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Abstract Recent research has shown that hierarchi-

cal laminated composites can be profitably employed

to improve the actuation performance of electrically-

activated soft dielectric transducers. This note focuses

on two types of rank-two layouts composed of ideal

dielectric phases which follow nonlinear hyper-elastic

mechanical behaviour and aims at providing a sim-

plified set of solving equations for voltage-controlled

actuation. We obtain such equations by analytical

manipulations allowing to partly uncouple the set of

equations usually employed within this theoretical

framework. By focusing on neo-Hookean hyper-

elasticity, we validate the proposed methodology with

the results available in literature for one layout. For the

other layout, we obtain new configurations by max-

imising the axial stretch. In both cases, we study the

sensitivity of the optimal actuation stretch to changes

of the parameters characterising the rank-two meso-

and micro-structures. In average, the computational

time required to reach a convergent solution with the

new methodology is one order of magnitude lower

than that necessary to solve the whole set of nonlinear

coupled equations.

Keywords Dielectric elastomers � Composite

materials � Smart materials � Finite strain �
Electromechanical actuation

1 Introduction

The use of hierarchical composites is a possible

solution to the quest for the enhancement of actuation

performance of soft electroactive materials. The

effectiveness of nested layered electro-elastic com-

posites in achieving this goal has been made evident in

a set of contributions [1–5] where emerging short-

comings, mainly associated with amplification of local

electric fields and the risk of onset of damage at

internal interfaces, have been also highlighted.

Generic dielectric rank-N laminates, where N is the

hierarchical order, subjected to a given electric field

are thoroughly analysed by Tian et al. [2] in the linear

elastic regime. These authors demonstrate that the

gain in actuation strain for a traction-free specimen

obtained at an increasing contrast in the electro-

mechanical properties of phases almost follows an

exponential law. Gei and Mutasa [5] extend these

findings by investigating optimal layouts for rank-two

composites in a fully nonlinear electro-elastic frame-

work for soft elastomers, governed by a neo-Hookean
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constitutive law and ideal dielectric behaviour. For the

studied configurations, they show that accounting for

nonlinearities leads to actuation strains that are up to

18% higher than those predicted at small strains and

that the optimum arrangement of phases strongly

depends on the maximum electric field for which the

transducer is designed. By resorting to numerical

simulations, Rudykh et al. [3] find a ten-fold improve-

ment of the electro-mechanical coupling for a proto-

type rank-two laminate obtained by reinforcing an

acrylic elastomer matrix with polyaniline. All these

works completely neglect macro- and micro-scopic

instabilities, that could be studied with the methods

presented in [6–13].

This note deals with the solution of the actuation

problem of rank-two laminated thin-films subjected to

an electric potential difference across perfectly com-

pliant electrodes placed on their sides [14].1 As

detailed in Sect. 2, the actuation response of an

electro-elastic rank-two composite can be formally

computed by coupling two rank-one problems. By

referring to the notation introduced in Fig. 1, those

two problems are: i) the microscopic one within the

core and ii) the mesoscopic task involving core and

shell.

For a material behaviour similar to that assumed in

[5], as specified in Sect. 3, Spinelli and Lopez-Pamies

[12] have shown that an explicit form of the free

energy density can be directly formulated for an

electro-elastic rank-one material. Therefore, the actu-

ation performance here of interest can be estimated by

just solving the mesoscopic rank-one problem through

the coupling between the external boundary prescrip-

tions expressed in terms of macroscopic quantities and

the electro-mechanical continuity conditions at the

interface characterising the laminate meso-structure.

The goal of this investigation, pursued in Sect. 4, is

to analytically simplify at lowest terms the set of

nonlinear coupled equations to easily solve the

electro-elastic rank-two problem for voltage-con-

trolled actuation. To this purpose, we consider two

different layouts, displayed in Fig. 1 and, here and

henceforth, referred to as ‘Tree a’ and ‘Tree b’, under

the plane-strain assumption. However, as shown in

Appendix, this methodology can be also easily

extended to the more general boundary-value problem

in which the constraint imposed along the out-of-plane

direction is released.

We numerically study the ‘Tree a’ and ‘Tree b’

microstructures in Sect. 5. Specifically, we first adopt

the ‘Tree a’ configuration to validate the methodology

developed in this work by comparison of the actuation

stretches against literature results [2, 5].With regard to

the ‘Tree b’ configuration, we provide novel data for

microstructure arrangements able to optimise the

actuation stretch. Moreover, for both layouts, we

study the sensitivity of the maximum actuation stretch

to changes of the parameters characterising the rank-

two meso- and micro-structures.

We finally assess the computational efficiency of

the proposed reduced system of solving equations by

comparing its performance with that of the fully

coupled nonlinear equations usually employed in

literature.

2 Homogenisation of a rank-two dielectric

composite actuator

The rank-two laminate is constructed by properly

embedding a reinforcement phase a in a softer matrix

b. In particular, such a heterogeneous transducer can

be designed in two different ways [2], according to the

layouts sketched in Fig. 1 that are independent of

direction x3. In the first case, referred to as ‘Tree a’, the

device is obtained by layering a core rank-one

composite (whose relevant variables are henceforth

labelled with ‘R1’) with layers of the soft material

b acting as a shell. In our terminology, the shell is a

purely homogeneous material and its quantities are

labelled with ‘sh’. In the second case, referred to as

‘Tree b’, the rank-one core is sandwiched between

layers of the stiffer material a, here playing the role of

the shell.

We assume separation of length-scales such that

each rank can be homogenised independently. More

specifically, the local fields within the rank-one

composite are microscopic fields, whereas, at a much

larger scale, the mesoscopic fields are the local fields

for the rank-two composite, in which the rank-one core

is modelled as a homogeneous phase.

Within this picture, at the mesoscopic level, cR1 and

csh ¼ 1� cR1 denote the volume fractions of core and

1 It is here worth mentioning that an alternative actuation

process is that where charges are directly deposited onto the

actuator sides [15].
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shell, respectively, the former reading

cR1 ¼ cR1a þ cR1b . At the microscopic level, the

homogenisation of the rank-one core requires the use

of the volume fractions cR1a =cR1 and cR1b =cR1 for the

two phases a and b, respectively. Finally, ca and cb are

the overall volume fractions of the two homogeneous

materials entering the whole composite, such that

ca þ cb ¼ 1. In particular, it results:

ca ¼ cR1a and cb ¼ cR1b þ csh in ‘Tree a’ configuration,

while

ca ¼ cR1a þ csh and cb ¼ cR1b in ‘Tree b’ configuration.

The interfaces between phases a and b in the core are

henceforth denoted as microscopic, whereas the

mesoscopic interfaces are those separating shell and

rank-one phases in the rank-two composite. The

normal and tangential unit vectors defining the

microscopic and mesoscopic interfaces belong to

planes x3 ¼ const and are indicated as ðn1;m1Þ and

ðn0;m0Þ, respectively (see Fig. 1); we express their

Cartesian components in terms of the interfaces’

angles with respect to the axis x1, denoted as hR1 and
hsh, respectively. These angles are positive if anti-

clockwise, as illustrated in Fig. 1. In both ‘Tree a’ and

‘Tree b’ configurations, the normal vector n1 always

points from the stiffer phase a towards the softer phase

b, while the normal vector n0 points from the rank-one

core towards the shell.

In this work, the relevant mesoscopic fields,

assumed to be spatially uniform, are the deformation

gradient Fk ðk ¼ sh;R1Þ and the nominal electric field

Ek, along with their work-conjugate quantities, that

are the first Piola–Kirchhoff stress Sk and the nominal

electric displacement Dk. The analogous macroscopic

electro-mechanical quantities governing the overall

response of the actuator are indicated as F, E, S, D.

Under voltage-controlled actuation in plane-strain

conditions, we assign the through-the-thickness

macroscopic nominal electric field component

E2 ¼
D/
h0

;

in which D/ is the electric potential jump applied

across the electrodes and h0 is the initial laminate

thickness. Additionally, we impose

E1 ¼ 0;

which is consistent with disregarding edge effects.

This is coupled with macroscopic traction-free bound-

ary conditions:

b
ba a

ba

Core
Shell

Electrodes

Δφ
x1

x2

h0
E2

θshθR1

n0

m0

n1

m1

(b)(a)

Core
Shell

Fig. 1 Schematics of the

reference configuration of

the studied rank-two layered

dielectric actuator subjected

to voltage difference D/
applied across flexible

electrodes. The close-up

views highlight the rank-one

core and the shell composed

of a the soft matrix b (‘Tree

a’), in light gray, or b the

reinforcement a (‘Tree b’),

in dark gray. The initial

thickness of the actuator is

h0. According to the positive

direction of the out-of-plane

axis x3, angles hR1 and hsh
are positive if anti-

clockwise
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S22 ¼ 0; ð1aÞ

S12 ¼ 0; ð1bÞ

S11 ¼ 0; ð1cÞ

the latter allowing free stretch k along the x1 direction
(see Fig. 1). Under these conditions, the deformation

gradient assumes the form

F ¼
k n=k 0

0 1=k 0

0 0 1

2
64

3
75;

in which the term n represents the amount of shear

associated with the actual shear angle c ¼ arctan n.
We remark that the methodology developed in this

investigation can be equally applied when the defor-

mation along x3 is unconstrained. Hence, in Appendix,

we indicate how to solve this dual boundary-value

problem by utilising exactly the same equations as

those obtained in the following. More importantly, on

the basis of numerical investigations, in Appendix, we

draw conclusions on the appropriateness of the plane-

strain assumption.

Within the proposed two-scale framework, we

obtain the overall actuation response through

homogenisation of the mesoscopic level by following

the same technique proposed in [4] for the rank-one

composite. The main novelty in our study of the rank-

two composite consists of using for the rank-one core

phase the free energy density obtained by Spinelli and

Lopez-Pamies [12], which is different from that

characterising the shell. Conversely, in the computa-

tional and analytical investigations of Gei et al. [4] and

Spinelli and Lopez-Pamies [12], the two phases

constituting the rank-one composite therein studied

have the same form of free energy density. In other

words, the effective energy density of Spinelli and

Lopez-Pamies [12] is in our context the analytical

result of the microscopic rank-one homogenisation

into a homogeneous mesoscopic phase. We remark

that at both levels the homogenisation takes advantage

of the condition that the interface normal (either n1 or

n0) is spatially uniform.

The homogenisation technique consists of coupling

of information on the continuity of electro-mechanical

variables at the mesoscopic interface with the

definition of macroscopic quantities as weighed aver-

ages of mesoscopic fields [16–18].

On the one hand, continuity at the mesoscopic

interface is expressed by [19]

ðFsh � FR1Þm0 ¼ 0; ð2aÞ

ðSsh � SR1Þn0 ¼ 0; ð2bÞ

ðEsh � ER1Þ �m0 ¼ 0; ð2cÞ

ðDsh � DR1Þ � n0 ¼ 0: ð2dÞ

where Eq. (2c) is obtained from the general relation

n0 � ðEsh � ER1Þ ¼ 0 particularised to the case here

of interest, in which both n0 and the electric field

vector have vanishing component along the x3 direc-

tion (see Fig. 1). Moreover, here and henceforth, �
and � denote, respectively, the vector and inner

products.

On the other hand, the macroscopic fields read

F ¼ cshFsh þ cR1FR1; ð3aÞ

E ¼ cshEsh þ cR1ER1; ð3bÞ

D ¼ cshDsh þ cR1DR1; ð3cÞ

such that fulfillment of (2a), (2c), (2d) requires the

following forms of the mesoscopic fields in terms of

the scalar coefficients a, b, and �b [11]

Fsh ¼ FðIþ a cR1m0 � n0Þ; ð4aÞ

FR1 ¼ FðI� a cshm0 � n0Þ; ð4bÞ

where � denotes the outer product,

Esh ¼ Eþ cR1bn0; ð5aÞ

ER1 ¼ E� cshbn0; ð5bÞ

Dsh ¼ Dþ cR1 �bm0; ð6aÞ

DR1 ¼ D� csh �bm0: ð6bÞ

The coefficient a is a dimensionless parameter,

whereas b and �b have the dimensions of an electric

field and an electric displacement, respectively.

Parameters a, b, and �b are determined by imposing

further electro-mechanical conditions, involving the
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mesoscopic constitutive laws, that can be expressed in

terms of the free energy densities WkðFk;EkÞ [20]

Sk ¼
oWk

oFk

� pkF
�T
k ; ð7aÞ

Dk ¼ � oWk

oEk

: ð7bÞ

As an important issue to address in this investigation,

in Eq. (7a) we have assumed materials constrained to

undergo isochoric deformation, such that the stress

depends on the Lagrangian multiplier pk, to be

determined on each phase.

At the macroscopic level, the effective electro-

elastic free energy density is the sum of the weighed

mesoscopic energies, namely

WðF;EÞ ¼ cshWshðFsh;EshÞ þ cR1WR1ðFR1;ER1Þ
¼ csh ~Wshða; bÞ þ cR1 ~WR1ða; bÞ;

ð8Þ

where, by resorting to Eqs. (4) and (5), we have

expressed the mesoscopic energies as functions of a
and b. More precisely, the functionW in Eq. (8) is the

effective energy only for a and b fulfilling the required

conditions of the set boundary-value problem. We

note that, in the voltage-controlled problem here of

concern, the effective response of the rank-two

composite is completely determined by the parameters

a and b, while �b would directly enter the effective

response in the dual charge-controlled problem.

Analogously to (7), the macroscopic constitutive

equations read [6, 10]

S ¼ oW

oF
� pF�T ; ð9aÞ

D ¼ � oW

oE
; ð9bÞ

where

p ¼ cshpsh þ cR1pR1:

Now, we focus on some general results, inherent to

our homogenisation framework, which can be conve-

niently employed in the computations, as explained in

detail in Sects. 4 and 5.

First, by combining Eqs. (9b) and (8), we obtain

D ¼� csh
oWsh

oFsh

dFsh

dE
þ oWsh

oEsh

dEsh

dE

� ��

þcR1
oWR1

oFR1

dFR1

dE
þ oWR1

oER1

dER1

dE

� ��
;

ð10Þ

in which our notation for the chian rule implies

½ðoW=oFÞðdF=dEÞ�k � ðoW=oFijÞðdFij=dEkÞ with

i, j, k indices with respect to a Cartesian system.

By accounting, in Eq. (10), for the dependence of

the mesoscopic fields on the macroscopic quantities

FðEÞ, aðEÞ, bðEÞ through Eqs. (4) and (5), we find out
that the sums of the contributions multiplying da=dE
and db=dE turn out into the left-hand sides of

continuity conditions (2b) and (2d), respectively.

Similarly, two contributions involving dF=dE multi-

ply terms that allow one to single-out both the left-

hand side of condition (2b) and the macroscopic stress

S. Finally, the product ðF�TdF=dEÞk � F�1
ji dFij=dEk

represents the variation of detF, to be neglected in the

case of isochoric deformation. Hence, all these terms

vanish. Because of this, it results that, in order to

correctly evaluate Eq. (3c) through Eq. (10), we may

completely disregard the dependence of a, b, and F on

E.

Analogously, by combining Eqs. (9a) and (8), we

obtain

S ¼ csh
oWsh

oFsh

dFsh

dF
þ oWsh

oEsh

dEsh

dF

� �

þ cR1
oWR1

oFR1

dFR1

dF

�
þ oWR1

oER1

dER1

dF
Þ � pF�T :

ð11Þ

Calculations similar to those concerned with D lead to

the result that the relation

cshSsh þ cR1SR1 ¼ S � 0

is correctly evaluated through Eq. (11) even by totally

neglecting the derivatives da=dF and db=dF, as they
multiply contributions that cancel out.

These observations are particularly useful in solv-

ing our problem as they allow us to end up with an

algebraic system involving, among the unknowns,

only a single Lagrangian multiplier p. Given the

nonlinearity of the system providing the solution, the

analytical development proposed in this work leads to

a relevant computational advantage with respect to an

approach directly implementing all the governing
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equations, where both mesoscopic pressures enter the

system unknowns.

Moreover, within our homogenisation procedure, by

combining Eqs. (11) and (1a), we can analytically obtain

p as a functionofa, b, k, and n, thus further reducing the
dimension of the solving nonlinear system.

We finally note that in other analogous voltage-

controlled problems, such as thatwith imposed vanishing

shear deformation, F12 ¼ 0, and S12 to be determined

among the macroscopic unknowns, the foregoing

observations about relations (10) and (11) still hold.

In the next section, we specify the mesoscopic free

energy densities characterising the rank-two laminate.

3 The mesoscopic constitutive prescriptions

We assume hyper-electro-elastic material behaviour

for both the matrix and the reinforcement, all con-

strained to undergo isochoric deformation governed by

an extended neo-Hookean strain-energy function with

embedded ideal dielectricity. This choice requires the

introduction of twomaterial parameters for each phase,

namely, the shear moduli la and lb and the dielectric

permittivities �a and �b. Hence, the material constants

of the shell phase are lsh ¼ lb and �sh ¼ �b in ‘Tree a’

configuration, while lsh ¼ la and �sh ¼ �a for ‘Tree b’

microstructure (see Fig. 1).

In the case here of interest, where the deformation is

voltage-driven, we choose the nominal electric field as

the primal electric variable. Moreover, among differ-

ent possibilities inherent to the finite deformation

framework, we adopt the electrostatic contribution to

the energy to be dependent on the non-standard

invariant jF�T
k Ekj, with jEj �

ffiffiffiffiffiffiffiffiffiffi
E � E

p
denoting the

modulus.

Therefore, the free energy density of the shell may

be expressed as

WshðFsh;EshÞ ¼
lsh
2

trCsh � 3ð Þ � �sh
2
jF�T

sh Eshj2;

ð12Þ

where trCk is the trace of the right Cauchy-Green

tensor

Ck ¼ FT
kFk :

For the rank-one mesoscopic laminate constituted by

phases governed by the potential (12), we use the

homogenised energy potential analytically obtained

by Spinelli and Lopez-Pamies [12]

WR1ðFR1;ER1Þ ¼
lV
2

trCR1 � 3ð Þ

� lV � lR
2

jFR1n
1j2 � jF�T

R1 n
1j�2

� �

� �V
2
jF�T

R1 ER1j2

þ �V � �R
2

C�1
R1 � ðER1 � n1Þ

	 
2
jF�T

R1 n
1j2

;

ð13Þ

which, in particular, displays a dependence on the non-

standard invariant C�1
k � ðEk � n1Þ, along with the

following mesoscopic material parameters accounting

for the heterogeneity of the rank-one laminate:

lV ¼ cR1a
cR1

la þ
cR1b
cR1

lb; �V ¼ cR1a
cR1

�a þ
cR1b
cR1

�b;

ð14Þ

and

lR ¼ cR1a
cR1la

þ cR1b
cR1lb

� ��1

; �R ¼ cR1a
cR1�a

þ cR1b
cR1�b

� ��1

:

ð15Þ

Assuming �R ¼ �V and lR ¼ lV makes the rank-one

laminate microscopically homogeneous and its free

energy (13) of the same form as that for the shell in

Eq. (12).

The constitutive equations (7a) and (7b) provide the

following expressions for the mesoscopic stress and

electric displacement

Ssh ¼ lshFsh � pshF
�T
sh þ �shF

�T
sh Esh � C�1

sh Esh;

ð16aÞ
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SR1 ¼ lVFR1 � pR1F
�T
R1 � ðlV � lRÞFR1n

1 � n1

þ �VF
�T
R1 ER1 � C�1

R1ER1

þ
lV � lR þ ð�V � �RÞ C�1

R1 � ðER1 � n1Þ
	 
2

jF�T
R1 n

1j4

� F�T
R1 n

1 � C�1
R1n

1 � ð�V � �RÞC�1
R1 � ðER1 � n1Þ

jF�T
R1 n

1j2

� F�T
R1 ER1 � C�1

R1n
1 þ F�T

R1 n
1 � C�1

R1ER1

� �
;

ð16bÞ

Dsh ¼ �shC
�1
sh Esh; ð17aÞ

DR1 ¼ �VC
�1
R1ER1 � ð�V � �RÞ

C�1
R1 � ðER1 � n1Þ
jF�T

R1 n
1j2

C�1
R1n

1:

ð17bÞ

Next, we develop a semi-analytical procedure to

efficiently determine the effective behaviour of the

rank-two hyper-electro-elastic laminates under

investigation.

4 The reduced system of solving equations

for the semi-analytical rank-two homogenisation

The procedure developed in this section focuses on

analytical manipulations for the determination of the

localisation parameters a and b characterising the

mesoscopic deformation gradient and nominal electric

field through Eqs. (4) and (5), respectively.

Substitution of Eqs. (17) into Eq. (2d) yields

�shC
�1
sh � ðEsh � n0Þ � �VC

�1
R1 � ðER1 � n0Þ

þ ð�V � �RÞ
C�1

R1 � ðER1 � n1Þ
jF�T

R1 n
1j2

C�1
R1 � ðn1 � n0Þ ¼ 0;

ð18Þ

which can be expressed in terms of the macroscopic

quantities F and E through Eqs. (4) and (5). Hence,

Eq. (18) can be solved for b as a function of the

parameter a, still unknown, as follows

bðaÞ ¼
n

�V � �sh � a cshLðaÞm0 � n1
	 


C�1 � ðE� n0Þ

þ aE �m0 cR1�sh þ csh�V � a ðcshÞ2LðaÞm0 � n1
h i

� jF�Tn0j2 � LðaÞ C�1 � ðE� n1Þ
	

þ a cshE �m0 C�1 � ðn0 � n1Þ�
o

�
n

cR1�sh þ csh�V � a ðcshÞ2LðaÞm0 � n1
h i

� jF�Tn0j2 � csh LðaÞC�1 � ðn0 � n1Þ
o�1

;

ð19Þ

where the auxiliary function LðaÞ reads

LðaÞ ¼ �V � �R
HðaÞ C�1 � ðn0 � n1Þ þ a cshm0 � n1jF�Tn0j2

� �
;

ð20Þ

which is in turn dependent on HðaÞ, defined as

HðaÞ ¼jF�Tn1j2 þ 2a cshm0 � n1 C�1 � ðn0 � n1Þ
þ ða cshm0 � n1Þ2jF�Tn0j2:

ð21Þ

Analogously, substitution of Eqs. (16) into Eq. (2b)

yields

�
lshFsh � pshF

�T
sh þ �shF

�T
sh Esh � C�1

sh Esh

� lVFR1 þ pR1F
�T
R1 þ ðlV � lRÞFR1n

1 � n1

� �VF
�T
R1 ER1 � C�1

R1ER1

�
lV � lR þ ð�V � �RÞ C�1

R1 � ðER1 � n1Þ
	 
2

jF�T
R1 n

1j4

� F�T
R1 n

1 � C�1
R1n

1 þ ð�V � �RÞC�1
R1 � ðER1 � n1Þ

jF�T
R1 n

1j2

� F�T
R1 ER1 � C�1

R1n
1 þ F�T

R1 n
1 � C�1

R1ER1

� ��
n0 ¼ 0:

ð22Þ

By taking the inner product of both members of

Eq. (22) with Fm0, all terms involving the pressures

vanish, leading to the following equation for a

A
�
a; bðaÞ

�
aþ Bða; bðaÞÞ ¼ 0; ð23Þ

in which
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A
�
a; bðaÞ

�
¼

h
cR1lsh þ cshlV � cshðlV � lRÞðn0 � n1Þ2

i

� jFm0j2

þ

cshm0 � n1
HðaÞ

�
2ð�V � �RÞT

�
a; bðaÞ

�

� E �m0 �m0 � n1
HðaÞ ðlV � lRÞ þ ð�V � �RÞð

T
�
a; bðaÞ

�2Þ
�
� ðE �m0Þ2ðcR1�sh þ csh�VÞ

�

� jF�Tn0j2;
ð24Þ

and

B
�
a;bðaÞ

�
¼ðlsh�lVÞC�ðn0�m0Þ
þðlV�lRÞn0 �n1C�ðm0�n1Þ

þ ð�sh��VÞE�m0þ�V��R
HðaÞ T

�
a;bðaÞ

�
m0 �n1

� �
C�1 �ðE�n0Þ

þb ðcR1�shþcsh�VÞE�m0�cshð�V��RÞ
HðaÞ T

�
a;bðaÞ

�
m0 �n1

� �

�jF�Tn0j2þC�1 �ðn0�n1Þ
HðaÞ

(
ð�V��RÞT

�
a;bðaÞ

�
E�m0

�
lV�lRþð�V��RÞT

�
a;bðaÞ

�2h i
m0 �n1

HðaÞ

)
;

ð25Þ

where

T
�
a; bðaÞ

�
¼ C�1 � ðE� n1Þ þ a cshm0 � n1 C�1 � ðE� n0Þ
þ csh aE �m0 � b

� �
C�1 � ðn0 � n1Þ

þ a ðcshÞ2m0 � n1 aE �m0 � b
� �

jF�Tn0j2:
ð26Þ

Equations (19) and (23) constitute the main analytical

result of this investigation. We note that the technique

leading to such a result, allowing one to skip the

computation of the mesoscopic pressures to determine

the macroscopic response, is not limited to the adopted

neo-Hookean hyperelasticity (specified in Sect. 3). In

fact, it just makes use of the choice of the deformation

gradient as primal kinematic variable for the finite

deformation framework.

Equation (23) for a can be coupled to the macro-

scopic boundary conditions (1b) and (1c) to compute

the actuation stretch k and the amount of shear n. As
demonstrated in Sect. 5, this procedure is computa-

tionally convenient as it allows one to avoid the

evaluation of the mesoscopic pressures pk. We remind

that, as explained in Sect. 2, in our homogenisation

algorithm, after the computation of a, k, and n, the

pressure p is evaluated through the analytical expres-

sion obtained by imposing Eq. (1a).

Now, we provide the relations to obtain the

remaining mesoscopic fields. First of all, b can be

computed from Eq. (19). Second, the mesoscopic

stress state requires the evaluation of pR1 � psh, that

can be obtained from the inner product of both

members of Eq. (22) with F�Tn0, that yields

pR1 � psh ¼ jF�Tn0j�2


lV � lsh � �sh C�1 � ðE� n0Þ

	

þ cR1 b� aE �m0
� �

jF�Tn0j2�2

þ �V C�1 � ðE� n0Þ
	

þ csh aE �m0 � b
� �

jF�Tn0j2�2

� ðlV � lRÞðn0 � n1Þ2

þ
lV � lR þ ð�V � �RÞT

�
a; bðaÞ

�2
HðaÞ2

� C�1 � ðn0 � n1Þ þ a cshm0 � n1jF�Tn0j2
h i2

� 2T
�
a;bðaÞ

�
LðaÞ C�1 � ðE� n0Þ

	

þ csh aE �m0 � b
� �

jF�Tn0j2�
�
:

ð27Þ

Third, �b, defining the mesoscopic electric displace-

ments through Eqs. (6), can be then obtained by

directly employing Eqs. (17).

It is worth mentioning that, by assuming �R ¼ �V
and lR ¼ lV in Eq. (13), such as the rank-one phase

becomes microscopically homogeneous, the forego-

ing procedure particularises to that proposed by Gei

et al. [4] for a rank-one composite, in turn numerically

leading to the results analytically achievable through

the potential (13).

5 Application to optimised microstructures

for rank-two laminates: validation and new

layouts

We now apply the procedure developed in Sect. 4 to

actuators whose microscopic properties are the same

as those adopted in [2, 5] to facilitate the comparison.

In particular, for the matrix we adopt lb ¼ 10MPa and

�b ¼ 10 �0, where �0 is the permittivity of the vacuum,

i.e. �0 ¼ 8:85� 10�12 F/m. The numerical studies

here illustrated are performed by implementing the

standard and novel homogenisation procedures in the
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commercial software ‘Mathematica’ ver. 11.0 (Wol-

fram Research, Inc.).

First, we perform a comparative investigation by

considering the layout ‘Tree a’, thoroughly analysed

by Gei andMutasa [5] for phase contrast up to 1000 on

both the shear modulus, la=lb, and the permittivity,

�a=�b. We validate our results by assuming the

configurations reported in Table 3 of [5],2 therein

optimised with respect to the stretch k for applied

macroscopic electric field E2 ¼ 100 MV/m. Table 1

reports our results, which are in excellent agreement

with those published in [5], both in terms of stretch and

amount of shear. In fact, the relative error never

exceeds 10�6. The last column of Table 1 expresses

the gain in longitudinal strain with respect to the

homogeneous case, whose stretch is reported in the

first row.

Second, we focus on the ‘Tree b’ layout, for which

the only available study is within the small strains and

rotations framework [2]. Hence, for this layout, by

resorting to the routine ‘FindMaximum’ of ‘Mathe-

matica’, we look for new optimal configurations to

maximise k at the applied nominal electric field

E2 ¼ 100 MV/m, as for the ‘Tree a’ case. To this end,

we remark that, because of the problem nonlinearity,

one has to carefully inspect the solutions for the meso-

and micro-structural parameters to ensure that they

correspond to achievable electro-mechanical fields.

The optimisation results are reported in Table 2. They

specifically refer to increasing shear modulus and

permittivity ratios, la=lb and �a=�b, from 1 (homoge-

neous case) to 20. As summarised by the data in the

last column of Table 2, these analyses allow us to

establish that the performance of the ‘Tree b’ rank-two

actuator improves with respect to the homogeneous

case, analogously to the ‘Tree a’ layout.

However, as highlighted by the k� E2 curves

plotted in Fig. 2, for a composite with

la=lb ¼ �a=�b ¼ 10, the ‘Tree b’ layout achieves a

slightly higher stretch, whereas the improvement in

the actuation response exhibits opposite trend when

the phase contrast is set to 20, demonstrating the

existence of a transition between the two behaviours in

the interval between the two analysed values of the

contrast. Moreover, the optimal ‘Tree b’ microstruc-

tures are obtained by decreasing both the volume

fraction of the core and the angle of the core-shell

interface h with increasing phase contrast. The fore-

going observations are in agreement with the findings

reported in [2] and show that both layouts should be

considered in the optimisation of actuators based on

rank-two laminates. Our nonlinear results, better

suited than those obtained in the linear regime,

confirm the importance of carefully considering the

composite conceived as islands of stiff reinforcements

in a soft matrix (i.e., the intuitive ‘Tree a’

Table 1 Plane-strain rank-two configurations (‘Tree a’) optimised for maximum stretch (kmax) for different contrast on shear

modulus and permittivity at E2 ¼ 100 MV/m: comparison with literature results [5]

la
lb
¼ �a

�b
cR1 cR1b h [�] hR1 [�] kmax n Gain w.r.t. homogeneous

1 0 – – – 1.0234 0 –

10 0.831 0.468 20.1 62.1 1.0271 0.0013 1.16

100 0.963 0.489 12.3 65.1 1.1241 0.1181 5.30

1000 0.990 0.493 –20.0 70.0 2.4789 0.2485 63.20

The first row reports the homogeneous case

20 40 60 80 100

1.01

1.02

1.03

1.04

E2 [MV/m]

λ [-]

homogeneous

Tree a

10Tree b

20

Fig. 2 Longitudinal stretch k for optimal rank-two devices

(‘Tree a’ and ‘Tree b’) for la=lb ¼ �a=�b ¼ 10 and la=lb ¼
�a=�b ¼ 20 calculated in plane-strain at increasing applied

nominal electric field E2

2 In [5], the volume fraction of phase b in the core corresponds

to the ratio cR1b =cR1.
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arrangement) as the only way to improve the response

of an electro-elastic device and show that islands of

soft domains hierarchically embedded in a relatively

stiff matrix can reach even better actuation stretches.

To gain insight on the sensitivity of kmax to changes

of meso- and micro-structural parameters, we report in

Figs. 3 and 4 the actuation stretch as a function of h,
hR1, cR1, and cR1b . Specifically, we take single varia-

tions of such parameters about the optimal configura-

tion within a range of 	10% of their maximum

possible values. In particular, Fig. 3 refers to the ‘Tree

a’ layout with contrast la=lb ¼ �a=�b ¼ 100, while

Fig. 4 is concerned with the ‘Tree b’ laminate with

la=lb ¼ �a=�b ¼ 20:

For the ‘Tree a’ composite, the stretch is clearly

more sensitive to variations of the core volume

fraction and of the microscopic interface orientation

hR1, whereas for the ‘Tree b’ layout, the two angles h
and hR1 play the most important role, at least in the

neighbourhood of the optimal configuration.

Finally, to estimate the effectiveness of the new

homogenisation procedure, the computational time

required by the software to reach a convergent solution

is evaluated through the built-in function ‘Timing’.

For different sets of applied parameters, it takes an

average of about 0.45 s to converge with the new

procedure developed in Sect. 4. By contrast, under the

same conditions, about 4.09 s are needed in average to

reach convergence with the homogenisation procedure

so far adopted in literature, also requiring the compu-

tation of the mesoscopic pressures. This proves the

superior efficiency of the homogenisation procedure

here proposed, which is expected to be more robust

Table 2 Plane-strain rank-two configurations (‘Tree b’) optimised for maximum stretch (kmax) for different contrast on shear

modulus and permittivity at E2 ¼ 100 MV/m

la
lb
¼ �a

�b
cR1 cR1b h [�] hR1 [�] kmax n Gain w.r.t. homogeneous

1 0 – – – 1.0234 0 –

5 0.600 0.450 54.4 –57.9 1.0258 –0.0017 1.10

10 0.565 0.428 50.9 –58.6 1.0286 –0.0045 1.22

15 0.526 0.405 48.5 –59.9 1.0309 –0.0075 1.32

20 0.394 0.318 45.1 –64.5 1.0329 –0.0131 1.41

The first row reports the homogeneous case. Some of the corresponding k� E2 curves are plotted in Fig. 2

−10 −5 5 10

1.06

1.10

[%]

λ [-]

θ

cR1
b

θR1

cR1

0

λmax

Fig. 3 Longitudinal stretch k for ‘Tree a’ layout with la=lb ¼
�a=�b ¼ 100 as a function of the four meso- and micro-structural

parameters h, hR1, cR1, and cR1b . The abscissa domain is

½�0:1c; 0:1c� where c is the maximum value achievable by the

considered parameter. The maximum value of cR1 is 3.7% that

corresponds to cR1 ¼ 1

−10 −5 5 10

1.02

1.03

[%]

λ [-]

cR1
b

cR1

θ

θR1

λmax

0

Fig. 4 Longitudinal stretch k for ‘Tree b’ layout with la=lb ¼
�a=�b ¼ 20 as a function of the four meso- and micro-structural

parameters h, hR1, cR1, and cR1b . The abscissa domain is

½�0:1c; 0:1c� where c is the maximum value achievable by the

considered parameter. The minimum value of cR1 is limited by

cR1b ¼ 0:318 and corresponds to �7:6%
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and reduces the computational cost of about nine

times.

6 Concluding remarks

Soft electro-elastic hierarchical laminated composites

exhibit great potential for the realisation of voltage-

driven devices with enhanced actuation properties. In

particular, rank-two laminates represent a good com-

promise between the complexity associated with

manufacturing and the actuation performance that

hierarchical materials may provide.

In this paper, we have focused on nonlinear electro-

elastic problem for two rank-two composite layouts

whose phases obey a neo-Hookean mechanical

response augmented with an ideal dielectric response.

For both layouts, we have shown how to simplify at

most the system of solving equations. Our proposal

relies on analytical treatments of the original set of

equations directly formulated on accounting for the

electro-mechanical continuity relationships at the

shell-core interface and macroscopic external bound-

ary conditions. We remark that the proposed analytical

technique would apply also to study electro-elastic

laminates whose phases obey other relevant hyper-

elastic laws, as, for instance, that proposed by Gent

[21].

We have demonstrated that the proposed reduced

set of solving equations is very efficient when

attempting to find a numerical solution, whereby the

required computational time is about one order of

magnitude lower than that needed to solve the whole,

untreated system.

As an additional outcome of this research, we have

obtained, under plane-strain conditions and for the

case of equal contrast between phase shear moduli and

permittivities, new optimal configurations in terms of

longitudinal actuation in our nonlinear framework for

the rank-two layout where soft inclusions are embed-

ded in a stiffer matrix, here referred to as ‘Tree b’. We

show that this arrangement can reach higher actuation

stretches with respect to those achieved by the ‘Tree a’

configurations for relatively low contrasts.

We have finally assessed, for both types of com-

posite, the sensitivity of the actuation stretch to

perturbations of the meso- and micro-structural

parameters, by varying them about the optimal

configurations. We have observed a remarkable

dependence of the results on the adopted layout (either

‘Tree a’ or ‘Tree b’), also in terms of the most

influencing parameter. However, the microscopic

interface orientation (characterising the nested rank-

one phase) always plays a relevant role.

Future investigations should focus on developing a

semi-analytical homogenisation procedure, analogous

to that here proposed, to optimise the meso- and

micro-structures of the rank-two dielectric composites

under charge-controlled actuation. We expect such

models to aid the design and development of optimal

hierarchical dielectric composite actuators.
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Appendix

When the deformation along x3 is unconstrained, the

number of independent macroscopic stretches

increases to two. In particular, we select those

associated with axes x1 and x2, indicated now as k1
and k2, respectively, so that in this case the deforma-

tion gradient takes the form

F ¼
k1 nk2 0

0 k2 0

0 0 1=ðk1k2Þ

2
64

3
75:

The lowest-term system for the solution of the

boundary-value problem involves now variables

a ; k1 ; k2 ; n: ð28Þ

Their evaluation requires the use of the macroscopic

boundary condition
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S33 ¼ 0

in addition to the already introduced conditions (23),

(1b), and (1c).

The determination of the variables in Eq. (28) then

allows one to compute all the remaining quantities by

precisely following the procedure proposed in Sect. 4.

In this regard, on the one hand, our numerical

experiments carried out on configurations analogous

to those studied in Tables 1 and 2 confirm the

computational superiority of the proposed procedure.

On the other hand, they clearly demonstrate that the

stretch along the x3 direction does not play a relevant

role in the electro-mechanics of the laminated com-

posite structures here of interest, for which the plane-

strain assumption is then totally appropriate. However,

the solution of the more general boundary-value

problem could be relevant for hierarchical composites

whose shear moduli ratio differs from that of dielectric

permittivities.
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