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Abstract 
Rolling Contact Fatigue (RCF) tests are a common effective method to study the behavior of wheel- and 
rail-steels. The measurements usually performed are discrete and destructive: they can only be performed 
at each intermediate stop of a test and they result in the alteration or destruction of the examined 
specimens. This work aims to assess the damage level steel samples during RCF tests, making continuous, 
non-destructive, and contactless measurements. A machine-learning technique based on vibration and 
torque measurements, together with 2D image was applied to RCF-dry tests carried out on different 
railway wheel steels tested according to the same operating parameters. 
The proposed algorithm was able to quantitatively estimate the damage level of the samples by calculating 
the current data distance from specific references, e.g. a defined final damaged state. The used approach 
ensures a good degree of reliability both in terms of specificity and sensitivity. 

1 Introduction 

At least 10% of the 2000 train accidents recorded in the EU per year are likely caused by problems related 
to the rolling contact fatigue (RCF) phenomenon [1]. Victims, investigations, maintenance and 
replacement are just a few of the high costs involved. These, as well as the need of faster and more reliable 
railway material, constitute a strong push towards a better characterization of the materials used, and a 
more detailed study of the evolution of the damage mechanism.  

The damage assessment in railway application is, in fact, still an open question. Many parameters affect 
the assessment in a wheel/rail contact: materials, load history, climatic condition, and sliding ratio. 
Different damage mechanism can also occur along with wear and rolling contact fatigue, the two principal 
players [2,3] that can interact and influence each other, even in competition.  
The aim of this study is to add new tools and technologies to study wear and fatigue damages due to 
wheel-rail contact. One of the most common test that can be performed to characterize the wheel and rail 
steel material involves a twin-disk test bench, where specimens are used to simulate the real operating 
conditions of wheels and rails, with controlled operating conditions: rotation speed, slip ratio and load [3]. 
More and less accurate modelling of the damage can be found in the literature: some studies have focused 
on the mechanical and metallurgical characterization of different steels for wheels and rails, to identify the 
types of damage phenomena involved; while other researches focused on the development of analytical 
models. 
A typical test procedure [16] using this test bench is to stop the machine at predefined cycles numbers, 
remove the samples, clean them, and perform some non-destructive tests, such weighing, magnetic 



measurement and image analysis; then resume the test. Destructive measurements can be taken only at the 
end of the test, to identify the damage that let to failure, if any, and measure the cracks, where present. The 
need to stop the test to perform assessments and the impossibility of repeating a test after a destructive 
measurement is the main limitation to the study of damage evolution, since staircase approaches are time 
and resources consuming. Moreover, the interruption of the test, dismounting and mounting of the 
specimen could lead to different damage evolution, introducing relaxation phases. 
The objective of the proposed study is to quantitatively estimate the damage status of the specimens using 
a continuous non-contact measurement system. This activity is based on the use of k-means clustering, a 
non-supervised Machine Learning technique, fed with vibration and torque measurement data, suitably 
pre-processed. Similar techniques have already been used to identify possible variations in the frequency 
responses of a particular mechanical model of the samples [23], but that approach required extensive post-
processing of all tests data and operator-based manual tuning, while the proposed method is fully 
automated. 
In the present work, k-means clustering method is implemented by combining three in different signals in 
time (two vibrations and one torque) in wheel-rail contact on RCF tests carried out by using a twin-disk 
bench. With the extraction of statistical and spectral features and a PCA analysis to reduce the number of 
features, K-means is applied to determine the damage in time on wheel specimens. The damage 
assessment is obtained with the clustering of the three signals. The novelty of the propose work is that 
there is a constant evaluation of damage in time with the possibility to have a characterization of materials 
in railway application with the use of an on-line method. In literature, there is only the determination of a 
fault condition with machine learning techniques. To have a confirm of the robustness of this method, a 
correlation with a Rb index, calculated from a binarization of images taken from a speed camera installed 
on twin-disk bench, it was given. 

2 State of the art 

Machine learning techniques have a wide use in many research field and they are used in signal vibrations 
in order to diagnose the health condition of rotary machines. The literature reports many works, in which 
several machine-learning techniques are used to classify different faults. Bearings of rotary machines are 
the most commonly studied parts, with research focused on detecting different defects. A lot of works in 
literature report Convolutional Neural Network (CNN) as a valid technique to extrapolate discriminative 
features to detect fault condition of beating parts [4-9]. Other works display a comparison with different 
machine learning methods (ANN, SVM, SOM, fuzzy method, Gaussian Process Regression), or using 
different machine learning languages with different features extractor algorithm to find higher accuracy in 
detection of fault conditions [10-13]. For example, Elfojani [14] correlates AE features with 
corresponding natural wear of slow speed bearing thought a series of laboratory experiments by using 
neural network model and Gaussian Process Regression. In [15], it was proposed a deep-hybrid model 
composed of the Convolutional Neural Network (CNN) and stacked denoising-autoencoder for 
unsupervised features learning and classification on multi-channel vibrations data. This deep hybrid model 
allows to obtain higher accuracy than single CNN. All these machine-learning techniques are used to 
handle big amounts of raw data and to detect fault conditions of rotary machines. 

K-means algorithm is a simple machine learning technique that allows diagnostics of rotary machine 
through clustering. K-means is normally used when the number of data is not excessive. With the 
combination of an algorithm to reduce the number of features, there is the possibility to have a data 
clustering to find fault status in rotary machine. Several works in literature reports the use of k-means as 
an algorithm to detect abnormal or normal function of bearing elements in rotary machine [17-21]. In [22], 
k-means algorithm is used with a combination of vibration signal and thermal images features, to extract 
shape features using image segmentation. 
To our current knowledge only few studies have been focused on quantifying the damage evolution, an 
improvement of the fault detection, especially without stopping the test. 



3 Materials and Methods 

3.1 Materials 

Six different sets of railway-wheel samples supplied by Lucchini RS were analysed to verify and establish 
the robustness of the method. All these specimens, obtained directly from the real components, were tested 
on the twin-disk bench of the University of Brescia. The tests have the same duration in time with a 
number of cycles that corresponds to 130000 cycles. The tests ranging from 1 to 5 were performed with a 
periodically stop of the machine where the samples were dismounted, ultrasonically cleaned and weighted 
to evaluate their weight loss in time. The twin-disk bench was stopped at 10000, 20000, 50000 and 70000 
cycles. Test 6 was performed without interruption. The test conditions, reported in table 1, were the same 
for all the tests carried out and the considered specimens were reported in table 2. 

 
Table 1: Operative conditions of the tests. 

Specimens	
Diameter	

[mm]	

Specimens	
thickness	

[mm]	

Specimens	
Speed	

[r.p.m.]	

Contact	Pressure	

[MPa]	

Sliding	
Ratio	

[%]	

Applied	
Load	

[N]	

Lubrication	

60	 15	 500	 1100	 1	 7557	 Air	

 
Table 2: Considered Specimens.  

Test	Number	 Rail-Specimen	material	 Wheel-specimen	material	

1	 350HT	 ER	8	

2	 350HT	 ER	8	
3	 350HT	 SANDLOS®	S	

4	 350HT	 SANDLOS®	S	
5	 350HT	 CLASS	C	

prrrrrrrrrr6	 350HT	 SANDLOS®	H	
 
The steel for the wheel specimens is different for every couple of the considered samples, while the steel 
for rail specimens is the same for all the tests. The steel considered for the rail specimens was 350HT 
EN13674-1 and it was a material typically used for rail applications. Thee steel considered for the wheel 
specimens was three and respectively are:  

• ER8	EN13262	
• SANDLOS®	S,	that	is	a	modified	AAR	CLASS	C	
• CLASS	C	(AAR	M107/M208	2004)	
• SANDLOS®	H,	that	is	a	modified	AAR	CLASS	D.		

The Principal steels properties are summarized in table 3.  
 

Table 3: Principal properties of the steels considered. 

STEEL		 350HT	 ER8		 SANDLOS®	S		 CLASS	C		 SANDLOS®	H		

Rupture	Stress	[MPa]	 ≥1175	 940	 1180	 1120	 1270	
Yield	Stress	[MPa]	 		 590	 750	 715	 800	

Strain	[%]	 ≥9	 17	 12	 12	 11	
Brinell	Hardness	[HB]	 345	 203-255	 347	 355	 354	



3.2 Instrumentation 

Figure 1 shows a schematic drawing of the twin-disk bench used in this work. The test bench was 
designed and developed internally and is deeply described in [16]: the specimens are positioned onto 
independent shafts, one of which can be displaced orthogonally to the shaft axis by a hydraulic cylinder 
that applies the imposed contact load. The rolling speed of the shafts is measured by encoders, and a load 
cell located at the piston head measures the contact load between specimens. The bench is equipped with a 
torque sensor with a full scale of 200 Nm positioned on the displaceable shaft, which can continuously 
acquire torque values at a synchronous sampling frequency of 5kHz. Piezo-accelerometers with a 
bandwidth of 26 kHz are fixed near each mandrel support, on the machine frame.  

 
Figure 1: Schematic of the test bench 

In addition to the signals of the torque and vibration, the twin-disc bench is equipped with a vision-based 
measurement system able to acquire frame with a high speed for the duration of all the test. The optical 
apparatus is based on the use of a speed camera (PROMON 501, AOS Technologies AG), and a system, 
composed with a defocused laser source and two laser stripes, for the illumination of the interested region 
(ROI). A detailed description of the optical apparatus for 2D and 3D surface analysis is given in [24]. The 
images are acquired at a frequency of 377 fps with an exposure time of 40 µs. In this way, there is the 
possibility to have three different ROI typologies: with the first one, there is the possibility to measure the 
3D profile of the light stripe in axial direction of the specimen; with the second one can be measure the 
profile length of light that correspond at the encoder used for the angular position of the specimen, and the 
third ROI is used for the 2D elaboration of the surface. 

3.3  Data processing 

Data acquired from the two piezo-accelerometers and the torque sensor, are recorded in packets of 0.2 s 
having one thousand samples per channel. The next step in the preparation of the data is the features 
extraction: for the three sampled signals (two vibration and one torque), statistic-based and spectral-based 
features were extracted every 0.2 sec. This step is necessary to reduce the amount of data, from 3000 
samples to 57 features.  

The statistic-based features extracted from the three signals are: mean, standard deviation, variance, RMS, 
and quartiles. The spectral features are the centroid of the Power Spectrum Density and its quartiles. The 
signals where further combined to compute the maximum value of the cross-correlation and its associated 
time delay, the centroid of the Frequency Response Function and its frequency quartiles.  
Some extracted features are redundant and were automatically removed by looking at the R2 value: for 
each couple of features, the coefficient of determination was computed and the set of feature with the 



lower overall determination was chosen. After this second cleaning, the number of features was reduced to 
44.  

As a subsequent step, the features have been normalized with a z-score method, to compare different 
features with different units of measurements: subtracting the average of its value, and dividing it by its 
standard deviation.  

To have a further reduction of the computation of the algorithm, a Principal Component Analysis, PCA, 
was employed. This analysis was chosen to allow a reduction of the dimensional data with the 
transformation of n possible variables in fewer q variables linearly correlated to the initial ones. The 
criterion adopted for the PCs was to consider the first PCs that are able to describe at least 90% of the 
variance explained. The result of this analysis is a matrix of the original data projected in the space of the 
PC’s principal components chosen. In conclusion, the dataset described in the PCs space is ready to be 
processed by the K-means algorithm. 
After the reduction, the z-score normalization and the PCA analysis, the dataset is imported in the k-means 
clustering algorithm. It is important to specify that the mean and standard deviation values used for the 
normalization derives from the considered test, so the dataset is normalized in relation to the features of 
the actual test. When the algorithm reaches the convergence, the outputs are different.  

To translate the classification information provided by the k-means approach into a quantitative 
measurement, a probabilistic approach has been chosen. Following this approach the distance between the 
point (in n-space) identified by the PCs as coordinates X, associated with the current condition, and each 
cluster centres Ci detected by the algorithm, is used as an indication of similarity between the two states. 
The membership probability Pi is computed directly as the reciprocal value of the square of this distance, 
later normalized to guarantee that Σ(Pi)=1. An example of result can be seen in Figure 2. It is clearly 
visible how we can clearly detected the phases in which the test bench was offline (in red), and that the 
system gradually changes from a state similar to the one found at the beginning (“pristine”) and the one 
found at the end of the test (“damaged”). 

 
Figure 2: Example of Membership probability chart, for test number 1. In red the probability of belonging 

to the “test offline” cluster, in green the probability of belonging to the same cluster  of the first cycles, 
and in blue the membership probability of belonging to the condition found at the end of the test. 

The images acquired with the high-speed camera are analysed using different ROI. One of the ROI is used 
to perform a blob analysis to count small craters that form on the surface of the specimen during the test, 
likely due to fatigue and wear phenomena. The acquired images are elaborated with a binarization of the 



images to have images clearer and, after this elaboration, it can be calculated synthetic indices to evaluate 
the trend of these blob. 
The most relevant index that is possible to correlate to the k-means probability graph is the Rb% calculated 
with this formulation:  

R!% =
A!"!

!!!
A!"#

×100 

where n is the number of blob found in the considered ROI, AROI is the total area of the interested region 
and the numerator is the sum of the n Area blob found in the ROI. This index is calculated for every 
frames acquired during the test and then, it is averaged at defined number of cycles in order to find an 
averaged index. This averaged Rb% represents the evolution of the damage ratio expressed as fraction. 
Figure 3 shows an example of how the surface image was analysed and the Rb coefficient computed. 

 

 
Figure 3: Example of images analysis of the specimen sample, at the beginning of the test (top) and at 
130k cycles (bottom). On the left column a photo of the specimen, in the central column the particle 
analysis and in the right column the ROI zoomed in. 

4 Results 

4.1 Vibration analysis validation 

As can be seen in figure 2, the change between the pristine and damaged state of the specimen happens at 
a specific point in time, which could be associated with a change in the damage phenomena. The change is 
gradual, allowing to propose a quantitative evaluation of the phenomena progression. To demonstrate that 
the developed method is reliable during the clustering elaboration, a K-fold cross-validation was used. The 
datasets of two tests were divided in five parts and each part was used as ground-truth to validate the other 
parts. The fold used as groundtruth is the part used for the training and the other parts are used for the 
validation. The results of this cross-validation are positive, with values of sensitivity, specificity and 
accuracy in a range of 98% - 100%.  
To demonstrate that the developed method is robust and not subjected to overfitting, an exhaustive cross-
validation was used, taking into account all the tests under examination. In this cross-validation each test 
was used validated against each other, using as ground-truth the dataset used to train the system, obtaining 
the results shown in Table 2. The reliability of the algorithm in classifying states based on extracted 
features is good, in terms of sensitivity (min.19% - max.100%), specificity (min.25% – max.99%) and 
accuracy (min.59% – max.98%). 



Table 2. Exhaustive cross-validation results 

Status	 Pristine	/	undamaged	 Bench	halted	 Damaged	

Specimen	 1	 2	 3	 4	 5	 6	 1	 2	 3	 4	 5	 6	 1	 2	 3	 4	 5	 6	

Sensitivity	[%]	 19	 55	 25	 53	 61	 79	 36	 72	 97	 69	 85	 54	 100	 99	 90	 98	 85	 95	

Specificity	[%]	 99	 98	 98	 96	 87	 93	 99	 99	 94	 99	 98	 98	 25	 62	 49	 62	 65	 83	

Accuracy	[%]	 64	 83	 85	 80	 76	 86	 92	 97	 94	 94	 98	 97	 59	 83	 79	 80	 76	 88	

 

4.2 Comparison with image data 

Out of the six trials, three where chosen and image data was also analysed, to get confirmation that the 
vibration-based machine-learning assessment was able to detect a phenomena whose effects could also be 
visible using an high speed camera focusing on the specimen. 

The Ra coefficient was computed for every image available, and plotted against the number of cycles. The 
membership probability was assigned a 63% level (using 1 sigma approximation) to be used as a 
threshold, and the data representing the machine stops was remove. 

Figure 3, 4 and 5 respectively present the test number 5, 2 and 4. Except for test 2, where the variation in 
slope of the image-based index is less clear, the other charts clearly show a good superimposition between 
the change in state in the vibration state, and the change in the Ra image-based index 



  
Figure 3: K-means clustering results for test number 5 (top) with blue indicating membership of the 
“pristine state” cluster, green the “damaged” cluster and red (removed here) the bench stops due to 

maintenance. Ra index for the same test (bottom).  

 



  
Figure 4: K-means clustering results for test number 2 (top) with blue indicating membership of the 
“pristine state” cluster, green the “damaged” cluster and red (removed here) the bench stops due to 

maintenance. Ra index for the same test (bottom).  



  
Figure 5: K-means clustering results for test number 4 (top) with blue indicating membership of the 
“pristine state” cluster, green the “damaged” cluster and red (removed here) the bench stops due to 

maintenance. Ra index for the same test (bottom).  

5 Discussion 

The vibration-based clustering method presented is consistent in terms of results, and portable between 
different material conditions, as the correlation validation pointed out. More tests are needed to understand 
if the image-based index will corroborate the results obtained. A proper validation could be achieved only 
by performing destructive tests at given intervals, but such solution will take time. For this reason a 
comparison between different continuous and non-destructive solutions could be sought. 



This method, could lead to the ability to carry out a quick analysis of how the single test is performing in 
real time, which in turn will provide the ability to automatically detect the test bench working conditions, 
and to detect abnormalities, asymmetries or data structures that a traditional test could miss. 

6 Conclusion 

The method proposed is simple to implement and could greatly decrease the costs of fatigue 
characterization in wheel and rail steel. The membership probability obtained, if validated by further 
study, could prove to be a metric of interest to understand what damage phenomena is occurring and 
when. The ability to detect the change between different states will also open up the possibility of 
designing tests to be stopped at a particular state change, driven by the machine-learning information, to 
allow for destructive tests at a specific progression stage of the damage phenomena. 
This work lays the ground for a more detailed study on the application of machine learning techniques in 
material characterization tests. The correlation of the presented results with traditional damage progression 
assessment (wear, cracks etc..) is not yet fully proven, although validation tests are currently under 
evaluation and preliminary results are positive. 
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