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microRNAs (miRNAs) have been proposed as promising molecular biomarkers for diagnosis, prognosis, and responsive
therapeutic targets in different types of cancer, including colorectal cancer (CRC). In this study, we evaluated the expression
levels of 84 cancer-associated miRNAs in a cohort of 39 human samples comprising 13 peritumoral and 26 tumoral tissues from
surgical specimens of CRC patients. KRAS mutations were detected in 11 tumoral samples. In a first analysis, we found 5
miRNAs (miR-215-5p, miR-9-5p, miR-138-5p, miR378a-3p, and miR-150-5p) that were significantly downregulated and one
upregulated (miR-135b-5p) in tumoral tissues compared with the peritumoral tissues. Furthermore, by comparing miRNA
profile between KRAS mutated CRC tissues respect to wild type CRC tissues, we found 7 miRNA (miR-27b-3p, miR-191-5p,
miR-let7d-5p, miR-15b-5p, miR-98-5p, miR-10a-5p, and miR-149-5p) downregulated in KRAS mutated condition. In
conclusion, we have identified a panel of miRNAs that specifically distinguish CRC tissues from peritumoral tissue and a
different set of miRNAs specific for CRC with KRAS mutations. These findings may contribute to the discovering of new
molecular biomarkers with clinic relevance and might shed light on novel molecular aspects of CRC.

1. Introduction

According to GLOBOCAN 2018 (Global Cancer Observa-
tory), colorectal cancer (CRC) is the second leading cause
of cancer-related death worldwide and the fourth most
incident cancer in the world, with a higher incidence among
men [1]. Although advances in early detection and treatment
options have reduced CRC mortality in developed nations,
these countries remain those at the highest risk. 70-80% of
cases of CRC occur sporadically and depend on risk factors
that include history ulcerative colitis and Crohn’s disease
[2], but also constellation of modifiable environmental
factors, more frequent in western countries, which include
obesity, physical inactivity, poor diets, alcohol drinking, and
smoking [3]. Approximately 25% of CRC patients have a

positive family history of CRC, suggesting a specific contri-
bution of inherited genetic factors [4]. Multiple whole-
genome sequencing studies have been performed so far;
however, only a small number of genetic variants have been
successfully replicated in independent cohorts [5]. Moreover,
it has been estimated that only 5%–10% of CRC are due to
inherited mutations in well-known cancer-related genes [6].
Three canonical major distinct genetic pathways have been
attributed to the development of sporadic CRC. These are
not mutually exclusive and include the chromosomal insta-
bility pathway (CIN), the microsatellite instability pathway
(MSI), and the CpG island methylator phenotype pathway
(CIMP) [7]. The CIN pathway is the most frequent; it involves
the classic adenoma-carcinoma sequence and genetic
alterations in adenomatous polyposis coli—APC—(30–70%)
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and Kirsten Rat Sarcoma viral antigen homolog—K-
RAS—(30–50%). The CIMP pathway, reported in the 20-
30% of sporadic CRC [8], involves the serrated neoplasia path-
way and mutations in KRAS 10% (usually B-Raf proto-
oncogene serine/threonine kinase—BRAF—wild type) and
BRAF~70% [9]. The MSI pathway can involve both serrated
neoplasia or adenoma-carcinoma sequence, which is charac-
terized by mutations in KRAS 10%, BRAF~70% [10], and
mutations in mismatch repair genes for Lynch syndrome.

In general, mutations of KRAS gene have been detected in
approximately 40% of patients with CRC [11, 12]. These
mutations are single nucleotide point variations and the most
frequent are G12D, G12A, G12R, G12C, G12S, G12V, and
G13D. In the codon 12, the mutations, G12D and G12V,
are the most frequent, whereas in codon 13, the most
frequent is G13D [13]. However, KRASmutations also occur
in codons 18, 61, 117, and 146, but at low frequencies
compared with codons 12/13. The evaluation of KRASmuta-
tion status in CRC patients has a crucial prognostic role,
since patients carrying KRASmutations have a poor response
to anti-EGFR therapy [14, 15] and show an increased cumu-
lative incidence of metastatic disease [16].

microRNAs are 19-22 nucleotide-long noncoding RNAs
that regulate gene expression mainly at posttranscriptional
level by binding to the 3′ untranslated region (3’UTR) of
target mRNAs. Dysregulation of micro-RNAs expression
levels has been observed in several human diseases, including
cancers [17].

As the oncogene KRAS has been found upregulated in
many human malignancies [18], the regulation of KRAS by
miRNAs has drawn attention in the field, since specific miR-
NAs can act as tumor suppressor by targeting KRAS [19] also
in CRC [20]. Indeed, even though miRNAs are not directly
involved in mutagenesis mechanism nor modify the onset
of mutations, they are key actors in inhibiting overexpressed
mRNAs of genes harboring activating mutations such as
APC, TP53, KRAS, and BRAF [21].

In this study, we aim to: (1) identify miRNAs differen-
tially expressed between tumoral and peritumoral tissues
from patients with CRC and (2) identify miRNAs differen-
tially expressed in KRAS mutated patients versus Wild
Type patients.

2. Materials and Methods

2.1. Collection of Human Tissue Samples. Twenty-six tumoral
and thirteen corresponding peritumoral surgical specimens
were collected from patients with primary CRC who under-
went tumor surgical resection at “Fundeni” Clinical Institute
in Bucharest, Romania. The specimens have been preserved
in RNA later. The present study has been approved by the
local ethics committee (registration number 291 of 8th March
2016) and carried out in accordance with the Code of Ethics
of the World Medical Association (Declaration of Helsinki).
All the patients recruited have signed a written informed
consent. All samples were examined by one experienced
pathologist, and the socio-demographic and clinical informa-
tion of the considered cohort are listed in Table 1.

2.2. KRAS Mutation Detection and miRNAs Expression
Analysis. DNA has been isolated with QIAamp DNA Mini
Kit (Qiagen, Germany). Total RNA, including miRNAs, has
been isolated from RNA later preserved tissues using miR-
Neasy Mini Kit (Qiagen, Germany). Both isolations have
been performed using the manufacturer’s protocol. RNA
and DNA quality and quantity were assessed by spectropho-
tometric method (NanoDrop 2000, Thermo Scientific) with
both 260/280 nm and 260/230 nm parameters >1.8. KRAS
mutations (in codons 12, 13, 61) were identified through
pyrosequencing analysis using CEIVD marked PyroMark
KRAS kit (QIAGEN, Hilden, Germany) according to the
manufacturer’s protocols on PyroMark Q24 instrument
(QIAGEN, Hilden, Germany) and analyzed by Pyro Mark
Q24 1.0.6.3 software as previously reported [22]. Reverse
transcription of 500ng of total RNA was performed with
the miScript II RT Kit (Qiagen), and the expression of a panel
including 84 miRNAs was evaluated with miScript™miRNA
PCR ArrayHuman Cancer PathwayFinder (MIHS-102Z,
Qiagen) and miScript SYBR Green PCR Kit (Qiagen). This
panel includes miRNAs previously correlated with the diag-
nosis, staging, progression, or prognosis of various cancers
or tumors. Each array contains several control assays: six dif-
ferent snoRNA/snRNA as a normalization control for the
array data (SNORD61, SNORD68, SNORD7, SNORD95,
SNORD96A, RNU6B/RNU6-2), miRNA reverse transcription
control (RTC) and positive PCR control (PPC). The miRNA
expression was calculated by the 2−ΔCT method normalizing
on the geometric mean of three controls (SNORD61,
SNORD95, and SNORD96A) [23]. These three miRNAs have
been chosen based on the RefFinder algorithm [24].

2.3. In Silico microRNA Target Identification. miRNA target
identification has been performed using miRTarBase that
comprises more than three hundred and sixty thousand
miRNA-target interactions which are experimentally
validated by reporter assay, western blot, microarray, and
next-generation sequencing experiments [25]. A pathway
analysis on the validated targets has been performed with
KEGG through Enrichr, a comprehensive gene set enrich-
ment analysis web server [26]. The analysis of the predicted
oncogenes and tumor suppressors targeted by the selected
miRNAs has been performed using miRWalk 2.0 (http://
mirwalk.umm.uni-heidelberg.de/), and the total number of
significantly enriched genes was calculated using Fisher’s
exact test (p < 0:05).

2.4. Statistical Analysis. Categorical variables were tested by
means of the chi-square test and continuous variables with
the t-test. The normality of data distribution of each miRNA
level was evaluated using the Shapiro–Wilk test. Since data
were not normally distributed, differences in miRNA expres-
sion between Tumoral and Peritumoral tissues were assessed
using theMann–WhitneyU test. A further analysis for the 13
tumoral samples with the matched peritumoral tissues has
been performed using a paired-sample t-test. miRNAs
expression differences among the three groups were evalu-
ated using the nonparametric Kruskal–Wallis test followed
by pairwise tests. miRNA levels changes were considered
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significant between the groups when the p value was <0.05
and the fold regulation (FR) was FR >2 or FR <-2. Statistical
analysis was performed using the Statistical Package for
Social Science (SPSS version 17.0).

3. Results

In this study, we evaluated the expression of 84 cancer-
associatedmiRNAsknowntoplayapivotal role in tumoronset
and progression. The general expression of each miRNA in
terms of Ct range is shown in Supplementary data (Table S1).
In a first analysis, we compared the miRNAs expression
profile between peritumoral and tumoral CRC tissues from
surgical specimens (including those with and without KRAS
mutations). KRAS mutations were not identified in
peritumoral tissues. The two groupswere homogenous for age
and sex. We found six miRNAs differentially expressed, five
downregulated and one upregulated in tumoral tissues
compared to peritumoral tissues (Table 2). The graphic
representation of the significantmiRNAs is shown in Figure 1.
We further performed a paired analysis for the 13 tumoral
samples with the matched peritumoral tissues. The results
showed that miR-215-5p was significantly downregulated
also in the small group (FR = −2:87, p = 0:003). miR-9-5p,

miR-138-5p, miR-378a-3p, miR-150-5p, and miR-135b-5p
maintained the same trend of expression obtained
considering all the cases, with a fold regulation of -1.49, -1.92,
-1.73, -1.77, and +3.82, respectively. However, for these
miRNAs, the statistical significancewas lost.

In a second analysis, we focused on the differences of
miRNA profile between wild type and KRAS mutated
tumoral tissues performing a comparison between the two

Table 2: miRNAs differentially expressed in tumoral (n = 26) vs
peritumoral (n = 13) tissues. miRNAs are ordered accordingly to
increasing fold regulation.

miRNA differentially expressed (26 T vs 13 PT)
miRNAs p value# FR∗

miR-215-5p <0.001 -4.75
miR-9-5p 0.013 -2.73
miR-138-5p <0.001 -2.63
miR-378a-3p 0.001 -2.52
miR-150-5p 0.037 -2.12
miR-135b-5p 0.020 2.92

#p_value has been calculated using the Mann–Whitney U test; ∗ FR: fold
regulation.

Table 1: Clinical and pathological characteristics of CRC patients involved in the study.

Tumor KRAS Mut
(N = 11)

Tumor WT
(N = 15)

Peritumoral
(N = 13)

#p value

Age 63:72 ± 8:12 64 ± 9:81 61:23 ± 8:96
T WTvs PT = 0:445
T Mvs PT = 0:486

T Mvs T WT = 0:941

Sex (%F) 27% 60.00% 53.80%

T WTvs PT = 0:743 (χ2 = 0:108)
T Mvs PT = 0:188 (χ2 = 1:731)

T Mvs T WT = 0:098 (χ2 = 2:735)

Tumor
location

Colon 81.82% Colon 60% Colon 61.54% ∗RSJ: rectosigmoid junction
#p value for age was calculated using the t-test,

whereas sex was tested by means of the chi-square
test.

Sigmoid 0% Sigmoid 26.66% Sigmoid 15.38%
RSJ∗ 9.09% RSJ∗ 0% RSJ∗ 7.70%

Rectum 9.09% Rectum 13.34% Rectum 15.38%

TNM staging

T2N0M0 (n = 5)
T2N1M0 (n = 0)
T3N1M0 (n = 3)
T3N2M0 (n = 1)
T4N0M0 (n = 1)
T4N1M0 (n = 1)

T2N0M0 (n = 4)
T2N1M0 (n = 3)
T3N1M0 (n = 5)
T3N2M0 (n = 2)
T4N0M0 (n = 0)
T4N1M0 (n = 1)

KRAS
mutation

Codon 12
G12A (n = 1)
G12C (n = 1)
G12D (n = 1)
G12R (n = 1)
G12V (n = 2)
Codon 13

G13D (n = 3)
Codon 61

Q61E (n = 1)
Q61L (n = 1)
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groups. We found that 7 miRNAs were downregulated in
patients carrying KRAS mutations compared to wild type
patients. These results are reported in Table 3 and in Figure 2.

3.1. microRNA Target Identification and Pathway Analysis.
The identification of the mRNA targets has been performed
for the most significant miRNAs up- and downregulated in
the comparison between tumoral and peritumoral tissues,
miR-135b-5p and miR-215-5p, respectively, and for the most
downregulated miRNA in tumoral tissues with KRAS muta-
tions vs tumoral wild type tissues (miR-27b-3p). Only exper-
imentally validated targets have been considered. Among the
validated targets, we reported those directly involved in CRC
pathway according to KEGG pathway analysis (Table 4). We
have also reported the total number of the significantly
enriched oncogenes and tumor suppressors predicted to be
targeted by the selected miRNAs using miRWalk.

4. Discussion

In this exploratory study, we analyzed a cohort of 39 samples
representing 13 peritumoral and 26 tumoral tissues from
surgical specimens of CRC patients, in order to identify a
specific miRNAsmolecular signature of CRC able to discrim-
inate PT tissues from CRC tissues and CRC KRAS mutated
tissues from CRC wild type tissues, by analyzing 84 candidate
miRNAs by qPCR array. This analysis identified 5 miRNA
(miR-215-5p, miR-9-5p, miR-138-5p, miR378a-3p, and
miR-150-5p) that were significantly downregulated and one
upregulated (miR-135b-5p) in tumoral tissues compared
with the peritumoral control group. We further stratified
the tumoral tissues according to the presence (T_M) or lack
(T_WT) of KRAS mutations, and we compared the miRNAs
profile of the two groups to assess the miRNAs differentially
expressed in CRC mutated respect to CRC wild type. We
identified 7 miRNAs (miR-27b-3p, miR-191-5p, miR-let7d-
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Figure 1: The graphs show the significant miRNAs differentially expressed between tumoral and peritumoral tissues. Bar graphs represent
the mean of the 2−ΔCt values, and error bars represent the standard error. p values have been calculated using the Mann–Whitney U test.
(a) miR-215-5p; (b) miR-19-5p; (c) miR-138-5p; (d) miR-378a-5p; (e) miR-150-5p; (f) miR-135b-5p. PT: peritumoral; T: tumoral.
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5p, miR-10a-5p, miR-15b-5p, miR-98-5p, and miR-149-5p)
all downregulated in KRAS mutation carriers compared to
the wild type patients.

Consistent with our findings, most of the miRNAs iden-
tified in the first comparison have been previously reported
to be significantly dysregulated in CRC, and they play impor-
tant roles in tumor development. Recently, Falzone and
collaborators performed an integrated analysis of 10 miRNAs
datasets carrying out a bioinformatics analysis on 703
samples (262 normal tissues and 441 samples of colorectal
carcinoma) [18]. They identified 20 significant differentially
expressed miRNAs (10 downregulated and 10 upregulated)
between colorectal cancer samples and normal tissues in at
least 3 of 10 datasets. Among these miRNAs, in line with
our findings, the authors identified miR-135b-5p (upregu-
lated), and miR-378-3p, miR-150-5p, miR-215-5p (downreg-
ulated). The miR-215-5p has been predicted to target CXCL2
in CRC cell lines (HT29) [27]. Interestingly, CXCL2 has been
found upregulated in inflamed mucosa compared to not
inflamed mucosa of patients with ulcerative colitis [28], a
condition that increases the risk of CRC. Another study
demonstrated that miR-138-5p was significantly downregu-
lated in CRC tissue samples and cell lines and showed that

its overexpression delayed cell proliferation, reduced colony
formation, and increased apoptosis in CRC cell lines [29,
30]. No studies showing differential expression of miR-9-5p
between peritumoral and tumoral tissues are reported. How-
ever, miR-9-5p has been indicated a prognostic biomarker in
CRC [31, 32].

Regarding the seven miRNAs, we found downregulated
in KRAS mutation carriers compared to the WT, they have
been all found implicated in CRC onset and progression,
but no study has directly linked them to KRAS mutations.
miR-27b-3p promoted migration and invasion in colorectal
cancer cells by targeting HOXA10/integrin β1 cell signal axis
[33]. A decrease of its levels has been observed in oxaliplatin-
resistant cell lines suggesting this miRNA as valuable thera-
peutic target for CRC, especially for patients with chemore-
sistance [34]. Moreover, miR-27b-3p has also been found
associated with other types of cancer showing a significant
downregulation in gastric cancer cell lines and tissues com-
pared with the normal group [35].

A single study associated a dysregulation of miR-191-5p
in colon adenocarcinoma, suggesting this miRNA as possible
prognostic marker [36], miR-191-5p has a relevant role in
other types of cancer, including renal cell carcinoma [37]
and osteosarcoma [38]. miRNAs let-7 family members gen-
erally promote differentiation during development and func-
tion as tumor suppressors in various cancers [39], and Let-7d
regulation of KRAS has previously been shown [40]. Recent
data indicated that let-7d-5p increases sensitivity to trifluri-
dine, a key component of the antitumor drug trifluridine/ti-
piracil for the treatment of patients with metastatic
colorectal cancer refractory to standard chemotherapies, sug-
gesting this miRNA as a potential clinical marker of treat-
ment sensitivity [41]. Moreover, miR-let-7d-5p was found
upregulated in paraffin-embedded (FFPE) tissue samples of
CRC patients compared to controls [42], without any data
being reported in KRASmutated samples. Recently, an in situ
hybridization array approach, using paraffin-embedded
biopsies of colorectal primary tumors, studied the expression
levels of 1436 miRNAs in 192 samples. The miRNA profile
has been associated with clinical and histopathological fea-
tures indicating that miR-10a-5p is correlated with relevant
histopathological features, including stroma abundance,
tumor grade, peritumoral inflammatory infiltrates, mucin
type, and tumor location [43]. Moreover, this miRNA was
found associated with tumor localization being less abundant
in the right colon compared to the left colon and rectum [44].

MiR-15b-5p was associated with different types of cancer,
such as ovarian cancer [45], liver cancer [46], neuroblastoma
[47]. In CRC, this miRNA has been suggested as potential
therapeutic target for CRC treatment, particularly for 5-FU-
resistant CRC [48] and potential target for metastatic CRC
therapy [49]. Also, its levels could be useful to distinguish
between CRC or its precancerous lesion (advanced adeno-
mas) and healthy individuals controls [50]. MiR-98-5p levels
have been found dysregulated in different types of cancer
cells, such as nonsmall cell lung carcinoma [51], prostate can-
cer [52], and breast cancer [53]. In relation to CRC, this
miRNA has been identified in human colon carcinoma cell
line LIM1863–shed microvesicles [54]. Moreover, this

Table 3: The table shows the miRNAs differentially expressed
among the three groups. In blue font, it is reported that the FR of
the miRNAs downregulated in tumoral tissues with KRAS
mutations vs tumoral KRAS wild type.

miRNA p value KW# Pairwise
comparison

Adjusted
p value
pairwise

FR∗

miR-27b-3p 0.032
T_WT vs PT 0.999 1.04
T_M vs PT 0.088 -1.98

T_M vs T_WT 0.044 -2.07

miR-191-5p 0.032
T_WT vs PT 0.999 1.28
T_M vs PT 0.088 -1.82

T_M vs T_WT 0.044 -2.33

miR-let7d-5p 0.007
T_WT vs PT 0.999 1.27
T_M vs PT 0.087 -1.88

T_M vs T_WT 0.006 -2.40

miR-10a-5p 0.017
T_WT vs PT 0.999 1.67
T_M vs PT 0.169 -1.73

T_M vs T_WT 0.014 -2.88

miR-15b-5p 0.027
T_WT vs PT 0.999 1.28
T_M vs PT 0.174 -1.65

T_M vs T_WT 0.025 -2.10

miR-98-5p 0.038
T_WT vs PT 0.264 1.51
T_M vs PT 0.999 -1.49

T_M vs T_WT 0.041 -2.24

miR-149-5p 0.002
T_WT vs PT 0.848 1.16
T_M vs PT 0.002 -3.03

T_M vs T_WT 0.035 -3.51
#KW: Kruskal–Wallis test followed by pairwise tests. ∗FR: fold regulation.
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miRNA is a member of a panel of six miRNAs that seem to
predict treatment response to fluoropyrimidine containing
first-line systemic treatment in patients with mCRC when

combined with four clinicopathological factors [55]. In our
study, miR-149-5p resulted downmodulated in KRAS
mutated samples vs wild type; it has been demonstrated that
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Figure 2: (a–g) The graphs show the significant miRNAs differentially expressed among the groups (PT: peritumoral; T WT: tumoral KRAS
wild type; T Mut: tumoral KRAS mutated). Bar graphs represent the mean of the 2−ΔCt values, and error bars represent the standard error. (a)
miR-27b-3p. (b) miR- 10a-5p. (c) miR-191-5p. (d) miR-15b-5p. (e) miR-let7d-5p. (f) miR-98-5p. (g) miR- 149-5p. p value has been calculated
using Kruskal–Wallis test followed by pairwise tests.
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LncRNA PCAT-1 regulated cell proliferation, invasion,
migration, and apoptosis in colorectal cancer through target-
ing miR-149-5p [56], and according to our results, miR-149-
5p resulted downregulated in CRC, likely acting as a tumor
suppressor in CRC [57].

Clearly, there are some limitations for this study. Firstly,
data regarding cancer evolution are not yet available, so the
prognostic value of the identified miRNAs cannot be
assessed. Secondly, another limitation is the relatively small
sample size of the subgroup of the KRAS mutated samples.

5. Conclusions

In conclusion, the novelty of our work is the identification
of a panel of miRNAs that resulted in dysregulated in
CRC tissues compared to their normal adjacent tissues.
The specific identification of a different set of miRNAs
(all downregulated) in KRAS mutated CRC tissues respect
to wild type CRC tissues could suggest their putative role
as responsive molecular targets (i.e., by ectopically modify-
ing their expression levels). These data could help to iden-
tify novel strategies to improve the efficacy of the therapy,
mainly in the subgroup of patients with KRAS mutations.
More studies and a wide cohort are needed to support the
conclusions of our explorative study.
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