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Diagnosis of discrete-event systems (DESs) is computationally complex. This is
why a variety of knowledge compilation techniques have been proposed, the
most notable of them rely on a diagnoser. However, the construction of a diag-
noser requires the generation of the whole system space, thereby making the
approach impractical even for DESs of moderate size. To avoid total knowledge
compilation while preserving efficiency, a twin-engined diagnosis technique is
proposed in this paper, which is inspired by the two operational modes of the
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the symptom is unknown, then Engine 2 comes into play, which is far less effi-
cient than Engine 1. Still, the experience acquired by Engine 2 is then integrated
into the symptom dictionary of the DES. This way, if the same diagnosis problem
arises anew, then it will be solved by Engine 1 in linear time. The symptom dic-
tionary can also be extended by specialized knowledge coming from scenarios,
which are the most critical/probable behavioral patterns of the DES, which need
to be diagnosed quickly.
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1 | INTRODUCTION

According to Daniel Kahneman, psychologist and Nobel laureate in Economic Sciences, two modes of thinking coexist
in the human brain, which correspond to two systems in the mind, called System 1 and System 2.1 System 1 operates auto-
matically and quickly, with little if any effort, and no sense of voluntary control, such as when orienting to the source of
a sudden sound or driving a car in an empty road. By contrast, System 2 operates consciously and slowly, with attention
being focused on demanding mental activities, possibly including complex computations or inferences, such as when
filling out an intricate application form or checking the validity of a complex argument. Intriguingly, an activity ini-
tially performed by System 2, such as driving a car or playing the piano, may be subsequently operated by System I after
appropriate training.

This “twin-engined” architecture of the mind is a metaphor for the diagnosis approach for discrete-event systems (DESs)
presented in this paper. The proposed diagnosis engine (DE) operates in two different modes resembling System I and
System 2 in the human mind, called Engine 1 and Engine 2. If the diagnosis problem to be solved is part of the knowledge or
experience of the DE, then Engine 1 can solve this problem quickly. If, instead, the problem is not part of the knowledge or
experience of the DE, then comes into play Engine 2, which requires deep model-based reasoning and, therefore, operates
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far more slowly than Engine 1. Still, the experience acquired by Engine 2 in solving the diagnosis problem can be integrated
into the knowledge of the DE, so that, in the future, the same diagnosis problem can be solved by Engine 1 efficiently.
Besides, the DE is not necessarily born naked, that is, without any knowledge except the model of the DES, otherwise
Engine 2would operate far more frequently than Engine I for a possibly long time. Instead, the DE can start working being
already equipped with specialized knowledge on domain-dependent scenarios that are considered either most probable
or most critical for the safety of the DES (or the surrounding environment) and, as such, need to be coped with efficiently.

2 | DIAGNOSIS AND THE MYTH OF TOTAL KNOWLEDGE COMPILATION

Diagnosis aims to explain the abnormal behavior of a system based on the observations relevant to its operation, which
are perceived from an external observer. In the Artificial Intelligence community, the formal definition of the diagnosis
task? led, in the '80s, to the model-based paradigm,? according to which the normal behavior of the system to be diagnosed
is described by a model and the diagnosis results have to explain the discrepancies between the output of the system
and what we were supposed to observe based on the system model. The diagnosis task generates a collection of sets of
faulty components, where each set, named a candidate, is an explanation of the observation. Each candidate explains the
observation in the sense that assuming all the components in the candidate are faulty and all the others are normal is
consistent with the observation. This model-based diagnosis approach was initially conceived for static systems, such as
combinational circuits, and then extended to dynamic systems.

Recently, another approach that relies on the exploitation of Artificial Intelligence techniques has been adopted,
data-driven diagnosis.*> In fact, machine learning can be used to automatically process sensor data and create models
for fault prediction and classification. Typically, nominal data (ie, data relevant to the normal behavior) and data from
different faults can be used to train fault classifiers. This relieves the diagnostician from the burden of creating a model
of the system/process to be diagnosed, sometimes even from the burden of identifying proper features since deep learn-
ing techniques offer potential tools for automatic feature extraction from (physical) signals.® However, in many industrial
applications, faults are rare events and available training data from faulty conditions is usually limited.” Hence, collecting
a sufficient amount of data from relevant faulty situations for data-driven diagnosis is a time-consuming and expensive
process.

Alternatively, the behavior of the system to be diagnosed can be described as a set of cases, where each case is labeled
as either normal or faulty. The case base can include the diagnostician's expertise, starting from a limited amount of cases
(that is, an incomplete knowledge), and its size can increase incrementally over time, as such an expertise is growing. The
human diagnostician is assisted in decision making about diagnosis, maintenance and reconfiguration by the interactive
case-based reasoning system, for instance in dealing with automated production systems.?

In some contexts, such as rotating machinery, which is among the most important equipments in modern industry,
fault diagnosis can be regarded as a pattern recognition problem. Due to the variability and richness of the response sig-
nals relevant to the rotating machinery condition, it is almost impossible to recognize fault patterns directly: Artificial
Intelligence techniques, encompassing a preprocessing step for feature extraction and an online step for fault recogni-
tion, are very promising.® Specifically, several methods have been used for performing the latter step, including convex
optimization, mathematical optimization, as well as classification, statistical learning, and probability-based algorithms.

An advantage of model-based methods, with respect to data-driven methods, is that fault detection and isolation can be
achieved without the need for data from different faults. In this paper, we deal with a model-based approach as applied
to dynamical systems. For a dynamical system, a DES!® model can be adopted. This model can be described as a Petri
net,'12 or as a finite automaton, where each state of the automaton represents a state of the dynamical system (at some
abstraction level), like in this paper. The model is typically distributed, consisting of several automata that communicate
with one another.!®> Each automaton represents the behavior of a component, which is a DES itself, where some state
transitions are faulty (and, as such, each of them is marked with a fault) and the occurrence of some transitions can be
perceived from the outside of the system (and, as such, each of these transitions is marked with an observable event).
Diagnosing a DES means finding out all the candidates relevant to a given sequence of observed events, where a candidate
is a set of faults that can explain such a sequence.

Model-based diagnosis of DESs represented as networks of finite automata is grounded on the seminal work of
Sampath et al,'#® which, as relying on a compiled-knowledge data structure called a diagnoser, has been coined the diag-
noser approach. The knowledge embedded in the DES component models is totally compiled offline, thus producing the
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diagnoser, which is then exploited online to draw the candidates relevant to any given sequence of observed events. Two
major requirements are assumed by the diagnosis method embodied in the diagnoser approach.

« To guarantee the soundness and completeness of the diagnosis results, the DES must have a property called diagnos-
ability.
« To generate the diagnoser, the materialization of the whole behavior space of the DES is needed.

These requirements are strongly interrelated as the creation of the whole behavior space is needed not only for fulfilling
the second requirement (as the diagnoser is drawn from the system behavioral space) but also for checking whether the
first requirement is met (that is, for performing the diagnosability analysis). However, the materialization of the whole
behavioral space is most critical since, even for DESs of moderate size, the behavior space may become overwhelmingly
large, being exponential in the number of components. The memory demands for such a space are difficult to satisfy,
and producing it is a computationally expensive and inefficient process (see, for instance, the work of Rozé!” about the
computational difficulties of the diagnoser approach, or the worst case computational complexity analysis in the work of
Baroni et al,'® or the discussions in the works of Basile!! and Kurien and Nayak!®). Nowadays, the diagnoser approach
can still be regarded as a reference conceptual framework for the definition of both the task of diagnosis and the notion of
diagnosability of DESs described as networks of finite automata. However, from an operational point of view, subsequent
contributions in the literature about diagnosis and/or diagnosability of DESs described as networks of finite automata do
not follow the original diagnoser approach method as the awareness has soon grown that total knowledge compilation is
definitely a myth.

Notwithstanding the computational drawbacks of the diagnoser approach, the topic of diagnosability has unsurpris-
ingly received considerable attention in the literature. In the work of Sampath et al,'* the property of diagnosability
is defined for (partially observable) DESs, whose prefix-closed language of the events is live and does not include any
cycle of unobservable events. Roughly, a system is diagnosable if, given any occurrence of any failure event, it is pos-
sible to detect and isolate that failure within a finite number of events (ie, a finite number of transitions of the system
model) following it. In other words, the system is diagnosable if it is always possible to detect within a finite delay the
occurrence of a failure event (and uniquely identify its type) by using the record of observed events. A necessary and suf-
ficient condition is proposed in the work of Sampath et al'# to check diagnosability based on the diagnoser construction.
However, testing diagnosability is performed in polynomial time in the cardinality of the state space of the diagnoser,
which, in the worst case, is exponential in the cardinality of the state space of the system model. The most famous approach
to checking whether the diagnosability property holds for a given DES is the twin plant method,?® whose time complexity
is polynomial in the global number of the states of the system model. In fact, this method relies on the construction of the
twin plant, this being the synchronous product of a nondeterministic finite automaton (or NFA, drawn from the global
model of the DES, and generating the DES observable language) by itself over the alphabet of observable events. A similar
approach to diagnosability checking, whose complexity is still polynomial in the number of states of the global behavioral
space, is presented in the work of Yoo and Lafortune.?! Finding out whether the condition for diagnosability (as restated
by the twin plant method) holds was formulated also as a model-checking problem?223 or a satisfiability problem.?*

In the work of Console et al,>> the analogy between modeling concurrent processes (for the purpose of performance
evaluation) and modeling distributed physical systems (for the purpose of diagnosis and diagnosability analysis) is pointed
out. The concepts of diagnosis and diagnosability are then characterized based on a process algebra formalism (PEPA).

Most of existing works focused on how to verify that the intrinsic diagnosability of a DES assume that candidates are
computed by a diagnostic algorithm that takes as input a completely certain sequence of observable events. The ability
to disambiguate DES candidates for a system with uncertain observations is discussed in the work of Su et al.?6 The
uncertainty is measured by a parameter, which allows for studying the level of noise that can affect the observed sequence
of events without impacting the performance of diagnosis. A definition of DES diagnosability that extends the original
one! is provided, as well as a method to check whether the newly defined property holds for a given DES. This method
extends the original twin plant method? by considering two kinds of uncertainty in the sequence of observable events.

Diagnosability of fuzzy DESs (FDESSs), namely, fuzzy diagnosability, is faced in the work of Liu and Qiu.?’” The FDESs
are DESs whose states and events, instead of being crisp, are fuzzy (according to the fuzzy set theory) to represent the
vagueness, impreciseness, and subjectivity that are typical features in several real-world domains, such as biomedicine.
Specifically, in the quoted paper, FDESs are modeled as max-min systems, and observability is assumed to be fuzzy. A
fuzzy diagnosability function to characterize the diagnosability degree of a FDES is introduced, a necessary and sufficient
condition for diagnosability of FDESs, which generalizes that for crisp DESs introduced in the work of Sampath et al,'4



4 0f20 BERTOGLIO ET AL.
WILEY

is presented, and a method to check the fuzzy diagnosability of FDESs is given that is based on the diagnoser in the
aforementioned work.!#

In the work of Paoli and Lafortune,?® the property of diagnosability for DESs tailored as hierarchical finite state
machines (HFSMs) is introduced. According to this notion, a fault can be detected using only a high-level description
of the HFSM, and diagnosability can be tested by relying on a so-called extended diagnoser. If some sufficient conditions
hold, the extended diagnoser can be built from particular projections of the HFSM. For faults that cannot be proven to be
diagnosable in an HFSM using the aforementioned projections, if another sufficient condition holds, a refined version of
the diagnoser can be used. The whole approach is aimed at checking diagnosability while avoiding the construction of the
behavioral model of the whole system, as instead required by both the diagnoser approach and the twin plant method.

In order to avoid the construction of the behavioral model of the whole system, another research line performs a dis-
tributed diagnosability analysis.?>*° Basically, by taking advantage of the distributed modeling of the considered DES, a
(small) local twin plant is built for each component, instead of building a (huge) twin plant relevant to the whole DES.
Local twin plants are then synchronized with each other until diagnosability is decided. Unfortunately, the synchroniza-
tion of local twin plants can remain a bottleneck for large systems. The scalability of the approach is increased in the
work of Schumann and Huang,* where DES components (and their relevant local twin plants) are organized into a join-
tree, a classical tool adopted in various fields of Artificial Intelligence. Once the jointree has been constructed, only the
twin plants in each jointree node need to be synchronized, and all the remaining computation takes the form of message
passing along the edges of the jointree.

Fault detection in DESs was generalized>? to the recognition of a pattern, which can represent the occurrence of a single
fault as well as of multiple faults, the ordered occurrence of significant events, the multiple occurrences of the same fault,
etc. Consequently, the notion of fault diagnosability was generalized to pattern diagnosability, and the task of checking
pattern diagnosability was faced in a distributed way.

Diagnosability analysis was addressed for DESs represented as labeled Petri nets also, both bounded3*3> and
unbounded.3¢

Coming back to the diagnosis task, as already remarked, solving a DES diagnosis problem instance means finding out all
the sets of faults entailed by the system evolutions that produce the sequence of events that have been observed. Based on
the method for tracking the evolutions of the system that explain a given sequence of observable events, two approaches
to diagnosis of DESs were singled out in the work of Basile.!!

« The former, coined compiled diagnoser, generates offline (a concise model of) all possible evolutions and then retrieves
online only the evolutions that explain the observation; it basically consists in the diagnoser approach.#13

« The latter, coined interpreted diagnoser, generates online in one shot the evolutions, explaining the sequence of obser-
vations; this is traditionally the case with the so-called active system approach by the authors,'®37-#! and the works that
stem from it.4>*3

Offline computation means preprocessing, which is a computation performed when no diagnostic processing is ongo-
ing: it generates compiled knowledge once and for all, with this knowledge being possibly exploited online several times.
The offline computation as well as the space requirements of the methods in the former approach are prohibitive, whereas
the online computation to solve a diagnosis problem instance is quite efficient (a sequence of observable events is pro-
cessed in linear time in the length of the sequence itself). The methods in the latter category do not perform any offline
computation, they only carry out an online model-based reasoning, whose high cost is limited as it is focused on a single
sequence of observable events. Still, this alternative “diagnoserless” approach comes with a significant cost in computa-
tion because of the extended model-based reasoning required. Therefore, shall we abandon the idea of diagnosing DESs
efficiently?

In order to face this question, recent work by the authors has tried to combine the two mentioned approaches and to
make them cooperate with each other, both for a posteriori diagnosis** and diagnosis during monitoring*’: this paper
moves a further step in this direction as far as a posteriori diagnosis is concerned. The main findings can be summarized
as follows.

« The notion of a symptom dictionary, this being a compiled knowledge structure for a posteriori diagnosis, is defined.

« A method for performing a posteriori diagnosis that is based on an (extensible) portion of the symptom dictionary that
includes its initial state, called open (symptom) dictionary, is presented.

« The notion of a symptom pattern, this being a deterministic finite automaton (DFA) that recognizes the language
consisting of some symptoms of the considered DES, is introduced.
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« The way a scenario, which is an NFA representing some behaviors of interest (the most likely or the most critical ones),
can be processed so as to draw its corresponding symptom pattern is shown.
« The pseudocode of an algorithm for extending the open (symptom) dictionary based on a symptom pattern is provided.

Using the terminology of Section 1, the open (symptom) dictionary is the repository of the compiled knowledge
exploited by Engine 1, where this knowledge can be incomplete. If the compiled knowledge is insufficient to solve a new
diagnosis problem, an online computation is performed, that is, Engine 2 is run, so as to (permanently) add to the dictio-
nary the chunks of knowledge that are missing inherently to such a problem. The diagnosis method is sound and complete
although the compiled knowledge is incomplete since it is able to generate the needed chunks of compiled knowledge
on the fly (by drawing them from the “raw” knowledge in the DES component models and in the DES topology). After a
problem has been solved inefficiently (by Engine 2) once, it will be solved efficiently (by Engine 1) thereafter. In previous
work relevant to the interpreted diagnoser, instead, each diagnosis problem was solved anew every time. Moreover, the
added chunks of compiled knowledge can enable Engine 1 to solve efficiently several additional problems besides the one
that has spurred the open (symptom) dictionary extension.

3 | DESS AND DIAGNOSIS PROBLEMS

A DES is assumed to be a network of components, where each component, endowed with input and output pins, is modeled
as a communicating automaton.'®* Each output pin of a component is connected with an input pin of another component
by a link. The way a transition is triggered in a component is threefold: (1) spontaneously (by the empty event ¢), (2) by
an (external) event coming from the extern of the DES, or (3) by an (internal) event coming from another component of
the DES. When a component performs a transition based on a (possibly empty) input event e, it may generate a set E of
new events on its output pins, which possibly trigger the transitions of other components, with the triggering events being
consumed. This cascading process continues until the DES becomes quiescent anew. A transition generating an event on
an output pin can occur only if this pin is not occupied by another event already. Assuming that only one component
transition at a time can occur (asynchronism), the process that moves a DES from the initial quiescent state to the final
quiescent state can be represented by a sequence of component transitions, called a trajectory of the DES. At the occurrence
of each transition, a DES X’ changes state, with each state x of X being a pair (C, L), where C is the array of current states
of components and L is the array of (possibly empty) current events placed in links. Formally, the (possibly infinite) set
of trajectories of X is specified by a DFA, namely, the space of X,

X* = (Z7X’ T7x05Xf)7 (1)

where X (the alphabet) is the set of component transitions, X is the set of states, 7 is the (deterministic) transition function,
7 : XXX X, X is the initial (quiescent) state, and Xt is the set of final states. A state (C, L) of X is final when all links in
L are empty (no event is placed in the links). The DES model adopted does not make any assumption about the liveliness
of the language of events/transitions of the DES. Moreover, the space of the DES may include unobservable cycles.*

Example 1. Outlined in the center of Figure 1 is a DES called P (protection), which includes two components, a
sensor s and a breaker b, and one link connecting the (single) output pin of s with the (single) input pin of b. The model
of the sensor s (outlined on the left side of Figure 1) involves three states (denoted by circles) and four transitions
(denoted by arcs). The model of the breaker b (outlined on the right side of Figure 1) involves two states and six
transitions. No final states are defined for component models. Each component transition ¢ from a state p to a state p/,
triggered by an input event e, and generating a set of output events E, is denoted by the angled triple ¢t = (p, (¢, E),p’),
as detailed in Table 1." The space of P, namely, P*, is depicted on the left side of Figure 2, where each state is identified
by a triple (s, Sp, €), With s; being the state of the sensor, s the state of the breaker, and e the internal event in the
link (¢ means no event). The initial state is (0, 0, €); final states are double circled. To ease referencing, the states of P
are renamed by numbers 0 - - - 12. Owing to cycles, the set of possible trajectories of P is infinite, one of them being

*An unobservable cycle makes the DES undiagnosable when it translates into a so-called indeterminate hidden cycle within the special diagnoser intro-
duced in the work of Basilio and Lafortune.*® However, the diagnosis method described in the paper (and the active system approach in general) is not

affected by the possible non diagnosability induced by unobservable cycles, as it copes with both diagnosable and undiagnosable DESs the same way.
As such, the alphabet of the automaton model is a set of pairs (e, E),where e is the (possibly empty) input event and E is the (possibly empty) set of
output events.
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TABLE 1 Transition details for the components s and b of the discrete-event system (DES) P outlined
in Figure 1

Transition Description

s1 = (0, (ko, {op}),1) The sensor s detects a threatening event ko and generates the op (open) output event
s, = (1,(ok, {cl}),0)  The sensor s detects a liberating event ok and generates the cl (close) output event

s3 = (0, (ko, {cl},2) The sensor s detects a threatening event ko, yet generates the cl (close) output event
sq = (1, (ok, {op}),2) The sensor s detects a liberating event ok, yet generates the op (open) output event
b; =0, (op,#), 1) The breaker b reacts to the op (open) input event by opening

b, = (1, (cL, 9), 0) The breaker b reacts to the cl (close) input event by closing

b; = (0, (op, #), 0) The breaker b does not react to the op (open) input event and remains closed
by = (1,(cl.9),1) The breaker b does not react to the cl (close) input event and remains open
bs = (0, (cl, 9),0) The breaker b reacts to the cl (close) input event by remaining closed

bs = (1, (op,¥), 1) The breaker b reacts to the op (open) input event by remaining open

FIGURE1 Discrete-event system (DES) P (center), including the
sensor s and the breaker b, and models of sensor (left) and breaker

(right)

fleommoy,

t 0 f o  Observation description

s, act € act  The sensor is in activation

s, sby € sby  The sensor is in standby

sy act  fos opn  The breaker opens

sy sby fes cls  The breaker closes

b, opn €

b, cls € [ Fault description

by &  fob fos  The sensor fails to send the op command
b, & fcb fes The sensor fails to send the ¢/ command
bs € € fob  The breaker fails to open

b £ £ feb  The breaker fails to close

FIGURE 2 From left to right: space P*, mapping table u(7P), and observation (top) and fault (bottom) descriptions

[s1, b1, S2, bs], which ends in state 11, described as follows: s detects a threatening event and commands b to open;
b opens; s detects a liberating event and commands b to close; eventually, however, b does not close.

For diagnosis purposes, we characterize a DES X with its observability (whether each transition is observable or unob-
servable) and normality (whether each transition is normal or faulty). No assumption is made about the nature of faults:
each individual fault can either be permanent or not, independently of the other faults.

Let T be the set of component transitions in X, O a finite set of observations, and F a finite set of faults. The mapping
table u of X is a function

u(X) : T (0OU {e}) x (FU {e}, @)

where ¢ is the empty symbol. Table u(X) can be represented as a finite set of triples (¢,0,f), where t € T,0 € O U {&},
and f € F U {¢}. The triple (t,0,f ) defines the observability and normality of t: if o # ¢, then t is observable, else t is
unobservable;* if f # €, then t is faulty, else t is normal.

Based on u(X), each trajectory T in X* can be associated with a symptom and a diagnosis. The symptom O of T is the
finite sequence of observations involved in T,

=[o[teT,(t,0, ) € u(X),0 # &]. (3)

*In a physical DES, an observable transition manifests itself to an external observer by the generation of the observation associated with it (when the
transition is triggered). In other words, if the transition is observable, then its occurrence generates the observation; otherwise (if the transition is
unobservable), no observation is generated.
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The diagnosis § of T is the finite set of faults involved in T, ie,

o={flteT.(to,f) € ul),f#e}. )

Since a diagnosis is a set, only one instance of each fault fcan be in 6. Hence, the domain of possible diagnoses is bounded
by the (finite) powerset 2F. By contrast, several instances of the same observation o can be in symptom ©; therefore, the
domain of possible symptoms is in general infinite. Trajectory T involved in Equation (3) is said to imply O, denoted
T = O. Likewise, trajectory T involved in Equation (4) is said to imply &, denoted T = §. A trajectory of X is observed as a
symptom and, since the observed symptom can be implied by several (possibly infinite¥) trajectories, several diagnoses can
be associated with the same symptom, which are collectively called the explanation of the symptom. Let © be a symptom
of X. The explanation A of O is the finite set

AO©) ={6|T€ X" T=0O,T= 5} (5)

That is, the explanation of O is the set of diagnoses (called candidates) implied by the trajectories of X that imply O. It
is worth remarking that a trajectory implying a given symptom does not necessarily end with an observable transition. In
fact, in a trajectory in Equation (5), the transition generating the last observable event in © can be followed by unobservable
transitions. In other words, the candidates produced by the diagnosis method presented in this paper (and in the active
system approach in general) do not account solely for trajectories generating the given symptom and ending with an
observable transition (as is the case with the diagnoser approach!#) but also for trajectories generating the given symptom
and ending with (a chain of) unobservable transitions, possibly involving unobservable cycles.

Example 2. With reference to the DES P introduced in Example 1, displayed on the center of Figure 2 is the mapping
table u(P), where the symbols are described on the right side of the figure, namely, the observations (top) and the
faults (bottom). Let @ = [act, opn, sby] be a symptom of P. Based on P* in Figure 2, two trajectories imply ©, namely,
Ty = [s1,b1,52,b4] and T, = [s1, b1, S4, bg], Wwhere T; involves the faulty transition by, whereas T, involves the faulty
transition s;. Hence, the explanation of © includes two (singleton) candidates, namely, A(©Q) = {{fcb}, {fcs}}. In
plain words, two scenarios are possible: either the breaker failed to close (fcb) or the sensor failed to send the closing
command ( fcs).

In theory, it is always possible to generate online the explanation of a symptom © of X by abducing the subspace of X*
involving all and only the trajectories implying ©. However, the application domain may require the explanation to be
given under stringent time constraints, thereby making this process impractical. In theory (and ideally), we could generate
offline a data structure representing all possible symptoms of X and associating with each symptom the corresponding
explanation. This way, given a symptom, the explanation could be immediately known online from the data structure.

4 | SYMPTOM DICTIONARY

In this section, we present a technique for preprocessing a DES to generate a data structure, called the symptom dictionary,
which associates each possible symptom of the DES with the corresponding explanation. Still, it should be clear that the
symptom dictionary is introduced for formal reasons only and is never materialized (completely). To this end, we first
introduce the notion of an extended space.

Definition 1. Let X* = (£, X, 7, Xy, X¢) be the space of a DES X, and F the domain of faults within the mapping table
u(X). The extended space of X is a DFA

Xt =(E X", t%, %, X)), (6)
where X is the alphabet (the same as in X*), X* is the set of states (x, 5), x € X, § C F; xg = (xo,9); XfJr is the set of final
states (x, §), where x € Xg; 7+ : Xt X X — X is the transition function, where +((x, 8), t) = (X', 8') iff z(x, f) = X’ and
&' =5u{ftif(t o, f) € u(X), f # € (when t is faulty), otherwise §' = 6 (when t is normal).

SIf a trajectory implies a symptom and includes a cycle with no observable component transitions, then there is an unbounded number of trajectories
implying this symptom, each one is obtained by iterating the cycle a different number of times. However, since the diagnosis of a trajectory is a set of
faults (without duplicates), additional iterations of the same cycle do not extend the diagnosis with new faults.
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Proposition 1. The regular language® of X* equals the regular language of X*.* Besides, if x* = (x, §) is a state in X*,
then the following two properties hold: (1) for each trajectory T in X* ending in x, there is a trajectory T* in X+ ending in
xt such that Tt = Tand T = §; and (2) for each trajectory T* in X* ending in x*, there is a trajectory T in X* ending in
xsuchthatT=T" and T = 6.

Proof. First, we prove that the regular language of X* equals the regular language of X*. (Soundness) If T € X7, then
T € X*. The proof is by induction on the sequence of transitions in T. (Basis) Trivially, if Ty = [] € X", then T, € X*.
(Induction) If a prefix T; = [t1, ..., ;] € X" and T; € X*, then, if T;y; = [t, ..., 4, tiy1] € X1, then Ty € X*. In fact,
the state reached by T; in X', namely, x;r = (x;, 6;), is such that x; is the state reached by T; in X*, as the sequence
of component transitions in T; is the same in both X* and X*. Hence, if #;1, is triggerable in x, then it is triggerable
in x; also, as the triggerability of t;;; depends on x; only. (Completeness) If T € X*, then T € X*. Again, the proof
is by induction on the sequence of transitions in T. (Basis) Trivially, if Tp = [] € X*, then Ty € X*. (Induction) If
aprefix T; = [t1, ..., 4] € X*and T; € X7, thenif Tiy; = [t, ..., 6, 1] € X%, then Ty € X*. In fact, if x; is the
state reached by T; in X*, then the state reached by T; in Xt will be xl.+ = (x;, 6;). Therefore, if t;;; is triggerable in x;,
then it is triggerable in x" also, as the triggerability of £;1, depends on x; only. In other words, X* has the same regular
language as X*. Then, we prove property (1) of the proposition. Assume T = [f1, ..., t,] € X* ending in x,,. Since X*
and X7 share the same regular language, there is a trajectory T™ = T in X* ending in X} = (x,, 5,,), as the sequence
of component transitions in T is the same as in T*. Moreover, T = §, as, according to Definition 1, § is constructed
by accumulating the set of (nonempty) faults associated with the transitions in 7. Finally, we prove property (2) of
the proposition. Assume Tt = [f1, ...,t,] € X* ending in x* = (x,,8,). Since X and X* share the same regular
language, there is a trajectory T = T* in X* ending in x,, as the sequence of component transitions in T is the same as
in T*. Moreover, T = §, as, according to Definition 1, § is constructed by accumulating the set of (nonempty) faults
associated with the transitions in T. This concludes the proof of Proposition 1. O

Example 3. With reference to the DES P in Example 1, displayed in Figure 3 is the extended space P*, with
states renamed by numbers O - - - 47 and final states double circled. In accordance with Proposition 1, comparing
the extended space P* with the space P* displayed in Figure 2, it turns out that the regular language of P* equals
the regular language of P*. Besides, in accordance with property (1) of the proposition, considering the trajectory
T = [$1,b1,82,b4,53,b;] in P*, which ends in state 6, there is a trajectory T+ = T in P* that ends in the state
18 = (6, { fcb, fos}) such that T = { fcb, fos}. Moreover, in accordance with property (2) of the proposition, consid-
ering the trajectory Tt = [s1, b1, Sz, ba, $1, bg, $2, b2, 53, bs] in P*, which ends in state 18 = (6, { fcb, fos}), there is a
trajectory T = T* in P* that ends in state 6 such that T = { fcb, fos}.

Definition 2. Let X* be an extended space. Let X be the NFA obtained from X* by substituting the symbol ¢ (com-
ponent transition), marking each transition in X+, with the (possibly empty) observation o, where (t,0, f) € u(X).!
The symptom dictionary of X is the DFA X® obtained by determinization of X}, where each final state x® of X® is
marked with the set of diagnoses associated with the final states of X included™ in x®, denoted A(x®).

Proposition 2. The regular language of X® is equal to the set of possible symptoms of X. Besides, if O is a symptom with
accepting state x® in X®, then Ax®) = A(O).

Proof. First, we prove that the regular language of the symptom dictionary X® is equal to the set of symptoms of X.
Notice that, since X® is obtained by determinization of the NFA X}, it suffices to show that the language of X7 is
equal to the set of symptoms of X. (Soundness) If © € X}, then O is a symptom of X. In fact, according to Definition 2,
O =[o|(t 0, f) € u(X),0 # €], where t is the component transition marking an arc in X*. Based on Proposition 1, the
sequence of such component transitions, namely, the corresponding trajectory T, is a trajectory in X* also. Hence,
according to Equation (3), @ is a symptom of X. (Completeness) If O is a symptom of X, then @ € X}. In fact, by

1The regular language of a finite automaton .4 (be it deterministic or nondeterministic) is the set of strings accepted (recognized) by.4.47

# Hence, the notion of a trajectory is applicable to the strings in the regular language ofX* also.

IThe substitution of the component transition ¢ with the observation o associated in the mapping table yields in general an NFA (namely, X;) because
of two reasons: (1) the observation o may be the empty symbol ¢, and (2) there may be two arcs exiting the same state that are marked with the same
observation o.

** According to the Subset Construction algorithm for NFA determinization,*’each state of the DFA is identified by a subset ofthe states of the NFA.
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FIGURE 3 Extended space P*

definition of a symptom, there is a trajectory T € X*, where @ = [0] (¢, 0, f) € u(X), 0 # €]. By virtue of Proposition 1,
T € X*. Hence, after the transformation of X* into X7 in Definition 2, T is mapped to [0|(t,0, f) € u(X),0 # €],
namely, O. In other words, O € X}

Now, we show that, if @ is a symptom with accepting state x® in X®, then A(x®) = A(O). First, if § € A(x®), then
5 € A(0O). In fact, based on Definition 2, there is a final state x* = (x, §) in X* such that x is final in X*. According to
Proposition 1, there is a trajectory T € X* such that T = §. Moreover, since x® is the accepting state of O, T = O. In
other words, based on Equation (5), § € A(O). Second, if § € A(O), then § € A(x®). In fact, based on Equation (5),
thereis T € X* such that T = @ and T = §. According to Proposition 1, T € X'*. Hence, there is a (final) state
xt = (x,6) in Xt such that x is the (final) state reached by T in X*. Based on Definition 2, when X* is transformed
into X, the trajectory T is transformed into a sequence of observations that, once the € symbols are removed, equals
O, with accepting state x*.

To conclude the proof, it suffices to show that x* € x®. This comes from the mode in which the Subset Construction
determinization algorithm operates: if a string s in accepted by an NFA in a state n, then the accepting state d of s in
the DFA (equivalent to the NFA) generated by Subset Construction includes n. The proof is by induction on the string
s. (Basis) If s is empty, then the accepting state n of s belongs to the e-closure of the initial state ny. Since the initial
state of the DFA is in fact the e-closure of ng, the NFA state n belongs to the initial state of the DFA, which is in fact
the accepting state of the empty string. (Induction) If n is the accepting state of a string s in the NFA and n belongs to
the accepting state d of the DFA, then, if n’ is the accepting state of the extended string s’ = sU[0] in the NFA, then n’
belongs to the accepting state d’ of s’ in the DFA. In fact, n’ is necessarily reached by a sequence of transitions of the
NFA (exiting n) that involves just the symbol o. Therefore, all the NFA states preceding the transition marked by o in
such a sequence will belong to the DFA state d, whereas n’ will belong to the e-closure of the set of states reached by
the transitions exiting the states of d that are marked by o, which, based on Subset Construction, are in fact the set of
states belonging to d’. Hence, n’ belongs to d’. This concludes the proof of Proposition 2. O

Example 4. With reference to P+ in Figure 3, the symptom dictionary P® is outlined on the left side of Figure 4.
Incidentally, all states in P® are final. On the right side of Figure 4, each state p® of P® is described in terms of the
P states included in p® (with the final states being underlined) and the associated set of diagnoses, which, based on
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p®  PT states Candidates in A(p®)

0 0 0

1 1,2,45 {fob}, {fos}

2 3 0

3 13 {fob, fcs}

4 8,9,12,14 {fob}, {fob, fcs}
5670011 (feb). lfes)

6 4,16,17,21  {fob}, {fob, fos}

7 15,19,27,28 {fcb}, {fcb, fos}

8 18 {fcb, fos}

9 12 {fob)

1020 {fob)

11 10,29,30,32  {fcb}, {fcb, fes}

12 13,22,23.24  {fob.fcb}, {fob.fes)

13 28 {feb)

14 31 {feb)

15 40 {fob, fcb, fos}

16  25,26,44,47 {fob,fcb}, {fob,fcb, fos}
17 18,33,34,35 {fob,fcb}, {fcb, fos}

18 36,37,39,42  {fob,fcb}, {fob,fcb,fcs}
19 38 {fob, fcb, fcs}

20 35.40,41,43  {fob,fcb}, {fob.fcb, fos)
21 44 {fob, fcb)

FIGURE 4 Symptom dictionary P® (left) Z % 38, 45. 46 gzl;ﬁz {fob. feb. fes)

and relevant state details (right)

Proposition 2, is in fact the explanation of each symptom with accepting state p®. In accordance with Proposition 2,
one can take any string in the regular language of X® and find out that this string is a symptom of P by considering
the trajectories in the space P* displayed in Figure 2. For instance, the string [act, opn, sby] in P® is the symptom
relevant to two trajectories of P, namely, Ty = [s1, b1, 52, bs] and T, = [s1, b1, 84, be] (cf Example 2). Moreover, still in
accordance with Proposition 2, considering again the symptom © = [act, opn, sby], which has accepting state 5 in P9,
we have A(5) = {{ fcb}, { fes}}, which in fact equals the explanation A(©) determined in Example 2.

A symptom dictionary X® is an extremely efficient tool for a posteriori diagnosis of DESs, where candidates are gener-
ated after the reception of the complete symptom. Given a symptom 9, the computation of A(©) boils down to matching
X® against O, a simple operation with complexity that is linear in the length of ©. In theory, the symptom dictionary
allows the DE to operate always in quick mode by Engine 1, with Engine 2 never coming into play. However, as recalled in
Section 2, like for the diagnoser, the symptom dictionary requires total knowledge compilation, which is out of dispute.
Therefore, in order to escape from the myth of total knowledge compilation and somewhat retaining the advantage of
Engine 1, we propose a restricted dictionary that expands over time either by the “experience” acquired from the solution
of new problems or by the injection of specific knowledge. In other words, we propose an open dictionary.

5 | OPEN DICTIONARY

Roughly, an open dictionary is a subgraph of the symptom dictionary. Hence, the (regular) language of an open dictionary
is a subset of the (regular) language of the symptom dictionary, which, based on Proposition 2, is the set of symptoms of
the DES. This means that only a (possibly tiny) fraction of the symptoms of the DES are cataloged in the open dictionary.
Still, each symptom O that is cataloged in the open dictionary is associated with exactly A(©), the sound and complete set
of candidates that explain . Hence, despite being sound (but not complete) in the set of symptoms (as it contains only a
subset of the symptoms of the DES), the open dictionary is sound and complete in the explanation of the symptom, pro-
vided that the symptom is included in the language of the open dictionary.’" What is the initial configuration of the open

1t is like having an “open” dictionary of the English language that contains only a subset of the English words. Still, each English word that is included
in the open dictionary is explained exactly as it is in the (complete) English dictionary. In that sense, the open English dictionary is sound in the
explanation of the words included, yet incomplete in the words of the English language. Therefore, “openness” refers to the set of words cataloged, not
to the explanation of these words.
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FIGURE 5 Prefix P[e;] of the symptom dictionary P®

dictionary? Although the open dictionary can be initially empty, we suggest to initialize it with a prefix of the symptom
dictionary, as specified in Definition 3.

Definition 3. Let X® be a symptom dictionary. The distance of a state x® in X® is the minimum number of transitions
connecting the initial state of X® with x®. The prefix of X® up to a distance d > 0, denoted X[?], is the subgraph of
X® comprehending all the states at a distance < d and all the transitions along paths (starting from the initial state of
the symptom dictionary) that have length < d.

Example 5. With reference to Figure 4, the prefix of P® up to distance 2, namely, P
(cf Figure 4 for state details).

) s displayed in Figure 5

A prefix Xﬁj] provides the explanation of every symptom that is not longer than d. If XS] embodies a cycle (which is

not the case in 73[%), it also provides the explanation of the infinite set of symptoms encompassing this cycle. However,
any symptom longer than d may not belong to the language of Xﬁg], such as O = [act, sby, opn] in P[e;]. In this case, comes
into play Engine 2, which generates the explanation A(O) based on the abduction of @, namely, a DFA whose language is
the subset of the trajectories of X implying ©. To this end, Engine 2 performs model-based reasoning to reconstruct the
subspace of X* required. Once provided the explanation A(O), the “experience” acquired by the DE can be integrated into
the open dictionary based on the symptom pattern of ©. However, the notion of a symptom pattern goes beyond a (plain)

symptom, as specified below.

Definition 4. A symptom pattern of a DES X is a DFA whose alphabet is the set of observations of X. A string in the
language of the symptom pattern that is not a symptom of X is a spurious symptom.

A special (and very simple) case of symptom pattern is associated with each symptom ©, denoted ©*, which is the DFA
recognizing O (the language of O* is the singleton {O}).

Example 6. Displayed in Figure 6 is the symptom pattern O* of @ = [act, sby, opn]. Despite the fact that the states
of O* are identified by natural numbers, these states should not be confused with the homonymous states in the
symptom dictionary (cf Figure 4). Another (circular) symptom pattern is shaded on the bottom-right side of Figure 9
(cf Example 10).

Given a symptom pattern 0%, the language of an open dictionary X® can be extended by the (nonspurious) symptoms
in the language of O* by means of the Dictionary Extension algorithm listed below (cf Algorithm 1, lines 1 to 38). We
assume that each state x® in X® is equipped with a labeling set, denoted Q(x®) (initially empty), which is instantiated
by the algorithm with states in %, and that w is an unmarked label in this set. Roughly, the algorithm aims to match ©O*
with the language of X®. When the matching of an observation o succeeds, the labeling set of the state reached in X® is
extended by the state reached in O@*(provided that it is not included already). If the matching fails, then X® is extended
by a new transition and, possibly, by a new state. Let (x®, 0,x'®) be the missing transition in X®. Based on lines 15 to 18,
the new state x'® is generated first by determining the set X} of Xt states reached by a transition exiting a state in x® and
marked with o and, then, by extending X} with all the states that are reached by a sequence of unobservable component
transitions. It should be clear that X" is not materialized: only the states required are actually generated starting from the
X+ states within x® and stored in X®. Once all the component transitions relevant to all the observable events marking
the transitions exiting the considered state w have been processed, w is marked (line 34). Given w € Q(x®), two cases
are possible. If @ is not marked, then the transition function of x® in X® needs to be checked against O*. If, instead, @
is marked, then the update of the transition function of x® is completed. Since it is impossible to insert @ into Q(x®) if
included already, once w has been marked, the processing of w is inhibited, thereby preventing the infinite matching of
cycles in O*.



12 of 20 Wl LEY BERTOGLIO ET AL.
. act . sby . opn
FIGURE 6 Symptom pattern O*, where O = [act, sby, opn] G 0 Q @

Algorithm 1 Dictionary Extension (takes in input an open dictionary X® and a symptom pattern O%, extending X®
based on O*)

1: procedure DICTIONARY EXTENSION(X®, O9%)

2 X®=(T,X9, Tea,xga,X?): an open dictionary of X,

3: O = (Zy, Q, 74, wo, Qf): a symptom pattern of X’;

4: begin
5 Insert wy into the labeling set Q(xf)B );
6 repeat
7 Choose an x® € X® such that there is an unmarked o € Q(x®);
8 for all unmarked o € Q(x®) do
9 for all transitions (w, 0, ®’) € 7, do
10: if (x®,0,x'®) € 7°® then
11: if o ¢ Qx'®) then
12: Insert o’ into Q(x'®)
13: end if
14: else
15: X (X |xt €x®,(xF,0,X") € 1(A)};
16: if X; # ¢ then
17: X+ « the set of states in X* that are reachable from a state in X;" by a sequence of
transitions <xi+, t, x}) where t is unobservable;
18: X< Xxrukh
19: if X® includes a state x’® = X/ then
20: Insert into 7@ the new transition (x®, 0,x’®);
21: Insert @’ into Q(x'®) only if o’ & Q(x'®)
22: else
23: Insert into X® the new state x'® = X,
24: if there is (x, 6) € x'® such that x is quiescent then
25: Insert x'® into XfB ;
26: A(X'®) « 6] (x,6) € X'®,x is quiescent}
27: end if
28: Label x'® with the singleton Q(x'®) = {@'};
29: Insert into 7® the new transition (x®, 0, x'®)
30: end if
31 end if
32: end if
33: end for
34: Mark o within the labeling set Q(x®)
35: end for
36: until there is no x® € X® such that Q(x®) includes an unmarked state;

372 Empty all the nonempty labeling sets Q(x®)
38: end procedure

®
[2]
of PS] based on O* by Algorithm 1 is performed as follows (to distinguish from ©* states, the states of the open
dictionary are in bold). Initially, the labeling set Q(0) is {0}, where 0 is the initial state of ©*. Since both act and sby
are matched, the labeling sets of the involved states become Q(1) = {1} and Q(4) = {2}. Now, since no transition
marked by opn exits 4, the missing dictionary state X¥® = 3 is generated first computing Xopn = {13}, where 13 is the
state reached by the X't state 9 (cf Figure 3). However, since no transition exits 13 in X+, we have X* =@and, hence,

> opn
Xaon = {13} = 3. Since it is missing, the state 3 is inserted into Pg]. Based on lines 23 to 25, 3 is also inserted into

Example 7. Consider the open dictionary P* in Figure 5 and the symptom pattern O* in Figure 6. The extension
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FIGURE 7 Expansion of the prefix PE‘;] (cf Figure 5) into the open dictionary Pg o

L -~A(O)

FIGURE 8 Architecture of the diagnosis engine based on Engine 1, Engine 2, and
the open dictionary X®

the final states and marked by the explanation A(3) = {{ fob, fcs}}. Eventually, 3 is labeled with Q(3) = {3} and the
transition (4, opn, 3) is created. Since no transition exits the state 3 in (0%, the processing of @ = 3 has no effect, and
the condition of termination in line 36 is true, thereby ending the loop. The updated open dictionary, namely, P
is shown in Figure 7.

@
2,01

Based on Example 7, one may argue that, since the prefix of the symptom O = [act, sby, opn] up to the second observa-
tion, namely, [act, sby], is already in the language of P[GZ’], it might be convenient to avoid generating the abduction of @
by Engine 2. Instead, the extension of the dictionary might be performed on the fly to eventually obtain the explanation
from the state 3 created. Actually, this is reasonable in general. Indeed, the complete separation between Engine 1 and
Engine 2 is more conceptual than physical. To clarify this, displayed in Figure 8 is the architecture of the DE based on
Engine 1, Engine 2, and the open dictionary X®. Given the symptom O in input, Engine 1 aims to perform the matching
of @ with X® (cf Algorithm 1). If the next observation is not matched, then Engine 2 comes into play, which extends the
open dictionary with a new transition and, possibly, a new state, thereby allowing Engine 1 to continue the matching of ©.
As such, the task of Engine 1 is intertwined with the task of Engine 2 to match symptom O and to eventually provide the
explanation A(O). If Engine 2 is actually involved in the process, the open dictionary X® will be extended appropriately.
If not, the open dictionary is simply matched and will remain unchanged.

6 | SCENARIOS

An open dictionary X® can be extended with (a possibly infinite number of) new symptoms. The simplest way is adding
a symptom O that was previously explained by Engine 2, as in Example 7. Remarkably, if O is generated in X® by a path of
transitions involving a cycle, then the language of X® will be extended not only with © but also with the infinite symptoms
involved in the circular path. For example, extending Pf‘;] in Figure 5 with the symptom [act, opn, sby, cls] actually extends
P[e;] with the infinite set of symptoms generated by the circular path0 -1 -2 - 5 - 0.

The dictionary can also be extended based on particular behavioral patterns of the DES, called scenarios. A scenario
is a behavior of the DES that is considered either most probable or most critical and, hence, is required to be explained
efficiently. The idea is to generate the symptom pattern of the scenario and to extend the language of the open dictionary
with its language. This way, each symptom generated from now on by a trajectory that conforms with the scenario will
be explained by Engine 1 quickly.

Definition 5. A scenario of a DES X is a pair S = (%, £), where X is a subset of the component transitions in & and
L aregular language on X.

Since X is a subset of the component transitions in X, all the transitions not included in X are irrelevant to the scenario.
Therefore, in general, a string in £ is not a trajectory of X.
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FIGURE 10 Expansion of the open dictionary Pf‘;’ o (cf Figure 7) into the open dictionary Pf‘;’ 0.9]

Example 8. The scenario in which the breaker is stuck closed can be defined as S = (%, £), where £ = {s3, 54, b1,
by, bs, by} and L is specified by the regular expression b; b;" (namely, b; repeated at least twice).*

Definition 6. Let S = (X, £) be a scenario of X. The restriction of a trajectory T in X* on X is the sequence Ty =
[t]t € T,t € Z]. The abduction of S, denoted X%, is a DFA whose language is the set {T|T € X*, Ty € L}.

In other words, the abduction of a scenario S is a subspace of X*, where each trajectory T conforms to one string of the
scenario, in the sense that the subsequence of the component transitions in 7 that are in X is a string in L.

Example 9. Consider the scenario S defined in Example 8. The generation of the abduction P, is based on the DFA
recognizing the language £, namely £, shown on the top of Figure 9. The DFA representing Py is displayed in the
middle of the same figure, where each state is a pair (x, ¢), where x is a state of X* and ¢ a state of L. A state is final
when both x and # are final, in our example, only state 6 = (5, 2).

Definition 7. Let S = (X, £) be a scenario of a DES X and X% the abduction of 0. Let N be the NFA obtained from
X7 by substituting (x, 0,x’) for every transition (x, £, x'), where (¢, 0, f) € u(X). The symptom pattern of the scenario
S, denoted %, is the minimum DFA equivalent to .

Example 10. With reference to abduction Py determined in Example 9 (cf middle of Figure 9), shown on the
bottom-left side of Figure 9 is the DFA obtained by determinization of N (cf Definition 7), where the states {5,6}
and {6, 9} are equivalent. The minimal DFA, namely, the symptom pattern (%, is shown on the bottom-right side of
Figure 9.

The nonspurious part of the language of the symptom pattern O of a scenario S is composed of all the symptoms with
which S manifests itself to the observer. However, any such symptom can be implied not only by the trajectories that
conform with the scenario but also by other trajectories. The extension of the open dictionary based on O allows for the
sound and complete explanation of any (nonspurious) symptom in O%.

®
.or

shown in Figure 10.

Example 11. Based on Algorithm 1, extending the open dictionary P

2
[2.0.5]

displayed in Figure 7, with the symptom
pattern O results in the new open dictionary P,

# A regular expression is defined inductively on an alphabet X. The empty symbol ¢ is a regular expression. If a € £, then a is a regular expression. If x
and y are regular expressions, then the followings are regular expressions: x | y (alternative), xy (concatenation), x? (optionality), x* (repetition zero or
more times), and x* (repetition one or more times).
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7 | DISCUSSION

The research presented in this paper is based on recent work by the authors. In the work of Bertoglio et al,** both the
addressed task, that is, a posteriori diagnosis, and the notions of symptom dictionary, dictionary prefix, and scenario are
the same as in this paper. However, the techniques adopted for the progressive expansion of the dictionary are different:
in the aforementioned work,* the open dictionary is extended by merging it with some so-called constrained dictionaries,
each inherent to a distinct scenario, whereas algorithm Dictionary Extension, which takes as input parameters the open
dictionary to be expanded and a symptom pattern, is run here. The notion of a constrained dictionary is quite different
from that of a symptom pattern. A constrained dictionary is a dictionary that encompasses all and only the symptoms
relevant to the trajectories of the DES that are compliant with a given scenario and provides the sound and complete
diagnoses relevant to them. A symptom pattern, instead, is generically the recognizer of a language defined over the
alphabet of the observations of the DES (and it does not include any information about faults). Basically, in case the open
dictionary has to be expanded with a dictionary path (relevant to a symptom) that is partially covered by a path already
existing in the current version of the dictionary (that is, some states and transitions in the new path already belong to
the dictionary), the method in the work of Bertoglio et al** for extending the open dictionary requires constructing the
whole path, whereas algorithm Dictionary Extension constructs only the missing chunks of it. Moreover, the method in
the aforementioned** for extending the open dictionary performs a determinization, whereas no such operation is carried
out by the method described in this paper. Finally, the open dictionary generated by the algorithm Dictionary Extension
in Section 5 is always a subgraph of the symptom dictionary, whereas this is not guaranteed by the method presented in
the work of Bertoglio et al.*

The notion of a symptom pattern has been introduced in another work of Bertoglio et al,* where a method analogous
to that presented in this current paper is adopted to expand the open dictionary. However, Bertoglio et al*> addressed the
task of diagnosis during monitoring and enforced this task to fulfill a so-called consistency requirement, whereas the task
considered in the current paper is a posteriori diagnosis. Consequently, the dictionaries handled by the two papers are
slightly different: a temporal dictionary is managed for diagnosis during monitoring, whereas a symptom dictionary is
managed both here and in our different work.**

The symptom dictionary resembles the compiled knowledge structure called diagnoser in the diagnoser approach!#!5;
however, several differences can be singled out. First of all, it is worth underlining that the diagnoser approach and the
active system approach (which the work presented in this paper stems from) make different modeling assumptions. The
diagnoser approach (and other works that have adopted its definition of a DES) assumes that every faulty component
transition is unobservable. This assumption is made on the ground that the diagnosis of faults would be trivial if they
were observable. The aforementioned justification is objected by the authors of the active system approach, since the
observable event relevant to a faulty transition can be shared with (several) normal and/or faulty transitions, which does
not make the diagnosis task easier. Hence, in the twin-engine method presented in this paper (the same as in the whole
active system approach), faulty transitions can be observable. Moreover, the diagnoser approach assumes that both the
language of the transitions of the DES and the language of the observable events of the DES are live, whereas the active
system approach does not make any such assumption. As to the symptom dictionary and the diagnoser, both of them are
DFAs that recognize the language of all the symptoms of the DES. However, the language of symptoms in the diagnoser
approach is prefix closed, whereas the language of symptoms in the a posteriori diagnosis task described in the current
paper is not prefix closed, as a symptom is relevant to a behavioral evolution, called a trajectory’ in Section 3, leading
from the initial state to a final state of the DES, where a state is final if all the links are empty. The notion of a final
state does not apply to the DES models taken into account by the diagnoser approach, as such models, supporting a
synchronous communication between components, do not include any link. Leaving apart this distinctive feature, another
major difference can be caught if we consider a path p in the diagnoser/dictionary and the symptom s associated with it. In
the diagnoser, p represents all the DES trajectories that meet two conditions: (a) their projection on the set of observable
events is s, and (b) their final transition is observable. In the dictionary, p represents all the DES trajectories (leading from
the initial state to a final state) whose projection on the set of observable events is s, where the final component transition
can be either observable or not. Consequently, given the same symptom s, the set of candidates output by the diagnoser
approach is different with respect to that output by the current approach.

$§This notion of a trajectory is specific to the task of a posteriori diagnosis of active systems; in fact, the constraint that a trajectory has to end in a final
state is removed when the task of diagnosis during monitoring is performed, as in our other work.*
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One may also speculate that scenarios look like supervision patterns.3? In fact, this similarity is only superficial because
supervision patterns are meant to extend the notion of a fault to a relevant event that arises when a subtrajectory of the
DES matches a given pattern, like in the works of Lamperti et al.*®*° As such, the relevant event is part of the candi-
date diagnosis. By contrast, scenarios are meant to polarize knowledge compilation on some specific domain-dependent
behavior that is considered either most probable or most critical, so that it can be diagnosed efficiently (by Engine 1). In
fact, scenarios are orthogonal to supervision patterns, inasmuch scenarios could account for supervision-patterns also,
should they be defined in the (extended) mapping table of the DES.

Some resemblances can be envisaged also between the extended space and the automaton, introduced in the work of
Carvalho et al,* resulting from the composition of the dilation automaton and the label automaton. Basically, the dilation
automaton represents the behavior of a plant including a sensor whose reading can either be recorded (normal behavior)
or not (abnormal behavior). Such an automaton can include unobservable behavioral cycles, the same as the DES models
considered in this paper. The label automaton, instead, represents the mode changes of the considered sensor, where
such modes are actually three labels, N corresponding to the normal behavior when no fault has occurred, F to the faulty
behavior, and R to the recover behavior, which is a normal behavior after some (intermittent) fault(s) have occurred.
Therefore, each state in the automaton resulting from the composition of the dilation automaton with the label automaton
includes a label, which represents the health situation, similarly to the way field 6 represents the health situation of each
state in the extended space. However, while the approach described in the work of Carvalho et al*® is meant to detect only
one kind of sensor fault, where such a fault is intermittent, as well as to highlight whether the sequence of observable
events that has been gathered is consistent with a (temporarily) recover, the approach presented in this paper can cope
with several kinds of faults, it does not make any distinction between persistent and intermittent faults, and it is not able
to find out whether the system may have recovered from an intermittent fault. The health situation in the aforementioned
work® is a simple label, whereas it is a set of faults in the method described in the current paper.

The NFA X} introduced by Definition 2 in this paper is not to be confused with the NFA G, defined in the twin plant
method,? although it is similar to it. In fact, each state in both automata is a DES state accompanied by the set of faults
along a path (or several paths, all sharing the same set of faults) from the initial state to the DES state itself. However,
every transition in G, is observable (the same as in the NFA G’, called the generator, in the work of Sampath et al'4),
whereas, in X}, a transition is either observable or not. Consequently, every state in G, corresponds to a DES state that
has an entering observable transition, whereas no observability constraint holds for the transitions entering the DES state
inherent to a state in X;'. Moreover, the modeling assumptions adopted in the work of Jiang et al? are the same as in
the diagnoser approach,'* that is, liveness of the language of events, absence of any cycle of unobservable events, and
unobservability of faulty events, all of which are relaxed here (and in the whole active system approach).

In the work of Rajaoarisoa and Sayed-Mouchaweh,’! a so-called diagnoser (model) is first built based just on the
normal behavior of the considered DES, since this is assumed to be the only behavior that is initially known and it is
hard to include in advance all abnormal behaviors in the models. Later on, while the DES is operating, this model is pro-
gressively integrated with new specific faulty behaviors: on account of this, the approach, which has been experimented
with (the actuator faults in) a manufacturing system, is said to be “adaptive.” This adaptivity may seem similar to the
extensibility of the symptom dictionary presented in this paper. However, there are some major differences, first of all, rel-
evant to the nature of the structure that is progressively extended: the diagnoser (model) in the work of Rajaoarisoa and
Sayed-Mouchaweh?! is actually a behavioral model inherent to the whole DES (basically corresponding to the automa-
ton called space in this paper), whereas the dictionary is a compiled data structure. Assuming that the diagnoser model
encompasses all normal behaviors is demanding since it requires that the whole normal behavioral model is built, which
may be computationally unrealistic. In addition, the diagnostic reasoning presented in the aforementioned work>! is per-
formed online based on such a model (that is, no knowledge compilation is exploited), whereas the knowledge in the
dictionary, when available, is used by the approach presented in this paper to achieve better performances. Another major
difference is relevant to the portion of the diagnoser/dictionary to be built beforehand. While in the work of Rajaoarisoa
and Sayed-Mouchaweh>! the initial portion of the diagnoser model encompasses all normal behaviors, no such constraint
exists for the dictionary. The (open) dictionary could even be initially empty, algorithm Dictionary Extension can cope
with this: the content of the dictionary just affects the time needed to compute a diagnosis. A further difference is that
our approach assumes that the component models include both normal and abnormal behaviors (that is, the models are

11 Although the name is the same, this diagnoser is different from that defined in the work of Sampath et al'* and does not include any compiled
knowledge.
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complete, no component behavior is initially unknown): a dictionary extension is needed when a system behavior,
although known in principle, has not been processed before, that is, no knowledge compilation has been performed
inherently to such a behavior. The diagnoser in the work of Rajaoarisoa and Sayed-Mouchaweh,>! instead, is adapted
whenever a behavior that was unknown has occurred. This can be seen as a sort of learning, and an intervention by a
human expert is needed, in an interactive online environment, whereas our approach faces a posteriori diagnosis, with
no man-in-the-loop. Minor differences are inherent to the DES models, which are pure in the current paper (ie, the time
notion consists just in a temporal ordering), whereas time instants are explicitly taken into account in the aforementioned
work.>!

Sometimes, as it is the case with the work of Rish et al,>? the adjective “adaptive”, accompanying diagnosis, is used to
refer to the selection of measurements to achieve a fast diagnostic inference and restrict the number of candidate diag-
noses. Example of measurements are tests of hardware or software systems, inspections of system components, questions
to an expert, or probes. Most often, this process is called sequential diagnosis, and its goal is to reduce the diagnostic
cost, defined as the number of measurements to be taken until the faults (or the most probable candidates) are identified.
As one can surmise, the term “adaptivity” has quite a different meaning in the aforementioned work>? with respect to
both the same word in the work of Rajaoarisoa and Sayed-Mouchaweh>! and the concept of extensibility of the symptom
dictionary presented in this paper.

8 | CONCLUSION

A technique for the a posteriori diagnosis of DESs (each represented as a network of asynchronously communicating finite
automata) based on an open dictionary and two cooperating DEs was presented. The technique is viable and becomes
increasingly efficient without requiring the generation of the whole space of the DES; that is, it works while avoiding total
knowledge compilation. The open dictionary is possibly initialized before the DES is being operated, starting, for instance,
from a prefix of the symptom dictionary, which is then integrated with the symptoms and the candidate diagnoses relevant
to a set of scenarios of the DES that are considered worth being diagnosed efficiently.

When the DES is being operated, the open dictionary can be enlarged at any time in three ways: (a) by coping with new
symptoms explained by Engine 2, (b) by incorporating new compiled knowledge based on the symptoms inherent to addi-
tional scenarios, and (c) by extending its border with new transitions and states using a relaxed variation of Algorithm 1,
where the search for new transitions is unconstrained by any symptom pattern. The remark that the system model may
lack some behaviors’! (ie, events and/or states in the automata representing the behavior of the components) is interest-
ing (although not new*?). The idea of extending the open dictionary also based on previously unknown behaviors is a
challenge for future work.

In this paper, the same as in all papers dealing with the active system approach, a candidate diagnosis is the set of
faults relevant to a trajectory in the DES space that entails the given symptom. As such, the approach does not make any
distinction between permanent faults (ie, faults having a permanent duration) and transient faults (ie, temporally finite
deviations from the normal behavior, also called intermittent faults, a qualification that emphasizes the repeatability of
their occurrence). If a candidate includes a fault, this means that this fault occurs at least once in a trajectory that produces
the given symptom (and there are possibly several trajectories that produce the given symptom). However, in case we are
interested either in one occurrence of a fault or in multiple occurrences of the same fault, the mechanism of scenarios
allows us to make the open dictionary encompass (only) the compiled knowledge about the trajectories that satisfy such
constraints. Providing diagnosis outputs that can differentiate permanent and intermittent faults and that can help in
understanding whether the DES behavior has possibly recovered from some intermittent faults is another interesting
research topic for the future.

We have implemented the twin-engined diagnosis technique in C++ and we are also expanding it to cope with
monitoring-based diagnosis, without requiring the diagnosability of the DES. As additional future research, we plan to
extend the technique proposed in this paper to complex DESs.>*>8
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