is leading to a longer-lasting trace.

It is worth noting that all the algorithms considered are heuris-

tics. Thus they focus on finding a good solution in a short

amount of time by finding a balance between intensified and

diversified explorations of the solution space. Nevertheless, the

plain implantation of the algorithms above does not ensure

enough diversification. For this reason, it is common to use

a ǫ-greedy method. Thus, with probability ǫ, exploration is

chosen, which means the action is chosen uniformly at random

between the available ones. Instead, with probability 1 − ǫ,

exploitation is chosen by taking the actions with the highest

values greedily. After knowing the way to balance exploration

and exploitation, we need to define a learning method for

finding out policies leading to higher cumulative rewards.

In an episode, we start a new schedule by initializing state

S and terminates when either reaching the maximum steps or

no jobs to process. To simulate real-time scheduling, for each

episode, we check the arrivals of new jobs and update the

waiting queue if there are, then we choose the action A, and

calculate the reward R and the next state S′ accordingly. The

Q functions are updated according to the exact RL algorithms

used. The same procedure is carried out in both training and

test phases except that in the test, the Q table is not initialized

with empty values but obtained from the training phase.

Let us see a training example with Q-learning to see for the

same schedule how the reward is accumulated, and objective

value evolves with more episodes passing by. In Fig. 3, the

graph on the bottom shows after around 80 episodes, the re-

ward reaches the maximum and holds steady. Accordingly, the

objective value - total tardiness drops more slowly after around

80 episodes. While the reward keeps stable, total tardiness

continues dropping to around 4,0000. To summarize, using

total tardiness as a reward is useful, but it is still challenging

to represent the trend of the objective value adequately.

VI. NUMERICAL EXPERIMENTS

In this section, we propose three different experimental

results. Section VI-A compares the performance among ran-

Fig. 3. The changes to reward and the objective value (total tardiness) of 100
episodes.

dom assignment (Random), EDD, and the four RL approaches

implemented. Section VI-B investigates the possible impact of

different operating conditions (i.e., frequency of jobs arrivals)

on the RL approaches. Finally, Section VI-C compares Q(λ)

and DQN.

The algorithms have been implemented in Python 3.6. To

avoid possible ambiguities, we locate the related code in a

public repository2. All the experiments are carried out on an

Intel Core i5 CPU@2.3GHz machine equipped with 8GB

RAM and running MacOS v10.15.4 operating system.

A. RL algorithms vs Random and EDD

To check if considering different time horizons leads to

different results, we consider two experiments in which the

time horizon T is set to 2500 and 5000, respectively. For

each of the settings, we ran 50 tests with different random

seeds. For each algorithm Θ, we call ΓζΘ the total tardiness

achieved in simulation ζ . Furthermore, we define ρζΘ to be

the percentage gap between the total tardiness achieved by the

best algorithm and by algorithm Θ during run ζ, i.e.,

ρζΘ =
ΓζΘ

minζΘ ΓζΘ

. (9)

To compare the different algorithms, we consider the average

value of ρζΘ concerning all the runs.

The simulation results with the algorithms (under different

job orders, time horizons) are displayed in Table I, where

2URL: https://github.com/Yuanyuan517/RL_OnlineScheduling.git

YUANYUAN LI ET AL.X: REINFORCEMENT LEARNING ALGORITHMS FOR ONLINE SINGLE-MACHINE SCHEDULING 281

avg(ρζΘ), std(ρζΘ) are respectively the mean and standard

deviations of ρζΘ. The best value among all the combinations

TABLE I: Experiment cases of the algorithms with different

settings

|T |=2500 |T |=5000
Algorithm Jobs order avg(ρζΘ) std(ρζΘ) avg(ρζΘ) std(ρζΘ)

Random - 2.59 0.50 3.06 0.69
EDD - 7.67 1.76 9.19 1.47
Q-learning UNSORT 2.15 0.43 2.04 0.35
Q-learning DT 1.45 0.28 1.29 0.20
Q-learning DT+PT 1.44 0.30 1.25 0.18
Sarsa UNSORT 2.55 0.53 2.47 0.39
Sarsa DT 1.65 0.40 1.76 0.36
Sarsa DT+PT 1.66 0.47 1.68 0.33
Sarsa(λ) UNSORT 4.42 0.93 5.04 0.93
Sarsa(λ) DT 7.04 1.35 7.73 1.34
Sarsa(λ) DT+PT 3.08 1.03 7.70 1.33
Q(λ) UNSORT 2.04 0.42 2.01 0.40
Q(λ) DT 1.11 0.18 1.13 0.17
Q(λ) DT+PT 1.19 0.26 1.09 0.14

of algorithms and jobs order policies for each time horizon is

highlighted in bold font.

While [23] shows EDD gets a better result than RL to

minimize the maximum tardiness, with the new objective

of minimizing total tardiness in our experiments, all RL

algorithms get better results than EDD.

As shown in Table I, the size of running time steps in-

fluenced the result on job order but does not influence the

algorithm. And for the case with 2500 steps, the configuration

Q(λ) plus DT gets the best result, instead for 5000 steps, the

configuration Q(λ) plus DT+PT gets the best result.

Besides, we find with the sorting choice DT+PT that all

algorithms get smaller average values except for the configura-

tion Q(λ) with 2500 steps. Comparatively, a randomly sorting

job leads to a much worse result.

B. Q(λ) performance against different job arrival rates

Another test is on the operating condition - the frequency of

job arrivals for the two best combinations Q(λ) plus DT and

Q(λ) plus DT+PT, which is controlled by the rate parameter

r. To understand whether the value of r affects performance,

we experimented with 2 more values, i.e. r = {0.05, 0.2} in

addition to the previous one r = 0.1.

In Table II, the results are also normalized by following Eq.

(9) with 50 tests and |T | = 2500 for each test. As shown in

TABLE II: Experiment cases of the rate parameter with best

settings from Q(λ).

Jobs order r avg(ρζΘ) std(ρζΘ)

DT 0.05 1.14 0.18

DT+PT 0.05 1.17 0.55

DT 0.10 1.10 0.17

DT+PT 0.10 1.17 0.26

DT 0.20 1.17 0.28

DT+PT 0.20 1.12 0.24

the table, with small r = 0.05, r = 0.1 (indicating jobs arrive

much less frequently than the last one), the version with jobs

ordered by DT performs better. When jobs arrive much more

frequently, the version sorted by DT + PT wins. Hence a

careful selection of algorithms and settings according to the

operating conditions matters.

C. Comparison between Q(λ) and DQN

In the third test we compare a four-layer DQN and Q(λ)

plus DT+PT, i.e. the better performing RL algorithm accord-

ing to Table I. Figure 4 shows such a comparison. The result

is from running 50 tests and |T | = 5000 in each test. The

horizontal axis represents the total tardiness and the vertical

axis shows the probability the objective value falls in. The

dark yellow area indicates the overlapping between Q(λ) and

DQN .

Fig. 4. The comparison between Q(λ) and DQN on the total tardiness of
50 runs with different seeds representing different schedules.

We can see Q(λ) has much higher probability with smaller

objective value, which indicates Q(λ) outperforms DQN .

Taking into account the time spent in training DQN is almost

10 times of Q(λ), Q(λ) is a better option, especially for

guaranteeing a flexible and adaptive scheduling in realtime.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we compared four RL methods, namely Q-

learning, Sarsa, Watkins’s Q(λ), and Sarsa(λ), with EDD and

random assignment on an online single-machine scheduling

problem. The experiments show that:

• better scheduling performance is achieved by the RL

method Watkins’s Q(λ), especially when the action con-

cerns the selection of jobs sorted by due date for the

smaller time horizon (|T | = 2500) and the selection of

jobs sorted by due date and processing time for bigger

time horizon (|T | = 5000).

• the tests on r disclose the combination of Q(λ) and job

orders have different performances in various operating

conditions.

282 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

• slight difference in algorithms can profoundly change the

results.

Besides, with limited input, using DQN is too costly for

extended running time and energy spent in adjusting param-

eters to guarantee a good result. The results above indicate

careful analysis should be done from different angles (run-

ning time, operating conditions, average results from multiple

experiments) for making a wiser selection of algorithms.

Furthermore, with multiple machines, more transitions must

be considered, which need more representational state infor-

mation. Thus it will be impossible to store values of all state-

action pairs in a Q table. DQN may take a leading role

then. As indicated by the work [25], unpredictable changes

may happen at different places in the state-action space, and

more care should be taken to avoid instabilities of DQN . One

techniques that can acheive this goal is the usage of kernel

function (see [26]), this builds a future research avenue.

ACKNOWLEDGEMENT

This research was partially supported by the Plastic and

Rubber 4.0 (P&R4.0) research project, POR FESR 2014-2020

- Action I.1b.2.2, funded by Piedmont Region (Italy), Contract

No. 319-31. The authors acknowledge all the project partners

for their contribution.

REFERENCES

[1] P. Brucker, Scheduling Algorithms, 5th ed. Springer Publishing
Company, Incorporated, 2010.

[2] S. C. Graves, “A review of production scheduling,” Operations Research,
vol. 29, no. 4, pp. 646–675, 1981.

[3] Y. Li, S. Carabelli, E. Fadda, D. Manerba, R. Tadei, and O. Terzo,
“Machine learning and optimization for production rescheduling in
industry 4.0,” The International Journal of Advanced Manufacturing

Technology, pp. 1–19, 2020.
[4] T. Gabel and M. Riedmiller, “Adaptive reactive job-shop scheduling with

reinforcement learning agents,” International Journal of Information

Technology and Intelligent Computing, vol. 24, no. 4, pp. 14–18, 2008.
[5] H. Sharma and S. Jain, “Online learning algorithms for dynamic schedul-

ing problems,” in 2011 Second International Conference on Emerging

Applications of Information Technology, 2011, pp. 31–34.
[6] T. Zhang, S. Xie, and O. Rose, “Real-time job shop scheduling based on

simulation and markov decision processes,” in 2017 Winter Simulation

Conference (WSC). IEEE, 2017, pp. 3899–3907.
[7] P. Castrogiovanni, E. Fadda, G. Perboli, and A. Rizzo, “Smartphone

data classification technique for detecting the usage of public or private
transportation modes,” IEEE Access, vol. 8, pp. 58 377–58 391, 2020.

[8] E. Fadda, P. Plebani, and M. Vitali, “Optimizing monitorability of multi-
cloud applications,” 06 2016, pp. 411–426.

[9] E. Fadda, G. Perboli, and G. Squillero, “Adaptive batteries exploiting
on-line steady-state evolution strategy,” in Applications of Evolutionary

Computation, G. Squillero and K. Sim, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 329–341.

[10] E. Fadda, D. Manerba, R. Tadei, P. Camurati, and G. Cabodi, “KPIs
for Optimal Location of charging stations for Electric Vehicles: the
Biella case-study,” in Proceedings of the 2019 Federated Conference on

Computer Science and Information Systems, ser. Annals of Computer
Science and Information Systems, M. Ganzha, L. Maciaszek, and
M. Paprzycki, Eds., vol. 18. IEEE, 2019, pp. 123–126. [Online].
Available: http://dx.doi.org/10.15439/2019F171

[11] E. Fadda, D. Manerba, G. Cabodi, P. Camurati, and R. Tadei, “Com-
parative analysis of models and performance indicators for optimal
service facility location,” Transportation Research part E: Logistics and

Transportation Reviews (submitted), 2020.
[12] R. Giusti, C. Iorfida, Y. Li, D. Manerba, S. Musso, G. Perboli, R. Tadei,

and S. Yuan, “Sustainable and de-stressed international supply-chains
through the synchro-net approach,” Sustainability, vol. 11, p. 1083, 02
2019.

[13] K. Takadama and H. Fujita, “Toward guidelines for modeling learning
agents in multiagent-based simulation: Implications from q-learning and
sarsa agents,” in International Workshop on Multi-Agent Systems and

Agent-Based Simulation. Springer, 2004, pp. 159–172.
[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-

stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] C. J. C. H. Watkins, Learning from delayed rewards. Thesis Submitted
for Ph.D., King’s College, Cambridge, 1989.

[17] A. Kaban, Z. Othman, and D. Rohmah, “Comparison of dispatching
rules in job-shop scheduling problem using simulation: a case study,”
International Journal of Simulation Modelling, vol. 11, no. 3, pp. 129–
140, 2012.

[18] H. Suwa and H. Sandoh, Online scheduling in manufacturing: A

cumulative delay approach. Springer Science & Business Media, 2012.
[19] R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell

System Technical Journal, vol. 45, no. 9, pp. 1563–1581, 1966.
[20] S. S. Panwalkar and W. Iskander, “A survey of scheduling rules,”

Operations Research, vol. 25, no. 1, pp. 45–61, 1977.
[21] J. R. Correa and M. R. Wagner, “Lp-based online scheduling: from

single to parallel machines,” Mathematical Programming, vol. 119,
no. 1, pp. 109–136, 2009.

[22] X. Lu, R. Sitters, and L. Stougie, “A class of on-line scheduling
algorithms to minimize total completion time,” Operations Research

Letters, vol. 31, no. 3, pp. 232–236, 2003.
[23] S. Xie, T. Zhang, and O. Rose, “Online single machine scheduling based

on simulation and reinforcement learning,” in Simulation in Produktion

und Logistik 2019. Simulation in Produktion und Logistik 2019, 2019.
[24] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Convergence

results for single-step on-policy reinforcement-learning algorithms,”
Machine learning, vol. 38, no. 3, pp. 287–308, 2000.

[25] V. François-Lavet, R. Fonteneau, and D. Ernst, “How to discount deep
reinforcement learning: Towards new dynamic strategies,” arXiv preprint

arXiv:1512.02011, 2015.
[26] V. Cerone, E. Fadda, and D. Regruto, “A robust optimization approach

to kernel-based nonparametric error-in-variables identification in the
presence of bounded noise,” in 2017 American Control Conference

(ACC). IEEE, may 2017. [Online]. Available: https://doi.org/10.23919

YUANYUAN LI ET AL.X: REINFORCEMENT LEARNING ALGORITHMS FOR ONLINE SINGLE-MACHINE SCHEDULING 283

