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Abstract: The recent and massive revival of green strategies to control plant diseases, mainly as a 

consequence of the Integrated Pest Management (IPM) rules issued in 2009 by the European 

Community and the increased consumer awareness of organic products, poses new challenges for 

human health and food security that need to be addressed in the near future. One of the most 

important green technologies is biocontrol. This approach is based on living organisms and how 

these biocontrol agents (BCAs) directly or indirectly interact as a community to control plant 

pathogens and pest. Although most BCAs have been isolated from plant microbiomes, they share 

some genomic features, virulence factors, and trans-kingdom infection abilities with human 

pathogenic microorganisms, thus, their potential impact on human health should be addressed. This 

evidence, in combination with the outbreaks of human infections associated with consumption of 

raw fruits and vegetables, opens new questions regarding the role of plants in the human pathogen 

infection cycle. Moreover, whether BCAs could alter the endophytic bacterial community, thereby 

leading to the development of new potential human pathogens, is still unclear. In this review, all 

these issues are debated, highlighting that the research on BCAs and their formulation should 

include these possible long-lasting consequences of their massive spread in the environment. 
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1. Introduction 

Biocontrol is defined as the use of living organisms to control pests, also resulting in plant 

growth promotion [1,2] (Table 1). This approach to pest containment has experienced a revival in the 

last decade because of the new guidelines for the Common Agricultural Policy (Dir 128/2009) issued 

in 2009 by the European Community. This directive contains the Integrated Pest Management (IPM) 

principles (annex III), one cornerstone of which is the promotion of sustainable biological, physical, 

and other non-chemical methods instead of chemical ones, whenever they provide satisfactory pest 

control. A greater emphasis on IPM as part of agricultural policy has been giving new input in 

developing commercial products based on living organisms, with a particular interest in those 

isolated from rhizosphere, soil, or plant phyllosphere and endosphere. 

  



Microorganisms 2019, 7, 44 2 of 16 

 

Table 1. Terminology and definitions related to biocontrol field. 

Term Definition Reference 

Biocontrol The use of living organisms to control plant pathogens and 

pests resulting in plant growth promotion  

[2]  

Biostimulants Formulated products with novel, or emergent properties 

due the complex of constituents, that improve plant 

productivity not as a sole consequence of the presence of 

known essential plant nutrients, plant growth regulators, 

or plant protective compounds 

[3]  

Biopesticide Biological pesticides are derived from natural materials 

including plants, animals and microbe, and some minerals 

[4]  

Biofertilizer A biofertilizer is any bacterial or fungal inoculant applied 

to plants with the aim of increasing the availability of 

nutrients and their utilization by plants, regardless of the 

nutrient content of the inoculant itself. Biofertilizers may 

also be defined as microbial biostimulants improving 

plant nutrition efficiency. 

[5]  

Phytostimulator Microorganism with the ability to produce or change the 

concentration of growth regulators, such as indole acetic 

acid, gibberellic acid, cytokinins, and ethylene 

[6]  

Pathogen A microbe that can cause physiological and structural 

damages in a host 

[7]  

Biocontrol 

agents 

Living organisms that show the ability to directly or 

indirectly antagonize plant pathogens and pests  

here 

defined 

Endophytic 

bacteria 

Bacteria that habit for all or part of their lifetime, in the 

internal part of a plant 

[8]  

Plant 

microbiome 

A community of microbes associated with a plant and 

their crosstalk with the plant genome and proteome 

[9]  

Pathobiome The complex interactions of pathogenic microbes which 

may influence or drive disease processes and their 

relationship to the ‘normal’ microbiome of the organism in 

question 

[10,11] 

Phytonoses New group of diseases caused by human pathogens that 

are transmitted via consumption of fresh produce 

[12,13]  
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The first-generation of commercial biocontrol products, mainly based on Bacillus and 

Pseudomonas species, were characterized by low efficacy to control plant diseases in open fields 

[14,15]. The failure of these products was possibly due to the lack of knowledge about (i) biocontrol 

mechanisms, (ii) plant–microbe interactions, and (iii) selection procedures for active biocontrol 

strains [14,16]. Biocontrol of plant diseases is a complex process involving not only the biocontrol 

agent (BCA), the plant, and the pathogen but also the environment, the genetic determinants, and the 

indigenous microflora (Table 1). Therefore, the effectiveness of BCAs is related to many factors such 

as their ability to colonize, survive, and proliferate for a considerable time inside and/or on plant 

tissues in the presence of indigenous microflora and, at the same time, directly or indirectly 

antagonize phytopathogens [15]. Furthermore, commercial BCAs, registered as such (see ahead), 

should have some additional properties, i.e., easiness of formulation, the ability to effectively colonize 

the host and survive in the agricultural environment, and not being pathogenic for non-target 

organisms [17]. Bacteria can directly antagonize pathogens by competition for root niches or by 

producing allelochemicals, such as siderophores, antibiotics, biocidal, lytic enzymes, and 

detoxification enzymes, or by interbacterial antagonism via the type VI secretion system (T6SS) 

[15,18–20]. The secretion system is a particular kind of molecular weapon that delivers antimicrobial 

peptide in the periplasm or cytoplasm of a recipient bacterium [21,22]. For example, NADase effector 

family and iron chelator pyoverdine are identified as antimicrobial peptides mediating antagonism 

via T6SS, respectively, in Pseudomonas protegens and Pseudomonas taiwanensis [20,23]. Different 

antibiotic compounds have been isolated from Pseudomonas, Bacillus, Paenibacillus, Streptomyces, and 

Stenotrophomonas spp. (among others [24–28]). These compounds are produced by bacteria in a 

specific metabolic status that is influenced by nutrient availability, pH, temperature, and genetic 

stability/instability of the bacteria [29]. Furthermore, biotic conditions, plant growth, development, 

genotype, and presence of competing species can influence antibiotic biosynthesis [18–30]. BCAs can 

also protect plants indirectly by inducing the host defense pathways. This phenomenon is called 

induced systemic resistance (ISR) and confers an enhanced defensive capacity to the plant (reviewed 

in [31]). The plant response leads to cell wall reinforcement, production of antimicrobial phytoalexins, 

and synthesis of pathogenesis-related proteins (PR). Interestingly, an enhanced plant capacity to 

express defense responses occurs only upon challenge inoculation with a pathogen in a mechanism 

known as ‘priming’ [32]. Thus, in primed plants, defense responses are not activated directly, but are 

accelerated upon pathogen or insect attack, avoiding fitness costs in the absence of challenge.  

BCAs have been studied for their ability to control or lessen plant pathogens, but little is known 

about their impact on human health and the environment. As an example, Bacillus species antagonize 

pathogens via the production of secondary metabolites, such as lipopeptides [33,34]. The toxicity of 

these metabolites has just started to be tested by in vivo assays (i.e., zebrafish model), showing low 

toxicity to aquatic species in the case of bacillomycin DC isolated from Bacillus amyloliquefaciens [35]. 

Since the regulations of the European Union do not define a specific and exclusive legislative/legal 

framework for such beneficial microorganisms, they can be registered either as plant protection 

products or as biofertilizers, phytostimulators, and biopesticides according to national law (Table 1). 

The registration as biofertilizers, phytostimulators, and biopesticides, instead of BCAs, greatly 

reduces the set of toxicity tests normally required for plant protection agrochemicals [3–6]. As 

emphasized by Yakin and colleagues [3], the lack of a legislative/legal framework opens topical 

questions, such as: Which is the best category for cultures of living microorganisms? Which standards 

of proof of efficacy and safety are appropriate to both stimulate the development of these products 

and safeguard human and environmental health? 

2. Plant Microbiome: A Fascinating Source of BCAs 

With the first results of The Human Genome Project [36], it was immediately clear that humans 

are composed of a combination of human cells and microorganisms, and that this intimate 

relationship plays a role in the human physiology and health state [37–39]. This idea was translated 

into the plant kingdom: the Plant Microbiome has been defined not only as a group of microbes 



Microorganisms 2019, 7, 44 4 of 16 

 

associated with a plant but also their ‘crosstalk’ with plant genome and proteome [9,40] (Table 1). 

Plants teem with microbes associated with the rhizosphere, phyllosphere, endosphere, and with 

those that adhere to external surfaces. Interestingly, plant microbiomes are structured and form 

complexes that are interconnected as a network. Inside this system, key taxa have a role in plant 

fitness, soil fertility, nutrient uptake, plant function, productivity, trait expression (phenotype), 

environmental plasticity, and health [9,40]. This innovative concept of a plant as a supraorganism is, 

in some way, responsible for the development of environmentally friendly approaches, such as BCAs, 

to control plant disease and to increase plant productivity [41]. Among BCAs, the endophytes are 

certainly the most promising group, since they are microorganisms that colonize internal plant tissues 

for all, or part, of their lifetime, thus being strictly part of the plant microbiome. 

In early works, endophytes were isolated on growth culture media after surface disinfection of 

different plant tissues. Methods for their isolation have been reviewed extensively [42,43]. 

Afterwards, the development of cultivation-independent fingerprinting molecular methods based on 

the 16S rRNA gene allowed a more specific and detailed description of the microbial diversity in 

complex communities. Nevertheless, our understanding of microbiota complexity has been achieved 

mainly through the use of ‘next-generation’ and now ‘third-generation’ technologies (among others 

[8,44–46]). These technologies have been used not only to investigate the microbiota composition but 

also its relationships with the host and the environment [47–51]. Nonetheless, the effect of BCA 

treatment on endophytic bacterial community composition and activity has been poorly investigated. 

Hardoim and colleagues [8] have given a comprehensive overview of prokaryotic and eukaryotic 

endophytes reported in the literature. Despite the extensive amount of sequences analyzed, the major 

part of endophytes reported belongs to four phyla: Proteobacteria, Actinobacteria, Firmicutes, and 

Bacteroidetes. Most of the prokaryotic endophytes could be assigned to the Gammaproteobacteria 

(26%) that are largely represented by a few genera: Pseudomonas, Enterobacter, Pantoea, 

Stenotrophomonas, Acinetobacter, and Serratia. A similar scenario has also been depicted for eukaryotic 

endophytes which belong mainly to the Glomeromycota (40%), Ascomycota (31%), Basidiomycota 

(20%), Zygomycota (0.1%), and unidentified phyla (8%). 

Microbiota composition is influenced by different parameters, such as plant genotype and 

seasonality. Plant genotype, growth stage and physiological status, type of plant tissue, 

environmental conditions, and agricultural practices also determine endophytic colonization and 

endosphere community structures (among others [52–56]). Furthermore, metagenomic approaches 

and comparative genomic analyses allow the identification of intrinsic bacterial traits important for 

host colonization and for the endophytic lifestyle [8,57,58]. In particular, Hardoim et al. [8] 

highlighted that endophytic bacteria share genes related to motility and chemotaxis, detoxification, 

and stress-related enzymes, transporters, and secretion systems. As an example, type IV secretion 

systems and conjugal DNA–protein transfer secretion systems were detected more prominently 

among endophytes than among rhizosphere bacteria and phytopathogens. These types of secretion 

systems are involved in host colonization and conjugation of DNA [59,60]. 

In the last decade, bacteria host colonization process has been extensively reviewed and three 

main steps were identified: adhesion, penetration, and establishment [8,61–63]. Root colonization is 

strictly linked to root exudation [64]. These exudates are rich in carbohydrates, amino acids, and 

organic acids that are attractive nutrient sources for bacteria [65]. Microorganisms are chemoattracted 

by the exudates, allowing them to colonize roots. In turn, the microbiome influences root exudates 

[66]. By the use of microscopic tools, such as immunomarkers and fluorescence in situ hybridization 

[67], bacteria have been visualized at an early stage of infection as single cells attached to the root 

surface, and subsequently as doublets on the rhizodermis, forming a string of bacteria [63,68]. Once 

inside the plant, endophytic bacteria remain localized in a specific tissue, such as the root cortex, or 

colonize the plant systematically by transport or active migration through the conducting elements 

or the apoplast [69,70] (Figure 1). The different mechanisms of distribution might be due to 

interactions with other bacteria or to the different requirements of each microorganism, allowing 

them to inhabit different niches, represented by tissues and, more specifically, by the intercellular 

spaces within each tissue [71]. Furthermore, comparative genome analyses highlighted the presence 
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of genes involved in plant adhesion and penetration, such as hemagglutinin genes, curli fiber genes, 

and genes related to plant polymer degradation enzymes [72]. Not all bacteria that reach the 

rhizosphere are competent to become an endophyte. In fact, the key step to becoming a true 

endophyte is the so-called ‘establishment’, that requires a stable relationship with the host which has 

to recognize and communicate with the microbiota, and vice versa [73]. It seems that at the beginning, 

endophytes are recognized as alien organisms, inducing microbe-associated molecular patterns 

(MAMPs)-triggered immunity (MTI) [74,75]. Subsequently, they are able to secrete effector proteins 

that suppress plant MTI responses in order to carry on the colonization process [75]. 

 

Figure 1. Confocal microscopy images of experimentally inoculated plants showing the ability of 

endophytic bacteria to inhabit a new host (a) Burkholderia sp. isolated from grapevine leaf tissues [76] 

and transformed with green fluorescent protein is able to sustain bacterial cell division in periwinkle 

parenchyma stem cells. (b) Pantoea agglomerans isolated from orchids and transformed with red 

fluorescent protein [77] has been inoculated via root absorption in apple plantlets: bacterial cells are 

visible in the upper leaves after two weeks from inoculation, demonstrating the ability to stably 

colonize a different host. 

3. Human and Animal Pathogens Associated with Plants: Simple Contamination or 

Survival/Spreading Strategies 

Microbiota associated with plants, including bacteria and fungi, have been extensively studied 

in order to find new microorganisms suitable for plant protection, growth promotion, industrial and 

medical applications, pollution control, and phytoremediation [78]. Among the numerous studies on 

this research topic, only a few pointed out that plants can harbor some human and animal pathogens 

(HAP) [46,62,79–81]. For a long time, the scientific community believed that human and plant 

pathogenic bacteria reside in separate hosts, interacting with them in a specific way as a result of 

coevolution [79]. However, recent studies have begun to show that many plant pathogens have the 

ability to colonize other hosts outside of the plant kingdom, including insects, animals, and humans 

[82,83]. A clear example of cross-kingdom host jumps is Agrobacterium tumefaciens. A. tumefaciens was 

first characterized as the etiological agent of crown gall in rosaceous susceptible genotype [84] and 

later as a human pathogen [85]. A. tumefaciens is able also to transfer DNA not only into plants, but 

into fungal and human genomes, revealing the ability to infect different hosts belonging to different 

kingdoms [86,87].  
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The genera Pantoea and Burkholderia have been recognized as plant-associated bacteria inducing 

plant diseases, growth promotion, and/or plant protection depending on the agroecosystem [88]. 

Despite these microbe–plant interactions, some species of Pantoea and Burkholderia infect humans, 

causing septicemia, chronic granulomatous disease, melioidosis, arthritis, and urinary infections in 

immunocompromised humans [79]. The Burkholderia genus includes over 60 species which have been 

found in a variety of ecological niches, ranging from hospitals to humid environments (among others 

[89,90]). The genus Burkholderia has gained considerable importance owing to its potential in 

biotechnology applications [88]. Due to its pathogenicity in humans and animals, great efforts have 

been made to unambiguously discriminate plant pathogenic from non-pathogenic strains, including 

multilocus sequence analyses and comparative genome analyses [90–92]. Based on phylogenetic 

analyses, the scientific community has recently discussed the possibility of dividing this genus into 

at least two large clusters, including the cluster of plant or animal/human pathogens and the cluster 

of plant-associated species [89,90]. Interestingly, Estrada-de los Santos and colleagues [93] described 

an intermediate cluster between the abovementioned groups. This evidence, in association with the 

ability of bacteria to exchange genes and to evolve rapidly, highlights the need to deepen our 

knowledge about the plant-associated Burkholderia strains and their potential for pathogenicity in 

animals and humans, and to understand whether gene exchange occurs between the symbiotic and 

pathogenic Burkholderia species. To date, the genetic features characterizing these helpful 

microorganisms versus the pathogenic ones are not clearly identified and the topic is controversial. 

It seems that the behavior of the different bacteria is related to gene expression, rather than to the 

presence or absence of specific genes [94,95]. 

The plant environment is also a niche for ‘true’ human and animal pathogens (HAPs), such as 

Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7, as well as for pathogens that 

cause diseases in debilitated or immune-compromised humans. Over the past two decades, these so-

called opportunistic or facultative human pathogens have had an increasing impact on human health 

[96,97]. Opportunistic HAPs belonging to different genera, such as Enterobacter, Salmonella, Pantoea, 

Serratia, Burkholderia, Klebsiella, Clostridium, and Staphylococcus were found in the rhizosphere and 

associated with different plant organs [46,61,79,98–100]. The occurrence of HAPs in the rhizosphere 

has been ascribed to several factors, including the nutrient-rich environment, protection from UV 

radiation, and the availability of water films for dispersal and to prevent desiccation [61,96,101]. 

The presence of HAPs in plants and outbreaks of foodborne illnesses open new questions about 

HAP ecology and about the role of plants in the infection cycle [102]. The Enterobacteriaceae family 

and, especially, the genera Salmonella and Escherichia, have been extensively studied due to the 

evidence that they cause major foodborne illnesses. A typical example is verocytotoxigenic E. coli 

(VTEC), which is a foodborne pathogen that can cause serious diseases ranging from hemorrhagic 

colitis to life-threatening hemolytic uremic syndrome (HUS) and central nervous system damage 

[103]. Although most cases had been previously associated with contamination of meat, milk 

products, and eggs, in recent years, fresh fruits and vegetables have been increasingly identified as 

sources of infection (CDC, Centers of Disease and Control Prevention). Several multistate outbreaks 

of E. coli serotype infections have been reported by both CDC and Food and Drug Administration 

(FDA) as having arisen from fresh vegetables. Plant contamination by HAPs can occur at different 

steps from the agricultural environment to the table. HAPs can contaminate vegetables both pre- and 

post-harvest through irrigation water, farm workers with limited means of proper sanitation, 

fertilization with slurry, and manure and fecal contamination in the farm by animals [13,104–106]. 

Furthermore, during the post-harvest step, HAPs can contaminate plants during carriage, processing, 

or packaging [104], and it has also been demonstrated that HAPs can escape post-harvest treatments 

to control plant pathogens [107,108].  

Indeed, it has been shown that these so-called contaminations are only a first step in the plant 

colonization, possibly facilitating the transmission of HAP strains from the field via the food 

production chain to the consumer with severe impacts on the health of animals and human beings 

[109]. In this view, plants are recognized as vectors of human pathogens causing phytonoses, a new 
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term for defining the new group of diseases caused by human pathogens, viz., E. coli and S. enterica, 

that are transmitted via consumption of fresh produce [12,13] (Table 1).  

The HAP colonization process of a plant is quite similar to plant bacterial colonization, including 

adhesion, invasion, and establishment [62,110]. The internalization and survival of bacteria in plants 

represent a food safety threat in crop production, as internalized bacteria cannot be removed by 

standard sanitation practices, although treatments such as irradiation, ultrasound, and cold plasma 

can be effective [111–113]. It has been demonstrated that E. coli O157:H7 can enter in the apoplast of 

lettuce and spinach from roots and leaves, invade plants, and survive for over 20 days [114,115]. 

These data, in association with the ability to form biofilm, led to the consideration of these parameters 

as food risk markers. 

4. Bacteria Can Overcome Kingdom Barriers 

As mentioned above, bacteria host colonization occurs in three main steps: adhesion, 

penetration, and establishment. Van Baarlen and colleagues [87] highlighted the most important 

requirements for establishing a pathogenic relationship. These are mainly based on: (i) proximity 

between microorganism and host, (ii) host ability to act as substrate, (iii) molecular components 

secreted by bacteria, and (iv) ability to suppress or avoid host immune responses. Despite 

fundamental differences, the innate immune systems in different eukaryotic kingdoms share a 

number of common features. These include the structure of molecules involved in microbial 

recognition; the signaling pathways mediated by mitogen-associated protein kinase; the presence of 

reactive oxygen species and antimicrobial peptides and proteins [87]. Microbial recognition can occur 

through so-called microbial or pathogen-associated molecular patterns (MAMPs/PAMPs), which 

include different types of molecules, such as the lipopolysaccharides of Gram-negative bacteria and 

the peptidoglycans of Gram-positive bacteria, as well as bacterial flagellin, microbial DNA, and 

fungal cell wall constituents [31,116]. Moreover, plant–pathogen recognition is mediated by effector 

molecules injected or secreted into the host cells by secretion systems. Some systems secrete a variety 

of substrates, while others are only found in a small number of bacterial species and/or are specific 

to one or few types of proteins [117]. In plants and animals, MAMPs and effectors are recognized by 

both cell surface receptors [118] and intracellular receptors of the NLR (nucleotide-binding domain 

(NBD) and leucine-rich repeat (LRR)) superfamily [119–121]. Microbial recognition mechanisms by 

plants and animals and their NLR architecture overlap, and it is now possible to discern important 

key trans-kingdom principles of NLR-dependent immune function [87]. For example, S. enterica 

induces MAMP-triggered immunity in Arabidopsis thaliana via flagellin FLS2 recognition [122]. Plants 

and animals share other similarities in host defense signaling after pathogen perception [123], and 

one class of antimicrobial peptides comprising the defensins is found to be conserved across 

kingdoms [124].  

Finally, cross-kingdom bacteria should be able to survive and live in the future hosts. Survival 

upon entering a new host is associated with an innate ability to change the metabolic activity or 

adapting to (and taking advantage of) host metabolism. S. enterica, Pseudomonas aeruginosa, 

Burkholderia cepacia, and E. coli are the most deeply investigated cross-kingdom pathogens [105]. S. 

enterica is mainly transmitted via water, from feces to environment and then to crop [105]. Once it 

reaches plant tissues, it can persist for significant periods of time as it is able to colonize the mesophyll 

via stomata openings, wounds, and hydathodes, as shown in arugula and tomato plants [98,100,125–

127]. S. enterica and other enterobacteria (e.g., E. coli) are able to reprogram the host architecture, 

suppressing the host immune system via the injection of a cocktail of effector proteins (among others 

[128–130]). The effector proteins and secretion systems of enterobacteria are known, and their 

function in human and mouse has been described in depth (reviewed in [131]). Interestingly, it has 

been shown that these proteins are able to suppress plant defense also in tobacco plants and 

Arabidopsis thaliana [132,133]. In particular, Salmonella T3SS effectors (Type III secretion system) are 

essential for both animal pathogenicity and the plant colonization process [132–135]. Recently, 

Neumann and colleagues [129] demonstrated that the phosphothreonine lyase SpvC attenuates the 
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induction of immunity-related genes, allowing bacteria proliferation in Arabidopsis thaliana. This 

evidence strongly confirms the idea that plants could be reservoirs or vectors of human pathogens. 

5. Possible Unfavorable Consequences of The Massive Use of Bacteria as Biocontrol or 

Biofertilizer Agents 

The concept of the ‘pathobiome’ has been introduced to define the role of the microbiome in 

causing pathogenesis, replacing the dogma ‘one microbe—one disease’ [11,78]. This term was coined 

based on metagenomic data showing the complexity of the microbial communities associated with 

the ecological niches inhabited by pathogens. Disease development can be then influenced by 

variations in host-associated microbial populations, signaling within bacterial communities, and the 

immune state of the host [136–139]. In other words, pathogenicity is an outcome of host–microbe 

interactions, thus inextricably linked to the host and microbe characteristics [140]. As a consequence, 

the separation between beneficial and detrimental microorganisms is not that clear-cut, due to the 

fact that horizontal gene transfers (HGTs) may confer virulence traits to harmless bacteria [141,142]  

As discussed in the previous paragraphs, most BCAs are close relatives of HAPs. Moreover, 

comparative genome analyses have shown that endophytic bacteria, often recommended as BCAs, 

share genome structures and distributions of virulence genes with pathogenic bacteria [92,94]. This 

evidence suggests the ability of these bacteria to change their lifestyle according to the ecological 

niche. For example, the genus Paenibacillus, a promising genus for biocontrol, exhibits extensive 

environmental adaptability and can populate various ecological niches [28]. Comparative genome 

analyses of Paenibacillus spp. revealed that this capacity is related to a highly diverse gene repertoire 

and to the HGT trend [143].  

From this perspective, the massive use of bacterial BCAs to control pathogens or as biofertilizer 

could affect disease development and increase the possibility of new pathogen emergence by altering 

the host-associated microbiome and/or the host immune system. Moreover, the potential direct 

pathogenicity of putative BCAs to human health has been often underinvestigated, even if some of 

them (e.g., Burkholderia spp., Paenibacillus spp., and Pseudomonas spp.) have been reported as 

opportunistic human or animal pathogens, or are known to produce secondary metabolites 

potentially toxic for humans and animals (Figure 2). For example, Paenibacillus polymyxa is reported 

in the literature as a prominent biofertilizer or biocontrol agent [144], even if this species produces 

cyclic lipodepsipeptide fusaricidins that are toxic to mitochondria and induce apoptosis in 

mammalian cells [145].  

This evidence, in combination with the outbreaks of human infections associated with the 

consumption of raw fruits and vegetables, opens new questions regarding the role of plants in the 

human pathogen infection cycle, or if a biological control could alter the endophytic bacterial 

community, leading to the generation of new potential human pathogens. 
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Figure 2. Schematic representation of a potential scenario following plant disease/growth biocontrol: 

(1) Biocontrol agents (BCAs, in dotted white), differently formulated, are spread into the soil; (2) they 

interact with soil and plant microbiomes (in gray and light gray, respectively) improving plant health 

and fitness; (3) BCAs can also interact with human pathogens (in black) harbored by plants, possibly 

leading to horizontal gene transfer (i.e., resistance to antibiotics); (4) these bacteria could migrate 

through the plant up to the edible parts, whose consumption may lead to severe diseases, such as 

septicemia and urinary infection; (5) finally, BCAs potentially pathogens for humans and animals (in 

black) can contaminate the farm workers or the post-harvest process, entering into the food chain. 

6. Conclusions 

Bacteria are essential components of human, animal, and plant health, and important sources of 

new molecules suitable for industrial, medicine, and agricultural applications. Nevertheless, some of 

the endophytic bacteria and fungi used in biocontrol or biofertilization strategies are indeed true or 

opportunistic human and animal pathogens, or carry human virulence factors in their genome. Thus, 

their massive spreading in the soil and in the environment, with scarce or no knowledge of their 

interactions with plants and with the phyllosphere and rhizosphere microbiomes, may lead to 

unpredictable long-term consequences. Although biocontrol is a promising approach to controlling 

plant pathogens, it is important to re-think the assumption ‘isolation from plant is safe’, taking into 

account the possible direct or indirect effects on human health and the environment, which have so 
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far been unappreciated. Nowadays, the omics technologies can hopefully contribute to deeply 

understanding the new bacteria–plant–animal interactions and, thus, their impact on agroecosystems 

and human health. Omics technologies can contribute to increase this knowledge constituting the 

starting point for testing predictive hypotheses on microbial pathogenicity in model systems.  

Funding: This research received no external funding. 
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