
applied  
sciences

Review

What Advanced Treatments Can Be Used to Minimize
the Production of Sewage Sludge in WWTPs?

Maria Cristina Collivignarelli 1 , Alessandro Abbà 2 , Marco Carnevale Miino 1 and
Vincenzo Torretta 3,*

1 Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 1, 27100 Pavia, Italy
2 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia,

via Branze 43, 25123 Brescia, Italy
3 Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
* Correspondence: vincenzo.torretta@uninsubria.it; Tel.: +39-0332-218782

Received: 6 June 2019; Accepted: 27 June 2019; Published: 29 June 2019
����������
�������

Abstract: Similar to other types of waste, sewage sludge (SS) must be minimized, not only to
respect the European Directive 2018/851 on waste, but also because the cost of sludge management
is approximately 50% of the total running costs of a wastewater treatment plant (WWTP).
Usually, minimization technologies can involve sewage sludge production with three different
strategies: (i) adopting a process in the water line that reduces the production of sludge; (ii) reducing
the water content (dewatering processes) or (iii) reducing the fraction of volatile solids (stabilization).
This review, based on more than 130 papers, aims to provide essential information on the process,
such as the advantages, the drawbacks and the results of their application. Moreover, significant
information on the technologies still under development is provided. Finally, this review reports a
discussion on the impact of the application of the proposed processes in the sludge line on a WWTP
with a capacity exceeding 100,000 population equivalent (PE).

Keywords: innovative approach; sewage sludge; wastewater; dewatering; minimization; sludge
line; stabilization

1. Introduction

Sewage sludge (SS) is a mixture of organic and inorganic matter and its composition strongly
depends on the treatment and on the wastewater origin [1]. It can be composed of primary sludge,
derived from primary sedimentation and formed by suspended sedimentary materials, secondary
sludge, made up of excess biomass and, tertiary sludge, obtained in the advanced wastewater treatment
stages, when nutrient (nitrogen and phosphorus) removal is required [2].

In recent years, the population growth and consequent urbanization have increased the number
of wastewater treatment plants (WWTPs) and the production of SS [3,4]. Moreover, the application of
more stringent requirements for WWTPs effluents quality increases the production, and worsens the
quality, of the SS. For instance, in the EU, the implementation of the European Commission Directive
98/15/EC (amending Council Directive 91/271/EEC) led to a strong rise in sludge generation, up to
50% [5], with an estimate of more than 13 million Mg of dry matter in 2020. According to these data,
developing urgent and effective approaches to reduce and recover SS becomes a priority [6,7].

Particularly, in order to respect the European Directive 2018/851 on waste, the first aspect to
take into consideration is the minimization of the waste produced [8] and therefore, sludge [9].
Furthermore, the economic aspect has become important in recent years. Researchers show that the
cost of sludge management is approximately 50% of the total running costs of the WWTP with the
conventional activate sludge (CAS) process [10,11]. Moreover, also in the case of the WWTPs, as
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already suggested in recent years for drinking water treatment plants [12,13], some procedures for
evaluating the performance of the plants and for defining optimal solutions for management in order
to optimize operation and minimize the production of SS should be studied.

In 2015, 9.7 million MgDM (DM - dry matter) of SS were produced in Europe. More than 60%
of the total SS was produced in Germany (around 19%) and the western countries (UK, Italy, Spain
and France) (Figure 1). By contrast, eastern countries (such as Poland, Romania, Estonia, Latvia and
Lithuania) represent around 12% of SS produced in Europe [14].
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In the last years, in the EU, SS recovery in agricultural use and composting quickly increased from
3 million MgDM in 1995 (42% of total production) to 4.2 million MgDM in 2005 (54% of total production);
then, this value increased further (5.2 million MgDM in 2010 to 59% of total production) [14]. The EU
issued the Directive 86/278/CEE (recently amended by the EU Decision 2018/853) with the aim of
avoiding the application on land of SS that was dangerous for human health. Therefore, every member
state has issued a national regulation on this topic [15]. For instance, currently, a high concentration of
metals in sludge makes recovery using agriculture impossible [16].

Considering: (i) the framework of the ever-stricter European regulations regarding the recovery of
SS in agriculture, (ii) the EU Directive 2018/851 [8] in which minimization is listed as a priority, (iii) the
high costs related to SS disposal, it is clear that techniques for minimizing sludge production have
become strictly necessary.

In this review, only advanced technologies and treatments are reported. The process description,
the advantages, the drawbacks and the results of the literature are presented for each type of treatment.
This review provides significant information on the technologies still under development.
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2. Bibliometric Analysis

The interest in treatments and technologies in order to minimize the production of SS increased
significantly in the last 10 years (Figure 2a). Inserting “minimization sewage sludge” in SCOPUS, only
advanced biological treatments were found. Particularly, since 2015, about 83 research papers, reviews,
books and conference proceedings on this matter have been published. Among these, biological
treatments represent the theme of 39% of publications, while thermal and chemical treatments stop at
14% and 16%, respectively. Moreover, the results of the bibliometric analysis show two different trends:
(i) the enhanced interest in the combination of different types of treatments and technologies in order
to minimize SS (from 21% to 30%) and (ii) the reduction of the study of treatments exclusively of a
physical nature. Considering that electrochemical treatments are generally coupled with the use of
pressure, in the two periods examined (Figure 2b,c), they have been inserted in the “mixed” category.
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3. Advanced Treatments and Technologies

Usually, minimization technologies can involve SS production in three different ways: (i) adopting
a process in the water line that reduces the production of sludge; (ii) reducing the water content
(dewatering processes) or (iii) reducing the fraction of volatile solids (stabilization). Both interventions
in the sludge line and those in the wastewater line are shown (Figure 3), with their respective
advantages and downsides. Technical and economic aspects must be evaluated in order to choose the
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most appropriate technology. The advantages and the disadvantages must be considered; not only
those direct (i.e., concerning sewage sludge production) but also those indirect (i.e., concerning other
aspects of WWTPs). In Figure 4, the suitable advanced treatments available for the minimization of
SS production are shown. The patents shown in this document represent, by way of example, those
currently on the market. The presence of other patents not mentioned here is not excluded.
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3.1. Chemical Treatments

The most widespread chemical treatment is chemical oxidation, which differs according to the
type of reagent used. In order to minimize the SS production, oxidizing the sludge by conventional and
advanced chemical reagents, thus reducing the biomass yield as well as the sewage sludge disposal, is
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currently adopted. By chemical oxidation, a part of the activated sludge is mineralized, while another
part is solubilized in biodegradable organic compounds which can then be oxidized again in the
activated sludge reactor [17–20].

3.1.1. Ozone and Chlorine

Among the conventional chemical reagents, the most common are O3 and chlorine [21]. Chemical
oxidation can be considered an advanced technique applicable both in the water line, directly on the
recirculation sludge, and in the sludge line, after the thickener and upstream of the stabilization [22].
The aim of this treatment is the partial oxidation and hydrolysis of the organic matter, which is
transformed into smaller molecular-weight compounds and is therefore more easily biodegradable [23].
Among the main advantages there is the best settleability of the SS [24], the reduction of filamentous
microorganisms and the simplicity of plant engineering and management. However, the costs related
to investment and oxidizing dose, and the formation of by-products, in particular with chlorine, are
the main disadvantages. As regards the performance related to ozonation, there is a reduction in SST
from 30% to 99% in the water line and from 10% to 60% in the sludge line [25]. This great variability, in
terms of performance, is influenced by the dosage of oxidizing agent. However, Torregrossa et al. [22]
found that ozonation applied in the water line significantly reduced SS production but resulted in a
slight decrease of biomass respiratory activity. Gardoni et al. [26] studied the possible application
in the sludge line and demonstrated the (non-linear) inverse relationship between ozone dose and
specific particulate chemical oxygen demand (COD) solubilisation in the reactor. As concerns the
chlorine dosage, the performances obtained by testing synthetic wastewater were lower than 65% for
TSS [25]. Fazelipour et al. [17] studied chlorine application in a sequencing batch reactor (SBR) in order
to minimize the SS production. The SBR treatments operate in batch and are composed of five stages:
filling, reaction, settling, effluent and idle. The results showed a small dosage of chlorine, equal to
0.26 gchlorine gMLSS

−1 (MLSS—mixed liquor suspended solids), in return excess sludge to the reactor
was able to reduce the yield coefficient by 50%. However, as in the case of ozonation applied in the
water line, the COD removal percentage in the biological reactor decreased, particularly from 95% to
56%, due to partial inhibition of biomass caused by the reagent (O3, chlorine) dosage. Therefore, the
application of chemical oxidation in the water line should be carefully evaluated because even with a
low concentration of reagents, partial inhibition of biomass could occur.

3.1.2. Wet Oxidation (WO)

Among the chemical oxidation processes, another used and studied is the WO [27–29]. This treatment
allows us to obtain a drastic reduction of the organic matter in the SS at certain temperature conditions
(150–360 ◦C), oxygen concentration (or air) and pressure (30–250 bar) and under continuous process
conditions (contact time 15–120 min) [25,30,31]. The SS is converted into two products: (i) a gaseous phase
and (ii) a liquid phase. This technique can be applied before the dewatering processes because WO
can treat sludge with a solid content between 1% and 6% [25]. There are already some applications
on the real scale thanks to numerous patents. Many variables influence this process and can act
interactively. Oxygen stoichiometry is an important factor, and this is significantly influenced by
hydrodynamics. Similarly, temperature influences, reaction kinetics, solubility and gas-liquid mass
transfer rates depend on the reactor’s hydrodynamics [29]. The WO has the advantage of requiring
relatively low investment and low energy demand [32]. However, it requires highly qualified personnel
able to manage a process that takes place under conditions of temperature and pressure that are
certainly not usual. Foladori et al. [25] found that the benefits in this case vary from 70% to 80%
reduction in terms of TS. Baroutian et al. [28] treated a digested sludge (primary + secondary) for
60 min using WO (T = 220–240 ◦C; oxygen: biomass ratio of 1:1–2:1). They found that WO was effective
at degrading TSS (86%) and VSS (96%). After the experiment, the concentration of oxidizable organic
matter was reduced by 98% of the untreated sludge.
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3.1.3. Fenton and Photo-Fenton

The Fenton process is an advanced oxidation process (AOP) useful for minimizing the SS
production and increase sludge dewaterability [33,34]. This process is composed of four subsequent
stages, which are: (i) pH adjustment at low acidic values, (ii) oxidation, (iii) neutralization and
(iv) coagulation [35]. The Fenton reaction produces OH• in acidic solutions by iron catalysed
decomposition of hydrogen peroxide [36]. During the last decade, the possibility of sludge dewatering
by Fenton oxidation has been studied and the experimental results indicated that Fenton oxidation
had a positive effect [33,37]. Moreover, the Fenton process allows us to minimize the SS production.
In fact, used as pre-treatment, the Fenton process allows us to increase sludge solubilization and
biodegradability, degrading extracellular polymeric substances, and breaking the microbial cell
walls [34,38]; therefore anaerobic digestion is improved significantly [33,34,39]. As a result of this
application, the volatile solids (VSs) are reduced by 27%, and consequently higher biogas production
is achieved [34]. In the literature, the combined application of the Fenton process with biological
treatments, such as a membrane biological reactor (MBR), are studied. For instance, He and Wei [40]
found that the average sludge yield decreased from 0.15 gMLSS gCOD

−1 to 0.006 gMLSS gCOD−1 during
60 days of operation when an MBR system was combine with the Fenton process.

During recent years, the integration of the Fenton process with ultraviolet or visible light has
been investigated in order to increase the stabilization of organic substances and SS dewatering [36,41].
The use of UV rays stimulates the production of OH• radicals and allows us to re-convert Fe3+ into
Fe2+. In this way, the concentration of ferrous ions is increased, and this allows us to further speed
up the reaction [42,43]. For instance, Heng et al. [44] tested photo-Fenton pre-treatment followed by
anaerobic digestion of secondary sludge and they found 75.7% total VS reduction, 81.5% COD removal,
and 0.29–0.31 m3 kgVS

−1 d−1 biogas production rate, compared to 40.7% total VS reduction, 54.7% COD
removal, and 0.12–0.17 m3 kgVS

−1 d−1 biogas production rate without the photo-Fenton pre-treatment.
Other applications of photo-Fenton processes for SS are reported in Table 1.

One of the main disadvantages of the Fenton and Photo-Fenton processes is the production of
chemical sludge that must be managed and disposed of. In order to minimize this production, zero
valent iron in the form of powder (Fe0, ZVI) can also be used as a catalyst in the Fenton process.
The most important advantage of this modified Fenton process is the lower chemical sludge production
compared to conventional ones [35].

3.1.4. Thermochemical Hydrolysis (TCH)

Generally, anaerobic digestion is considered to consist of three steps: hydrolysis, acidification and
methanogenesis [45]. In order to promote the dissolution of organic particles and the hydrolysis of
organic matters, various pre-treatment methods have been [45–47]. The TCH pre-treatment of sludges
for anaerobic digestion increases biogas production, enhances volatile solids reduction, and improves
dewaterability of digested sludge [48]. TCH is commonly applied in sludge pre-treatment as it is easy
to control, stable in performance, and flexible during operation [47]. It is possible to operate both in
the water line (with a reactor arranged on the sludge recirculation) and in the sludge line. The alkaline
reagents are the most effective ones [25]. The commonly alkali chemicals used in thermo-alkaline
pre-treatment are NaOH, KOH, Ca(OH)2 and Mg(OH)2 [45]. As reported by Atay and Akbal [34], in
fact, the drawbacks of acidic pre-treatment are: (i) bad odour generation, (ii) possible corrosion of
equipment and (iii) potential inhibition to the bacteria involved in digestion. However, in contrast to
the alkaline pre-treatment, acidic reagents (e.g., H2SO4) improve the dewaterability of the SS. While
the application of the sludge line is decidedly widespread [45,47,48], the application of the water line
is not very widely applied at the real scale [25]. In terms of performance, Xie et al. [47] found a higher
increase of soluble chemical oxygen demand (SCOD) concentration in the sludge supernatant after
TCH pre-treatment, and the biodegradability of sludge was enhanced greatly.

In Table 1, several applications of chemical treatments are reported.
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Table 1. Several applications of chemical treatments.

Process Time [min] Operative Conditions Results Ref.

O3
10 O3 = 268 mg L−1 SSR = 30–35% [49]

1–5 O3 = 300 mg gCOD
−1 SRR = 25–30% [50]

Chlorine n.a. ClO2 = 2 mg gTSS
−1 SRR = 28% [51]

WO

120
T = 200-250 ◦C;
PO2 = 8-25 atm;
initial TSS = 8%

n.a. [52]

60
T = 200 ◦C;

pH = 2;
PO2 =30 bar

CODremoval = 50–70%;
DOCremoval = 20–40% [53]

300
+thermal hydrolysis;

T = 180 ◦C;
pH = 3.3

CODremoval = 58%;
VSSremoval = 20–40% [54]

30 T = 240 ◦C;
PO2 = 60 bar; TSSremoval = 80% [55]

60 T = 240 ◦C TSSremoval = 85%;
VSSremoval = 95% [55]

Fenton

n.a.

+thermophilic anaerobic digestion;
Fe2+ = 0.067 g gH202

−1;
H2O2 = 60 g kgDM

−1;
pH = 3

The DM values decreased by 28.2%.
The VS values decreased by 26.8%. [34]

60
Fe2+ = 200 mg L−1;

H2O2 = 8 g L−1;
pH = 3

Soluble COD increase from 38 to
2213 mg L−1 [34]

n.a. Fe2+ = 4 g kgDM
−1;

H2O2 = 60 g kgDM
−1 SSR = 25% [39]

60
Fe2+ = 4 g kgTS

−1;
H2O2 = 40 g kgTS

−1,
pH = 3

Sludge disintegration increased up
to 23.6% and total methane
production with anaerobic

digestion increased up to 26.9%

[38]

Photo-Fenton

360
Fe2+ = 40 mg L−1;
H2O2 = 4 g L−1;

pH = 3

The soluble COD increased to its
maximum value. [34]

240

Solar Photo-Fenton;
pH = 3;

Fe2+ = 40 mg L−1;
H2O2 = 4 g L−1

COD solubilization = 4.62% [56]

45 Fe2+:H2O2 = 1:6;
pH = 3

Solid reduction = 64% [57]

20 +homogenizer; Fe2+:H2O2 = 1:6;
pH = 3

Solid reduction = 73.5% [57]

40
+post anaerobic digestion;
H2O2 = 725 gH2O2 kgTS

−1;
H2O2/Fe2+ = 80

Total VS reduction = 76%;
CODremoval = 81.5% [44]

TCH
(+anaerobic
stabilization)

30 T = 121 ◦C;
NaOH = 7 g L−1

CODreduction = 89%; Total VS
reduction = 77.5%; methane

yield = 0.52 m3 kgVS
−1;

methane biogas content = 79.5%

[46]

120
T = 70 ◦C;

NaOH = 5 mol L−1;
pH = 12

VFAs production = 7.5 gVFAs L−1 [45]

120

T = 70 ◦C;
Ca(OH)2 = 4 mol L−1;
NaOH = 1 mol L−1;

pH= 12

VFAs production = 6.9 gVFAs L−1 [45]

120 T = 70 ◦C;
CaO2 = 4 mol L−1 VFAs production = 7.9 gVFAs L−1 [45]

<30 + H2O2;
T = 90–135 ◦C VS removal = 46–66% [58]

DM: Dry matter; VS: Volatile solids; SSR: Sludge solubilization rate; SRR: Sludge reduction ratio; WO: Wet oxidation;
COD: Chemical oxygen demand; DOC: Dissolved oxygen carbon; VSS: Volatile suspended solids; TSS: Total
suspended solids; TS: Total solids; TCH: Thermochemical hydrolysis; VFAs: Volatile fatty acids; n.a.: Not available.
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3.2. Biological Treatments

3.2.1. Membrane Biological Reactor (MBR)

In MBR systems, the separation of the sludge from the effluent takes place in highly efficient
membrane modules instead of the traditional secondary sedimentation [59,60]. The expected production
of sludge in an MBR system is usually lower than in CAS systems, due to the high concentration of
biomass in the tank (7–20 gTSS L−1), the low Food/Microorganism (F/M) ratio and, consequently, a high
sludge retention time (SRT). Therefore, under these conditions, cell growth is not promoted [25].

� Mesophilic Membrane Bioreactor (MMBR)

In recent years, MMBR technology has been proposed as a suitable alternative to CAS because
of its higher effluent quality, smaller volumes and a lower amount of sludge production [61–63].
The mesophilic temperature conditions vary in a range between 20 and 45 ◦C [64]. Being an MBR,
this process can be considered a hybrid of a conventional biological treatment system and physical
liquid–solid separation using membrane filtration [65]. In MMBR, differently from CAS, the reduction
of sludge production appears to be due to the development of predators in the tank, but the opinions on
this are discordant [25]. The MMBR technology provides the following advantages over CAS: higher
quality effluent for water reuse since bacteria and suspended solids will be retained by membrane,
higher volumetric loading rates, shorter hydraulic retention times, longer solid retention times [65–67].
Another advantage of MMBR over CAS systems is the small space required due to the absence
of a secondary clarifier and the higher volumetric conversion rates [65,68]. The higher volumetric
conversion rates are the result of higher biomass concentrations [68]. However, membrane fouling,
attributable to high concentrations of TSS, colloids and sludge flocs, remains a significant drawback
of MMBR, as it significantly reduces membrane performance and useful life [25,66,69]. It leads to an
increase in operation costs and a limitation in the transfer of oxygen [25].

Moreover, sludge derived from CAS and MMBR systems results in different dewatering efficiency
according to Pontoni et al. [70]. This aspect has been studied by Capodici et al. [61]. The achieved
results confirmed the complexity of the inter-relationships between many factors affecting the sludge
dewaterability. Capodici and Mannina [71] confirmed that the literature reports differ and there are
contrasting data on the best or worst sludge dewaterability from MMBR compared to that from CAS.
However, Pontoni et al. [70] affirmed that MMBR configuration produced a sludge with a lower mean
particle size respect to the CAS and, therefore, worse dewaterability properties. On the contrary,
Pontoni et al. [72] tested the effect of anaerobic digestion on dewatering properties in MMBR and CAS.
They found that worsening effect due to the post anaerobic digestion is decidedly lower for MMBR
sludge with respect to CAS. Several authors also investigated the possibility of adopting suitable
sludge retention times in the tank in order to achieve zero net growth [73,74]. Moreover, in the last
decade, MMBR systems have been coupled with other disintegration treatments (e.g., ozonation,
ultrasonication) in order to increase the biomass decay rate, maintaining a relatively low concentration
of TSS in the MMBR system [25,75,76]. Foladori et al. [25] reported that these applications, which can
only be used in the water line, make it possible to achieve a reduction of 99% in terms of TSS.

� Thermophilic Membrane Bioreactor (TMBR)

The TMBR represents an evolution of MMBR. In this case, a membrane system (generally
ultra or nano-filtration) is coupled to the thermophilic biological process. This aspect allows us
to overcome the problem due to the poor settleability characteristics of the thermophilus biomass.
Thermophilic microorganisms show optimal growth at temperatures of 50 ◦C or higher [77]. There is
little knowledge about microbiological species in sludge subject to thermophilic processes. In fact,
only some species like Bacillus have been identified by researchers [78,79]. Moreover, only in recent
years has the impact of the operational parameters on the process under thermophilic conditions
been investigated [80]. The membrane fouling represents a significant issue in this treatment.
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For instance, Collivignarelli et al. [81] found that increasing the SRT, the membrane fouling rate
decreased. The operative conditions can be different: (i) aerated, (ii) non-aerated or (iii) alternate [11,81].
In order to reduce the production of SS, this system can be applied both in the water line (replacing
the CAS) [80] and sludge line [11,81]. Generally, aerobic conditions are applied if this treatment is
used in the water line to treat COD-rich liquid waste (specific lower sludge production) [82–84], while
anaerobic or alternate conditions are applied in the sludge line treatment [11]. To date, the application
to the real scale concerns two plants in Italy. The reduction in the sludge production varies from 70%
to 90% in terms of VS for the treatment of municipal sludge, while from 50% to 65% for those with a
strong industrial component [11,25]. This reduction is due to a low specific production of biomass
(0.05–0.3 kgVSS produced per kgCOD removed) [83].

3.2.2. Granular Sludge Systems (GSS)

GSS includes anaerobic granular sludge systems (AnGSS) and aerobic granular sludge systems
(AeGSS). AnGSS have been largely applied and have achieved good results in the treatment of
high concentration organic wastewater [84]. AeGSS are currently under study [84–88]. In granular
systems, a specific production of sludge was observed in the order of 0.07–0.15 kgTSS kgCODremoved

−1,
compared to 0.27–0.35 kgTSS kgCODremoved

−1 of the traditional activated sludge [25]. These results
were confirmed by Di Iaconi et al. [89–92], who found a specific production of sludge of 0.16 kgTSS

kgCODremoved
−1 in treating municipal wastewater. An example of a plant of this type has been set by

the CNR and is known as the sequencing batch biofilter granular reactor (SBBGR) system [89,90].
The experimental results obtained showed that the plant, fed with the effluent exiting the primary

sedimentation of an urban WWTP, presented high yields of COD removal, of total suspended solids and of
nitrogen (all higher 80%), allowing compliance with the discharge limits established by current legislation.
The process was characterized by a very low sludge production (0.12–0.14 kgTSS kgCODremoved

−1), with
respect to CAS, due to the high SRT in the system (>120 d) [91]. A significant advantage of the SBR
configuration is that the use of a traditional or integrated settler is not necessary. The separation of
sludge and effluent occurs within the reactor during a short settling phase [93]. Therefore, the SBBGR
system does not require the presence of a secondary decanter [91,93]. The main disadvantage of these
systems is the relatively high investment costs. In fact, de Bruin et al. [93] studied the possible alternative
to CAS represented by AeGSS. From an economic point of view, they found that it is very promising
technology, and should therefore be further developed, but at the moment has higher costs than CAS. Di
Iaconi et al. [91] found that this process allows us to reduce TSS, with yields ranging from 80% to 90%.

3.2.3. Biological Predation (BP)

BP indicates the consumption of excess sludge by higher organisms such as protozoa and
metazoa [34,94]. This process can be applied both in the water line and in the sludge line. If it is
applied in the water line, it requires a two-stage system: (i) the first has a short hydraulic retention
time (HRT), in order to favour the proliferation of rapidly growing bacteria for wastewater treatment;
(ii) the second has a long SRT in order to favour the growth of predators [25,95]. For instance, among
the protozoa, the ciliate species have a predatory effect on the microfauna of CAS [96]. Wei et al. [95]
reported the results of a lab-scale application of a two-stage system with a temperature of 30◦C and
a pH of 7. Using bacteria Pseudomonas fluorescens and Tetrahymena pyriformis, they observed sludge
reduction yields from 12% to 43%. The main disadvantages of this application are the significant
volume required for the second stage reactor due to the high SRT [94] and the difficulty controlling the
growth and reproduction of protozoa and metazoa in the biological system [25]. Other authors studied
the application of this treatment in the sludge line. In this case, metazoa, particularly worms and
larvae, are preferred to protozoa. Eisenia foetida and Hermetia illucens are the most used. For instance,
Kalová and Borkovcová [97] applied Hermetia illucens in order to minimize the production of primary
and secondary SS; after 35 days of process, the wet weight had been reduced by 16%. Guo et al. [98]
highlighted that, for a full-scale application, the instability of the worm reactor represents the major
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disadvantage. They reported that some researchers have brought up some possible solutions to this
problem. For instance, they explained that a 75% decrease in the amount of TSS was observed in an
optimized reactor with Lumbriculus variegatus.

In Table 2, several applications of biological treatments are presented.

Table 2. Several applications of biological treatments.

Process Application Operative Conditions Sludge Reduction/Production Other Results Ref.

MMBR

Water line HRT = 6 h;
SRT = 20–40 d

SP = 0.23–0.32 kgMLSS kg
CODremoved

−1 n.a. [99]

Water line T = 22 ◦C SP = 0.22 kgMLSS kg CODremoved
−1 n.a. [100]

Water line Anaerobic;
T = 17–33 ◦C SP = 0.16 kgTSS kg CODremoved

−1 Energy demand:
0.07 kW h m−3 [101]

TMBR

Sludge line

Intermittent aeration;
pH = 8.5;
T = 55 ◦C;

HRT = 12–31 d

n.a. COD removal = 85% [82]

Sludge line Aerobic; pH = 7;
T = 55 ◦C VS reduction = 80% n.a. [102]

Sludge line

Anaerobic;
HRT = 3–7 d;

SRT = 50–51 d;
T =55 ◦C

n.a. n.a. [78]

Water line

Aerobic;
Pharmaceutical wastewaters;

pH =6–8;
T = 48–50 ◦C;
HRT = 5–10 d

n.a. COD removal = 98% [78]

GSS

Water line

Aerobic;
SBR;

Municipal wastewater;
T = 12–28 ◦C

SP= 0.16 kgTSS kgCODremoved
−1

COD removal > 90%;
TSS removal > 90%;
TKN removal >90%

[92]

Water line
Aerobic;

SBR;
Municipal wastewater

SP almost one magnitude order
lower than commonly reported for

conventional treatment plants

COD
removal = 80–90% [103]

Water line
Aerobic;

SBR;
Municipal wastewater

SP of about 20–35% as compared to
the existing plant n.a. [104]

Water line Aerobic;
SBR SR up to 80% n.a. [89]

Water line

Aerobic;
SBR;

Primary effluent from a tanney
WWTP

SP = 0.04–0.08 kgTSS
kgCODremoved

−1 n.a. [105]

BP

Water line

Protozoa;
Two-stage system;

Treating different pulp and
paper industry wastewater

SP = 0.01–0.23 gTSS gCODremoved
−1 n.a. [95]

Water line
Protozoa;

Two-stage system;
treating synthetic wastewater

SP = 0.05–0.17 gTSS gCODremoved
−1 n.a. [106]

Sludge line Metazoa (Hermetia illucens);
HRT = 13 d Dry weight reduction = 31% n.a. [107]

Sludge line Metazoa (Eisenia foetida);
HRT = 21 d TOC reduction = 30.5–62.6% n.a. [108]

HRT: Hydraulic retention time; SRT: Ludge retention time; SP: Sludge production; MLSS: Mixed liquor suspended
solids; COD: Chemical oxygen demand; VS: Volatile solid; TOC: Total organic carbon; SBR: Sequencing batch reactor;
TKN: Total kjeldahl nitrogen; SR: Sludge reduction; TSS: Total suspended solids; n.a.: Not available.

3.3. Thermal Treatments

The thermal treatments (i.e., combustion, pyrolysis and gasification) intervene with the production
of SS, reducing the water content and the fraction of volatile solids. In recent years, the applications of
these processes within the WWTPs, at the end of the sludge line usually after thermal drying (Figure 3),
are increasing. The advantages in this case consist not only of the minimization of the SS, limiting
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the amount of generated SS exiting the WWTP, but also in the possibility of recovering the energy
produced directly inside the WWTP.

3.3.1. Combustion

Combustion means the complete oxidative process that occurs at temperatures between 850 ◦C
and 1000 ◦C and in over-stoichiometric conditions of O2. Before subjecting the sludge to a heat
treatment, such as combustion (the same concept can then be repeated similarly for pyrolysis and
gasification), generally it needs to be subjected to mechanical dewatering and thermal drying: this is in
order to have sludge with sufficient calorific value to allow autothermal combustion [109,110]. To date,
the full-scale applications of this technology are increasing. If the calorific value is not enough, the
combustion of the sludge is problematic: in this case, the appropriate choice is co-combustion, outside
the WWTP, with materials having a high lower heating value (LHV) [7,111]. Therefore, SS can be used
as auxiliary fuel in coal-fired power plants and cement kilns [7,112]. For some years, co-combustion
with other materials has received considerable interest [7,113,114]. The most common co-combustion
is sludge with solid urban waste. This allows us to use more conventional plant techniques. This type
of treatment acts not only on the water content of the sludge but also on the organic substance, which
is then oxidized and transformed, finally allowing a considerable reduction in the volume of sludge
produced. To date, the full-scale applications of this technology are significant.

3.3.2. Pyrolysis

The pyrolysis process realizes the thermal degradation of the fuel in an inert atmosphere (i.e., in
the absence of oxidizing agents) between 500 ◦C and 1000 ◦C and is indicated by the literature as
a promising solution [1,112]. In this process, the pyrolyzed material does not undergo combustion,
but the structure of the molecules breaks down thanks to the effect of temperature alone [111]. From
these thermolytic reactions, three by-products are formed: (i) bituminous coal (solid); (ii) pyrolytic
oil (liquid) and (iii) syngas (aeriform). Bituminous coal (char) can then possibly be used as a solid
fuel or transformed into activated carbon. Pyrolysis can be aimed at obtaining mainly char, liquid or
syngas depending on the operational conditions [112]. There are some advantages associated with this
process. For instance, (i) the reduced production of CO2, (ii) the total reduction of dioxins, (iii) the high
flexibility, (iv) the compact installation and of course (v) the minimization of the residue is worthy of
mention [115].

3.3.3. Gasification

Gasification consists of converting the carbon content of sewage sludge into ash and a combustible
gas. The process takes place at higher temperatures compared to pyrolysis (typically above 500 ◦C) [1,111].
The oxidizing agent is dosed lower than the stoichiometric value compared to the amount of organic
carbon (sub-stoichiometric conditions). Oxidation is therefore to be considered partial [111]. In addition
to obtaining the removal of water from the sludge and the reduction of the content of volatile substance,
there is also the production of a fuel in the gaseous phase (Syngas), which can then be reused for
energy production.

In Table 3, several applications of thermal treatments, with literature information, are reported.
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Table 3. Several applications of thermal treatments.

Process Temperature [◦C] Results Ref.

Combustion 800

The main decomposition during the combustion process is in
the 180–580 ◦C temperature range. The highest mass loss is
caused mainly by the decomposition of carbohydrates and

lipids. After this process, c.a. 77%, of total mass is degraded.

[116]

Combustion n.a. High reduction of sludge volume by about 90% and nearly
complete elimination of the organic materials. [110]

Pyrolysis 460–600
In pyrolysis, the second stage finishes at ∼540 ◦C, with an
average 55 wt.% mass loss. The final decomposition is of

inorganic matter.
[116]

Pyrolysis 300
Pyrolysis temperature was the most important factor affecting
the yield of biochars produced. Sewage sludge pyrolysis at

300 ◦C maximized biochar yield.
[117]

Pyrolysis 500–900

Biophysical dried sludge was rapidly pyrolyzed at
temperatures from 500 ◦C to 900 ◦C. With the temperature
rising, the yield of biochars decreased, the ash content and
microstructure development of biochars were promoted.

[118]

Pyrolysis n.a. Volume reduction by as much as 90% and production of a
sterile carbon char high efficiency and energy self-sufficient. [110]

Drying +
Gasification

120 (Drying)
550–900 (Gasification)

SS was partially dried in an oven at 120 ◦C for 2 h. The drying
reduced the moisture content from 43% to 3.5%. After

gasification, the moisture content in the char was 2.1–2.8%.
[119]

n.a. = Not available.

3.4. Electrochemical Treatments

For minimizing the production of SS, electrochemical treatments are generally coupled with the
use of pressure. Among the pressurized electro-dewatering treatments, electro-osmosis is arousing a
growing interest [120–122].

Electro-Osmosis

In this case, the osmosis process is combined with the use of electric current [120]. Gronchi et al. [123]
have recently tested this type of treatment. They obtained up to 40–45% of dry substance content
compared to 20–25% obtainable by conventional physical/mechanical processes [123]. This type of process
can be applied in the sludge line, before or after the phase of stabilization, with very low energy
consumption: 0.12–0.5 kWh kgwater

−1 for activated sludge and 0.14–0.55 kWh kgwater
−1 for digested

sludge [124,125]. Moreover, other advantages, such as the removal of pathogens and reduction of
the final transportation cost, can be highlighted [125]. Therefore, the application of an electric field,
combined with pressure, tends to increase the dehydration of the sludge. Many experimental factors
can influence the reduction of water content and consequently, the process yields: (i) the electric
voltage, (ii) the pressure, (iii) the contact time, (iv) the characteristics of the polyelectrolyte dosed,
(v) the temperature, etc. The electrode reactions are not only influenced by the material of which
the electrode is made but also by the ions contained in the sludge. The process could therefore be
hindered by the characteristics of the sludge [123,126], although the action mechanism has not yet
been fully clarified [126]. Other experiments confirmed these results, and 38–45% of dry matter has
been obtained [122,127]. In Table 4, some applications and results of electro-dewatering processes
are reported.
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Table 4. Several applications of electro-osmosis processes.

Initial DM
[%]

Final
DM [%]

Time
[min]

Pressure
[kPa] Voltage [V] Energy Consumption

[kWh kgwater−1]
References

16.6 40 7.5 100 20 0.065 [121]
20–25 40–50 10–14 25.5 30–40 0.06–0.18 [125]

22 37.5 30 n.a. 15 n.a. [128]
40 25 n.a.
46 35 n.a.

n.a. 40 16 n.a. 25 n.a. [129]
45 35 n.a.

18 40 25 300 10–20 0.123 [122]
9–10 40–50 120 500 n.a. n.a. [124]

DM: Dry matter; n.a.: Not available.

4. Summary

In the following review, advanced treatments for the minimization of SS production have been
analysed. Chemical, biological, thermal and electrochemical processes have been reported (Table 5).

Table 5. Uses and yields of advanced treatments and technology for the minimization of SS and
maturity of technology [7,11,21,25,45,82,83,115,123,130,131].

Technique
Use Maturity of Technology

[Scale] Effect
Water Line Sludge Line

Chemical

(O3) X X Real (B)
WO X Real (B) (C)

Fenton X X Laboratory (B)

TCH (1) X X Laboratory (in water line)
Real (in sludge line) (B)

Biological

MMBR X Real (A)

TMBR X X Real In the water line (A)
In the sludge line (B)

GSS X Real (A)

BP X X Real (in water line)
Laboratory (in sludge line) (B)

Thermal
Combustion X Real (B) (C)

Pyrolysis X Laboratory (B) (C)
Gasification X Laboratory (B) (C)

Electrochemical Electro-Osmosis X Laboratory (C)

(A): reduction of the production of sludge in water line; (B) reduction of the fraction of VS; (C) dewatering. (1):
In the sludge line, it must be coupled with anaerobic digestion.

Chemical treatments such as ozonation or the use of chlorine certainly have the advantage of
representing a mature technology. However, if adopted in the water line, they can easily alter the
balance within the biological sector. WO is one of the most interesting of the advanced chemical
processes from the point of view of performance (in terms of sludge reduction). However, it should
be remembered that it requires highly qualified personnel for its management. The Fenton and
Photo-Fenton processes are still applied to the pilot scale only. The great disadvantage is that chemical
sludge is inevitably produced, which must then be properly disposed of. TCH is currently adopted at
the real scale, as pre-treatment before the anaerobic digestion in the sludge line, in order to maximize
the stabilization of the SS. One of the main disadvantages is due to the cost for chemical reagents for
enhancing the hydrolysis pre-treatment.

Among the biological processes, interesting results are given, for example, by the application of the
MMBRs in the water line that allow a significant reduction of the sludge produced compared to the CAS.
For these systems, which are already widely adopted at the real scale, fouling remains the main problem.
On the other hand, despite having shown significant results, especially if applied in the sludge line, the
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TMBRs do not yet have a high diffusion. Finally, among the advanced biological processes, the BP is
presented. This has given interesting results in terms of minimization yields of SS but nevertheless there
are not yet a significant number of applications at the real scale (mostly examples exist on a pilot scale).

The research has shown increasing interest in recent years for thermal processes. Combustion
treatments are widely applied to the real scale, while pyrolysis and gasification present more difficulty
in plant engineering and are currently applied only to the pilot scale.

Among the electrochemical dewatering processes, electro-osmosis is the most significant. It does
not present a considerable number of applications to real plants; however, it allows an important
reduction of the water content in SS. Given that in recent years the research has allowed us to optimize
energy consumption, the first important disadvantage of this process, a considerable development of
this type of treatment in the coming years can be expected.

Therefore, in order to minimize the production of SS, there is not a best solution for every situation,
but the optimal treatments and technologies must be evaluated on a case-by-case basis. For having a
complete and objective evaluation, a comparative analysis of different applicable solutions should be
carried out as reported in different works [132–134].

Moreover, by way of example, a list of several patents available on the market is shown (Table 6).
The presence of other patents not mentioned in the table is not excluded.

Table 6. List of several patents, by way of example, available on the market. The presence of other
patents not mentioned here is not excluded.

Process
Patent Name Description

Type Name

Chemical processes

O3 Biolysis-O®
In this technology, the mixed liquor extracted from the CAS reactor
is in contact with ozone into another reactor and returned to the
CAS tank.

WO TOP®

Suitable for mixtures consisting of at least two phases, one dense
(SS) and one liquid (WW). The solid residue that leaves the plant
can be recovered by conventional decantation and filtration.
This can be converted into a primary-secondary material.
This material obtained the CE mark as a filler according to UNI EN
13043.

WO DUAL TOP®
The technology can simultaneously process: (i) activated sludge
derived from industrial or municipal biological plants, (ii)
industrial wastewater, (iii) landfill leachates with high levels of
COD and (iv) highly contaminated sediments (marine, fluvial, etc.).

WO Athos®

It is a solution based on the principle of WO, but which operates at
more moderate temperatures (240 ◦C) and lower pressures (45 bar).
It is a compact process that performs almost complete oxidation of
the organic matter with a minimum retention time of the sludge
(less than 1 h).

WO Zimpro®
Most of these systems are low-temperature and low-pressure
designs, commonly referred to as low pressure oxidation. These
systems use temperatures and pressures of less than 220 ◦C and 35
bar, respectively.

TCH Cambi THP®
Without the use of chemical reagents, it improves both digestion
and dewaterability after digestion with up to 45% DM. The mass
reduction is around 40–70%.

TCH HCHS®
It allows us to obtain up to 22% dehydration by operating with
saturated steam at 6 bar at a temperature between 150 and 170 ◦C.

TCH TurboTec®

Before entering the system, the raw biomass is screened. After
being sieved, the biomass is partially heated using the heat of the
outgoing biomass. The temperature is increased by using steam at
140–160 ◦C introduced into the reactor. The reactor is a continuous
mixing system (CSRT). Following hydrolysis, the biomass is cooled
through contact with heat exchangers.

TCH Bio Thelys®
Without the use of chemical reagents and coupled with anaerobic
digestion, it offers better performance than conventional digestion
and optimizes sludge treatment by producing: (i) −25–35% DM
and (ii) +30–50% biogas.
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Table 6. Cont.

Process
Patent Name Description

Type Name

Biological

TMBR Biorime®
Biorime consists of a Thermophilic Aerobic Membrane Reactor
(TAMR). TAMR works at temperatures around 54 ◦C. Pure oxygen
is insufflated inside the reactor.

BP Cannibal®
It allows a reduction in secondary sludge production.
The technology is applicable both to new plants and to up-grade
existing plants. The technology is based on the retention of a part
of recirculating sludge in a tank subject to micro-aeration.

Thermal

Combustion HELIOSOLIDS®
It can be applied to: (i) municipal and industrial SS, (ii) oily sludge
and slurry, (iii) spent grains, (iv) paint and paint sludge, (v)
shredded wood and pellets, (vi) meat and bone meal, (vii) acid oils
and (viii) soap stock.

Pyrolysis PyroBoiler®
By combining the pyrolysis treatment with the drying treatment, it
allows a reduction in the output flow up to 80% in weight and 60%
in volume.

DM: Dry matter; WW: Wastewater; COD: Chemical oxygen demand.

5. Discussion

The proposed treatments (Table 5) lead to a reduction in sludge production, not only in agricultural
but also in urban and industrial areas. Assuming the application of proposed processes, for example,
on the urban WWTPs with a capacity higher than 100,000 population equivalent (PE), this would cover
more than 50% of the total load (expressed in PE) treated in EU28 [135]. In Table 7, the SS disposal
options and costs in Europe are reported.

Table 7. Sewage sludge (SS) disposal options and costs in Europe.

Type of Disposal SS Disposal [%] (a)
Disposal Costs [€MgDM−1] (b)

min max

Agriculture 28.3 150 400
Compost 14.8 250 600

Incineration 37.7 450 800
Landfill 7.1 200 600
Other 12.1 90 260

Transport 100 50 160

(a): [14]; (b): [25,136].

As reported by Foladori et al. [25], the transport is indicated as 100% because all the disposal
options require the SS transport from the WWTP where it is produced. Currently in Europe, about
9.7 million MgDM year−1 of SS are produced [14]. As previously reported (e.g., Sections 3.1 and 3.2),
interventions in the wastewater line present greater risks of the balance alteration in the biological
reactor (i.e., CAS) and partial inhibition of biomass. Considering minimization technologies only in
the sludge line, a precautionary minimization yield of 50% can be assumed. Therefore, by adopting
these criteria only in the WWTPs with over 100,000 PE (i.e., about 50% of the total SS produced in
Europe) makes it possible to reduce the SS produced each year to around 7.28 million MgDM year−1.
This would significantly reduce the costs related to the different disposal options currently adopted in
Europe, as shown in Figure 5.
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before and after the hypothetical application of minimization techniques in the plants with more than
100,000 PE. A range of SS disposal costs, between a minimum and maximum value, was determined
considering the high variability within the different EU countries.

Furthermore, as reported by Kalderis et al. [136], costs vary. Minimizing the production of SS
has the disadvantage of the costs of implementing the WWTPs (not subject to analysis here) but it
would allow reducing the costs of disposal of the SS and would eliminate the variable given by the SS
disposal price fluctuation.

6. Conclusions

This paper presents a review of the various treatments applicable for the minimization of SS. Only
advanced technologies and treatments are reported. This work is based on about 130 papers, reviews,
books and conference proceedings. A description of the process, the advantages, the drawbacks
and the results of the literature are presented for each type of technology. Both the interventions
on the sludge line and those on the water line are shown. In order to minimize the SS production,
the results of the bibliometric analysis show the increased interest in the combination of different
types of treatments and technologies and the reduction of the study of treatments exclusively of
a chemical nature. Among the biological treatments, while MMBR and TMBR allow us to obtain
encouraging results, the BP must be studied even before possible intensive application at a real scale.
In order to minimize the SS, thermal treatments have gained interest in recent years. However, while
combustion and co-combustion of SS are already applied at the real scale, pyrolysis and gasification
are currently under study and development. Finally, electro-osmosis is arousing a growing interest.
The results are encouraging, but the maturity of the technology is not yet developed, and other studies
are needed before a real-scale application. Assuming the application of proposed processes in the
sludge line in WWTPs with a capacity higher than 100,000 PE, this would significantly reduce the costs
related to the different disposal options currently adopted in Europe.
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Nomenclature

AeGSS Aerobic granular sludge systems
AnGSS Anaerobic granular sludge systems
AOP Advanced oxidation process
BP Biological predation
CAS Conventional activate sludge
COD Chemical oxygen demand
DM Dry matter
DOC Dissolved oxygen carbon
GSS Granular sludge systems
HRT Hydraulic retention time
MBR Membrane biological reactor
MLSS Mixed liquor suspended solids
MMBR Mesophilic membrane bioreactor
SBBGR Sequencing batch biofilter granular reactor
SBR Sequencing batch reactor
SRR Sludge reduction ratio
SRT Sludge retention time
SS Sewage sludge
SSR Sludge solubilization rate
TCH Thermochemical hydrolysis
TKN Total kjeldahl nitrogen
TMBR Thermophilic membrane bioreactor
TS Total solids
TSS Total suspended solids
VFAs Volatile fatty acids
VS Volatile solids
VSS Volatile suspended solids
WO Wet oxidation
WW Wastewater
WWTP Wastewater treatment plant
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