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Abstract. Model-based diagnosis of discrete-event systems (DESs)

generates a set of candidates upon the reception of a temporal obser-

vation. In the literature, a candidate is a set of faults produced by a

trajectory of the DES that is consistent with the temporal observa-

tion. As such, a candidate does not convey any temporal relationship

between faults, nor does it account for multiple occurrences of the

same fault. To overcome the limitations of this set-oriented approach

to diagnosis of DESs, the novel notions of temporal fault and tem-

poral diagnosis are proposed, along with two diagnosis techniques.

A temporal fault is the (possibly unbounded) sequence of faults pro-

duced by a trajectory. A temporal diagnosis is a (possibly infinite) set

of temporal faults. Hence, in this new temporal-oriented approach to

diagnosis of DESs, a candidate is a temporal fault. The fact that a

temporal diagnosis turns out to be a regular language is key to coping

with the infinity of candidates, which can be represented by a regular

expression. The diagnosis task can be performed either by restricting

the DES space to the trajectories that are consistent with the temporal

observation, or by exploiting a temporal diagnoser which allows for

fast online diagnosis. The claim of this paper is that the extra tem-

poral information embedded in candidates may be essential in taking

critical decisions based on the diagnosis results.

1 INTRODUCTION

Diagnosis aims at finding the causes of the abnormal behavior of a

system based on the observations relevant to its operation that are

perceived from the outside. In the Artificial Intelligence (AI) com-

munity, the definition of the task [25, 10] led to the model-based

paradigm [11], according to which the normal behavior of the sys-

tem to be diagnosed is described by a model, and to the notion of

consistency-based diagnosis, which was initially conceived for static

systems, such as combinational circuits, and later applied also to dy-

namical systems [29, 23]. Consistency-based diagnosis produces as

output a collection of sets of faulty components: each set, called a

candidate, explains the given observation in that assuming that all

the components in the candidate are not behaving normally and all

the others are behaving normally is consistent with the observation.

For diagnosing a dynamical system, a discrete-event system (DES)

model can be adopted [8], this being either a Petri net [2, 30, 9, 24,

21] or a net of communicating finite automata [6], an automaton for

each component, like in the current paper. Being untimed, these mod-

els do not explicitly consider any time length, with the only temporal

information being relevant to the reciprocal order of the transitions.

Although consistency-based diagnosis is applicable to DESs by mod-

eling their normal behavior only [22], a DES specification usually
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involves also its abnormal behavior, as proposed in the seminal work

by Sampath et al. [27, 28, 26], where each state transition in the au-

tomaton relevant to a DES component is either normal or abnormal.

The input of the diagnosis task for a DES is a sequence of obser-

vations, called hereafter a temporal observation, which are listed in

relative temporal order. The output is a set of candidates, with each

candidate being a set of faults, where a fault is associated with an ab-

normal state transition. A candidate is inherent to some global state

of the DES (namely, a state composed of the states of all the DES

components), which means that, once the temporal observation has

been gathered, the DES is possibly in that global state and the faults

in the relevant candidate have occurred. Given the perceived tem-

poral observation, the whole set of global states that the DES may

have reached starting from the initial state is the current belief state.

Albeit the current actual state of the DES falls in the belief state, gen-

erally speaking, we cannot set the former apart. Diagnosing a DES

becomes a form of abductive reasoning, inasmuch the candidates are

generated based on the trajectories (sequences of state transitions) of

the DES that entail the temporal observation. The approach in [27]

relies on a diagnoser, a data structure that is derived from the global

DES model in a preprocessing phase performed offline. The diag-

noser is exploited online in order to generate a new set of candidates

upon perceiving each observation (monitoring-based diagnosis) or

just one set of candidates, given the whole sequence of observations

(a posteriori diagnosis).

If the diagnoser approach is still a theoretical reference frame-

work for the definition of diagnosis and diagnosability of DESs rep-

resented as finite automata, a computationally more viable alterna-

tive is the active-system approach [1, 13, 14, 16, 18], which does not

require building the global DES model, an impractical task for real

DESs. The rationale behind the traditional active-system approach

is to perform the abduction online, a possibly costly operation that,

however, being driven by the temporal observation, can only focus on

the trajectories that produce this sequence. Still, in either approach, a

candidate is a set of faults. Consequently, the diagnosis output is de-

void of any temporal information while in the real world faults occur

in a specific temporal order. One may argue that, in monitoring-based

diagnosis, since a new set of candidates is output upon the recep-

tion of a new observation, it is possible to ascertain whether some

additional faults have occurred with respect to the previous obser-

vation. Still, even in monitoring-based diagnosis one cannot ascer-

tain whether a fault occurred previously has occurred again, in other

words, no information about intermittent faults is provided.

In a perspective of explainable diagnosis and, more generally, of

explainable AI, this paper proposes a novel technique for diagnosis

of DESs based on the notion of a temporal fault. In the active-system

approach, which this paper stems from, a candidate is the set of faults

relevant to a trajectory of the DES. The diagnosis output is the set

of candidates relevant to the (possibly infinite) set of trajectories of
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Component transition Description

s1 D h0; .ko; fopg/; 1i The sensor detects a threatening external event ko and generates the open event

s2 D h1; .ok; fclg/; 0i The sensor detects a liberating external event ok and generates the close event

s3 D h0; .ko; fclg; 0i The sensor detects a threatening external event ko, yet generates the close event

s4 D h1; .ok; fopg/; 1i The sensor detects a liberating external event ok, yet generates the open event

b1 D h0; .op; ;/; 1i The breaker reacts to the open internal event by opening

b2 D h1; .cl; ;/; 0i The breaker reacts to the close internal event by closing

b3 D h0; .op; ;/; 0i The breaker does not react to the open internal event and remains closed

b4 D h1; .cl; ;/; 1i The breaker does not react to the close internal event and remains open

b5 D h0; .cl; ;/; 0i The breaker reacts to the close internal event by remaining closed

b6 D h1; .op; ;/; 1i The breaker reacts to the open internal event by remaining open

b7 D h0; .op; ;/; 1i The breaker reacts to the close internal event by opening

b8 D h1; .op; ;/; 0i The breaker reacts to the open internal event by closing

Figure 1: DES P (left), details of component transitions (center), and space P
� (right), where the the states 0; 3; 4, and 7 are final.

the DES that produce the temporal observation. Since the domain of

faults is finite, both the candidates and the diagnosis output are finite

and bounded.

In this paper, instead, a candidate is a temporal fault, namely the

(possibly unbounded) sequence of faults relevant to a trajectory that

produces the temporal observation. Consequently, the diagnosis out-

put, called a temporal diagnosis, is the (possibly infinite) set of tem-

poral faults relevant to the (possibly infinite) set of trajectories of the

DES that imply the temporal observation. As such, a temporal fault

differs from a classical candidate mainly in two ways: .i/ a temporal

fault includes the multiset of faults occurred in the trajectory, where

several (possibly an unbounded number of) occurrences of the same

fault are encompassed, and .i i/ in a temporal fault, the relative tem-

poral order of the occurrences of each fault is clearly shown. Since

a temporal diagnosis (set of temporal faults) is a regular language, it

can be represented by a regular expression defined on the alphabet of

faults. In other words, each temporal fault of a temporal diagnosis is

a string of the language of a regular expression defining the temporal

diagnosis.

The temporal aspect characterizing the temporal faults can be im-

portant for ranking purposes and for helping the diagnostician in tak-

ing critical decisions based on richer information, typically in order

to perform specific repair actions on the DES. The paper proposes

two methods for generating the temporal diagnosis of a temporal ob-

servation. The first method, presented in Section 3, requires the on-

line reconstruction of the DES behavior that is constrained by the

temporal observation and, then, generates the regular expression of

the temporal diagnosis based on this behavior. The second method,

presented in Section 4 and Section 5, relies on a data structure com-

piled offline, called a temporal diagnoser, which allows for the online

efficient computation of the temporal diagnosis.

t o f

s1 act "

s2 sby "

s3 " f1

s4 " f2

b1 opn "

b2 cls "

b3 " f3

b4 " f4

b5 nop "

b6 nop "

b7 opn f5

b8 cls f6

o Observation description

act The sensor is in activation

sby The sensor is in standby

opn The breaker opens

cls The breaker closes

nop The breaker performs no operation

f Fault description

f1 The sensor sends the cl command instead of op

f2 The sensor sends the op command instead of cl

f3 The breaker remains closed on the op command

f4 The breaker remains open on the cl command

f5 The breaker opens on the cl command

f6 The breaker closes on the op command

Figure 2: Mapping table �.P / (left) and symbol description (right).

2 SYSTEM MODELING

A DES X is a network of components, where the behavior of each

component is modeled as a communicating automaton [6]. A com-

ponent is endowed with input and output pins, where each output

pin is connected with an input pin of another component by a link.

The way a transition is triggered in a component is threefold: .a/

spontaneously, formally denoted by the empty event ", .b/ by an

external event coming from outside X, or .c/ by an internal event

coming from another component. Initially, X is quiescent, that is,

all links are empty. When performing a transition, a component con-

sumes the triggering (input) event and possibly generates new events

on its output pins, which are bound to trigger the transitions of other

components, thereby causing a cascade process which is assumed to

terminate when no new event is generated and X becomes quiescent

anew. A transition generating an event on an output pin can occur

only if this pin is not occupied by another event. Assuming that only

one component transition at a time can occur, the process that moves

a DES from the initial state to a final quiescent state can be repre-

sented by a sequence of component transitions, called a trajectory

of X. At the occurrence of a component transition, X changes its

state, with a state x of X being a pair .C; L/, where C is the array of

current states of components and L the array of the (possibly empty)

current events placed in links. Formally, the (possibly infinite) set

of trajectories of X is specified by a deterministic finite automaton

(DFA), namely the space X� of X,

X
� D

�

˙; X; �; x0; Xq

�

(1)

where ˙ (the alphabet) is the set of component transitions, X is the

set of states, � is the deterministic transition function mapping a state

and a component transition into a new state, � W X � ˙ 7! X , x0 is

the initial state, and Xq is the set of final (quiescent) states.

For diagnosis purposes, the model of X needs to be enhanced by

specifying its observability and normality. Based on a mapping table,

each transition is defined either as observable or unobservable and,

orthogonally, either as normal or faulty. Specifically, let T be the

set of component transitions in X, O a finite set of observations,

and F a finite set of faults. The mapping table � of X is a function

�.X/ W T 7! .O[f"g/�.F[f"g/, where " is the empty symbol. The

table �.X/ can be represented as a finite set of triples .t; o; f /, where

t 2 T, o 2 O [ f"g, and f 2 F [ f"g. The triple .t; o; f / defines the

observability and normality of t : if o ¤ ", then t is observable, else t

is unobservable; likewise, if f ¤ ", then t is faulty, else t is normal.

Based on �.X/, each trajectory T in X
� can be associated with a

temporal observation and a temporal fault. The temporal observation

of T is the sequence of observations involved in T ,

Obs.T / D Œ o j t 2 T; .t; o; f / 2 �.X/; o ¤ " � : (2)
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The temporal fault of T is the sequence of faults involved in T ,

Flt.T / D Œ f j t 2 T; .t; o; f / 2 �.X/; f ¤ " �: (3)

Although T is finite, its length is in general unbounded; hence, the

length of both Obs.T / and Flt.T / is in general unbounded.

Example 1 The small DES used as a running example throughout

the paper is inspired by the domain of power transmission networks,

where each line is protected at its ends. This means that, in case

a sensor detects a dangerous condition on the line (typically, the

impedance below a given threshold), it commands a breaker to open,

so as to electrically isolate the line until a liberating condition has

been perceived. Shaded in the middle of the left side of Fig. 1 is a

DES called P (protection), which includes two components, a sen-

sor s and a breaker b, and one link connecting the (single) output pin

of s with the (single) input pin of b. The model of s (outlined over P )

involves two states (denoted by circles) and four transitions (denoted

by arcs). The model of b (outlined under P ) involves two states and

eight transitions. Each component transition t from a state p to a state

p0, triggered by an input event e, and generating a set of output events

E, is denoted by the angled triple t D hp; .e; E/; p0i, as detailed in

the table displayed in the center of Fig. 1. The space of P , namely

P
�, is depicted on the right side of Fig. 1, where each state is iden-

tified by a triple .ss ; sb ; e/, with ss being the state of the sensor, sb

the state of the breaker, and e the internal event in the link (" means

no event). To ease referencing, the states of P are renamed by num-

bers 0 � � � 7. The initial state is 0; the final states (denoted by double

ellipses) are 0, 3, 4, and 7. The mapping table �.P / is displayed on

the left side of Fig. 2, with observations and faults being described

on the right side of the figure. Owing to cycles, the set of possible

trajectories of P is infinite, one of them being T D Œs1; b1; s4; b8�,

which ends in state 4 and is such that Obs.T / D Œ act; opn; cls � and

Flt.T / D Œ f2; f6 �. T gives rise to the following evolution: s detects a

threatening event and commands b to open; b opens; s detects a lib-

erating event, yet commands b to open; instead, b eventually closes.

3 TEMPORAL DIAGNOSIS

The core problem in diagnosing a DES X is generating the set of

candidates relevant to a temporal observation O of X. In this paper

a candidate is a temporal fault that is produced by a trajectory of X

that entails O. The (possibly infinite) set of candidates is the temporal

diagnosis of O, as formalized in Definition 1.

Definition 1 (temporal diagnosis) Let O be a temporal observation

of a DES X. The temporal diagnosis of O is the set of temporal faults

�.O/ D
˚

Flt.T / j T 2 X
�; O D Obs.T /

�

: (4)

The notion of a space is adopted for formal reasons only, that is,

X
� is not actually built, mainly because its generation is impractical

in real applications. Therefore, eqn. (4) is not operational in nature,

as it relies on X
�. In practice, �.O/ is yielded based on the portion

of X
� that is consistent with O, which is called the O-constrained

space of X, as specified in Definition 2.

Definition 2 (O-constrained space) Let O be a temporal observa-

tion of X. The O-constrained space of X, X
�
O

, is a DFA whose lan-

guage equals the set of trajectories T 2 X
� where O D Obs.T /.

X
�
O

is generated based on the component models and the links in

X. A state of X
�
O

is a pair .x; i/, where x is a state of X and i is an

index in the range Œ0 :: n�, where n is the number of observations in O.

Figure 3: O-constrained space of P where O D Œact; sby; nop� (top),
and generation of the temporal diagnosis �.O/ (bottom).

Starting from the initial state .x0; 0/, the transition function of X
�
O

is constructed by taking into account the component transitions that

are triggerable in the state considered. When an observable transition

t is triggerable in a state .x; i/, with x0 being the new state of X

reached by t , a transition h.x; i/; t; .x0; .i C 1/i is created in X
�
O

iff

.t; OŒi C 1�; f / 2 �.X/, i < n. If, instead, t is unobservable, the

index i is unchanged. When x is quiescent and i D n, that is, when

all the observations in O are matched, the state .x; i/ is final.

Example 2 Displayed on the top of Fig. 3 is the O-constrained space

of the DES P introduced in Example 1, where O D Œact; sby; nop�,

namely P
�
O

, where each state is identified by a pair .p; i/, with p

being a state of P and i 2 Œ0 :: 3�. The only final state is 4 D .0; 3/.

Based on eqn. (4) and Definition 2, since each trajectory T in the

O-constrained space X
�
O

is such that T 2 X
� and O D Obs.T /, we

have Flt.T / 2 �.O/. In fact, the temporal diagnosis �.O/ is exactly

the set of temporal faults relevant to the set of trajectories in X
�
O

.

However, this approach is impractical as it requires the consideration

of a possibly infinite set of trajectories in order to generate �.O/.

So, what to do in order to compute �.O/ based on Definition 1?

Fortunately, a formal property of �.O/ claimed in Proposition 1 is

key to overcoming this computational obstacle.

Proposition 1 Let O be a temporal observation of X. The temporal

diagnosis �.O/ is a regular language on the set of faults of X.

Proof. Let X
�
O

be the O-constrained space of X. As such, the set

of trajectories in X
�
O

equals the set of trajectories T 2 X
�such that

O D Obs.T /. Let N be the nondeterministic finite automaton (NFA)

obtained from X
�
O

by substituting f for each component transition

t marking an arc of X
�
O

, where .t; o; f / 2 �.X/. The set of strings

marking a path from the initial state to a final state in N is the tem-

poral diagnosis �.O/. Since it is accepted by an NFA, this language

is a regular language. �

In practice, what makes Proposition 1 interesting is that a possi-

bly infinite regular language can be always represented as a regular

expression.3 Hence, the set of temporal faults in �.O/ can be repre-

sented by a regular expression on the alphabet of the faults of X.

3 A regular expression is defined inductively on the alphabet ˙ as follows.
The empty symbol " is a regular expression. If a 2 ˙ , then a is a regu-
lar expression. If x and y are regular expressions, then the followings are
regular expressions: x j y (alternative), xy (concatenation), x‹ (optional-

ity), x� (repetition zero or more times), and xC (repetition one or more
times). When parentheses are missing, the concatenation has precedence
over the alternative, while repetition has the highest precedence; for exam-
ple, ab� j c equates to .a.b/�/ j c.
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Algorithm 1 Temporal Diagnosis

1: procedure TEMPORAL DIAGNOSIS(O, R)
2: input O: a temporal observation of a DES X

3: output R: a regular expression denoting the temporal diagnosis �.O/
4: begin
5: Generate X

�
O

, the O-constrained space of X

6: for all transition hˇ; t; ˇ 0i in X
�
O

do

7: Substitute f for t , where .t; o; f / 2 �.X/
8: end for
9: if the initial state ˇ0 of X

�
O

is entered by a transition then

10: Insert both a new initial state ˛0 and a new "-transition h˛0; "; ˇ0i
11: end if
12: if several final states exist or the final state is exited by a transition then
13: Insert the new final state ˛q

14: for all original final state ˇq of X
�
O

do

15: Insert a new "-transition hˇq; "; ˛qi
16: end for
17: end if
18: Let N be the NFA so obtained, with initial state n0 and final state nq

19: Reduce N to a single transition hn0; R; nqi by the algorithm in [7],
where R is a regular expression denoting the language of N at line 18

20: end procedure

Example 3 Let O D Œact; sby; nop� be the temporal observation of

the DES P introduced in Example 1. The temporal diagnosis of O

includes the temporal faults Flt.T / where T is a trajectory in the

O-constrained space P
�
O

depicted in Fig. 3 (top). As the only faulty

transitions involved are b3 and s4, with faults f3 (the breaker does

not open) and f2 (the sensor commands the breaker to open rather

than to close), respectively, one such temporal fault is Flt.T / D Œf3�,

where T D Œs1; b3; s2; b5�. The temporal diagnosis �.O/ is infinite,

as the loop 1!2!1 in P
�
O

can be traversed an unbounded number

of times, yielding a new temporal fault each time, namely Œf3; f2; f3�,

Œf3; f2; f3; f2; f3�, Œf3; f2; f3; f2; f3; f2; f3�, and so on. Still, despite the

infinite set of temporal faults, �.O/ turns out to be a regular lan-

guage (cf. Proposition 1), which can therefore be defined as a regular

expression, specifically �.O/ D f3.f2f3/�. In plain words, �.O/

includes the temporal faults starting with the fault f3 (the breaker

does not open), which is followed by zero or more instances of the

contiguous faults f2f3 (the sensor wrongly commands the breaker to

open and the breaker remains closed instead of opening). If a can-

didate were a set of faults (instead of a temporal fault), the diagno-

sis output would consist of two candidates, namely ff3g and ff2; f3g,

which, differently from the temporal diagnosis, do not provide any

information about the fact that, if fault f2 has occurred, then faults f2

and f3 are intermittent.

With reference to Example 3, the temporal diagnosis �.O/ is de-

termined by inspection of the NFA obtained from the O-constrained

space by substituting the symbols marking the transitions. What we

need, however, is a general technique allowing for the automatic gen-

eration of �.O/ starting from this NFA. To this end, we exploit and

adapt the algorithm proposed in [7] in the context of sequential cir-

cuit state diagrams. Essentially, this algorithm takes as input an NFA

and generates the regular expression of the language accepted by this

NFA. This is exactly what we need to automatize the process of gen-

erating the regular language of a temporal diagnosis �.O/.

The pseudocode of our (adapted) algorithm, called Temporal Di-

agnosis, is listed in Algorithm 1 (lines 1–20). It takes as input a tem-

poral observation O of a DES X and generates as output a regular

expression R (on the set of faults of X) denoting the temporal di-

agnosis �.O/. To this end, it first generates the O-constrained space

of X and replaces each component transition with the correspond-

ing (possibly empty) fault (lines 5–8). Then, in lines 9–17, possibly a

Figure 4: Generation of the temporal diagnosis based on Algorithm 1.

new initial state ˛0 and a new (single) final state ˛q is inserted along

with an "-transition connecting ˛0 with the original initial state and

one "-transition from each original final state to ˛q. This results in an

NFA N with initial state n0 and final state nq (line 18). The ultimate

goal of the algorithm is to transform N into a new NFA that is com-

posed of just the initial state, the final state, and a single transition

hn0; R; nqi, where R is in fact a regular expression identifying the

temporal diagnosis �.O/. The key idea in [7] is to simplify the NFA

by progressively eliminating states and transitions while preserving

the regular language accepted. This can be achieved by changing the

alphabet of the NFA (being initially the set of faults) into a set of

regular expressions on such faults.

Example 4 With reference to Example 3, where O D Œact; sby; nop�

and the O-constrained space is displayed on the top of Fig. 3, the

NFA obtained in line 18 of Algorithm 1 is depicted on the bottom-

left side of Fig. 3, where n0 D 0 and nq D 4. The reduction

of the NFA in line 19 is performed in four steps, leading to the

subsequent NFAs displayed in Fig. 3. In the first step, the cas-

cade Œh2; "; 3i; h3; "; 4i� of transitions is replaced with the transition

h2; "; 4i. In the second step, the state 1 and its entering/exiting transi-

tions are replaced with the new transitions h0; f3; 2i and h2; .f2f3/; 2i.

In the third step, the state 2 and its relevant transitions are replaced

with the new transition h0; .f3.f2f3/�/; 2i. In the fourth step, the cas-

cade Œh0; .f3.f2f3/�/; 2i; h2; "; 4i� of transitions is replaced with the

transition h0; .f3.f2f3/�/; 4i. Since now N includes one transition

only, no other action is carried out, thereby obtaining R D f3.f2f3/�,

which in fact equals the regular expression denoting �.O/ that was

determined by inspection of P
�
O

in Example 3.

Example 5 Another (abstract) example of the application of Al-

gorithm 1 is outlined in Fig. 4, where the graph displayed on

the left is assumed to be the NFA N obtained in line 18, with

a, b, and c being the faults involved. The states 1, 2, and 3,

along with relevant transitions, are removed one by one and sub-

stituted with other transitions. Eventually, the parallel transitions

h0; .aa�c/; 4i and h0; .ac�ba�c/; 4i are replaced with the transition

h0; ..aa�c/ j .ac�ba�c//; 4i. The regular expression denoting �.O/

is thus R D aa�c j ac�ba�c D a.a�jc�ba�/c D a.c�b/‹ a�c.

Proposition 2 Algorithm 1 is sound and complete.

Proof (sketch). Based on Definition 2, the language of the O-

constrained space generated in line 5 equals the set of trajectories

T 2 X
� such that Obs.T / D O. After the substitutions performed in

lines 6–8, the language of the NFA equals the set of temporal faults

Flt.T / where Obs.T / D O, in other words, it equals the temporal

diagnosis �.O/ (Definition 1). After the possible insertions of the

new initial state and the new final state, the language of the NFA N

obtained in line 18 is still �.O/. Since the reduction of N to a single

transition hn0; R; nqi in line 19 does not alter the language of N , the

regular expression R marking this transition equals �.O/. �
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Figure 5: Fault space of state 1 of P
� (shown on right side of Fig. 1).

The technique presented above for generating the temporal diag-

nosis �.O/ does not exploit any compiled knowledge of the DES.

This is why Algorithm 1 requires the generation of the O-constrained

space upfront (line 5), a solution that may be less than optimal when

time constraints on the diagnosis output are stringent. To alleviate

this drawback, the notion of a temporal diagnoser is introduced in

Section 4 and exploited for fast diagnosis in Section 5.

4 TEMPORAL DIAGNOSER

Roughly, the temporal diagnoser X
� of a DES X is an NFA result-

ing from the compilation of X. The alphabet of X
� is a set of pairs

.o; r/, where o is an observation of X and r a regular expression on

the faults of X defined in the mapping table �.X/. Intuitively, each

state of X
� (called a fault space) embodies a sort of local diagno-

sis information defined by regular expressions on the faults. When a

temporal observation O occurs, X
� allows for the efficient genera-

tion of the temporal diagnosis �.O/.

Definition 3 (fault space) Let X
� D .˙; X; �; x0; Xq/ be the space

of a DES X, F the set of faults of X, and x a state in X . The fault

space of x is an NFA (extended with X 0e)

xı D
�

˙ 0; X 0; � 0; x00; X 0e; X 0q

�

(5)

where ˙ 0 D F [ f"g is the alphabet, X 0 � X is the set of states,

x00 D x is the initial state, X 0e is the set of exit states, where xe 2 X 0e
iff hxe; t; x0i 2 � and t is observable, X 0q D X 0 \ Xq is the set

of final states, and � 0 W X 0 � ˙ 0 7! 2X 0
is the transition function,

where hx1; f; x2i is an arc in � 0 iff hx1; t; x2i 2 � and .t; o; f / 2

�.X/. Moreover, each state x0 2 X 0e [ X 0q, called a labeled state,

is marked with the regular language of the strings of faults of the

subtrajectories from x to x0, denoted �.x0/. The diagnosis language

of xı is a regular language defined as follows:

�
�

xı
�

D

8

<

:

" if X 0q D ;

�.x/ if X 0q D fxg

�.x1/ j : : : j �.xn/ if X 0q D fx1; : : : ; xng:

(6)

Example 6 With reference to the DES P introduced in Example 1,

shown in Fig. 5 is the fault space of state 1, namely 1ı , where X 0e D

f1; 4g and X 0q D f4g (cf. the space P
� displayed on the right side

of Fig. 1). Both states 1 and 4 are marked with a regular expression

denoting the language of the segments of temporal faults relevant to

the subtrajectories of P starting in 1 and ending in each of these two

states. Since X 0q D f4g, we have �.1ı / D f3.f2f3/�.

In order to mark the internal states of a fault space with the regular

expressions required, we cannot apply Algorithm 1 as is because sev-

eral states are involved in the marking process and, in general, each

of them is associated with a distinct regular expression. Still, after

the substitution of the component transitions with the corresponding

faults, the actions performed on the NFA N by Algorithm 1 remain

substantially the same, with the exception of a few variations. First, a

new final state nq is always inserted, along with an "-transition from

each labeled state to nq. Then, the replacement of a sequence of tran-

sitions, namely Œhn; r1; n1i; hn1; r2; n2i; : : : ; hnk�1; rk ; n0i�, is ex-

tended when the last transition hnk�1; rk ; n0i is such that nk�1 is a

Figure 6: Generation of �.x0/, where x0 2 f1; 2; 3g.

labeled state and n0 D nq (hence, rk D "). If so, the transition replac-

ing the sequence of transitions will be hn; .r1r2 � � � rk�1/.nk�1/; n0i,

where the additional subscript .nk�1/ indicates that the regular ex-

pression .r1r2 � � � rk�1/ is associated with the state nk�1. Also,

the replacement of a set of parallel transitions with a single tran-

sition needs caution: only those transitions with the same subscript

(or without any subscript) can be replaced with a single transition

marked with the alternative of the corresponding regular expressions.

Hence, in general, the set of parallel transitions is replaced with an-

other set of parallel transitions, where each new transition is marked

with a regular expression having a different (if any) subscript. Fi-

nally, the subscript may also come into play when a state is removed.

Example 7 Outlined in Fig. 6 is an abstract example showing the

computation of the regular expressions marking the states 1, 2, and 3

(depicted in bold) in the NFA displayed on the left side of the figure.

This NFA is assumed to be obtained from the portion of the space

(shaded in the figure) rooted in 0 and encompassing all the states

that are reachable by the arcs marked with unobservable component

transitions only. Then, the component transition marking each arc

has been substituted with the corresponding (possibly empty) fault,

namely ", a, or b. Moreover, a final state nq has been inserted along

with three "-transitions, namely h1; "; nqi, h2; "; nqi, and h3; "; nqi.

This resembles the initial configuration of the NFA N in Algorithm 1

(line 18). Considering the NFA in the second position in Fig. 6, the

original transitions h0; a; 1i, h1; b; 1i, and h1; "; nqi lead to the in-

sertion of the new transition h0; ab�
.1/

; nqi since the third transition

connects 1 with the final state nq. This will allow the algorithm to

eventually recognize ab� as part of the language �.1/. A similar

scenario holds for the NFA in the third position, where the removal

of the transitions involving the state 2 yields the regular expression

ba�
.2/

. Likewise, when the state 3 is removed along with its rele-

vant transitions (NFA in the fourth position), the two new transitions

are marked with the regular expressions ab�
.3/

and ba�b.3/, respec-

tively. Eventually, the parallel transitions relevant to the same state

are merged into a single transition; in our example, the two transi-

tions relevant to 3 are merged into a single transition marked with

the alternative of the regular expressions of these transitions, namely

.ab� j ba�b/.3/. The languages of (partial) temporal faults mark-

ing the labeled states are therefore �.1/ D ab�, �.2/ D ba�, and

�.3/ D ab� j ba�b.

Definition 4 (temporal diagnoser) Let X
� D .˙; X; �; x0; Xq/ be

the space of X, and let O be the set of observations of X, F the set of

faults of X, and R the set of regular expressions on F, respectively.

The temporal diagnoser of X is an NFA

X
� D

�

˙ 0; X 0; � 0; x00; X 0q

�

(7)

where ˙ 0 � O � R is the alphabet, X 0 is the the set of states, where

each state is a fault space, x00 is the fault space of x0, X 0q � X 0 is

the set of final states, where x0q 2 X 0q iff the set of final states (in Xq)
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Figure 7: Temporal diagnoser P
�.

within the fault space x0q is not empty, and � 0 W .X 0 � X/ � ˙ 0 7!

2.X 0�X/ is the transition function, where h.x01; x1/; .o; r/; .x02; x2/i

is an arc in � 0 iff x1 is an exit state of x01, hx1; t; x2i 2 � , .t; o; f / 2

�.X/, r D �.x1/f , x02 is the fault space of x2.

Example 8 With reference to the DES P introduced in Example 1,

shown in Fig. 7 is the temporal diagnoser P
�, where the fault spaces

are renamed 0 � � � 7. Unlike transitions between states of each fault

space, which are represented with plain arcs, the arcs representing

transitions between states of the temporal diagnoser P
� are denoted

with dashed arcs. For each pair .o; r/ marking a transition, the paren-

theses are omitted, as well as the regular expression r when r D ".

5 FAST DIAGNOSIS

A temporal diagnoser X
� is compiled knowledge built offline that

allows for the efficient online generation of a temporal diagno-

sis �.O/ of X by means of an algorithm called Fast Diagnosis.

Roughly, X
� is traversed based on O and the regular expressions

marking the transitions of X
� are concatenated in the given order.

When the transition relevant to the last observation in O is traversed

and a final state xf is entered, the regular expression composed so

far is eventually appended with the diagnosis language �.xf/, which

was itself precomputed offline. Since X
� is an NFA, several paths

can generate the same temporal observation O; therefore, the final

regular expression is in general composed by the alternative of sev-

eral subexpressions. Algorithm Fast Diagnosis is faster than algo-

rithm Temporal Diagnosis in the online computation perspective,

which is the user perspective.

The pseudocode of Fast Diagnosis is listed in Algorithm 2

(lines 1–26). It takes as input a temporal diagnoser X
� and a tem-

poral observation O, and generates as output a regular expression R

whose language equals �.O/, as proven in Proposition 3. To this end,

the algorithm exploits a set of contexts, namely �, with each context

being a pair .x; r/, where x is a state of X
� and r a regular expres-

sion on the faults of X. Initially, � includes just the initial context

.x0; "/, where x0 is the initial state of X
� (line 6). Then, a loop is

performed on the observations in O (lines 7–20). At each iteration,

a new set of contexts, namely �new is generated based on the cur-

rent content of �. Specifically, for each context .x0; r 0/ in � and for

Algorithm 2 Fast Diagnosis

1: procedure FAST DIAGNOSIS(X�, O, R)

2: input X� D
�

˙; X; �; x0; Xq

�

: the temporal diagnoser of a DES X

3: O: a temporal observation of X

4: output R: a regular expression denoting the temporal diagnosis �.O/
5: begin
6: � f.x0; "/g
7: for all observation o 2 O do
8: �new  ;
9: for all .x0; r 0/ 2 � do

10: for all arc h.x0; x/; .o; r/; .x0
2
; x2/i in � do

11: r2  r 0r
12: if .x0

2
; r 0

2
/ 2 �new then

13: Substitute .x0
2
; .r 0

2
jr2// for .x0

2
; r 0

2
/ in �new

14: else
15: Insert .x0

2
; r2/ into �new

16: end if
17: end for
18: end for
19: � �new

20: end for
21: if � D f.x; r/g then
22: R r�.x/
23: else if � D f.x1; r1/; : : : ; .xk ; rk/g where k > 1 then
24: R .r1.�.x1/// j : : : j .rk.�.xk///
25: end if

26: end procedure

each arc of X
� exiting x0 and marked with the pair .o; r/, where o

is the current observation, a regular expression r2 D r 0r is computed

(line 11). In fact, r 0 accounts for the faults up to x0, while r accounts

for the faults up to the internal state x of x0 plus the (possibly empty)

fault associated with the component transition that is observable by

means of o. The update of �new is performed in lines 12–16, de-

pending on whether a context involving the reached state x02 exists

in �new or not. If a context .x02; r 02/ exists, then its regular expres-

sion is extended with the alternative r2, thereby yielding the updated

context .x02; .r 02jr2// (line 13). Otherwise, a new context .x02; r2/ is

created (line 15). Before the end of the iteration, � is replaced with

�new (line 19). When all the observations have been considered (ter-

mination of the outer loop), the regular expression R is determined

(lines 21–25). Two scenarios are possible for �: it contains either

one context .x; r/ or k > 1 contexts. In the first scenario (lines 21–

22), R is generated by appending r with the diagnosis language of

x, thereby obtaining R D r�.x/. This is because r accounts for

the faults up to the initial state of x, while �.x/ accounts for the

faults within x (up to any final state within x). In the second scenario

(lines 23–24), since several contexts exist, the same operation is per-

formed for each context .xi ; ri /, i 2 Œ1 :: k�, thereby yielding the

regular expression R that is composed of the alternatives ri .�.xi //.

Example 9 With reference to the temporal diagnoser P
� displayed

in Fig. 7, let O D Œact; sby; nop� be the temporal observation of P

considered in Example 3. Based on line 6 of Algorithm 2, we have

� D f.0; "/g. On the first observation, namely act, the only arc in-

volved in the loop (line 10) is h.0; 0/; .act; "/; .1; 1/i; hence, r2 D "

(line 11) and �new D f.1; "/g (line 15). On the observation sby (sec-

ond iteration of the outer loop), we have � D f.1; "/g. Now, the

only arc involved in line 10 is h.1; 4/; .sby; f3.f2f3/�/; .2; 2/i; hence,

r2 D f3.f2f3/� (line 11) and �new D f.2; f3.f2f3/�/g (line 15). On

the last observation, namely nop, we have � D f.2; f3.f2f3/�/g. The

only arc involved is h.2; 2/; .nop; "/; .0; 0/i; hence, r2 D f3.f2f3/�

(line 11) and � D �new D f.0; f3.f2f3/�/g (line 19). Eventually,

since � is a singleton, the regular expression R is computed in

line 22, namely R D f3.f2f3/�, as �.0/ D ". As expected, the lan-
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guage of R equals the temporal diagnosis �.O/ that was yielded

both in Example 3, by inspection of the O-constrained space of P ,

and in Example 4, based on Algorithm 1.

Example 10 Considering again the temporal diagnoser P
� dis-

played in Fig. 7, let O D Œact; opn; cls� be a new temporal obser-

vation of P . Initially, based on Algorithm 2, we have � D f.0; "/g.

On the first observation, namely act, the only arc involved in the

loop is h.0; 0/; .act; "/; .1; 1/i; hence, r2 D " and �new D f.1; "/g.

On the second observation, namely opn, we have � D f.1; "/g.

Now, the only arc involved in line 10 is h.1; 1/; .opn; .f3f2/�/; .3; 3/i;

hence, r2 D .f3f2/� and �new D f.3; .f3f2/�/g. On the last obser-

vation, namely cls, we have � D f.3; .f3f2/�/g. The only arc in-

volved is h.3; 6/; .cls; f2f6/; .4; 4/i; hence, r2 D .f3f2/�f2f6 (line 11)

and � D f.4; .f3f2/�f2f6/g (line 19). Eventually, since � is a sin-

gleton, the regular expression R is computed in line 22, namely

R D r�.4/ D .f3f2/�f2f6.f2f3/�, where �.4/ D .f2f3/�. In the set-

oriented approach, where a candidate is a set of faults rather than a

temporal fault, the diagnosis output consists of two candidates only,

namely ff2; f6g and ff2; f3; f6g, without any temporal relationships

between faults. Once these candidates have been output, the diag-

nostician knows that both fault f2 and f6 have certainly occurred,

while the occurrence of fault f3 is uncertain; he or she has no hint

about how many times such faults have manifested themselves and

in which temporal order. In temporal-oriented diagnosis, the diag-

nostician knows not only that both fault f2 and f6 have certainly oc-

curred, but also that f6 has occurred just once and that it has been

preceded by the occurrence of f2 (with no other fault in between),

and that, in case f3 had occurred, it was the first and/or the last fault

in the sequence, etc. This comparison between set-oriented diagnosis

and temporal diagnosis shows once more that the latter can explain

better what has happened inside a DES since it provides a tempo-

ral view that is missing in the corresponding set-oriented diagnosis.

When the diagnostic result is a set of faults, the diagnostician nei-

ther knows whether a fault has occurred intermittently nor whether a

fault has occurred before or after another, a piece of information that

is important in a causal analysis.

Proposition 3 Algorithm 2 is sound and complete.

Proof (sketch). We have to show that the language of the regular

expression R computed by Algorithm 2 equals the temporal diagno-

sis �.O/ defined in eqn. (4), where O D Œo1; : : : ; on�. First, notice

that the graph obtained from the temporal diagnoser X
�, once the

fault spaces are unfolded, resembles the space X
� where the sym-

bols t (component transitions) marking the transitions of X
� are re-

placed with either a (possibly empty) fault (within a state of X
�) or

with a pair .o; r/ (between states of X
�). In each state (fault space)

of X
�, each component transition, marking the (internal) arcs be-

fore the substitution, is unobservable. Moreover, each labeled state x

within a fault space x0 is marked with a regular expression r denoting

the set strings of faults relevant to the segments of trajectories of X

from the initial state of x0 to x. Let F be a temporal fault in �.O/.

Based on eqn. (4), there is a trajectory T in X
� such that F D Flt.T /

and O D Obs.T /. The trajectory T can be traced by a path } in X
�

starting from the initial state of the fault space representing the ini-

tial state of X
� and ending in a final state xf of a (final) state x0f of

X
�. When the current component transition in T is observable via

an observation o in O, a transition marked with .o; r/ is performed on

X
�. For its part, the regular expression R generated by Algorithm 2

certainly accounts for the path }, as the generation of � is driven by

the observations in O. In other words, among the alternatives in R,

there is a regular expression r} that is constructed based on } by

concatenating the regular expressions ri associated with the observa-

tions oi , i 2 Œ1 :: n�, within the pairs .oi ; ri / marking the transitions

of X
� and appending this concatenation with the diagnosis language

of the final state x0f of X
�, namely �.x0f/. Since each ri accounts for

the (segments of) temporal faults from one state to the next, the lan-

guage of r} necessarily includes the temporal fault F (soundness).

To prove the completeness, we have to show that, if F is a string in

the language of R, then F is a temporal fault in �.O/. As such, F is

generated by means of a path } traversing the unfolded X
� starting

from the initial state of the initial state of X
� and ending in a final

state of a final state of X
�, with the constraint that the subsequence

of (external) transitions of X
� in } generates the sequence of ob-

servations in O. Since } corresponds to a trajectory T in X
� where

Obs.T / D O and Flt.T / D F , based on eqn. (4), F 2 �.O/. �

6 CONCLUSION

In this paper, the notions of temporal fault and temporal diagnosis

have been introduced, which allow for a novel characterization of

the diagnosis results for DESs. Instead of being a set of faults, a can-

didate is a temporal fault, namely a (possibly unbounded) multiset of

temporally ordered faults, just as a temporal observation is a multiset

of temporally ordered observations. Consequently, a temporal diag-

nosis is a (possibly infinite) set of temporal faults that are produced

by the trajectories that generate the temporal observation. Despite

possibly including an infinite number of temporal faults, a temporal

diagnosis can be represented by a (finite) regular expression. This

endows the diagnosis results with a temporal aspect that can help ex-

plain better what has happened inside the DES. To the best of our

knowledge, this characterization has never been introduced before.

Albeit being embedded in the active-system approach [18], it is

interesting to discuss the proposal in the context of the diagnoser

approach also [27]. The diagnoser approach assumes that both the

language of the transitions of the DES and the language of the ob-

servable events of the DES are live, whereas the active-system ap-

proach does not make any such assumption. Moreover, the diag-

noser approach assumes that the faulty transitions are unobservable,

while this assumption is relaxed in the active-system approach. Con-

sequently, while according to the diagnoser approach there does not

exist any unobservable behavioral cycle, and hence, there does not

exist any cycle of faults, both such cycles are allowed in the active-

system approach. Therefore, the regular expressions relevant to the

occurrence of faults in active systems can represent an unbounded

number of iterations, while this is not needed in case the temporal

diagnosis characterization were adopted by the diagnoser approach

(or by approaches making the same assumptions). Another feature of

the active-system approach is that the task of a posteriori diagnosis

considers only trajectories that end in a global final state, where all

links are empty. The notion of a final state does not apply to the DES

models taken into account by the diagnoser approach, as such mod-

els, supporting synchronous communication between components,

do not include any link. In the temporal diagnoser, final states are

identified within the fault spaces, so as to differentiate them from

the other global states. No such differentiation is needed in case the

temporal diagnoser were adopted in the diagnoser approach.

Fault detection in DESs was generalized in [12] to the recognition

of a pattern, this being a DFA that can represent the occurrence of

multiple faults, the ordered occurrence of significant events, the mul-

tiple occurrences of the same fault, etc. It is tempting to speculate

that temporal diagnosis resembles diagnosis with supervision pat-
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terns; after all, a pattern enables the detection of a specific language

of transitions and, therefore, the detection of a specific language of

faulty transitions also. In other words, given the temporal observa-

tion taken as input by the diagnosis task, the supervision pattern ap-

proach can find out whether there exists a trajectory implying such

a sequence that complies with the given (pattern) language. Notice

that there may exist several other trajectories that imply the temporal

observation while producing sequences of faults that do not belong to

the given (pattern) language: the supervision pattern approach does

not produce any output about them. The difference with respect to

temporal diagnosis is that the latter is not given any automaton up-

front recognizing a language, instead it produces a regular expression

representing the language of the faults of all the trajectories that im-

ply the given temporal observation. Moreover, the output of the su-

pervision pattern approach clarifies whether the pattern has occurred;

however, it does not compute the number of its occurrences, nor does

it show the relative order of these occurrences and those of individual

faults within the trajectories implying the temporal observation. On

the other hand, from the point of view of the approach presented in

the current paper, if a fault is associated with a pattern, this can be

part of a temporal fault as all other faults are. In other words, tempo-

ral diagnosis is orthogonal to the classification of faults, being they

“simple” or somehow “complex” as in [12, 15, 20]. Recent works

of the authors [3, 4, 5] have shown how to compile the knowledge

relevant to a DES without generating the global behavior. Similar

techniques can be exploited in order to build the temporal diagnoser

based on scenarios, an interesting topic for future research. Future ef-

forts can be devoted also to adopting the notion of temporal diagnosis

in the context of complex DESs [19, 17]. Finally, an implementation

of the algorithms presented in this paper is needed in order to carry

out some experimental activities.
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agnosing discrete event systems using nominal models only’, in 28th In-

ternational Workshop on Principles of Diagnosis (DX 2017), pp. 169–
183, Brescia, Italy, (2017).

[23] Ingo Pill and Thomas Quaritsch, ‘Behavioral diagnosis of LTL specifi-
cations at operator level’, in Proceedings of the Twenty-Third Interna-

tional Joint Conference on Artificial Intelligence, IJCAI ’13, pp. 1053–
1059. AAAI Press, (2013).

[24] N. Ran, H. Su, A. Giua, and C. Seatzu, ‘Codiagnosability analysis of
bounded Petri nets’, IEEE Transactions on Automatic Control, 63(4),
1192–1199, (2018).

[25] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-

ligence, 32(1), 57–95, (1987).
[26] M. Sampath, S. Lafortune, and D.C. Teneketzis, ‘Active diagnosis

of discrete-event systems’, IEEE Transactions on Automatic Control,
43(7), 908–929, (1998).

[27] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis, ‘Diagnosability of discrete-event systems’, IEEE Transac-

tions on Automatic Control, 40(9), 1555–1575, (1995).
[28] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and

D.C. Teneketzis, ‘Failure diagnosis using discrete-event models’, IEEE

Transactions on Control Systems Technology, 4(2), 105–124, (1996).
[29] Viktor Schuppan, ‘Towards a notion of unsatisfiable and unrealizable

cores for ltl’, Sci. Comput. Program., 77(7–8), 908–939, (jul 2012).
[30] X. Yin and S. Lafortune, ‘On the decidability and complexity of di-

agnosability for labeled Petri nets’, IEEE Transactions on Automatic

Control, 62(11), 5931–5938, (2017).

N. Bertoglio et al. / Diagnosis of Temporal Faults in Discrete-Event Systems 639


