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Abstract: We study a variant of the Nurse Routing Problem where each patient may require
more than one service at possible different times during the day. Each executed service yields a
profit, and an additional reward is gained if all services associated with a patient are fulfilled.
The problem looks for nurse routes, each one not exceeding a predefined working time limit,
that maximize the global collected service profits plus the patient rewards, while respecting
the time windows associated with services. We first provide a compact Mixed-Integer Linear
Programming formulation for the problem. Then, we develop an Iterative Kernel Search to solve
the problem heuristically. Finally, we compare the heuristic performance on several instances
with that of the plain model solved through a state-of-the-art exact solver and strengthened
by the separation of valid inequalities. The obtained results clearly show that our heuristic
algorithm finds fairly good solutions in terms of quality, despite the use of shorter computational
times.
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1. INTRODUCTION

In the so-called Nurse Routing Problem (NRP), a set
of nurses are available to visit a set of patients (spread
over a geographical area) to perform care services. Each
nurse has a predefined working time limit, which cannot
be exceeded considering both the time required to serve
the patients and that to travel among them. In this paper,
we introduce and study a new NRP variant in which the
patients require different services during possible different
time intervals along the day, i.e., multiple time windows
are considered. The problem objective is to maximize the
score (service profit) collected for executed services plus
additional rewards (patient profits), obtained only if all the
services associated with a given patient are completed. We
call this problem the Patient Satisfaction-oriented Nurse
Routing Problem with Time-Windows (PSNRP-TW).

The rest of this paper is organized as follows. In Section
2, we present an overview of the most recent papers in
the area of home health care, highlighting those related to
ours. In Section 3, we formally describe and formulate the
PSNRP-TW while, in Section 4, we present the Iterative
Kernel Search heuristic framework adopted. In Section 5,
the generation of instances and the relative computational
experiments are discussed. Finally, Section 6 presents
conclusions and future research.

2. LITERATURE REVIEW AND RELATED
PROBLEMS

Long-term home health care services have experienced and
still face a massive demand, steadily and rapidly growing
in the last two decades. Nowadays, home care includes
a large set of different services, e.g. simple assistance
(dressing, bathing, using the bathroom) to the patients,
a long list of specific medical operations (dosing drugs,
performing injections, or taking vital values), and even
very complex tasks such as chemotherapy (Chahed et al.,
2009). The importance of providing such services with ade-
quate efficiency and timing, despite of the limited resources
available, has motivated the attention of researchers and
practitioners in the recent past (Milburn, 2012). Besides
several studies about benchmarking nursing performance
(Ozcan, 2008), a very large number of specific optimization
problems arising in the field has been approached through
modeling and algorithmic frameworks. Our paper, study-
ing a variant of the Nurse Routing Problem, belongs to
this last stream of research.

A complete literature review on the topic would be out of
the scope of this paper, therefore we refer the reader to a
very recent and comprehensive survey by Fikar and Hirsch
(2017) about nurse routing and scheduling problems. The
authors classify the existing works by looking at the con-
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straints involved and at the time horizon (single or multi-
period) considered in the problems, and by the adopted
solution method. However, other interesting papers have
appeared more recently, with the general aim of tackling
more and more realistic problems through the addition of
constraints or optimization objectives. For example, Lin
et al. (2018) and Nasir and Dang (2018) have considered
skill requirements for the nurses to perform services and
time constraints such as time-windows for the visits and
working time regulations for the nurses. Fathollahi-Fard
et al. (2018) also considered a restricted capacity for the
nurses to carry drugs and a bi-objective problem including
the minimization of the transportation costs and of the
CO2 emission. Yang et al. (2018) studied a stochastic
home health-care routing problem in the case of dense
communities, where the distances are typically short while
the waiting times are high, and multiple appointments.
Finally, Lasfargeas et al. (2019) tackled a very complex
setting also including time-windows, nurse/patients ex-
clusions, precedence and synchronization constraints. In
these works, the problems are optimized through the use
of heuristic and meta-heuristic algorithms (e.g., Variable
Neighborhood Search, Harmony Search, Ant Colony Op-
timization).

The most part of the appeared problems have been studied
as variant of the well-known Vehicle Routing Problem
(VRP) in which, in general, all the patients need to be
visited and the main objective is to minimize the vis-
iting/traveling costs. Instead, in our work, we focus on
the quality of the care process by maximizing the profit
obtainable from performing the services and, therefore, by
possibly sub-selecting which patients to visit. This feature,
and the presence of different services to perform, make
our problem a variant of the so-called Traveling Purchaser
Problem (Manerba et al., 2017, Beraldi et al., 2017), or
better, of its multi-vehicle variant (Manerba and Mansini,
2015, Gendreau et al., 2016). The most similar work has
been published by Manerba and Mansini (2016), where
the authors study a Nurse Routing Problem with work-
load constraints and incompatibility among services to the
same patient. The two exact methods proposed, based on
branch-and-cut and branch-and-price, respectively, have
been able to optimally solve small and medium-size in-
stances. As in our case, that paper included the patient
selection feature, however no time-windows were consid-
ered and a less sophisticated scoring function was used for
the maximization of the profits.

3. MATHEMATICAL FORMULATION

We propose a compact Mixed-Integer Linear Programming
(MILP) formulation for the PSNRP-TW inspired by the
model proposed by Maffioli and Sciomachen (1997) in a
scheduling context, and then reused for Team Orienteering
Problem by Bianchessi et al. (2018) and Hanafi et al.
(2018) to exclude subtours. To exploit such a formulation,
each node of the graph has to be visited at most once.

Let M = {1,...,m} be the set of patients, F' the set of
nurses available to serve patients, K the set of service
types, and N the set collecting each possible service
required by each possible patient. Each service i € N
is associated with exactly one service type &k € K, so
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services required by different patients might be of the same
type k .The problem can be defined over a direct graph
G = (V, A), with node set V.= NU{0,n+ 1} and arc set
A=A{(i,j) :i.j € Vii #n+1,j # 0,i # j}. Nodes 0
and n + 1 are initial and terminal depot, respectively. We
assume that set N is partitioned into m disjoint and non-
empty subsets Nj,h = 1,...,m, each one associated with
a different patient, i.e. N = [J;—, N and Ny " Ny = 0
for h # h’. We assume that all the available nurses are
sufficiently skilled to perform all the types of services
¢t € N. Each nurse has a maximum daily working time
equal to T},4.. Each service i € N of same tipe k € K has
a predefined execution time s;, and a hard time window
[e;, ;] that represents the interval of time within which
service 7 has to begin. Nodes belonging to the same set Nj,
are services requested by the same patient, and thus have
the same location, but may have different time windows for
their execution. A positive profit p; is associated with each
service ¢ € N, whereas a patient reward «y, is assigned to
each subset Nj. Such a reward can be collected only if all
nodes in Ny, have been served. A patient may be visited by
more than one nurse, whereas each service can be executed
by exactly one nurse. The profit associated with each
service can be seen as a positive scalar quantity measuring
the importance/priority to fulfill such a service. A similar
interpretation can be given to the reward associated to
each patient. We define as t;; the nonnegative traveling
time from node ¢ to node j, where t;; = 0 for all
i,j € Np,h = 1,...;m. Travel times satisfy the triangle
inequality. Each nurse leaves the depot 0 at time 0, and
has to terminate his work at node n + 1 before time T,,,.
Each nurse executes a service as soon as he reaches the
associated node (no waiting times are allowed).

We introduce the following sets of binary variables
1 if node i € N is visited;

Wi = .
0 otherwise.

- 1 if arc (4, ) is traversed;
| 0 otherwise.

1 if all nodes in IV}, are visited;
Ynh = .
0 otherwise.

We also define a set of continuous variables z;;, (4,5) € A\
{(0,n 4+ 1)} indicating the arrival time in node j when
arriving from 4. Finally, given a set S C V, let §(5) be
the set of arcs (4,7) withi € S and j € V'\ S and 6 (95)
be the set of arcs (4,7) with j € Sand i € V' \ S.

The PSNRP-TW can be modeled as follows:

max Zpiwi + Z QpYh (1)

iEN heM
subject to
Z Tij = Z Tj; = W; 1N (2)
(i,5)€5+ ({i}) (4,9)€6~({i})

Y@y = Y @ms S F (3)

(0,5)e6t({0})  (Un+1)€d~ ({n+1})
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E Zij

(@.7)edt ({i})

Z Zji = Z (tij + si)xij 1€ N (4)
(Ji)es—({i}) (i5)edt({i})

(0,5) € 67 ({0}) ()

205 = tojl‘oj

(toittij+si)ri; < zij < Tjxy;  (4,7) € A\{(0,n+1)} (6)

ejzi; < zij < Ly (i,5) € A\ {(0,n+ 1)} (7)
yn <w; h=1,...m, i €N, ©)
zi; 20 (5,5) € AN{(0,n+ 1)} ()
zi; € {0,1} (i,j) € A (10)
w;€{0,1} €N (11)
g €{0,1}  h=1,.m (12)

Objective function (1) maximizes the sum of global col-
lected profits earned by performing home care services plus
the total patients rewards. Constraints (2) are classical
pairing conditions, whereas constraints (3) control the
creation of at most |F| routes. Constraints (4) replace the
standard subtour elimination constraints and ensure that,
if node j is visited immediately after node i, then the time
elapsed between the arrival times in the two nodes has to
be equal to the service time s; at node ¢ plus the travel
time ¢;; between ¢ and j. Constraints (5) set a bound on
the minimum time required to reach the first node after
the depot, whereas constraints (6) define lower and upper
bounds on the duration of each route, where parameter T
is computed as Tz — Sj — tjnt1. Constraints (7) impose
that service j has to be executed within its time window.
Constraints (8) allows variable y;, to be 1 if and only if
every service requested by patient h has been performed
(no w; variable, i € N, is equal to zero). Constraints
(9)—(12) define non-negative condition on z variables and
binary conditions on remaining ones.

Note that, in the special case where each patient requires
exactly one service, the PSNRP-TW reduces to the well-
known Team Orienteering Problem with Time Windows
(Vansteenwegen et al., 2009). This shows that PSNRP-
TW is N'P-hard.

3.1 Valid inequalities

To strengthen the proposed formulation, we add a valid
inequality on the global time as follows:

> tiwij < |F|Tomas-
(i,5)€A
Moreover, even though constraints (4)—(6) ensure that
there are no subtours and each route is connected to the
depot, we dynamically separate the following Generalized
Connectivity Constraints (GCCs):
> @i zwk, SCN,|S|>2keS.
(4,4)€07(9)
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Let (wEf xIP yEP zLP) be the optimal solution of the
continuous relaxation of problem (1)-(12). A Min-Cut
problem is solved at most once for each patient h by
selecting the node [ = arg max{wl*} with wi¥ # 0.

1EN},

4. SOLUTION ALGORITHM

Kernel Search (KS) is a general purpose heuristic frame-
work for the solution of MILP problems, originally devel-
oped by Angelelli et al. (2010, 2012). The main idea consist
in solving a sequence of MILP subproblems in order to
continuously improve the objective function value. A key
concept in the construction of subproblems is the one of
item: an item is an element of the problem for which it has
to be decided whether to select it or not in the solution.
Restricting the set of items that can be included in the
solution helps reducing the solution space, thus decreasing
solution time. The kernel is the set of promising items
(i.e., the items that are more likely to lead to a high
quality solution), that is used as a starting point for the
construction of all the subproblems. The remaining items
are split in several subsets, called buckets. The algorithm
initially solves a subproblem considering only the items in
the kernel, and then proceeds to sequentially solve several
subproblems constructed by considering the kernel plus
one bucket at a time. After all the buckets have been
considered, new iterations of the kernel search might be
performed, considering the same set of buckets, or a differ-
ently constructed set. In our work, we consider performing
a service required by a patient as an item, and thus each
item is associated with a variable w;, i € N. From now on,
the term item is used as a synonym of variable associated
with such item.

In our implementation, we resort to an Iterative Kernel
Search (IKS), a KS variant introduced by Hanafi et al.
(2018). Here, items are sorted in non-increasing order of
the value they take in the optimal solution of the linear
programming relaxation of the problem at hand. Items
with the same value are then sorted in non-decreasing
order of their reduced cost value. The buckets are iterated
twice. In the second iteration, if a patient has only one
service that is not performed according to the current
best solution, the variable associated to such service is
moved in the top bucket. By performing this change, we
try to increase the chance to obtain a solution with higher
completion rewards.

5. COMPUTATIONAL RESULTS

To test our solution approaches, 40 instances have been
generated to simulate several real working scenarios. The
locations of the patients and of the depot have been
randomly generated into a square with an edge of 30km
length. Travel times have been computed considering an
average speed of 60km/h. Maximum working time Tpqz
is equal to 6 hour. In the first 20 instances, the number
of services requested by half of the patients is generated
between 1 and 5, while it is generated between 1 and 6
for the other half. In all the instances, the number of
services requested by half of the patients is generated
between 1 and |K|, while it is generated between 1 and
0 for the other half. Services are classified according to



1672

their execution time s; into short duration (between 5
and 15 minutes), medium duration (between 15 and 45
minutes) and high duration (between 45 and 95 minutes)
services. Each duration s; is randomly generated within
one of these three ranges. During the generation process,
we make sure that the number of short, medium, and long
services does not exceed 60 percent, 40 percent, and 20
percent of the total number of services, respectively. At
most fifty percent of the services have a hard time window
randomly selected among [0,120], [120,240], and [240,360].
The profit p;,i € N is a positive scalar in the range [2, 200].
The value 200 characterizes an urgent medical service for a
patient. For each patient h = 1, ..., m, the reward ay, is set
as a percentage -y of the total sum of profits of the services
required by the patient himself (i.e., ap =y ZieNh, Di)-

The experiments have been run on a Intel Core i7 5930k
machine with 64GB of RAM and running Windows 7
operating system. The proposed mathematical formulation
has been solved by using Gurobi, version 8.1.0 . A compu-
tational time threshold of one hour has been considered for
each instance. The solution used in the following analysis
is the best one found by Gurobi within that time limit.
With respect to our IKS implementation, we used the top

20% of the sorted list of items as the kernel set, and % as
the bucket size. The global time limit used is 600 seconds,
with 480 seconds reserved for the first iteration.

We tested three different values of v, i.e., 0, 0.25, and 0.5.
The results in terms of quality of the solutions obtained by
Gurobi and by our IKS are shown in Tables 1-3 regarding
|K| = 5 instances, and in Tables 4-6 regarding |K| =
10 instances. For each instance, identified by the tuple
{|M|,|F|,0}, we report:

e gap: the percentage distance between the best integer
solution and the best bound (for Gurobi only);

e 0bj: the best objective function value;

e sat: the percentage of totally satisfied patients.

The symbol “-” is used if no solution has been found within
the time limit. We also report, for both Gurobi and IKS,
the average obj and sat values. Moreover, the number of
times in which Gurobi and IKS have obtained the best
solution and the best satisfaction percentage is reported in
the last row (#best). Finally, for each entry, the best obj
and sat values between the two methods are highlighted
in bold font.

If we consider the instances with |K| = 5 (Tables 1-3),
IKS performs better than Gurobi, despite having a shorter
time limit. In fact, IKS obtains the best solution 35 times,
while Gurobi only 28. On average, IKS also obtains a
better objective function value (or very similar in Table 3),
which indicates a higher performance consistency. Instead,
analyzing the sat value is not a straightforward task. In
fact, there are several cases in which having a higher
sat value does not correspond to a higher obj value. A
case in point is the fact that Gurobi shows a higher sat
average over the instances in these tables, but not a higher
obj value average. It is worth noticing that, as expected,
the higher the bonus 7, the higher the sat average. For
example, IKS goes from a 30.3% sat average when 7 is 0,
to a 39.6% sat average when vy is 0.5.

L http://www.gurobi.com/. Last access on Jan 05, 2019.
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If we consider the results presented in Tables 4-6 for
| K| = 10, the comparison still favors IKS. Gurobi obtains
28 best results, while IKS 32. IKS also obtains by far the
best obj average, mainly due to the fact that Gurobi is
unable to find any feasible solution in several occasions (7
times out of 60). The upwards trend in the satisfaction
percentage is confirmed, although the average objective
function value does not increase as much as expected,
when moving from a zero bonus situation to a 50% bonus
situation.

In Table 7 we make a detailed comparison between the
total computational times (¢) needed by the two methods,
and their time-to-best (¢tb), i.e. the time needed to achieve
the best solution. Each entry reports average values among

Table 1. Instances with |K|=5 and v = 0.

Instance Gurobi IKS
M| |F| 0 |gap(%) obj sat(%) obj sat(%)
25 3 2 5.1 5672 88 5481 83
25 3 4 24.9 4825 21 5221 21
25 5 2 0.0 4921 100 4921 100
25 5 4 26.3 6078 54 6975 63
50 3 2 14.6 4530 27 4464 22
50 3 4 26.3 7396 22 7210 8
50 5 2 8.1 6369 39 6361 39
50 5 4 55.8 6200 29 6880 18
75 3 2 3.7 8811 24 8931 24
75 3 4 57.6 6167 11 9374 8
75 5 2 25.9 8428 24 9228 24
75 5 4 59.7 7365 12 | 10936 15
7510 2 26.4 13244 47 12557 41
7510 4 12.6 17426 49 | 18167 45
100 3 2 5.9 8004 15 8009 13
100 3 4 60.3 4703 5 6556 4
100 5 2 6.6 11826 33 11240 26
100 5 4 41.6 8807 8 9806 8
100 10 2 42.7 10288 30| 12970 33
100 10 4 12.5 21431 19 16839 11
avg.: 8624.6 33.8 | 9106.3 30.3
#Dbest: 8 17 13 9

Table 2. Instances with |K|=5 and vy = 0.25.

Instance Gurobi IKS
M| |F| 0| gap(%) obj sat(%) obj sat(%)
25 3 2 10.7 6671.00 83 | 7253.75 96
25 3 4 13.2 6534.50 42 6035.50 42
25 5 2 0.0 6151.25 100 | 6151.25 100
25 5 4 34.4 6760.25 58 | 7898.00 50
50 3 2 11.6 5124.75 33 4842.75 27
50 3 4 20.5 9034.75 29 7804.50 16
50 5 2 10.0 7296.00 43 | 7481.75 47
50 5 4 58.5 7171.00 33| 7621.00 31
75 3 2 2.7 9718.75 34 9675.25 32
75 3 4 56.4 6941.75 20 | 8583.25 15
75 5 2 24.9 10325.50 34 9387.50 27
75 5 4 66.1 6859.00 12 | 10377.00 22
75 10 2 27.2 15478.50 49 | 15124.00 47
75 10 4 19.0 20015.50 53 | 20023.25 46
100 3 2 6.0 8695.75 18 8077.50 18
100 3 4 57.2 5201.75 5| 6703.00 11
100 5 2 5.2 13387.75 40 | 12085.00 34
100 5 4 47.5 8384.00 12 | 10708.50 16
100 10 2 41.6  12574.50 34 | 14718.75 35
100 10 4 11.9 23339.00 29 | 16853.50 22
avg.: 9783.3 38.1 9870.0 36.7
#best: 10 14 11 9
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all the instances tested with a specific combination of
parameter v and number of patients |M|. On the one hand,
it is easy to see that IKS is able to obtain its best solution
within 8 minutes in average, and it is fairly consistent
across all the combinations of parameters. Gurobi, on the
other hand, requires, on average, at least 4 times the time
needed by IKS to obtain its best solution. If we consider
that IKS obtains, on average, solutions that are better
than the one of Gurobi, this clearly shows how IKS is the
best performing method out of the two.

6. CONCLUSIONS

Home health-care is a fast growing industry and, con-
sidering the progressive aging of the European popula-
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tion (Eurostat European Commission, 2008), the growth
rate is only destined to increase. In this setting, health-
care providers have to manage an increasing number of
requests, while the availability of human resources may
not follow the same trend. In this context, we propose a
variant of the NRP that addresses the problem of deter-
mining which services can be performed in a working day,
while considering additional factors different from the pure
profit. Our proposed variant, called PSNRP-TW, takes
into account the need to balance profit and patient satis-
faction. We proposed an Iterative Kernel Search algorithm
to tackle the problem, and showed that its performance
are consistent across different types of instances, and, on
average, better than the one of a state of the art MILP
solver, even when a shorter time limit is used.

Table 3. Instances with |K|=5 and v = 0.5.

Table 5. Instances with |K|=10 and v = 0.25.

Instance Gurobi IKS Instance Gurobi IKS
M| |F| 0| gap(%) obj sat(%) obj sat(%) M| |F| 6| gap(%) obj sat(%) obj sat(%)
25 3 2 23.9 6824.5 71 8583.0 92 25 3 3 10.9 7878.50 29 7899.5 29
25 3 4 19.9 7166.5 38 6096.0 33 25 3 5 12.5 7826.25 17 | T7887.25 17
25 5 2 0.0 17381.5 100 | 7381.5 100 25 5 3 13.8 9911.75 63 9457.00 54
25 5 4 31.4 8481.5 54 | 9058.5 58 25 5 5 18.2 8473.25 29| 9960.50 38
50 3 2 12.2 5729.5 35| 5796.5 33 50 3 3 3.9 8037.50 14 | 8050.25 16
50 3 4 20.0 10598.0 35 8964.0 24 50 3 5 19.3 13809.25 12| 12772.50 8
50 5 2 14.1 8120.5 41 7970.0 43 50 5 3 29.0 8563.00 16 | 8869.75 12
50 5 4 64.8 7283.0 29 | 8739.0 37 50 5 5 24.1 19834.75 16 | 19197.25 8
75 3 2 2.3 10894.0 35 | 10902.5 36 75 3 3 2.9 7865.75 9| T7878.75 9
75 3 4 53.9 8063.5 16 | 9401.0 19 75 3 5 20.8 11812.25 1|11995.00 0
75 5 2 17.6 12653.5 38 | 10885.0 38 75 5 3 10.2 10289.25 8 9769.00 8
75 5 4 50.2  11053.0 21| 11278.5 22 75 5 5 54.5 9103.50 5|11837.00 4
75 10 2 31.2 17192.5 47 | 16014.0 47 75 10 3 23.3 14587.25 12 13563.50 12
75 10 4 23.9 22432.0 50 | 20666.5 42 75 10 5 37.9 17802.75 12 | 18097.50 7
100 3 2 5.8 9806.5 26 9684.0 29 100 3 3 85.8 1265.50 1| 3437.25 2
100 3 4 60.6 4913.5 51 7527.0 11 100 3 5 - - -1 15265.25 2
100 5 2 9.1 14492.5 46 | 14374.0 40 100 5 3 31.8 9513.50 11| 9911.75 12
100 5 4 44.5 9466.5 9111981.5 17 100 5 5 45.1 10569.00 5 8859.75 3
100 10 2 41.5  14910.5 37 | 15838.0 36 100 10 3 27.0 17281.75 15 13305.25 8
100 10 4 21.7 24263.0 31| 19887.5 34 100 10 5 - - -1 17584.75 4
avg.: 11086.3 38.2 | 11051.1 39.6 avg.: 9721.3 13.8 | 11279.9 12.7
#best: 10 9 11 14 F##best: 7 14 13 11
Table 4. Instances with |K|=10 and v = 0. Table 6. Instances with |K|=10 and v = 0.50.
Instance Gurobi IKS Instance Gurobi IKS
[M| |F| 60|gap(%) obj  sat(%) obj sat(%) M| |F| 6| gap(%) obj sat(%) obj sat(%)
25 3 3 7.0 7432 25 7123 13 25 3 3 16.6 8431.0 29 9255.0 42
25 3 5 6.4 7779 4 7712 4 25 3 5 9.7 8990.5 29 9057.5 29
25 5 3 11.1 8306 46 8366 42 25 5 3 16.2 11484.0 63 10089.5 54
25 5 5 8.5 9170 21 8704 25 25 5 5 18.7 10986.5 33 10837.0 33
50 3 3 1.6 7825 10 7786 12 50 3 3 4.3 8454.5 16 8497.5 20
50 3 5 20.2 13082 6 11545 2 50 3 5 25.4 13580.0 10 11378.0 6
50 5 3 24.6 8575 12 8372 8 50 5 3 10.6 11868.0 26 9516.0 16
50 5 5 20.8 19479 12 18510 10 50 5 5 27.5 20342.5 12 19603.0 12
75 3 3 3.4 7634 4 7635 4 75 3 3 3.3 8502.5 12 8499.50 14
75 3 5 13.8 12765 1 11721 1 75 3 5 15.2  12791.5 1 11886.0 0
75 5 3 4.9 10551 4 9812 4 75 5 3 10.6 11341.0 15 10320.5 15
75 5 5 61.9 7391 1 9832 5 75 5 5 47.6  10903.5 4 10866.5 4
75 10 3 27.8 12782 5 14498 7 75 10 3 20.2 17041.5 23 15626.0 20
75 10 5 52.9 12982 10 16612 5 75 10 5 57.0 13260.5 11| 19017.5 15
100 3 3 82.8 1384 1 4268 1 100 3 3 93.2 678.0 0 5337.5 6
100 3 5 - - - 15403 1 100 3 5 - - -| 15144.5 4
100 5 3 9.6 9843 7 9034 6 100 5 3 - - -| 10668.0 18
100 5 5 61.6 7185 4 8923 4 100 5 5 73.7 7362.0 6 8996.0 3
100 10 3 43.6 12883 5 13272 7 100 10 3 36.7 15906.0 13 14341.0 12
100 10 5 - - - 19346 1 100 10 5 - - -| 25395.0 4
avg.: 8852.40 8.9 | 10923.7 8.1 avg.: 9596.2 15.5 | 12216.6 16.4
F#best: 10 13 10 12 F#best: 11 12 9 13
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As future developments, we might make the problem more
realistic introducing complicating features such as skill
or capacity restrictions. Moreover, we might study the
problem in a multi-period setting (e.g., planning each
day of a week) or considering uncertain parameters (e.g.,
traveling and service times).

Table 7. Averages of computational times and
time-to-best for different values of |M| and +.

t(s) ttb(s)

| M| ~ Gurobi IKS | Gurobi IKS
25 0.00 3180 600 1995 454
25 0.25 3170 600 2152 449
25 0.50 3262 600 2094 441
avg.: 3204 600 2080 448

50 0.00 3600 600 2690 484
50 0.25 3600 600 1885 536
50 0.50 3600 600 2097 484
avg.: 3600 600 2224 501

75 0.00 3600 600 2167 484
75 0.25 3600 600 2311 460
75 0.50 3600 600 2049 436
avg.: 3600 600 2176 460

100 0.00 3600 600 2242 444
100 0.25 3600 600 2378 383
100 0.50 3600 600 2367 397
avg.: 3600 600 2329 408
global avg.: | 3501 600 | 2202.2 450
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