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A B S T R A C T

This paper deals with the search of optimal paths in a multi-stage stochastic decision network as a first application
of the deterministic approximation approach proposed by Tadei et al. [48]. In the network, the involved utilities
are stage-dependent and contain random oscillations with an unknown probability distribution. The problem is
modeled as a sequential choice of nodes in a graph layered into stages, in order to find the optimal path value in a
recursive fashion. It is also shown that an optimal path solution can be derived by using a Nested Multinomial Logit
model, which represents the choice probability at the different stages. The accuracy and efficiency of the proposed
method are experimentally proved on a large set of randomly generated instances. Moreover, insights on the
calibration of a critical parameter of the deterministic approximation are also provided.

1. Introduction

Finding optimal paths is one of the most fundamental problems on
graphs with broad applications in various fields like computer science,
robotics, operations research, and transportation planning. The pro-
blem can be seen as a multi-stage decision process in which decisions
are made step by step to eventually achieve an optimal sequence of
choices, i.e., an optimal path throughout the stages. Depending on the
application, the objective may be expressed in terms of maximization of
utilities or minimization of costs, which in turn may lead to search for
the most-profitable or the less-costly path on a graph, respectively. Note
that the most-profitable path can be seen as the longest path when the
arc utilities are substituted with arc costs, while the less-costly path
actually corresponds to the shortest path. In this paper, we mainly
provide a detailed approach for the former case, while for the latter we
just briefly discuss those assumptions that allow just a symmetric ap-
plication of the same conceptual framework.

Most of the operations management areas such as logistics, routing,
scheduling, project management, and finance face concrete settings
which lead to the problem of finding an optimal sequence (path) of
decisions over alternatives in a multi-stage framework. In these pro-
blems, the utility of a choice at each stage is affected by the utilities
associated to the selected choices in the subsequent stages. In this sense,
decision making over stages leads to finally look for an optimal path
made by the choices selected stage by stage in a sequential fashion.
Actually, the idea of using a sequential decision making model to

describe a path has been around for quite some time (see, e.g.,
[1,6,16]). We want to highlight since now that, depending on the dif-
ferent application at hand, the concept of stage may represent different
discretization of the decision problem, and not necessarily a dis-
cretization of the time horizon. A clear example can be found in some
project management problems presented in Section 2.5, in relation to
the well-known Critical Path Method.

When all parameters of the application are deterministically known
a priori, finding optimal paths is in general an easy problem to solve.
However, in most real-life settings, parameters are highly affected by
uncertainty and, moreover, there might be circumstances in which
parameters are being changed dynamically over the decision horizon. It
is easy to understand that, in those cases, ignoring the parameter
variability may lead to inferior or, even worse, simply wrong decisions.
It is also well-known that explicitly addressing uncertainty in an opti-
mization problem generally increases the complexity of the decision
making process and poses significant computational challenges.
Therefore, it always makes sense to see whether it is possible to in-
corporate stochasticity in an approximated way, converting the sto-
chastic multi-stage model into a deterministic one and, if so, how ac-
curate this approximation is.

In this paper, we define the optimal path problem as a multi-stage
decision process where the choice utilities are varying over stages and
are also assumed to be stochastic variables with an unknown prob-
ability distribution. This work provides the first application of the
multi-stage dynamic stochastic decision process approach proposed by
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Tadei et al. [48], which is somehow consistent with a dynamic pro-
gramming problem to determine the total utility of an optimal path. In
this approach, the maximum total utility is assumed to be stage additive
and each choice is the sum of three utility terms. The first one re-
presents a deterministic term of utility, the second part is a stochastic
oscillation with unknown probability distribution, and the third one is
the expected utility of the selected choices of future stages (value
function) identified by a Bellman equation. In such a way, the choices
utilities become nested over stages. As an example, in routing problems,
the deterministic utility (cost in this case) can be associated to a travel
time between each pair of nodes which changes over time periods
(stages), due to different levels of traffic congestion. Also, we must
consider stochastic oscillations of the travel time due to several factors
like driving style, moving targets or mobile obstacle in different time
periods. Finally, the selection of the next node in the routing is affected
by the expected travel time from that node on, making the random
travel time at each stage be affected by the future alternatives.

The contribution of this study is threefold: (i) it provides the first
concrete application of the deterministic approximation proposed by
[48]. This approximation is used to determine the value of an optimal
(shortest or longest) path over a multi-stage network. Its accuracy is
tested versus benchmarks obtained by optimally solving the expected
value problem over a great number of different instances; (ii) it derives
heuristically path solutions using a Nested Multinomial Logit model for
the choice probability and investigates its quality; (iii) it gives a way to
calibrate a parameter inside the deterministic approximation approach,
which is critical for its accuracy.

This paper is organized as follows. In Section 2, a literature review
of relevant problems that can be approached by the proposed method is
listed, while Section 3 provides the necessary conceptual background to
understand the approach used in the rest of the paper. Section 4 pre-
sents the mathematical model to find an optimal path in multi-stage
stochastic decision networks, while, in Section 5 we derive a determi-
nistic approximation for the problem along the line of the approach
proposed in [48]. In Section 6, we propose a procedure for the cali-
bration of a parameter that is critical for the accuracy of the approach
and we compare the results coming from the approximation with those
of the expected value problem over several experiments. Finally, con-
clusions are given in Section 7.

2. Literature review

Most of the operational management problems under uncertainty
involve sequential decision processes in which a decision is made at
each stage taking into account the state of the process and some stage-
dependent uncertain parameters. This section includes different pro-
blems in the related literature (clustered into application fields) that
have been encapsulated in a multi-stage stochastic decision structure.
Often, but not necessarily always, stages represent different time per-
iods which discretize the decision process. We also want to stress the
fact that some common optimization approaches in Operations
Research, like Stochastic or Dynamic Programming, generally provide a
conceptual framework based on multi-stage decision processes. Hence,
all these problems have a potential to be addressed by our approx-
imation approach, since the inner problem they solve can be seen as
finding an optimal path in a multi-stage stochastic decision process.

2.1. Routing problems

Various classes of routing problems such as the Vehicle Routing
Problem (VRP), Traveling Salesman Problem (TSP), and Travelling
Purchaser Problem (TPP) have been considered under the assumption
that necessary information are being dynamically changed at different
stages of the horizon [35,45,50]. Since time-dependency arises natu-
rally in a variety of routing applications due to traffic congestion,
weather conditions, moving targets or mobile obstacles, a huge body of

research has been conducted in this area. Interested readers may refer
to the survey by Gendreau et al. [19] for a comprehensive review of the
works on different time-dependent routing problems and to [38] for a
very good review on integrated transportation-inventory models.

A common feature of these problems is finding an optimal path or
cycle, taking into account the variability of parameters like time, speed,
and cost, which asks for a decision process on a multi-stage network. For
instance, Archetti et al. [5] address a multi-period VRP in which custo-
mers with due dates exceeding the planning period may be postponed by
paying a cost. The objective of the problem is to find vehicle routes for
each day (period) such that the overall cost of the distribution, including
transportation costs, inventory costs, and penalty costs for postponed
service, is minimized. Wen et al. [53] consider the dynamic multi-period
VRP which deals with the distribution of orders from a depot to a set of
customers over a multi-period time horizon. Customer orders and their
feasible service periods are dynamically revealed over time. The goal is
to minimize the total travel cost and customer waiting, by balancing the
daily workload over the planning horizon. Other studies on dynamic
multi-period routing problems can be found in [2–4].

2.2. Network design

Decisions in network design problems (associated with strategic,
tactical, and operational levels) concern with complex inter-relation-
ships between suppliers, plants, distribution centers, and customer
zones, as well as location, capacity, inventory, and financial decisions.
In the past decades, a huge body of research has been conducted in
various classes of logistics network design. Particular attention has been
devoted to stochasticity and uncertainty which lead to considering
multi-period stochastic frameworks [39,42]. John et al. [25] and De-
mirel et al. [13] develop capacitated multi-stage multi-product supply-
chain models for reverse logistics operations. Zeballos et al. [54] pro-
pose a multi-stage stochastic model to deal with the design and plan-
ning problem of multi-period multi-product closed loop supply-chains
with both uncertain supply and demand. Other multi-echelon similar
models in closed loop supply-chains can be found in [41,46]. A com-
prehensive review of studies in the field of supply-chain network design
under uncertainty is provided by Govindan et al. [21].

2.3. Scheduling

Scheduling problems in general focus on allocating resources to
different jobs in order to find an optimal sequence of jobs with
minimum cost. In practice, parameters such as task processing times
[18], availability of resources [23], as well as demand [40] and prices
[11,37] can all be subject to considerable changes over the horizon of
scheduling decision. As an example, the uncertainty of job processing
times may stem from different possible sources such as learning effect
[12,28], deterioration functions [24,51], and resource allocation
[31,52]. Considering variations in these parameters, scheduling pro-
blems can be converted into a multi-stage decision process where the
decision on allocation is taken at each distinct stage.

2.4. Financial planning

Financial optimization, involving asset allocation and risk man-
agement, is one of the most attractive areas in decision-making under
uncertainty. The problem determines how an investor should allocate
funds among possible investment choices taking into account the op-
timal trade-off between return and risk. A comprehensive review on the
approaches developed to address the problem is provided by Kolm et al.
[27]. In real world, investors deal with uncertainty in different financial
parameters such as return, risk, and turnover rates. Moreover, to con-
struct a more realistic model, it is often necessary to investigate a multi-
period optimization model (as in [7,20]), and therefore our decision
process structure can be considered.
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2.5. Project management

As already mentioned, project management problems often deal
with the search of optimal paths and, in real applications, parameters
are affected by uncertainty and may depend on the progress of the
project itself. In these problems, a set of tasks with given duration must
be performed to complete a project as soon as possible (i.e., to minimize
its make-span). Tasks can be represented as nodes of a network that is
clustered into ranks, according to the precedence constraints between
tasks [26]. The well-known Critical Path Method can be applied to this
layered graph to obtain the most critical sequence of decisions that
affects the completion time of the project. It is easy to see that, in this
setting, ranks are the stages of the problem, tasks are the different al-
ternatives for each stage, and finding a critical path resorts to find the
longest path linking decisions throughout the stages.

3. Conceptual background

This section provides a high-level description of the rationale be-
hind the modeling and solving approach proposed in the rest of the
paper. In particular, the approach is based on looking at the optimi-
zation problem at hand as a so-called Random Utility Model performed
over a finite number of stages. Then, through the theory of extreme va-
lues, an asymptotic deterministic approximation of the total utility of
the process is derived.

3.1. Random Utility Models

Random Utility Models (RUMs) are behavioral models (see, e.g., [36])
in which a decision-maker faces a choice among mutually exclusive alter-
natives, each associated with a certain level of utility. The basic assumptions
of these settings are that the set of choices is discrete, the decision maker
follows a rational utility-maximizing behavior, and the utility associated
with each choice can be decomposed into a deterministic part and a random
oscillation. Since the latter term is not known a priori, it is treated as a
stochastic variable. In turn, this means that the possible realizations of such
a variable hypothetically increase the number of alternatives to choose
from, i.e., the decision-maker would select the best alternative if he knew
the actual realizations of the utilities. It is important to notice that we do not
assume that the decision-maker is actually able to decide for the best al-
ternative having a complete knowledge of the realizations in advance, in-
stead we just want to focus on modeling the extreme behavior of such
unknowns, i.e., that one with the maximum utility (see Section 3.3), which
theoretically corresponds to the decision-maker’s wish.

3.2. Asymptotic deterministic approximation approach

The theory of extreme values [17] has been shown to be particularly
appropriate for RUMs, as it deals with the asymptotic behavior of
maxima and minima over sequences of variables. When the decision-
maker has only a static set of alternatives to choose from, it is well-
known that the choice probability can be modeled as a Multinomial
Logit (MNL) under the assumption that the random utilities are in-
dependent and identically distributed as a Gumbel distribution (see
[9,10,14,32]). Other contributions [29,30,47] have shown that a MNL
model can be still derived under the milder assumption that the
common distribution of the i.i.d. random utilities has an asymptotically
exponential behavior in its tail. Such a model can be seen as an
asymptotic deterministic approximation of the decision process since it
can be theoretically derived only when the number of alternatives, and
therefore of possible realizations of the unknowns, tends to infinity.
However, the accuracy of the approximation has been experimentally
shown even in the case of finite (but large) number of alternatives in
several application domains (see, e.g., [43,44,49]). Very recently,
Fadda et al. [15] further relaxed the assumption on the exponential
behavior of the common distribution tail.

3.3. Multi-stage decision processes

Several decision processes are not as simple as the case presented
above, since the decision-maker could be asked to solve consecutively
several RUMs over multiple stages aiming at maximizing the expected
value of the total utility originating from the overall decision process. We
talk about an efficiency-based process in the case each decision throughout
the stages is made according to the behavior of an hypothetical rational
decision-maker facing the selection. However, since decisions are nested
each other (i.e., the utility of an alternative at each stage is affected by the
utilities associated to the selected alternatives in the subsequent stages),
the decision process cannot be decomposed into stages and, in turn, the
approximation approach mentioned in Section 3.2 cannot be applied
straightforwardly. For this reason, Tadei et al. [48] recently generalized
the approximation framework in order to provide results for the multi-
stage case too. In particular, under appropriate assumptions, the prob-
ability distribution of the best alternative can be still asymptotically ap-
proximated by a Gumbel distribution (see Theorem 1, Section 5.1) and, in
turn, the total utility of the process can be analytically derived. Moreover,
the choice probability can be modeled as a Nested Multinomial Logit
model (see Theorem 2, Section 5.1). Interesting enough, for the first time
in the context of multi-stage decision processes, in this paper we relax the
assumptions of Theorem 1 according to the results coming from [15],
extending the applicability of the approach.

4. Optimal path problem formulation

This section provides a formal description of the decision process at
hand and its mathematical formulation as an optimal path problem
under uncertainty.

4.1. Maximization approach

The formulation we propose is suitable for both the longest/most-
profitable path (maximization approach) and the shortest path (mini-
mization approach) problems. However, since both problems can be
transformed one into the other, and also, in most management settings,
the decision maker is looking for the maximum utility of the process, we
will consider only the maximization approach in detail.

4.1.1. Problem setting and notation
In order to achieve a more realistic representation of optimal path

problems, we consider a multi-stage stochastic decision network in
which an optimal path is created by sequentially selecting nodes
throughout the stages. Since utilities associated with each node are
affected by uncertainty, we can interpret the decision process as a
multi-stage RUM (see Section 3) in which, at each stage, the decision-
maker faces a set of alternatives to choose from in the next stage. These
alternatives are grouped into clusters, which are represented by the
nodes, according to their similarities. Each node is characterized by a
deterministic utility and by an expected utility on the rest of the deci-
sion process (future stages). Moreover, inside each node there are
several alternatives associated with a random utility oscillation that
depends both on their own dispersion in the cluster and on the in-
complete knowledge of the decision-maker.

More precisely, let us introduce the following notation:

• = …k K0, , : stage;
• = …N n1, ,k k: set of nodes at stage = …k K0, , . Note that the set N0

at the initial stage of the decision process contains only a singleton
node 0, which can be seen as the decision maker of the process, and
therefore it does not contains any alternative;

• = =N Nk
K

k1 : the entire set of nodes in the network;
• Lj(k): set of alternatives inside node j ∈ Nk, = …k K1, , ;
• =l k L k( ) | ( )|j j : number of alternatives inside node j ∈ Nk, = …k K1, , ;
• =L k L k( ) ( )j N jk : total set of alternatives at stage k, = …k K1, , ;
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• =l k L k( ) | ( )|: number of alternatives at stage k, = …k K1, , ;
• = =L L k( )k

K
j N j1 k : total set of alternatives of the decision process

• wij(k): deterministic utility of node j ∈ Nk when it is reached from
node i N ,k 1 = …k K1, , ;

• k˜ ( )j
l : random oscillation over the deterministic utility associated

with alternative l ∈ Lj(k) inside node j ∈ Nk, = …k K1, , ;
• Wj(k): expected utility of node j ∈ Nk, = …k K0, , 1.

Then, the general structure of the considered multi-stage stochastic
decision process can be represented as in Fig. 1, where nodes are
layered in stages and arcs connecting them have weights corresponding
to the deterministic utilities wij(k). Note that node j at stage k is
zoomed-in to show the existence of several alternatives associated to
utilities within a certain radius of stochasticity. Moreover, since each
alternative l has an utility affected not only by its dispersion in the node
j but also by the incomplete knowledge of the decision-maker, a further
oscillation k˜ ( )j

l can be considered for each alternative l. Finally, ex-
pected utilities of the future stages Wj(k) are represented as large white
arrows at node j.

Given the above interpretation, the deterministic approximation
approach proposed in [48] can be applied to our problem. Please note
that, in that work, the authors called “mutually exclusive alternatives”
the nodes of our problem, while our different alternatives inside each
node were called “scenarios”.

4.1.2. Toward a mathematical formulation
Let w k˜ ( )ij be the random utility of node j ∈ Nk when it is reached

from node = …i N k K, 1, ,k 1 . Since we assume an efficiency-based
process (see Section 3.3), the decision-maker would choose, among the
different alternatives l ∈ Lj(k), the one which maximizes the random
choice utility, i.e.,

= + +

= + + = …

w k w k k W k

w k k W k i N j N k K

˜ ( ) max ( ( ) ˜ ( ) ( ))

( ) max ˜ ( ) ( ), , , 1, , .

ij
l L k

ij j
l

j

ij
l L k

j
l

j k k

( )

( )
1

j

j

(1)

Now, by defining

= = …k k j N k K˜ ( ) max ˜ ( ), , 1, , ,j
l L k

j
l

k
( )j (2)

one obtains

= + + = …w k w k k W k i N j N k K˜ ( ) ( ) ˜ ( ) ( ), , , 1, ,ij ij j j k k1 (3)

where

= + = …

=
+W k w k i N k K

k K

E( ) max ˜ ( 1) , , 0, , 1

0,
i j N

ij k˜
k 1

(4)

Now by defining

= + = …
+

w k w k i N k K˜ ( ) max ( ˜ ( 1)) , 0, , 1,i
j N

ij k
k 1 (5)

Eq. (4) becomes

= = …
=

W k w k i N k K
k K

E( ) [ ˜ ( )], , 0, , 1
0,i

i k˜

(6)

The recursive formula (3) shows that the random utility of node
j ∈ Nk, when it is reached from i N ,k 1 is composed of a deterministic
utility wij(k), a random utility oscillation k˜ ( ),j and an expected utility
of the future selected nodes Wj(k). In such a way the random utilities
w k˜ ( )ij become nested over stages. In the terminology of Dynamic Pro-
gramming, node i Nk 1 is a state and selecting node j ∈ Nk is a po-
tential action, given that state i already chosen at the previous stage. At
each stage, a node is chosen given the current state in a stochastic
process having the Markov property. In our setting the value function is
defined by W(k), which is computed in (6) as a Bellman equation [8]. It
should be noted that, differently from other paradigms for modeling
multi-stage optimization problems under uncertainty (e.g., Stochastic
Programming or Stochastic Dynamic Programming), in our case we
assume that the uncertainty of random oscillations is not revealed over
the process. Such a recursive formula allows to determine the total
utility of an optimal path without identifying the path (i.e., the se-
quence of decisions) itself.

Because of the nested structure of the decision process, the max-
imum expected total utility of the whole multi-stage stochastic decision
process will be

= = =[ ]W W w wE E(0) max ˜ (1) [ ˜ (0)].
j N

j0 ˜ 0 ˜ 0
1 (7)

Therefore, the optimal path problem (in its maximization case) in a
multi-stage stochastic decision network can be formulated as follows

= [ ]W w xE max ˜ (1)
j N

j j˜ 0 0
1

1 (8)

subject to

Fig. 1. Illustration of a multi-stage stochastic decision process.
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= = …+

+

x x h N k K0 , 1, , 1
i N

ih
k

j N
hj
k

k
1

k k1 1 (9)

= = …x k K1 1, ,
i N j N

ij
k

k k1 (10)

= …x i N j N k K{0, 1} , , 1, ,ij
k

k k1 (11)

where xij
k are Boolean variables taking value 1 if node j is selected at

stage k after node i N ,k 1 = …k K1, , , and 0 otherwise. The objective
function (8) expresses the expected value of the maximum total utility
of the whole multi-stage stochastic decision process. Please note, in
fact, that all the other variables xij

k are embedded into the variables x j0
1

of the objective function. Constraint (9) ensure that the computed result
is indeed a path between a source and a designated destination passing
through stages. Constraint (10) indicates that at each stage only one
decision (choosing the next node) is taken. Finally, binary conditions on
the variables are stated in (11).

4.2. Minimization approach

As already stated, the optimization model for the minimization case
(shortest path) can be easily obtained by using the same above proce-
dure but with the following precautions

• all the utilities, namely, the deterministic ones wij(k), their oscilla-
tions k˜ ( ),j

l and the expected utilities Wj(k), must be interpreted as
costs. This means that W becomes the expected total cost of the
decision process

• max must be substituted by min in Eqs. (1), (2), (4), (5), (7), and (8).

5. Deterministic approximation

According to the model formulation above, in Section 5.1 we will
derive in detail a deterministic approximation for the longest/most-
profitable path value (maximization approach). Simple precautions to
apply the same framework to obtain an approximation for the shortest
path value (minimization approach) are given in Section 5.2. In
Section 5.3, we provide a way to derive a feasible solution for both the
optimization perspectives while, in Section 5.4, we briefly discuss the
large applicability of the approximation approach.

5.1. Maximization approach

Since we want to provide an approximation of the maximum total
utility, let us first consider just the objective function (8). In that case,
i.e., without any path constraint involved, the problem has the fol-
lowing trivial solution

=
=

x
w w

j N
1, if ˜ (0) max ˜ (1)

0, otherwise
.j

j
q N

q
0
1 0 0

11

(12)

Now, by defining

=w w˜ (0) max ˜ (1)
q N

q0 0
1 (13)

and because of (12), the objective function (8) becomes

=W wE [ ˜ (0)].{ ˜} 0 (14)

Please note that the value of W in (14) cannot be calculated ana-
lytically since we do not have precise information on the distribution of
the random oscillations k( )j

l . Let us call the probability distribution of
k( )j

l as

= = …F x Pr k x j N l L k k K( ) { ˜ ( ) }, , ( ), 1, ,j
l

k j (15)

and the cumulative right distribution function of w k˜ ( )i as

= = …G x k Pr w k x i N k K( , ) { ˜ ( ) }, , 0, , 1.i i k (16)

Then, we can use the following theorem.

Theorem 1. [48] Let us assume that

• the random oscillations k( )j
l are independent and identically dis-

tributed (i.i.d) random variables;
• F(x) has an asymptotic negative exponential behavior in its right

tail, i.e.,

> + =
+

F x y
F y

e0 | lim 1 ( )
1 ( )

.
y

x
(17)

Then,

= = = …
+

G x k G x k L A k e i N k K( , ) lim ( , | |) exp( ( ) ), , 0, , 1i
L

i i
x

k
| |

(18)

where β > 0 is a parameter to be calibrated,

= + = …+ + +

+

A k k e i N k K( ) ( 1) , , 0, , 1i
j N

j
w k W k

k
[ ( 1) ( 1)]

k

ij j

1

(19)

is the accessibility in the sense of [22] to the overall set of nodes at
stage (k+1), and αij(k) is the ratio

= = …k l k l k j N k K( ) ( )/ ( ), , 1, ,j j k (20)

which remains constant for each pair (j, k) while the number of alter-
natives do increase.

Theorem 1 states that the probability distribution Gi(x, k) can be
asymptotically approximated by a double-exponential (Gumbel) dis-
tribution. So, when the total number of alternatives of the decision
process becomes very large, the expected value of the maximum total
utility (14) can be approximated by

= +W A1/ (ln (0) )0 (21)

where γ ≃ 0.5772 is the Euler constant, and

= +A e(0) (1)
j N

j
w W

0
[ (1) (1)]ij j

1 (22)

is the accessibility to the set of nodes at stage 1.

5.2. Minimization approach

In case of the shortest path problem (minimization instead of
maximization), similar theoretical results can be obtained by assuming

• F(x) is the survival function of the probability distribution of k˜ ( ),j
l

i.e., (15) becomes

= > = …F x Pr k x j N l L k k K( ) { ˜ ( ) }, , ( ), 0, ,j
l

k j (23)

• F(x) has an asymptotic exponential behavior in its left tail, i.e., (17)
becomes

+ = >F x y
F y

elim 1 ( )
1 ( )

, 0.
y

x
(24)

Considering the above assumptions, the final equations equivalent
to (21) and (22), but in the minimization approach, are
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= +W A1/ (ln (0) )0 (25)

and

= +A e(0) (1)
j N

j
w W

0
[ (1) (1)]ij j

1 (26)

respectively.

5.3. Finding a feasible solution

It is important to highlight that the expected value calculated in
(21) represents just an approximation of the expected value of the
maximum total utility. As already stated, the approximation is obtained
by following the recursive formula in (3) that somehow also embeds the
creation of a sequence of nodes, one selected at each stage. However,
given the nature of the approximation, it is clear that the above se-
quence of nodes could not satisfy the path constraints (9)–(11).

Therefore, the creation of a feasible solution for the problem (besides
the approximation of its objective function) is still an open issue, which
we address in the following way. Let us first recall a theorem, which
holds under the same conditions discussed for Theorem 1 in Section 5.1.

Theorem 2. [48] The probability pij(k) for choosing node j at stage k
after node i at stage k 1 is given by

= = …
+

+p k
l k e

l k e
i N j N k K( )

( )
( )

, , , 1, ,ij
j

v k W k

q N q
v k W k k k

[ ( ) ( )]

[ ( ) ( )] 1
ij j

k
iq q

(27)

which represents a Nested Multinomial Logit model.

Theorem 2 defines a model for the continuous probabilities of the
choices and does not address the construction of a feasible path made
by one single node per stage. However, let us consider a graph in a
multi-stage structure, where to each arc (i, j) at stage k a weight equal to
the probability pij(k) (as defined in (27)) is assigned. By finding a
longest path on that graph, an approximated optimal path solution over
stages can be then determined. The rationale behind this choice is to
look for the most probable sequence of nodes which satisfies constraints
(9)–(11). We will also discuss the quality of this approach through
various experiments in Section 6.

5.4. Applicability of the approximation

In this section, we want to highlight the quite large applicability of
the proposed approximation. Even if condition in (17) yet represents a
mild assumption on the shape of the distribution of the stochastic
variables, Fadda et al. [15] have recently proved that Theorem 1 still
holds when (17) is relaxed to the following condition

> + =
+

B x a exp0 | lim ( )
L k

L k
L k e

| ( ) |
| ( )|

| ( )| x

(28)

where B(x) is the probability distribution of k˜ ( ),j i.e.,

= = …B x k Pr k x j N k K( , ) { ˜ ( ) }, , 1, ,j k (29)

and a|L(k)| is chosen equal to the root of the equation

=B x
L k

1 ( ) 1
| ( )|

.
(30)

Assumption (28) is equivalent to ask that the unknown distribution
of the stochastic maximum utility k˜ ( )j belongs to the domain of at-
traction of a Gumbel distribution. This new result further enlarges the
applicability of the approximation approach, which theoretically holds
for any distribution of the form e1 p x( ) where p(x) is a polynomial
function, such as the Normal, the Gumbel, the Weibull, the Logistic, the
Laplace, the Lognormal, and many others.

It is easy to see that the new condition is milder, since assumption in
(17) implies assumption in (28), while the converse is not true (e.g., the
Normal distribution does not satisfy (17)).

6. Computational results

In this section, we present the results of the computational experi-
ments carried out with the aim of evaluating the effectiveness of the
deterministic approximation approach to find the solution and value of
optimal path in stochastic multi-stage networks. The evaluation is
performed by considering the expected value problem, in which the
random variables are replaced by their expected values, and comparing
its optimum value with that of the proposed approach. The determi-
nistic approximation has been coded using MATLAB version R2016b,
while the expected value problem has been implemented in GAMS
24.5.6. All the computational tests have been performed on an Intel(R)
Core(TM) Processor i U5 6200 (CPU 2.30 GHz) with 16 GB RAM.

Our experiments are focused on the longest path problem, i.e., they
exactly reflect the maximization approach presented in Section 5.1.
More precisely, in Section 6.1 we describe the instances set generated as
a testbed for our assessment. The calibration of β parameter is presented
in Section 6.2, while the results of our computational experiment are
described and commented in Section 6.3.

6.1. Instance sets

To evaluate the performance of the proposed approximation approach,
we randomly generated networks with =N| | {5, 10, 20, 50, 100}k nodes
per stage = …k K1, , . Without loss of generality, we assume

= = …N N k K, 1, ,k which indicates the nodes associated to each Nk re-
present the entire set of nodes for the decision process at hand. This means
that we can consider the same set of nodes at each decision stage and, in
order to make sure to take into account all possible paths in the network,
the number of stages K will be equal to the number of nodes (which is the
same at each stage). In all the experiments, 100 alternatives for each node

= …j N k K, 1, , ,k have been considered, i.e., =L k| ( )| 100j .
The utility observations associated to choosing alternative l inside

node j coming from node i, = …i N j N l L k k K, , ( ), 1, , ,k k j1 are
generated according to the Uniform, Normal, and Gumbel distributions
in the range [1, δ], with = {50, 100, 150}. The parameter δ simply al-
lows us to control the behavior of the approximation against different
magnitude of utilities. The deterministic utility wij(k) is calculated as a
mean value of the utility observations over the alternatives. For each one
of the possible 45 combinations of number of nodes per stage |Nk|, δ
value, and the three distribution types (Uniform, Normal, and Gumbel),
we generated 10 random instances, which results in 450 instances in
total. Note that, in generating observations using the Gumbel and Normal
distributions, the location parameter =µ /2 is used. For the Gumbel
distribution, a proportional scale parameter = µ0.5 is adopted. As
suggested in [34], the scale factor has been chosen experimentally so that
the 98% of the probability lies in the considered truncated domain [1, δ]
for each possible instance. Similarly, for the Normal distribution, the
standard deviation = /6 is set so to give a 99% confidence interval.

The three above distributions, besides being very common in many
practical applications, have been chosen to represent quite extreme cases
of possible unknown distributions of observations to test throughout our
experiments. In fact, the Gumbel distribution theoretically represents the
best case to be approximated, whereas the Uniform distribution does not
even satisfy the assumptions needed to derive the approximation. The
Normal distribution is somehow in between the two extremes, satisfying
assumption (28) but not satisfying (17). A final remark is necessary to
justify the use of the Uniform distribution in our tests, for which the
theoretical framework does not hold. In fact, in practical applications, it
is often the case that a set of observed scenarios are available, but it is not
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possible to derive a precise or even partial knowledge in terms of their
probability distribution. Therefore, the experiments with the Uniform
distribution can give us insights on whether the approach results accu-
rate and robust even against unknown distributed scenarios which may
not satisfy our approximation assumptions.

6.2. Calibration of parameter β

The effectiveness of deterministic approximation is mainly depen-
dent on an appropriate value of the positive parameter β. This para-
meter describes the dispersion of preferences among the different
choice alternatives at each stage of the decision making process. Taking
into account the concept of the expected utility of node j at stage k,
parameter β is computed in a way that Wj(k) should be equal to the
maximum utility that can be achieved by choosing the next node and
then an alternative inside it at stage +k 1. Since, depending on the
current node and stage, the possible maximum utility in the next stage
is different, a parameter βik should be calculated for any node i at any
stage k by using

= + = = …W k lnA k w k i N k K( ) 1/ ( ( ) ) ( ), , 0, , 1.i ik i i
max

k (31)

Here, w k( )i
max represents the maximum utility that can be achieved by

making decision at stage +k 1, i.e.,

= + + + + + = …
+

w k w k k W k i N k K( ) max ( ( 1) ¯ ( 1) ( 1)), , 0, , 1i
j N

ij j j k
max

k 1

(32)

where +k¯ ( 1)j is the average value of random oscillation utilities over
the alternatives inside node j, i.e.,

+ =
+
+

= …
=

+

+k
k

L k
j N k K¯ ( 1)

( 1)
| ( 1)|

, , 0, , 1.j
l

L k
j
l

j
k

1

( 1)

1

j

(33)

In our case, since we take the deterministic term of utility wij(k) as
the average value of observations over alternatives, it is possible to
collapse stages into a single one (containing all the possible alter-
natives) and to find just one β parameter value which works for the
entire network (in line with Theorem 1). More precisely, let us consider
only one decision making stage which contains all nodes of the network
and assign to each of them a new utility weight w j N¯ , ,j computed as a
mean value of deterministic utility wij(k), i.e.,

=
=

w
w k
K N

j N¯
( )

·| |
, .j

k

K

i N

ij

1 k 1 (34)

Hence, the unique value of parameter β is calculated such that the ex-
pected utility of the decision making process (i.e., choosing one of these
nodes) equals the maximum utility that can be achieved, i.e.,

+ =ln A w1/ ( ( (0) ))0
max (35)

The left hand side of Eq. (35) represents the expected utility W, A0(0) is
the accessibility to all the nodes with new weights, and wmax is the
maximum utility that can be achieved by choosing a node in a one-stage
decision making process and is computed as

= +w wmax( ¯ ¯ )
j N

j j
max

(36)

in which j̄ is the average value of random oscillation utilities over al-
ternatives inside node j in all stages, i.e.,

=
= =

k
K L k

j N¯ ( )
·| ( )|

, .j
k

K

l

L k
j
l

j1 1

( )j

(37)

Please note that this calibration approach is somewhat general and,
therefore, can be used with any available dataset. The experiments
reported in Section 6.3 over random generated instances will show a

good confidence on this calibration method.

6.3. Computational results

In this section, we summarize and discuss the results obtained from
our experiments on all the instance sets generated as discussed in
Section 6.1 and using the β value calibrated as presented in Section 6.2.
The results contain two main distinct parts. The first one aims to assess
the accuracy of the deterministic approximation of the maximum total
utility W, while the second part evaluates the quality of the optimal
path solutions derived by calculating an optimal path of a probability
weighted network as described in Section 4.

For both maximum total utility and path solutions, the results of the
approximation approach are compared with the Expected Value
Problem (EVP) considered as a benchmark. In the expected value pro-
blem, the weight of each arc is considered as the expected value over
observations. Since the experiments are performed for the maximiza-
tion approach, the benchmark path solution is derived by finding the
longest/most-profitable path in the network. The performance, in terms
of percentage gap, is evaluated through the calculation of the Relative
Percentage Error (RPE) as follows

= ×RPE W opt
opt

: 100EVP

EVP

where W and optEVP represent the optimum of the deterministic ap-
proximation (see Eq. (21)) and the optimum of the expected value
problem, respectively.

Tables 1–3 present the RPE associated to the instances generated by
using the Uniform, Normal, and Gumbel distributions, respectively.
Each entry of these tables reports statistics of the RPE over 10 random
generated instances, given a specific combination of values of |Nk| and
δ. In particular, the tables show the average, the best, the worst RPE,
and its standard deviation (columns RPEavg, RPEbest, RPEworst, and RPEσ,
respectively).

The first thing that should be noticed is that, as expected, the
average RPE increase as the size of network grows for the three dis-
tributions with the worst case of 1.30, 1.40, and 2.45 in 100-node
network (average over δ values) for the Gumbel, Normal and Uniform

Table 1
RPE of the maximum total utility between the deterministic approximation and
expected value problem for the Uniform distribution.

Instance RPE(%)

|Nk| δ RPEavg RPEbest RPEworst RPEσ

5 50 0.97 0.02 2.44 0.75
5 100 1.25 0.18 2.25 0.67
5 150 1.30 0.14 2.30 0.79

avg: 1.17 0.12 2.33 0.74
10 50 1.33 0.21 2.18 0.68
10 100 1.38 0.14 2.15 0.62
10 150 1.40 0.35 2.69 0.68

avg: 1.37 0.24 2.34 0.66
20 50 1.37 0.54 2.20 0.49
20 100 1.41 0.74 2.07 0.46
20 150 1.47 0.86 2.23 0.40

avg: 1.41 0.71 2.17 0.45
50 50 1.99 1.44 2.32 0.26
50 100 2.06 1.56 2.71 0.37
50 150 2.16 1.54 2.56 0.30

avg: 2.07 1.51 2.53 0.31
100 50 2.41 2.09 2.74 0.19
100 100 2.43 2.19 2.77 0.19
100 150 2.52 2.22 2.80 0.21

avg: 2.45 2.17 2.77 0.20
global avg: 1.69 0.95 2.42 0.47
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distributions, respectively. Other trends can be noticed, by looking at
the average RPE for various values of δ. It seems that smaller intervals
give better results of approximation for the three distributions and
across all the sizes. It means the approximation approach behaves
better with smaller dispersion and magnitude of the realizations. The
best RPEs also follow the same described behavior with little dis-
continuities, while the worst ones have more fluctuations for all the
combinations of different network sizes and distributions. Taking into
account the standard deviation RPEs, it can be seen that the values are
very similar together, i.e., less than 0.5% in global average, which de-
notes a good stability in terms of variance.

Comparing the results for the three distributions highlights better
performance, as expected, of the Normal and Gumbel distribution with

respect to the Uniform distribution for all considered sizes and dis-
persions in terms of the average, best, worst, and standard deviation
RPE.

We now want to assess the quality of the path solutions obtained by
using the Nested Multinomial Logit (NML) model explained in
Section 4. We again use as performance indicator the RPE, modified as
follows

= ×RPE opt opt
opt

: 100NML EVP

EVP

where optNML represents the value of the feasible solution obtained
through the application of the NML model. Table 4 reports RPE
averages and standard deviations for the three distributions. The results
show promising performance of the Nested Multinomial Logit model for
deriving optimal path solutions in terms of average and standard de-
viation RPE which indicates a good performance and overall robustness
of the approach. As it can be seen, the quality of the path solution is not
dependent on the network size and the distribution.

Finally, despite of the quality obtained by the deterministic ap-
proximation approach in terms of accuracy, we also want to point out
its efficiency. The computational times for deriving the maximum
total utility (tDA) and the path solution (tpath) are reported in Table 5.
Since we have noticed that the computational times were somehow
independent from the distribution used and the range of random
generated utility weights, we just report average computational times
for the various sizes of the network. First, note that finding the optimal
path solutions needs just slightly more time compared to the de-
terministic approximation calculation for larger-size instances.
Moreover, not surprisingly, the time increases as the size of the net-
work increases. The CPU time is in particular affected by the curse of
dimensionality due to the recursive formula in (3). However, con-
sidering the difficulty to solve the underlying problem under un-
certainty for a suitable number of scenarios, the approximation ap-
proach shows reasonably small CPU times. Few seconds are needed for
networks with up to 20 stages and 20 nodes per stage, while about 10
minutes are needed for networks with up to 100 stages and 100 nodes
per stage. This gives the possibility to embed the approximation into
most sophisticated optimization algorithms for multi-stage problems
under uncertainty.

7. Conclusions

In this paper, we have used a quite efficient and accurate approach
to estimate the value and the structure of optimal paths in a multi-stage
stochastic decision network. In this network decisions are made under
uncertainty and the oscillations of the stochastic parameters follow an
unknown probability distribution. The optimal path is seen as a se-
quential decision making over stages, where the uncertain utility of
nodes at each stage is affected by both previous and next decisions. By
using some results from [48], we have determined a deterministic ap-
proximation for the longest path value. Moreover, a feasible solution is
obtained by heuristically using a Nested Multinomial Logit model,
which gives the probability to optimally choose each node. Numerical
tests, on a great number of random generated networks, have shown
accurate estimations with respect to analogous results obtainable from
solving the expected value problem. The performance of our determi-
nistic approximation seems particularly good as the size of networks
increase, making the proposed approach a valuable tool to support
decision-making in stochastic multi-stage networks for large and com-
plex applications.

Future works could consider the use of the given deterministic ap-
proximation in different and more specific operational management
problems involving multi-stage stochastic decision processes. For ex-
ample, some multi-periodic applications in the home health-care field
(see, e.g., [33]) seem appropriate to be studied under this perspective.

Table 2
RPE of the maximum total utility between the deterministic approximation and
expected value problem for the Normal distribution.

Instance RPE(%)

|Nk| δ RPEavg RPEbest RPEworst RPEσ

5 50 0.57 0.11 1.36 0.41
5 100 0.69 0.05 1.78 0.53
5 150 0.79 0.25 2.00 0.61

avg: 0.69 0.14 1.71 0.52
10 50 0.54 0.02 1.31 0.50
10 100 0.60 0.14 1.01 0.25
10 150 0.68 0.34 1.03 0.24

avg: 0.61 0.16 1.12 0.33
20 50 0.65 0.14 1.14 0.29
20 100 0.92 0.20 1.53 0.40
20 150 0.99 0.42 1.70 0.37

avg: 0.85 0.25 1.45 0.35
50 50 1.01 0.84 1.29 0.14
50 100 1.29 0.83 1.78 0.30
50 150 1.34 0.88 1.72 0.25

avg: 1.21 0.85 1.60 0.23
100 50 1.38 1.02 1.59 0.21
100 100 1.39 1.14 1.72 0.22
100 150 1.44 1.15 1.81 0.25

avg: 1.40 1.10 1.70 0.22
global avg: 0.95 0.50 1.51 0.33

Table 3
RPE of the maximum total utility between the deterministic approximation and
expected value problem for the Gumbel distribution.

Instance RPE(%)

|Nk| δ RPEavg RPEbest RPEworst RPEσ

5 50 0.43 0.08 1.06 0.36
5 100 0.48 0.13 1.30 0.35
5 150 0.70 0.03 1.55 0.55

avg: 0.53 0.08 1.30 0.42
10 50 0.62 0.01 1.45 0.44
10 100 0.76 0.09 1.63 0.42
10 150 0.79 0.33 1.68 0.43

avg: 0.72 0.14 1.59 0.43
20 50 0.68 0.18 1.33 0.39
20 100 0.79 0.40 1.24 0.26
20 150 0.86 0.31 1.27 0.31

avg: 0.77 0.29 1.28 0.32
50 50 0.98 0.06 1.85 0.66
50 100 1.01 0.67 1.35 0.19
50 150 1.13 0.88 1.40 0.19

avg: 1.04 0.54 1.53 0.35
100 50 1.22 0.95 1.46 0.15
100 100 1.33 1.05 1.60 0.17
100 150 1.36 1.20 1.58 0.13

avg: 1.30 1.07 1.55 0.15
global avg: 0.87 0.42 1.45 0.33
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Finally, from a more methodological point of view, one might embed
this approach into a shifting-window framework that considers a re-
stricted horizon in an iterative way, in order to mitigate the approx-
imation errors in finding optimal paths over stages.
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RPE of the optimal path between the approximation approach and expected value problem for the Uniform, Normal and Gumbel distribution.

Instance Uniform distribution Normal distribution Gumbel distribution

|Nk| δ RPEavg RPEσ RPEavg RPEσ RPEavg RPEσ

5 50 0.13 0.09 0.05 0.08 0.06 0.10
5 100 0.05 0.09 0.06 0.12 0.05 0.03
5 150 0.08 0.06 0.06 0.11 0.07 0.06

avg: 0.09 0.08 0.06 0.10 0.06 0.06
10 50 0.12 0.04 0.05 0.12 0.06 0.06
10 100 0.07 0.07 0.03 0.04 0.05 0.10
10 150 0.11 0.12 0.04 0.03 0.04 0.05

avg: 0.10 0.08 0.04 0.06 0.05 0.07
20 50 0.04 0.02 0.05 0.07 0.06 0.10
20 100 0.08 0.07 0.03 0.04 0.04 0.04
20 150 0.05 0.06 0.04 0.05 0.03 0.02

avg: 0.05 0.05 0.04 0.05 0.05 0.06
50 50 0.05 0.05 0.04 0.07 0.05 0.07
50 100 0.04 0.03 0.05 0.05 0.03 0.04
50 150 0.04 0.05 0.05 0.06 0.04 0.05

avg: 0.04 0.04 0.05 0.06 0.04 0.05
100 50 0.06 0.04 0.04 0.04 0.04 0.04
100 100 0.04 0.03 0.03 0.03 0.05 0.04
100 150 0.05 0.03 0.04 0.03 0.03 0.03

avg: 0.05 0.03 0.03 0.03 0.04 0.04
global avg: 0.06 0.05 0.04 0.06 0.04 0.05

Table 5
Computational time in seconds for calculating the deterministic ap-
proximation and path solutions.

Nk tDA(s) t s( )path

5 0.36 0.39
10 1.68 1.71
20 8.20 8.25
50 120 132
100 900 997
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