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Abstract—We prove a new upper bound on the size of codes
CC{1,2,3,4}" with the property that every four distinct code-
words in C' have a coordinate where they all differ. Specifically,
we provide a self-contained proof that such codes have size
at most 26%/191°(") " that is, rate bounded asymptotically by
6/19 <0.3158 (measured in bits). This improves the previous
best upper bound of 0.3512 due to (Arikan 1994), which in turn
improved the 0.375 bound that followed from general bounds
for perfect hashing due to (Fredman and Komlo6s, 1984) and
(Korner and Marton, 1988). Finally, using a combination of our
approach with a simple idea which exploits powerful bounds on
the minimum distance of codes in the Hamming space, we further
improve the upper bound to 0.31477.

I. INTRODUCTION

Shannon introduced the concept of zero-error capacity of a
discrete noisy channel [1]. Such a channel can be modeled as a
bipartite graph H=(V,W,E), with V' corresponding to channel
inputs, W to channel outputs, where (v,w) € F if w can be
received at the channel output when v is transmitted on the
channel. One can associate a “confusability” graph G=(V,E’)
with such a channel, where (vy,v2)€ E’ if there is a common
output w € W such (v1,w), (ve, w) € E, so that v1,vy can
be confused with each other. The zero-error capacity of the
channel is the largest asymptotic rate at which information can
be transmitted with no error on the channel, in n independent
uses of the channel for large n. This quantity is also called
the Shannon capacity of the graph G, which is the limiting
ratio of (log, a(G™))/n where o(G™) is the size of the largest
independent set in the n’th power G of GG, where two n-tuples
in V™ are adjacent if in every coordinate, they are either equal
or adjacent in GG. Lovdasz proved that the Shannon capacity of
the 5-cycle, which is the smallest non-trivial case, is log, NG
by introducing his influential theta function [2].

In this work, we study the zero-error capacity in the model
of list decoding, for a basic channel whose Shannon capacity
is trivially 0. The zero-error list decoding capacity was in-
troduced by Elias [3]. For a fixed L, the list-of-L zero-error
capacity of a channel H is the largest asymptotic rate at which
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one can communicate on the channel (over n independent uses
for growing n) so that the decoder can pin down the correct
message to one of at most L possibilities (in other words, the
decoder can output L codewords which always include the
transmitted one). More formally, for a channel H=(V,W, E),
a code C CV™ is said to achieve zero error under list-of-L
decoding if for every subset {c(1),c(®, ... cE+D} of L+1
codewords of C, there is a coordinate 4 such that the symbols
cl(.l),cl@),..., ELH) don’t share a common neighbor in W.
Equivalently, C is an independent set in the (L + 1)-uniform
hypergraph defined on V™ where hyperedges correspond to
tuples whose i’th symbols have a common neighbor in W (H)
for every i. (Note that the case L=1 corresponds to Shannon’s
ZEero-error capacity.)

The smallest non-trivial case for zero-error list decoding ca-
pacity is the 3/2 channel, where V=W={1,2,3} and (v,w)€E
iff v#w. Since every two input symbols can be confused with
each other, the Shannon capacity of this channel is 0. However,
there exist codes C' C{1,2,3}" of rate R bounded away from
0 (i.e., of size 25") which permit list-of-2 decoding with no
error on the 3/2 channel. The best known lower bound on R
(to our knowledge) approaches }log, 2~0.212 [4]. There is
an easy upper bound of log,(3/2)+0(1) on the rate of such
codes, which in fact holds for list-of-L decoding for any fixed
L (or even L <2°("); the argument is just to take a random
output sequence w € W™ and compute the expected fraction
of codewords that are consistent with receiving w. As a side
remark, we mention that the quantity log,(3/2) equals the
zero-error capacity for list-of-2 decoding in the presence of
noiseless feedback from the receiver to sender [3].

The list-of-2 decoding setting for the 3/2 channel is com-
pletely equivalent to a question about perfect hash families. To
achieve zero error with a list of size 2, the code C C{1,2,3}"
should have the property that every triple of codewords has
a coordinate where they all differ. The existence of such
a code of cardinality IV is thus equivalent to the existence
of a perfect hash family of size n that maps a universe of
size N to {1,2,3} such that every three elements of the
universe are mapped in a one-one fashion by at least one
hash function. In this setting, we have a lower bound of
logs/»(IN/2) on the size of such hash families, and it is a
longstanding open problem to improve this. The bounds of



Fredman and Komlds [5] and follow-ups (discussed further in
Section II), give improvements for hashing into sets of size
4 and higher, but do not apply for hashing into {1,2,3}. It
remains a major open question to improve the bound for the
3-element alphabet.

In this work, we address the perfect hashing problem into a
range of size 4, or equivalently the zero-error list-of-3 decod-
ing capacity for the 4/3 channel where V=W ={1,2,3,4} and
(v,w) € E iff v#w. For this channel, the zero-error capacity is
clearly O for list size 2, since every three input symbols share
a common output symbol. Let us say that C' C {1,2,3,4}"
is a 4/3 code if for every four distinct codewords z, y,
z and t of C there is a coordinate i € {1,2,...,n} for
which {z;,v;, 2t} ={1,2,3,4}. This is the exact criterion
a code needs to meet in order to achieve zero error on
the 4/3 channel with list-of-3 decoding. A simple random
coding argument [4] shows the existence of 4/3 codes of
rate approaching %log2 % ~20.0473, which is rather low. The
simple “random received word” argument mentioned above
for the 3/2 channel shows an upper bound on capacity of
log,(4/3) in the case of 4/3 channel (this equals the zero-
error capacity with feedback).

In the case of the 4/3 channel, an upper bound on capacity
that is smaller than the simple log,(4/3) =~ 0.415 bound
is known. The results of Fredman and Komlés on perfect
hashing, when specialized to domain size 4, imply an upper
bound of 3/8=0.375 [5]. Korner and Marton [4] improved
the Fredman-Komlés bounds using a hypergraph (as opposed
to graph) covering approach, but did not get an improvement
for alphabet size 4. Arikan [6] improved the capacity upper
bound for the 4/3 channel to 0.3512.

The main contribution of this work, Theorem 3 below, is a
further improvement of the bound to 6/19<0.3158. The proof
of this result, which uses a delicate probabilistic combination
of the Plotkin bound in coding theory and Hansel’s lemma
for covering the complete graph by bipartite graphs, is self-
contained. Then, we show that the bound is not tight and,
invoking some rather non-trivial results on the minimum
distance of codes, we provide a slightly better bound of
0.31477.

We close the introduction with a side remark. In the
last years, clever applications of the polynomial method in
the breakthrough work of Croot, Lev and Pach [7] and
follow-ups, have led to exponential improvements in size (or
equivalently in the value of the associated “capacity”) for
several longstanding combinatorial problems, including 3-term
arithmetic progression free sets in {0,1,2}™ by Ellenberg and
Gijswijt [8], and their generalization sunflower-free sets in
{0,1,2,...,D —1}" by Naslund and Sawin [9]. These are
subsets A such that for every distinct triple x,y,z € A there is
a coordinate ¢ where exactly two of z;,y;,z; are equal (compare
this to the perfect hashing requirement of having xz;,y;,2; all
be distinct). In each of these cases, the results give the first
upper bounds on capacity that are bounded away from the

trivial bound of 1 (or log, D when measured in bits, where D
is the alphabet size). Recall that for a 3/2 code, we already
have a simple upper bound of log,(3/2) on the capacity. A
straightforward adaptation of the recent methods to the setting
of 3/2 codes seems not even to yield a bound better than
3", It is an interesting question if the new insights can also
be exploited to improve the upper bounds on rate when the
known upper bound on capacity is bounded away from 1.

In Section II, we discuss the techniques used in the earlier
works [5], [6] and the novelty in our contribution, while in
Section III we give the proof of our main result. Finally, in
Section IV we show that even this bound is not tight and we
give a slight numerical improvement.

Notation. Let ¥={1,2,3,4} and, for general integer n>1,
let [n]={1,2,...,n}. If z€X™ then z; is the i-th component
of = and, by extension, xy) = (z1,%2,...,7;). All logarithms
are to the base 2.

II. BACKGROUND

The previous upper bounds on the rate of 4/3 codes (due
to Fredman and Komlés [5] and Arikan [6]), as well as
our new upper bound, can be based on an information the-
oretic inequality regarding graph covering. This inequality
due to Hansel [10] has been rediscovered several times (see
Krichevskii [11], Katona and Szemerédi [12], Pippenger [13],
Fredman and Komlés [5], Korner and Marton [4]), and is a
special case of the subadditivity property of Korner’s graph
entropy (see [14], [15]).

Lemma 1 (Hansel [10]): Let K, be the complete graph
with vertex set [r]. Let I be a set of indices, and for i €
I, let G; be a bipartite graph with vertex set [r]; let 7; be
the fraction of vertices in [r] that appear non-isolated in G;.
Suppose | J,;; E(G;)=FE(K,). Then,

Zrizloggr.

icl

We provide a proof for the reader’s convenience since it is
very short and it is the only tool needed for our bound.

Proof: Call A; and B; the two parts of non-isolated
vertices in G;. For each ¢, randomly delete all the vertices
in A; or in B;, independently, each with probability 1/2. At
most one vertex can remain at the end of this process since
Uier E(Gi)=E(K,). On the other hand, the probability that
v€(r] is not deleted is 2 ' where ¢, is the number of graphs
G; in which v is not isolated; so the expected number of
vertices that survive is Zwe[r} 27t So we have

1> Z 27t'u

veE(r]
> 2 Xvel ~h

1
=2 Lvern b

which gives the desired result since %Zvem to=y ;7 W



Let us recall how graph covering enters the discussion on
4/3 codes. Fix a 4/3 code CCX". Let z and =’ be two distinct
codewords in C. Let K%' be the complete graph with vertex
set C'\ {x,2'}. For me[n], let G%*" be the graph with vertex
set C'\ {z,2'} and edge set

E(Gﬁizl):{(y,y/):{xm’x;n)ymvy;n}:Z}'

It follows immediately from the definition of a 4/3 code that
Ume[n] Gr® =K™®7 ; if we denote the fraction of non-isolated

vertices in G%*" by 7,,(z,2’), then Hansel’s lemma implies
that
Z Tm(z,2") >1og(|C| —2). (1)

me[n]

To obtain a good upper bound on the rate of C, one would
like to show that the left hand side of the above inequality is
small. There are two ways in which 7, (z,z’) might be small
for a choice of x and «’: (1) if x,,, =z, then 7,,,(z,2") =0,
so it is advantageous to pick x and z’ that agree on a lot of
coordinates; (2) if z,,, #x,,, then any codeword in C'\ {z,z'}
that agrees with either z or 2’ in the m-th position will appear
isolated in Gﬁ;”/, so it is advantageous to pick x and z’ that
take the most popular values in the m-th coordinate.

Fredman and Komlés [5] and Arikan [6] exploit (1) in
different ways, by devising different strategies for choosing
2 and z’. We review their approaches below, and pinpoint
how our analysis differs from theirs.

a) The Fredman-Komlds bound: The approach of Fred-
man and Komlés [5] amounts to picking x and z’ at random
(without replacement) from C. It can be shown that for
each m, E[r,,(z,2')] is at most £(1+4o(1)). It then follows
immediately from (1) that

‘CI < 2%(1+o(1))n.

In this approach, the two ways in which 7,,(z,2’) can be
made small are addressed simultaneously by the random
choice of z and x’. By reducing the problem to hypergraph
covering instead of graph covering, Korner and Marton [4]
and Nilli [16] improve upon the Fredman-Komlés bound for
perfect hashing for certain values of parameters; however, their
method yields no improvement for 4/3 codes.

b) The Arikan bound: Arikan’s approach [6], on the
other hand, places greater emphasis on ensuring that z and
z' agree on many coordinates. Indeed, standard bounds in
coding theory let us conclude that codes with non-trivial rate
must have codewords that agree in significantly more coor-
dinates than randomly chosen codewords. Arikan combines
this insight with an ad hoc balancing argument that lets one
bound 7, (x,2’) non-trivially even when z,, #x/,. To obtain
the best bound, one must balance parameters using the best
results in the literature on rate versus distance for codes over
{1,2,3,4}. Arikan [6], while using the Plotkin bound to derive
the bound of 0.3512 for 4/3 codes, observes that it should
be possible to derive better bounds using stronger trade-offs
between rate and distance that are now available. In fact,

combining Arikan’s approach with one of the JPL (linear
programming) bounds from Aaltonen [17], we can confirm
using a computer supported calculation that a bound 0.3276
can be derived (see Section IV-A below for more details);
perhaps, more complicated calculations can yield somewhat
better bounds.

¢) Our contribution: We combine insights from the
above approaches, but look deeper into how two codewords
with small distance are obtained. In particular, we examine
the standard argument that leads to the Plotkin bound more
closely. This involves fixing a rich subcode of codewords
with a common prefix and picking two distinct codewords
(say, = and z’) at random from this subcode. Instead of
concluding that this process on average yields codewords that
agree on many coordinates, we directly estimate the expected
contribution to the left hand side of (1), that is E[7,, (z,z)]. It
is crucial for our proof that we do not focus on one subcode
but average over all of them. We need a technical balance
condition on symbol frequencies in each codeword position
in our formal justification that certain functions we encounter
are concave. A simple calculation, similar to what Arikan also
needed, can be used to justify this balance assumption.

III. RATE UPPER BOUND FOR 4/3 CODES

Let us recap the definition of the central object of interest.

Definition 2: A code C'C X" is said to be a 4/3 code if
for every subset of four distinct codewords x,vy, z,t € C, there
exists a coordinate i€{1,2,...,n} such that {z;,y;,2;,t; } =X.

In this section, we present and prove our main result, stated
in the following theorem.

Theorem 3: As n grows unbounded, 4/3 codes CCX" have
size |C| < 2671/19+o(n)_

We prove the above theorem in three steps. First, we prove
the theorem under an assumption that no coordinate is very
skewed in terms of the distribution of codeword symbols in
that coordinate (Section III-A). For this we utilize a technical
concavity result which we state and prove in Section III-C.
A simple argument reduces the general case to the situation
where there is no skewed coordinate (Section III-B).

A. The balanced case

For a code C C %" and m € [n], let f,, € R* be the
frequency vector that records for each letter of the alphabet,
the fraction of codewords in C that contain that letter in the
m-th coordinate; that is, for a € X,

1
fmlali=—=|{zeC:zn=a}| (2)

C
(Note we suppress the dependence on C' in the notation f,,

for notational simplicity.)

Lemma 4: Let C CX" be a 4/3 code (for some n > 4).

Suppose for all m € [n] and a€ X, we have f,,[a] > ¢. Then,
|C| < 26n/19+0(n) i



Proof: Let M :=|C|=2%" and {=[Ryn/2—logn—1].
For each prefix w e ¢ consider the subcode

Cuw:={2€C:zy=w};

let M, :=|Cy|. Then, C=J,Cy» and M =3 M,. We
partition the set of prefixes into two sets:

Heavy ={w: M,, >n}; Light={w: M, <n}.
Let Ct=J Cy, and C~=C\C*. We have,

wEHeavy
|C7|< E M, < E n
weELight weLight

S4Zn§4RUn/2—710gn \C|/n

and therefore, for a random z uniformly distributed over C,
1
PrlzeCT]>1-~.
n

Let x and z’ be two random codewords in CT generated as
follows. First pick x uniformly at random from C7T; let w=
x[y. Next, pick ' uniformly from Cy, \ {z} (which is non-
empty because |C,|>mn >4.). With this (random) choice of
x and z’ consider the bipartite graph Gf,;‘”/ with vertex set
C\{z,2'} and edge set {(y,vy'):{@m, Ty Ym, Y, } =2}. Since
C'is a 4/3 code, we have
Gﬁ;z/ — K.’t,r',
me[n\[{]

and the situation is ripe for using Hansel’s lemma. The fraction
of non-isolated vertices in G* is precisely

2= Qg ) (o] = Fnlah) i ).
3)

where 1{xz[m]# 2/[m]} is the indicator random variable for
the event z[m]#1z'[m]. By (1) we have

logy (M —2) < Z Tm(z,2").
mé€[n]\[{]
Taking expectations over the choices of (x,z’ ) we obtain
logo (M —2)< Z Elrm(z,z") @)
meS
We will estimate each term of the sum separately.

Claim 1: For each m € [n]\[{], we have
Bl < (3) 4ol ®

Let us first assume this claim and complete the proof of the
lemma. We have from (4) and (5) that

Since M =|C|=2%0", the above implies that

3 Ry
<-(1-— 1
Ro<? (1= 52 4ol1).
This yields Ro < £ +0(1), as desired.

We still need to establish Claim 1.

Proof of Claim 1: For m€ S, let f,,,, be the frequency
vector of the m-th coordinate in the subcode C,,. Note that
Ew [fjw]=Fm if W is the random prefix W =z[; induced by
a z taken uniformly at random from C. Fix m. Now, for each
w € Heavy, taking expectations over z,z’ in (3), we obtain

E[rn(z, z’) |xeCy] <

|c|*|0|2 n—1 > Fmpwlalfog b)(1—fin[a] = £ b)),
(a,b):a#b

where the adjustment by the —"5 factor arises because z,z’
are sampled without replacement from C,,, and |C\,|>n for
w € Heavy.

For probability vectors f,g€ R, let
> LG gli] - gli)- (6)
(1,5):1#7
We thus have, for w € Heavy,

E[rm(2,2) |2 €Cy] < <|C||C| )(71’11) S (Fonfuws fm)- (7)

Let W be the random variable equal to 2 € X! for a random
z uniformly distributed over C' and chosen independently of
x (note that unlike z, which is picked from C™T, z is picked
from the full code C). Taking expectations over W in (7), and
conditioning on W &€ Heavy, we have

Ew. .z [Tm(z,2") |2€Cw A W €Heavy] <

C

Now note that the left hand side of (8) is
Ey 2 [Tm(z,2')], so we have

simply

Elrm(z,2")]
C n
< (25) (525 ) Ewlotw ) 17 € Hean].
)
Now, using (9) we obtain
EW[¢(fm|W7fm)]
>Pr[W € Heavy]-Ew [¢(f,jw, fm) | W € Heavy]

> Pr[ze - ('CI'CTQ) (T) B (z,2')].

As Pr[zeCT]>1—1/n, we have
C n \?2
Blr(r, /)] < <|C'|_'2) (:25) Ewlothw i)

(I+o(1)

OO\C»J



where the last inequality follows from Lemma 5, which we
state and prove in Section III-C. Lemma 5 is stated in terms of
probability vectors f,, and f. To obtain the above conclusions,
set Ty, efmm and f < f,,. This completes the proof of our
claim and the lemma. ]

Remark I: There is a technical reason for choosing x,z’
to be uniformly distributed over C while W to be over
all prefixes (i.e., Heavy U Light), instead of just removing
C~ and only consider the subcode C*. Indeed, removing
C~ would introduce a modification of the frequencies f,,
and hence the assumption that f,,[a] > 1/6,Va, would not
hold anymore for the subcode. On the other hand, assuming
balanced frequencies with some safety margin on C, say
fmla] >1/6+1/n on C (as to ensure f,[a] >1/6 on C™T)
only moves the technicality to how we deal with the balancing
assumption in Section III-B.

Remark 2: We point out that, despite the same coefficient
3/8 which appears, Claim 1 is not equivalent to the bound
devised by Fredman and Komlés [5] because our x and z’
are constrained to have common prefix :xff], while they
are picked without replacement from the whole code C in the
earlier approach.

B. Proof of Theorem 3

We now remove the restriction that the codeword symbol
frequencies are balanced'.

Fix a code C' of sufficiently large length n. We will use
Lemma 4. For that, we must first ensure that the frequency
vector for each coordinate is not too skewed. We ask if there
is a coordinate m € [n] and a € X such that f,,[a] < %. If there
is such a coordinate m, we create a new code by deleting
all codewords = € C' for which x,, =a, and shortening the
remaining codewords to the indices in [n]\ {m}. By repeating
this process, starting with Cy=C, we obtain codes Cy,C",.. .,
where C; CX"~% and |C;|>(5/6)|C;_1]|. Suppose the process
stops after completing ¢ steps at which point C; is obtained.
(If the process stops without completing the first step, then
t=0.) Then,

6\t
|Co| < (5) |Cy|

t
5

_ 22n—t(2—10g2(6/5)) < 92n—1.736t

(10)

If t>0.99n, then this gives |Cp| < 20-281" < 267/19 and our
claim holds. On the other hand, if £<0.99n, then we may apply
Lemma 4 to C; and conclude that |C;| < 2(6/19)(n=t)+o(n)
Then, using (10), we obtain

t
ICo| < <‘53) o(6/19)(n—1)+o(n)
S2(6/19)77,—[(6/19)—10g2(6/5)]t+0(n). (11)

A similar argument appears in [6, Lemma 4].

The right hand side is at most 2(6/19)n+o() because the
coefficient of ¢ is negative (since log,(6/5)<6/19).

C. Concavity of ¢ function

Recall the definition of ¢(f,g) given in (6) for probability
vectors f,g€R* We now establish the following concavity
result that was used in the proof of Claim 1 above.

Lemma 5: Let W be a random variable taking values in a
set W. For each we W, let f,, € R* be a probability vector.
Suppose f:=Eyy [f,] is such that min, fla] > . Then,

Ewlo(fw ) <o(f.0) <. (12)

Proof: Let f=(A, B,C, D) (which we treat as a vector
in R). Let Ay :=f, —f= (0w, Buw,Yws0w). Then A,, satisfies
the following two conditions.

Eu[Ap]=Ey[fw —f
:]Ew [fw] *f:()v
1-A, =0,
where 0=(0,0,0,0) and 1=(1,1,1,1). Let
0 C+D B+D B+C
C+D 0 A+D A+C

B+D A+D 0 A+B
B+C A+4+C A+B 0

13)

M::(mij Zi,jEE):

Note that the off-diagonal entries m;; =1 —f[i] —f[;]. Then,
B, f)=Fup M FL
= (f+Aw)M(f+Aw)t
=o(f,f)+ Ay M ' +f MAL +A, MAY,

Since E,,[A,,]=0, when we take expectations over w, the two
middle terms drop out. Thus,

Ew [¢(fw, )] =o(f,f) + Ew [Aw M Ay ].

To justify our claim we show that the second term A, MA!
is never positive. Let J be the 4 x 4 all 1’s matrix, and F' be
the diagonal matrix with F;; =f[:]. Then,

M=J-FJ—JF—(I-2F).
By (13), A, JAL, A, FJA!, A,JFAL =0; thus,
AyMAL =—A,(I-2F)Al
——[(1-24)3 + (1-2B)8%
+(1-2C)y2 +(1-2D)s2] .
Since, no component of f= (A, B,C, D) exceeds % (because

all coordinates of f are at least %), the right hand side is never
positive. This establishes the first inequality in (12).

To establish the second inequality, we check that ¢(f,f)
takes its maximum value when f = (%, %, %7 i) that is, the
maximum is %. (Indeed, if some two components of f are not
equal, replacing them both by their average will not reduce

o(f.f).) u



IV. IMPROVEMENT OF THE BOUND

In this section we show that Theorem 3 is not tight by
providing the following slight explicit improvement.

Theorem 6: For n large enough, any 4/3 code C' C¥™ has
rate bounded above by 0.31478.

Despite the improvement being small, it should be noted
that this new result uses the linear programming bound on the
minimum Hamming distance of codes [17] as a black-box.
Hence, unlike Theorem 3, it is far from being self-contained.
We first give a qualitative explanation and then compute the
resulting bound.

A. Qualitative Analysis

We first observe that our bound R <6/19 corresponds to
the bound that would be obtained in Arikan’s paper [6] if the
result of his Lemma 4 was replaced by the assumption that
the code is maximally balanced, that is, if it is assumed that

the frequency vectors f,, all equal (%,%,%,%)+o(1). Under

such an assumption, we always have 7,,(z,z’) = 21{1:7,,, %
z!. }+0(1), and hence
1
> w2’y =5du(w, ') +o(n), (14)

me[n]

where dy(x,z’) is the Hamming distance between the code-
words  and z’. The bound of equation (1) thus reduces to

10g2|C’|§%dH(x,x’)+o(n). (15)
Plotkin’s bound states that in a code C' of rate Ro there exist
distinct codewords z,2’ at distance dy (z,2") < 2(1— Ry/2),
which when used in the above equation gives back the bound
Ry <6/19+ o(1). So, we may say that the analysis in the
previous section achieves the goal of removing the assumption
that the coordinates are uniform using an averaging approach
over equation (1).

Now, by inspection of the proof, we notice that in order
for the bound of Theorem 3 to be tight, we would need the
second inequality in (12) to be tight, when f is replaced by
fim, for an overwhelming fractions of m €S, that is, we would
need for almost all me S

> fm J(1—f[i] — fm[j]):§+o(1).

(4,9)vi3
For this to hold, f,, must equal (1,1, 1 1)+ 0(1); so we
reach the conclusion that a necessary condition for our bound
to be tight is that f,, =(4,%,%,%) +o(1) for a fraction 1—

o(1) of the coordinates in the suffix set S. But clearly we can
permute the coordinates of our code at will and the procedure
of the previous section still applies. So a necessary condition
for tightness is that actually f,,=(,1 1 1)+ 0(1) holds for
a fraction 1 —o(1) of all coordinates. However, we saw that
under this latter assumption equation (1) reduces to equation

(15). Since the condition Ry<6/19 is obtained from (15) using

the Plotkin bound on dy(z,z’), and since there are strictly
better bounds on the minimum distance of codes, we conclude
that the bound of Theorem (3) is certainly not tight.

As a side remark, we note that using the first linear
programming bound on the Hamming distance [17], condition
(15) gives Ry<0.2845. Of course, this bound holds only under
the assumption of uniform coordinate distributions and not in
general, but it points to the limitations of this approach. The
refinement of Arikan’s bound 0.3276 mentioned in Section II
is obtained by relaxing the condition on f,,, as follows. One
first assumes f,,, has all components larger than a constant p,
deducing that 7,,(x,2") < (1 —2u)1{z, #x,,}. The obvious
extension of (15) used with the linear programming bound
on dy then gives an upper bound on Ry as a function of
u, say R(u). Finally, the parameter p is lowered to the
minimum value & below which single coordinates would
not “support” a rate equal to R(f); that is, if a 4/3 code
C with rate R(f1) = Llog|C| has in some coordinate m a
symbol with frequency g smaller than p, then removing that
coordinate and all codewords which take that value in that
coordinate would leave a new code of length n — 1 and rate
—121og(|C|(1 — p)) > R(fi). Thus i is the solution of the
equation pr=1— 27 This is essentially the meaning of
[6, Lemma 4], which corresponds to what we did in III-B.
The resulting bound R(p*) is then unconditional, and we
numerically evaluated it as R(u*)=0.3276.

To summarize, the above discussion leads to the conclusion
that

o cither for a fraction (1—0(1)) of the coordinates we have
frn=(%,%,2,1)+0(1), in which case we can use equation
(15) with the linear programming bound on the Hamming
distance, deducing Ry <0.2845,

e or there exist €, >0 such that for a fraction § of the
coordinates min, f,[a] <1/4 — €, in which case there

exists a >0 such that Ry <6/19—~.

So, in any case there is a >0 such that Ry <6/19—~.

B. Quantitative Analysis

We now turn the previous discussion into an explicit quan-
titative bound on Ry. The idea is to exploit the dichotomy
between balanced/unbalanced coordinates, where in the first
case we take advantage of the minimum distance, and in the
second case we refine our original argument.

For each m € [n], let y,, =min,f,,(a), and assume without
loss of generality that pq > po>--- > p,. We can also assume
that p,, >1/6, since coordinates with u,, <1/6 support rates
not larger than log,(6/5)=0.2630 (see Section III-B), which
is even smaller than our target upper bound.

Again let £=[Ron/2—logn—1], and let C~ and C'* as
in Section III-A. Proceeding as in the proof of Theorem 3
and taking an intermediate step in Lemma 5 (i.e., the first



inequality in (12)), we reach the conclusion that

Z 3(Fm )

m=~+1

1+0 (16)

Since the quantity ¢(f,,, f;,) is not decreased by
substituting two components with their average, using

(fm, 2= —frm 1_37’”7 1_§‘m) in place of f,, we find the upper
bound
6
¢(fm7fm) <= (1 *.um)Q (8,um+1) .

27
So finally we have the bound

n
We now also consider a bound on Ry which comes from us-
ing the minimum Hamming distance. In particular, let d, (R)

be the largest minimum distance of any code of rate R. Then,
by taking x,2’ in (1) at minimum distance, we find

)gZTm(gc,x’)
S

=n—dmin(Ro)+1

(1= pm)? Bpm+1) . (A7)

1+0

nRo+o(n

(1—2pm).

If we call dip(R) the linear programming upper bound on
dmin(R), we have

n

>

m:n—de(Rg)—i-l

nRy < (1 —2pm) +o0(n). (18)

The combination of (17) and (18) is a quantitative version
of the qualitative discussion in Section IV-A. For any sequence
1 we can upper bound Ry by taking the best of (17) and (18)
then we can bound R, unconditionally by taking the worst
case sequence [in,. Let p, be any such worst case sequence
and R be the corresponding upper bound on Rj.

First note that if pf, <1/4 for m <n—dip(R§), then by
replacing it with p/, =1/4 the minimum distance bound in
(18) is not affected while the bound on R from (17) will in
general become larger. Indeed, since {=[Ron/2—logn—1]<
n—dLp(RY), the terms of the sum in (17) with indices m in the
range {<m<n—d p(R) are maximized at u,,=1/4. So, the
sequence with £/ is at least as bad as the original one, and we
can thus assume that %, =1/4 for m<n—dp(R}). Finally, we
see that we can assume p, is constant for m>n—dpp(R)+1.
In fact, if this is not the case, by replacing those p), with their
average, again the bound in (18) will not change, while the
bound in (17) will increase, since the summand is a concave
function of fi,,.

So, we conclude that we can assume that there is a constant
©* such that

. 1/
Hn = /
"

m<n—dp(R}), (19)
m>n—de(R3) .

Then, the minimum distance bound (18) reads

nR<(1—2u")dip(R)+o0(n) (20)
while (17) becomes
3
nlty < ¢ (n—dup(R) —nlt/2)
57 (L= ) (8" + 1) dep(R) +o(n). (21)

We can then plug in Aaltonen’s g-ary extension of the linear
programming bound [17], which can be stated as dip(R)=
nd +o(n) where 6 <(q—1)/q satisfies the condition (in our
case q=4)

—1—(¢—2)0—-2 —1)01-¢
Rt (¢ (¢=2)0-2y/(¢—1) @
q
H, being the g-ary entropy function
H,(t)=tlog(qg—1)—tlogt—(1—t)log(1—1). (23)

Solving numerically for ©* we experimentally determine p* =
0.217165 and R{=0.31477.
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