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Abstract: Persistent part-solid nodules (PSNs) with a solid component <6 mm usually represent
minimally invasive adenocarcinomas and are significantly less aggressive than PSNs with a solid
component ≥6 mm. However, not all PSNs with a small solid component behave in the same way:
some nodules exhibit an indolent course, whereas others exhibit more aggressive behavior. Thus,
predicting the future behavior of this subtype of PSN remains a complex and fascinating diagnostic
challenge. The main purpose of this study was to apply open-source software to investigate which
quantitative computed tomography (CT) features may be useful for predicting the behavior of a select
group of PSNs. We retrospectively selected 50 patients with a single PSN with a solid component
<6 mm and diameter <15 mm. Computerized analysis was performed using ImageJ software for
each PSN and various quantitative features were calculated from the baseline CT images. The area,
perimeter, mean Feret diameter, linear mass density, circularity and solidity were significantly related
to nodule growth (p ≤ 0.031). Therefore, quantitative CT analysis was helpful for predicting the future
behavior of a select group of PSNs with a solid component <6 mm and diameter <15 mm.

Keywords: solitary pulmonary nodule; part-solid nodule; multidetector computed tomography;
image processing; computer-assisted; follow-up studies

1. Introduction

Lung nodules represent a common finding on chest computed tomography (CT), and their
incidence is steadily increasing [1–3]. With improvements in temporal and spatial resolution,
multidetector CT (MDCT) scanners are now able to detect a larger number of nodules, especially small
nodules and subsolid nodules (SSNs) [1,3–5].

SSNs, also called ground-glass nodules, are classified as nonsolid or part-solid nodules (PSNs)
according to the absence or presence of a solid component within the ground-glass opacity [6,7].

SSNs are a major diagnostic challenge because they may represent a wide variety of malignant and
benign lesions [8]. However, when an SSN persists, although the size and density remain unchanged,
the likelihood of malignancy is very high, particularly in PSNs [9,10].

Persistent PSNs have a high likelihood of being minimally invasive or invasive adenocarcinomas [7–9].
However, the behavior of PSNs is quite heterogeneous and is related to the size of the nodule and
the size of the intralesional solid component [6,7,11]. As a result, in lung cancer screening programs,
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the American College of Radiology Lung CT Screening Reporting and Data System (Lung-RADS)
guidelines recommend a different follow-up protocol based on the overall size of the nodule and the
size of the intralesional solid component [12,13].

In clinical practice, the new Fleischner Society guidelines recommend a first follow-up CT scan
at 3–6 months for any PSN ≥6 mm in diameter [6]. Conversely, no routine follow-up CT scan is
required for PSN <6 mm in diameter [6]. However, these new guidelines state that only PSNs ≥6 mm
in diameter can actually be defined as part-solid [6].

According to the size of the solid component, PSNs can be further categorized as PSNs with a
solid component <6 mm and PSNs with a solid component ≥6 mm [6].

PSNs with a solid component <6 mm usually represent minimally invasive adenocarcinomas and
are significantly less aggressive than PSNs with a solid component ≥6 mm [6,14]. Therefore, PSNs
with a solid component <6 mm could be safely managed with a conservative approach (i.e., annual or
biennial follow-up CT scans) [6,14]. Moreover, the “wait and see” approach does not seem to affect the
prognosis of patients with PSNs with small solid components [15].

The indications for surgery in PSNs vary according to different guidelines. According to the
American College of Chest Physicians, surgical resection is considered for persistent PSNs that range
from 8 to 15 mm or for any PSNs >15 mm regardless of their persistence [16]. In contrast, in the new
Fleischner Society guidelines, surgical resection is considered only for persistent PSNs with a solid
component ≥6 mm in diameter [6]. In addition, some authors recommend surgery only for PSNs with
a solid component ≥5 mm or with an overall size ≥15 mm [8].

However, not all PSNs with a small solid component behave in the same way: some nodules
exhibit an indolent course, whereas others exhibit more aggressive behavior. Thus, predicting the
future behavior of this subtype of PSNs remains a complex and fascinating diagnostic challenge.

Although computerized analyses and various quantitative features have been tested to predict
the future behavior of SSNs [9,14,17–22], to our knowledge, there have been no published studies
investigating quantitative CT analyses to predict the behavior of PSNs with a solid component <6 mm.

In addition to commercial and in-house image analysis software, several open-source image
processing programs have become easily accessible and reliable for performing quantitative analyses
on CT images [23].

Therefore, the main purpose of this study was to apply open-source software to investigate which
quantitative CT features may be useful for predicting the behavior of a select group of PSNs with a
solid component <6 mm and a total diameter <15 mm.

2. Materials and Methods

2.1. Patient and SSN Selection

Through a search on the department radiology information system (RIS) between January 2011
and February 2019, all CT reports containing descriptive terms indicative of persistent SSNs (i.e.,
nodules unchanged or increased in size at the three-month or longer follow-up CT scan) were retrieved.

The search identified 1157 CT reports with one or more persistent SSNs. The images contained
in these CT reports were reviewed by two thoracic radiologists with different levels of experience
(A.B. and A.S. with 15 and 4 years of experience, respectively). The study sample was selected according
to the following inclusion criteria: (a) solitary PSN with a solid component <6 mm; (b) PSN diameter
(i.e., mean between the long axis and short axis on the largest cross-sectional area of the nodule) ≥6
mm and <15 mm; (c) two or more unenhanced chest CT examinations obtained with the same scanner
and the same acquisition/reconstruction protocol; (d) thin-section CT images in DICOM format; and (e)
no evidence of breathing artifacts on thin-section CT images.

Patients with interstitial lung disease, those who had a recent history of pulmonary infection and
those who were undergoing steroid or chemotherapy treatments were excluded.
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By applying these criteria, 50 patients with a single PSN with a solid component <6 mm and
diameter <15 mm were selected for the present study. The characteristics of the study patients were
listed in Table 1.

Table 1. Characteristics of the selected patients (n = 50).

Characteristic

Age (years) 65.5 ± 10.5

Sex
Male 24 (48.0)
Female 26 (52.0)

Smoking habits
Current/former 35 (70.0)
Never 15 (30.0)

Oncologic history 23 (46.0)
Non-small cell lung cancer 10 (43.5)
Breast cancer 4 (17.4)
Head and neck cancer 3 (13.0)
Other malignancy 6 (26.1)

Data are presented as the number (percentage) or mean ± standard deviation.

2.2. CT Acquisition

All chest CT examinations were performed using a 128-slice MDCT scanner (Somatom Definition
Flash; Siemens, Germany) with the following parameters: collimation, 128 × 0.6 mm; beam pitch, 1.2;
tube voltage, 120 kVp; and tube current-time product, 110 mAs with automatic tube current modulation.
The acquisition of the thorax was obtained in inspiratory apnea. All CT data were reconstructed in the
axial plane as thin-section (1-mm-thick) images by applying a high-spatial-frequency reconstruction
kernel and a lung window setting.

2.3. Computerized Analysis

For each patient, the two thoracic radiologists (A.B. and A.S.) selected thin-section CT images
containing the PSNs on the baseline and on the last follow-up CT exam. Before selecting the images,
the same observers assessed the lobe location of the PSNs and the absence or presence of emphysema.

Then, the selected CT images were exported in DICOM format, transferred to a personal computer
and processed using open-source image processing software (ImageJ software, version 1.52g, U.S.
National Institutes of Health, Bethesda, MD, USA, 2018) [24]. The segmentation process and the
computerized analysis of PSNs consisted of different steps (Figure 1).

On the baseline CT images, the following quantitative features were considered in the analysis:
area, perimeter, mean, median, mode and standard deviation of CT attenuation, skewness, kurtosis
and mean Feret diameter (i.e., average between the maximum Feret diameter and the minimum Feret
diameter). The maximum Feret diameter corresponded to the longest distance between any two
parallel tangents along the nodule contours; in other words, this measure represented the maximum
diameter [24–26]. The minimum Feret diameter corresponded to the shortest distance between any two
parallel tangents along the nodule contours; in other words, this measure represented the minimum
diameter [24–26].
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Figure 1. Example of segmentation process and computerized analysis performed using ImageJ 
software in a part-solid nodule (PSN). Step 1: importing the computed tomography (CT) images in 
DICOM format to ImageJ software (a). Step 2: drawing a polygonal region of interest (ROI) that 
outlined the nodule contours on the largest cross-sectional area of the lesion (b). Step 3: checking and 
manually correcting any segmentation error. Step 4: clicking “Image” on the ImageJ toolbar and 
selecting “Adjust → Threshold”. Step 5: choosing a suitable CT attenuation value to excluded pixels 
with air attenuation around and within the PSNs (CT attenuation value, −800 HU) (c). Step 6: clicking 
“Analyze” on the toolbar, selecting “Set Measurement” and checking the quantitative features of 
interest (d). Step 7: clicking “Analyze” again and then clicking “Measure”, to automatically calculate 
the selected quantitative features. 

Since the segmentation was performed on only the largest cross-sectional area of the PSNs, the 
mass was not calculated [27,28]. As a viable alternative, we used the linear mass density (LMD), 
which was defined as the amount of mass per unit length. Typically, this quantitative feature is used 
to describe the characteristics of one-dimensional objects. However, the LMD may also be used to 
describe the density of a three-dimensional object along one particular dimension. Therefore, we 
considered the LMD to be adaptable for the quantitative analysis of PSNs. The LMD was calculated 
with the following Equation (1): 

LMD (mg/mm) = [Area × (Mean CT Attenuation + 1000)]/1000 (1)

Figure 1. Example of segmentation process and computerized analysis performed using ImageJ
software in a part-solid nodule (PSN). Step 1: importing the computed tomography (CT) images in
DICOM format to ImageJ software (a). Step 2: drawing a polygonal region of interest (ROI) that
outlined the nodule contours on the largest cross-sectional area of the lesion (b). Step 3: checking
and manually correcting any segmentation error. Step 4: clicking “Image” on the ImageJ toolbar
and selecting “Adjust→ Threshold”. Step 5: choosing a suitable CT attenuation value to excluded
pixels with air attenuation around and within the PSNs (CT attenuation value, −800 HU) (c). Step 6:
clicking “Analyze” on the toolbar, selecting “Set Measurement” and checking the quantitative features
of interest (d). Step 7: clicking “Analyze” again and then clicking “Measure”, to automatically calculate
the selected quantitative features.

Since the segmentation was performed on only the largest cross-sectional area of the PSNs, the
mass was not calculated [27,28]. As a viable alternative, we used the linear mass density (LMD),
which was defined as the amount of mass per unit length. Typically, this quantitative feature is used
to describe the characteristics of one-dimensional objects. However, the LMD may also be used to
describe the density of a three-dimensional object along one particular dimension. Therefore, we
considered the LMD to be adaptable for the quantitative analysis of PSNs. The LMD was calculated
with the following Equation (1):
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LMD (mg/mm) = [Area × (Mean CT Attenuation + 1000)]/1000 (1)

We also considered the following shape descriptors typically used in particle analysis: circularity
and solidity [24–26].

Circularity is a dimensionless value that defines the degree to which a nodule resembles a
circle [24–26]. The circularity value ranges between 0.0 and 1.0 [24–26]. A value of 1.0 corresponds
to a perfect circle, whereas a circularity value approaching 0.0 defines a non-spherical shape
(Figure 2) [24–26]. The equation for circularity (Equation (2)) is as follows [24]:

Circularity = 4 π × [Area]/[Perimeter]2 (2)

Solidity is also a dimensionless value that ranges between 0.0 and 1.0. This measurement
represents the overall concavity of a nodule [24–26]. A solidity value of 1.0 indicates a very smooth
nodule shape, whereas a value approaching 0.0 indicates an irregular nodule shape (Figure 2) [24–26].
The equation for solidity (Equation (3)) is as follows [24]:

Solidity = [Area]/[Convex Area] (3)
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Figure 2. Image showing various shapes (circle, ellipse, diamond card, crescent moon, 10-point star)
and their respective circularity (C) and solidity (S) values.

Subsequently, the segmentation process was also carried out on the last follow-up CT images;
however, only the LMD was considered. These measurements were performed to quantify the growth
of the PSNs by calculating the change in the LMD and the LMD-doubling time (LMD-DT).

The computerized analysis was performed by the most experienced thoracic radiologist (A.B.),
who also had 8 years of experience using ImageJ software.

In addition, to determine the minimum positive variation in the LMD required to define nodule
growth as significant, the LMD measurements for each PSN were repeated on the baseline CT images
by the same thoracic radiologist after a time interval of at least one month. For each PSN, the minimum
time interval required to detect growth (i.e., above the minimum positive LMD variation required to
define the nodule growth as real) was also calculated.

All procedures performed in this study were in accordance with the Helsinki Declaration of 1975
and its later amendments. This study was approved and authorized by our local ethics committee (Ethics
Committee of the Province of Brescia) as a retrospective analysis (Protocol No. 3435; 1 March 2019).

2.4. Statistical Analysis

The data are presented as the number (%) or the mean ± standard deviation for normally
distributed data or as the median and interquartile range (IQR) for non-normally distributed data.

The Spearman rank correlation was applied to analyze correlations between the LMD-DT and
the quantitative CT features (i.e., area, perimeter, mean, median, mode and standard deviation of CT
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attenuation, skewness, kurtosis, mean Feret diameter, LMD, circularity and solidity). We applied this
nonparametric test because the LMD-DT was not normally distributed.

Bland–Altman analysis was used to determine the minimum positive variation in the LMD
required to define nodule growth as significant. In this analysis, the difference between the LMD
measurements was defined as the percentage of the differences in each pair of measurements divided
by the first LMD measurement. From the Bland–Altman analysis, we obtained the coefficient of
repeatability (CR) [29], which was calculated as 1.96 times the standard deviation of the difference
between the measurements. In other words, the CR provided a percentage value above which the PSN
growth could be considered significant.

We also compared the quantitative CT features of growing and nongrowing PSNs using the
Mann–Whitney U-test.

The chi-squared (χ2) test was used to determine whether there were significant relationships
between PSN growth and certain independent variables (such as patient age, sex, smoking habits,
oncologic history, emphysema status and PSN lobe location). Multivariate analysis was also used to
identify independent predictive variables of growth.

Statistical analysis was conducted with a dedicated software (MedCalc Software version 19,
Ostend, Belgium, 2019), and a p value < 0.05 was considered statistically significant.

3. Results

Segmentation and computerized analysis with ImageJ software were successfully performed for
all PSNs. The quantitative CT features calculated from the baseline CT images are listed in Table 2.

The time interval between the baseline and last follow-up CT scan ranged from 99 to 2224 days
(median, 699 days; IQR, 263–1232 days). The LMD calculated from the last follow-up CT images ranged
from 12.6 to 129.7 mg/mm (median, 42.4 mg/mm; IQR, 25.2–71.8 mg/mm). The LMD-DT calculated by
matching the baseline and last follow-up CT images ranged from 343 to 25520 days (median, 1422
days; IQR, 1005–9018 days). A statistically significant correlation was observed between the LMD-DT
and the quantitative CT features, including area, perimeter, mean Feret diameter, LMD, circularity and
solidity (p ≤ 0.031) (Table 2).

The CR obtained from the Bland–Altman analysis was 11.3% (Figure 3). Therefore, only an
increase in the LMD greater than 11.3% was considered significant growth.

Table 2. Quantitative CT features calculated from the baseline CT images of all part-solid nodules.

CT Feature Value Spearman’s Rho * p Value *

Area (mm2) 67 (40.5–86.8) −0.306 0.031
Perimeter (mm) 36.9 (27.6–46.4) −0.449 0.001

Mean Feret diameter (mm) 11 (8.3–13.2) −0.365 0.009
Mean attenuation (HU) −497.3 (−563.5–−449) −0.069 0.633

Median attenuation (HU) −534.5 (−605–−478) −0.019 0.897
Modal attenuation (HU) −703 (−758–−596) −0.029 0.842
Standard deviation (HU) 226 (202.2–248.6) −0.241 0.092

Skewness 0.67 (0.46–0.91) −0.003 0.983
Kurtosis −0.17 (−0.61–0.53) 0.124 0.390

LMD (mg/mm) 31.4 (20–43.5) −0.326 0.021
Circularity 0.64 (0.52–0.75) 0.519 <0.001

Solidity 0.81 (0.74–0.87) 0.457 <0.001

* Spearman rank correlation between the quantitative features and the LMD doubling time. Data are presented as
the median (interquartile range). LMD, linear mass density.

A significant increase in the LMD that exceeded the CR (i.e., >11.3%) between the baseline and
last follow-up CT scan was detected in 33/50 (66%) PSNs. In this group of growing PSNs, the LMD
increased from 12.3 to 235.2% (median, 55.4%; IQR, 30.9–89.9%) after a median time interval of 740
days (IQR, 340–1241 days) (Figure 4). The LMD-DT ranged from 343 to 5824 days (median, 1111 days;
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IQR, 828–1520 days) with the minimum time interval needed to detect growth ranging from 40 to 880
days (median, 143 days; IQR, 101–217 days).

In this growing group, 12/33 (36.4%) PSNs were surgically removed with a histological diagnosis
of pulmonary adenocarcinoma (nine minimally invasive adenocarcinomas graded as pT1mi and three
invasive adenocarcinomas graded as pT1a). In 3/33 (9.1%) growing PSNs, stereotactic radiotherapy or
radiofrequency ablation was performed due to the clinical status and comorbidities of the patients.

In the nongrowing group, which comprised 17/50 (34%) PSNs, the computerized analysis did not
detect a significant change in the LMD after a median time interval of 349 days (IQR, 193–1026 days).
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The mean difference in the LMD measurements is represented by the solid blue line. The upper and
the lower limits of agreement are represented by the purple dashed lines. SD, standard deviation; CR,
coefficient of repeatability.

The quantitative CT features that were significantly different between the groups of growing and
nongrowing PSNs were area, perimeter, mean Feret diameter, standard deviation of CT attenuation,
LMD, circularity and solidity (p ≤ 0.013) (Table 3).

The relationships between PSN growth and independent variables (patient age, sex, smoking and
oncologic history, emphysema status and PSN lobe location) were listed in Table 4.

Only oncologic history was significantly associated with PSN growth (p = 0.004). The relationship
of nodule growth with sex (p = 0.062) and smoking history (p = 0.061) was just outside the limit
of significance.

In multivariate analysis, oncologic history remained a significant independent variable associated
with PSN growth (odds ratio, 7.2; 95% confidence interval, 1.72–29.98; p = 0.007).
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Figure 4. Growth pattern of the 33 growing part-solid nodules (PSNs) based on the linear mass density
(LMD) changes during the follow-up CT scan.

Table 3. Quantitative CT features calculated from the baseline CT images of growing and nongrowing
part-solid nodules (PSNs).

CT Feature Growing PSNs Nongrowing PSNs p Value *

Area (mm2) 76.7 (45.1–96.1) 45.6 (36.6–66.9) 0.008
Perimeter (mm) 42.5 (34.3–49.6) 30 (24.2–36.7) <0.001

Mean Feret diameter (mm) 12.6 (9.4–13.7) 8.6 (7.6–10.7) 0.002
Mean attenuation (HU) −490.5 (−551–−442.6) −504.5 (−585.3–−455.6) 0.362

Median attenuation (HU) −521 (−594.5–−476) −548 (−618–−499) 0.566
Modal attenuation (HU) −716 (−756.5–−647.5) −674 (−765.0–−574) 0.401
Standard deviation (HU) 233 (204.4–255.9) 204.8 (188.8–225.3) 0.013

Skewness 0.7 (0.47–0.93) 0.67 (0.33–0.90) 0.846
Kurtosis −0.33 (−0.59–0.29) 0.16 (−0.63–0.63) 0.676

LMD (mg/mm) 35.3 (22.8–44.2) 21.6 (18.1–30) 0.007
Circularity 0.59 (0.46–0.66) 0.76 (0.64–0.82) <0.001

Solidity 0.78 (0.71–0.84) 0.88 (0.82–0.93) 0.001

* Mann–Whitney U-test. Data are presented as the median (interquartile range). LMD, linear mass density.

Table 4. Associations between part-solid nodule (PSN) growth and independent variables (patient age,
sex, smoking history, oncologic history, emphysema status and PSN lobe location).

Independent Variables
PSN Outcome χ2 Test

Growing (n = 33) Nongrowing (n = 17) p Value

Patient age
0.276≤65 years 14 (28) 10 (20)

>65 years 19 (38) 7 (14)

Patient sex
0.062Male 19 (38) 5 (10)

Female 14 (28) 12 (24)
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Table 4. Cont.

Independent Variables
PSN Outcome χ2 Test

Growing (n = 33) Nongrowing (n = 17) p Value

Smoking history
0.061No 7 (14) 8 (16)

Yes 26 (52) 9 (18)

Oncologic history
0.004No 13 (26) 14 (28)

Yes 20 (40) 3 (6)

Emphysema
0.562No 24 (48) 11 (22)

Yes 9 (18) 6 (12)

Lobe location
0.247Middle/lower 10 (20) 8 (16)

Upper 23 (46) 9 (18)

Data are presented as the number (percentage).

4. Discussion

Methods for the quantitative analysis of medical CT images are constantly expanding, and the
applications of such methods in the thoracic field are increasing [4,5,9,14,17–22,28,30–34].

In clinical practice, quantitative CT analysis applications are most popular and most used for
lung nodules [35,36]. Among the quantitative CT applications for lung nodules, those related to
persistent SSNs have garnered the most interest from radiologists and clinicians in the last five
years [9,14,17–22,37–41].

This particular interest in persistent SSNs is because in most cases, these lesions correspond to
the preinvasive or invasive lepidic growth of pulmonary adenocarcinomas [9,20]. This statement
was also confirmed by our study, in which all surgically removed PSNs corresponded to minimally
invasive or invasive adenocarcinoma (nine minimally invasive adenocarcinoma and three invasive
adenocarcinomas graded as pT1a).

Rarely, persistent SSNs may be the manifestation of benign lesions (organizing pneumonia/focal
interstitial fibrosis) [42] or malignancies such as primitive pulmonary lymphomas [43] and pulmonary
metastases from extrapulmonary malignancies [44].

Pulmonary adenocarcinomas presenting as SSNs exhibit heterogeneous growth patterns with a
trend towards a progressive increase in size over time [9]. The literature reports that some lesions may
grow rapidly, with a doubling time of less than one year, some may grow very slowly, with a doubling
time of more than six years, and others may remain stable during follow-up [9]. These different growth
patterns were also observed in our study, in which all 33 PSNs in the growing group exhibited different
growth rates (Figure 4).

An indolent course with a very slow growth rate is most often observed in pure ground-glass
nodules (PGGNs) and in PSNs with small solid components [14]. Therefore, surgical resection would
not be recommended for all lesions of these SSN subtypes, as most of these SSNs will never become
clinically relevant [7,8].

Moreover, PGGNs and PSNs with small solid components (especially those that are small in
size) are often intraoperatively impalpable and indistinguishable from the normal parenchyma [45];
consequently, the localization of these nodules during video or robotic-assisted thoracoscopic surgery
is very challenging without the use of a preoperative marking technique [45,46].

According to the new Fleischner Society guidelines [6], the management of solitary PSNs is mainly
based on the size of the solid components, and an aggressive approach is justified only for lesions
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with solid components ≥6 mm. As a result, for PSNs with a solid component <6 mm, conservative
management is recommended [6,14].

From this point of view, appropriate knowledge about the growth patterns of solitary PSNs with
small solid components is an important issue in lung cancer screening and in clinical practice.

The translation of morphological analysis from a visual to computerized assessment seems to be
very promising for the management of SSNs, as this approach may help to predict the behavior of
these nodules and consequently aid in the early detection of surgical and nonsurgical nodules.

Various quantitative CT features have been tested to predict the growth and improve the
risk stratification of SSNs [9,14,17–22,37,38,47]. However, most of these studies have considered
PGGNs [17–19,22,37,38] or SSNs without a distinction between PGGNs and PSNs [9,21].

To the best of our knowledge, this study is the first to perform quantitative CT analysis for
predicting the behavior of PSNs with a solid component <6 mm and total diameter <15 mm. Our study
is also the first to use shape descriptors (circularity and solidity) and the LMD for the quantitative CT
analysis of SSNs.

Circularity and solidity were used to objectively define the nodule margins and the nodule shape.
The LMD was used to accurately define the growth rate of PSNs during follow-up. The main advantage
of the LMD is that this feature combines size and density measurements into a single value; therefore,
we considered this feature appropriate for measuring changes in the SSNs on CT images, particularly
when three-dimensional software is not available.

The present study demonstrates that the quantitative CT analysis performed with open-source
image processing software was helpful for predicting the growth in a select group of PSNs with a solid
component <6 mm and a total diameter <15 mm.

In particular, we found that the shape descriptors (circularity and solidity) and the size features
(area, perimeter, mean Feret diameter, and LMD) were significantly correlated with LMD-DT and
consequently with the growth rate of PSNs (Table 2). In addition, the same quantitative features
showed statistical significance when we compared the groups of growing and nongrowing PSNs
(Table 3). Therefore, the more irregular and nonspherical a PSN, the greater the likelihood of PSN
growth (Figures 5 and 6). Additionally, this likelihood increases as the size of the PSN increases.
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Figure 5. Nongrowing part-solid nodule (PSN) in the right upper lobe in a 43-year-old woman
(nonsmoker and without an oncologic history). The PSN exhibits a rounded shape. The interval
between the baseline (left) and last follow-up CT scan (right) was 789 days. The computerized analysis
showed a relative linear mass density (LMD) variation of +7.9% in the nodule (less than the cut-off of
11.3%) with a LMD-doubling time (LMD-DT) of 7285 days. The purple box (top left) shows the main
quantitative features obtained from the baseline CT image.
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Figure 6. Growing part-solid nodule (PSN) in the right upper lobe in a 78-year-old man with a previous
smoking and oncologic history. The PSN exhibits a mushroom shape. The interval between the baseline
(left) and last follow-up CT scan (right) was 313 days. The computerized analysis showed a significant
relative linear mass density (LMD) variation of +48.4% in the nodule with an LMD-doubling time
(LMD-DT) of 550 days. The purple box (top left) shows the main quantitative features obtained from
the baseline CT image.

No significant correlation was found between the LMD-DT and the quantitative features related
to CT attenuation (mean, median, mode, standard deviation, skewness and kurtosis) (Table 2).
No significant difference was also found in the density-related CT features (mean, median, mode,
skewness and kurtosis) between the groups of growing and nongrowing PSNs.

In contrast to these results, data reported in the literature on PGGNs indicated that some
density-related CT features could be helpful in predicting the future behavior of PGGNs [17–19,22].
This difference might be related to the different methods of analysis and SSN selection.

The only discrepancy observed in our data was related to the standard deviation of CT attenuation,
which showed a statistically significant difference only when comparing the groups of growing
and nongrowing PSNs (Table 3). However, we considered the nonsignificant correlation between
the standard deviation and LMD-DT to be statistically more robust as the doubling time integrates
information about both time and growth into a single value.

We also found that the median time interval to detect growth in the growing group was 143
days (IQR, 101–217 days). On the other hand, no significant change in the LMD was found in the
nongrowing group after a median time interval of 349 days (IQR, 193–1026 days).

From a clinical point of view, we consider these results very interesting, as they could affect the
guidelines for nodule management in terms of defining a “tailored” timing for the follow-up of PSNs
with a small solid component. In addition, our quantitative analysis could be considered a useful
diagnostic tool in the early discrimination between surgical and non-surgical PSNs.

We also found that the oncologic history was a significant independent variable for predicting
the growth in PSNs with small solid components. Conversely, Lee et al. [11] reported that only lung
cancer history was a significant predictive factor for growth in PSNs with a small solid component.
This difference might be related to the different percentage of patients with a previous history of lung
cancer (higher in our study).

Our study has some limitations. First, this study was retrospectively performed, and the time
interval between the baseline and last CT follow-up scans was heterogeneous. Second, the number of
PSNs selected was not large; however, the inclusion criteria were very strict, and only patients with a
single PSN were included. Third, the computerized analysis was performed by one observer; however,
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his experience in thoracic imaging and using ImageJ software may have improved the accuracy of
the analysis.

5. Conclusions

This retrospective study found that in a select group of PSNs with a solid component <6 mm and
diameter <15 mm, quantitative CT analysis was helpful for predicting the future behavior of nodules
and improving risk stratification. In particular, the size features and shape descriptors calculated
from the baseline CT images were significantly related to nodule growth. In addition, we found that
oncologic history was a significant independent variable for predicting growth. We consider our
quantitative CT analysis very promising in the management of PSNs with small solid components, as it
could help in defining a “tailored” timing for the follow-up and consequently in the early detection of
potentially surgical PSNs.
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