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Abstract: Modern Portfolio Theory is the ground upon which most works in portfolio optimization
context find their foundations. Many studies attempt to extend the Modern Portfolio Theory to
include short sale, leverage and transaction costs, features not considered in Markowitz’s seminal
work from 1952. The drawback of such theories is that they complicate considerably the simplicity
of the original technique. Here, we propose a simple and unified method, which takes inspiration
from, and shows connections with the matched filter theory in communications, to evaluate the best
portfolio allocation with the possibility of including a leverage factor and short sales. Finally, we
extend the presented method to also consider the transaction costs.

Keywords: modern portfolio theory; portfolio optimization; matched filter

1. Introduction

Let (γ1,k, γ2,k, · · · γN,k) be the prices of N goods at discrete time instant k. The evolution of the
price can be modelled for n = 1, 2, · · · , N and k = 0, 1, · · · as

γn,k+1 = γn,k(1 + xn,k) , (1)

where γn,0 > 0 is the initial price of good n and xn,k is the relative price change of the nth good between
time k and time k + 1. Thus, if the price of good n raises by 3% between time k and time k + 1, then
xn,k = 0.03. The returns xn,k are random variables whose knowledge is only limited at the level of
some statistical properties. Thus, it is common practice to diversify the investor’s wealth among the N
goods, so that the entire capital is not reserved to a single good and that, in the case of a disastrous
event (bankrupt), affect only the portion allocated to the unsuccessful good.

Markowitz’s Modern Portfolio Theory Markowitz (1952), sometimes referred as Mean–Variance
Approach, provides a method to choose an optimal allocation of wealth in view of knowledge of few
statistical properties of the return variables. In particular, as the name suggests, this approach is based
on the evaluations of the first- and second-order moments of xn,k, and the investor can adopt the
portfolio that maximizes the expected return given a maximum level of risk accepted. The relevance
of this theory is enormous and it has been usually taken as a starting point in a variety of works in the
context of portfolio optimization, as shown in Elton and Gruber (1997). Many of these works focus on
overcoming some constraints of the original formulation of the Modern Portfolio theory. A point that
has been deeply investigated in the past is how to deal with the estimation error that, due to the limited
sample size, affects the mean and the variance (see DeMiguel et al. (2009), Kritzman et al. (2010)).
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In addition, the mean–variance approach has been compared to competitor approaches in the presence
of unavoidable estimation errors (e.g., DeMiguel et al. (2007), Adler and Kritzman (2007)). A criticism
that has been moved to the mean–variance approach is about the possibility of describing the
distribution of the returns in terms of two parameters only, the mean and the variance (basically, an
assumption of Gaussianity). Papers that explore portfolio construction when distribution asymmetries
and higher order moments are considered include those by Cremers et al. (2004), Low (2017), and
Low et al. (2013, 2016).

Two assumptions impose severe limitations on modern portfolio theory. First, much of the
literature assumes that mean and variance are knowable and known. Second, scholars often assume
these two parameters alone describe the entire distribution. In addition, modern portfolio theory, as
originally laid out, often presumptively forbids the use of short sales and leveraged positions. In other
words, conventional works on portfolio design exclude borrowing, either for the purpose of profiting
from declines in stock prices (short sales) or for the purpose of increasing the total volume of the
investment and correspondingly the resulting profit or loss (leverage). Most studies concerned with
these aspects (see Jacobs and Levy (2013a, 2013b) and Pogue (1970)) are based on complex methods
and cannot be considered as simple extensions of the original theory.

In this paper, we move back to the original mean–variance approach assuming that mean and
variance are known and present a simple extension of Markowitz’s theory, inspired by a well known
principle in communication theory, that handles simultaneously short-sales and leverage. Finally, we
also show that even transaction costs can be taken into account in a straightforward manner. The scope
of the paper is thus two-fold: showing a connection between portfolio optimization and matched filter
theory in communications, and providing a simple unified presentation of the mentioned important
extensions to Markowitz’s original theory.

2. Trader Portfolio

We consider here the financial activity commonly called trading. The distinction that we make
between investing and trading, and that we exploit in the present paper, is that in the latter short
trading and leveraged trading are allowed. Basically, this means that in trading money is used not
merely to buy assets, but to guarantee risky positions that can remain open until the occurrence of a
stop loss condition. When the stop loss condition occurs, the position is closed and money used to
guarantee it is lost.

The time evolution of a leveraged position on good n is

ζn,k+1 = ζn,k(1 + sn,kλn,kxn,k), (2)

where ζn,k ≥ 0 is the money invested on good n at time k, λn,k ≥ 0 is the leverage factor (we return on
the meaning of λn,k ≤ 1 later on), and sn,k ∈ {±1} is the long/short indicator. Hence, sn,k = 1 when
the position on good n at time k is long, while sn,k = −1 when the position is short. In the following,
we assume that

ζn,k+1 = 0 if sn,kλn,kxn,k ≤ −1, (3)

meaning that position on good n has been closed at time k + 1 because all money used to guarantee
it has been lost. Basically, Equation (2) describes the evolution of a financial product that invests
with directionality indicated by sn,k and leverage λn,k on good n, and that consolidates its value at
each iteration.

The portfolio is the sum of leveraged positions, that is

πk =
N

∑
n=1

ζn,k. (4)



J. Risk Financial Manag. 2019, 12, 4 3 of 11

The evolution of the portfolio for k = 0, 1, · · · , is

πk+1 = πk +
N

∑
n=1

sn,kλn,kζn,kxn,k. (5)

The iteration terminates at time instant K such that

πK ≤ 0. (6)

The relative return of the positions taken at time k, which is the focus of the following analysis, is

rk =
πk+1

πk
− 1 =

∑N
n=1 sn,kλn,kζn,kxn,k

∑N
n=1 ζn,k

. (7)

In the following, we consider one step of the iteration and withdraw the time index, thus writing

r = ∑N
n=1 snλnζnxn

∑N
n=1 ζn

. (8)

It is convenient to write the relative return of the portfolio as

r =
N

∑
n=1

vnrn, (9)

where
rn = snλxn (10)

is the relative return of position n with

λ =
∑N

n=1 λnζn

∑N
n=1 ζn

, (11)

and
vn =

λnζn

λ ∑N
i=1 ζi

. (12)

Note that
vn ≥ 0, n = 1, 2, · · · , N, (13)

N

∑
n=1

vn = 1, (14)

hence vn is the relative money invested on good n and λ is a leverage factor that can be set equal
for all goods without affecting the relative return of the portfolio. Although the leverage factor of
stocks is often an integer, the trader may obtain any real value of the leverage by mixing positions on
the same good with different leverages. Note that leverages between 0 and 1 can also be obtained
simply by investing with leverage 1 a fraction λ of the available money while letting a fraction 1− λ be
cash. In the end, the real limit on λ is determined by the maximum leverage available on the financial
market, which is in practice so high that we can ignore the limits that it poses.

3. Portfolio Optimization

Let boldface lowercase characters denote column vectors and boldface uppercase characters
denote matrices, and let

x = (x1, x2, · · · , xN)
T , (15)
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where the superscript T denotes transposition, be a multivariate random process representing the
market behavior with mean vector

µx = (E{x1}, E{x2}, · · · , E{xN})T , (16)

and covariance matrix
Ψx,x = E{(x− µx)(x− µx)

T} (17)

where E{·} denotes expectation. In the following, we assume that the above mean vector and
covariance matrix are known.

For any λ ≥ 0, portfolio optimization requires of finding the relative money allocation vector

(s1v1, s2v2, · · · , sNvN)
T (18)

that maximizes the mean value of the relative return (Equation (9)) with a fixed variance of the relative
return. Note that the optimal portfolio will include only positions with

E{rn} = snλE{xn} ≥ 0, (19)

that is with

sn =
E{xn}
|E{xn}|

,

because positions with negative expected return will be outperformed by cash. For this reason, without
losing generality, we consider in the following only

sn = 1, E{xn} ≥ 0, (20)

being understood that, when E{xn} ≤ 0, one takes sn = −1 and then puts

− xn ← xn, sn = 1. (21)

With these assumptions, for any λ ≥ 0, portfolio optimization requires of determining the vector

v = (v1, v2, · · · , vN)
T ,

that maximizes the expected relative return with a fixed variance of the relative return and with the
constraints in Equations (13) and (14). This is a classical constrained optimization problem that can be
worked out by maximizing the Lagrangian

L(v) = 2αE{r} − E{(r− E{r})2}, (22)

where α ≥ 0 is the Lagrange multiplier and the constraints are Equations (13) and (14). Writing the
relative return as

r = rTv = λxTv, (23)

one promptly finds that the mean value and the variance of the relative return are

E{r} = λµT
x v (24)

and

E{(r− E{r})2} = λ2vTΨx,xv, (25)
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respectively. Hence, the Lagrangian is

L(v) = 2αλµT
x v− λ2vTΨx,xv. (26)

Assuming that Ψx,x is definite positive, hence invertible, it is easy to see that the unique maximum
of Equation (26) is achieved with

v =
α

λ
·ω, (27)

where

ω = Ψ−1
x,xµx. (28)

Imposing Equation (14), one finds

α =
λ

∑N
n=1 ωn

, (29)

which, substituted in Equation (27), leads to

v =
ω

∑N
n=1 ωn

. (30)

Note that, since Ψx,x is definite positive, its inverse is also definite positive and, since all the entries
of µx are non-negative, all the entries of ω are non-negative, and hence the constraint in Equation (13)
is always satisfied. Equations (28) and (30) say that the relative weights of positions in the optimal
portfolio are fixed and independent of the risk that the trader wants to take, while the balance between
expected return and risk can be tuned by tuning the leverage according to Equations (24) and (25).

The performance of the optimal portfolio is characterized by the following expected relative
return and variance of the relative return

µr = αµT
x ω, (31)

σ2
r = α2µT

x ω. (32)

The unconstrained efficient frontier is a straight line in the first quadrant of the plane (σr, µr) that
departs from (σr = 0, µr = 0) and that has slope

µr

σr
=

√
µT

x ω, (33)

that is the Sharpe ratio (see Sharpe (1966)), a figure that has been object of many studies after the
original paper by Sharpe (see, e.g., Bailey and Lopez de Prado (2012) for estimates of the Sharpe ratio
when µx and Ψx,x cannot be assumed to be known). The entire efficient frontier can be visited by
sweeping α from 0 (zero expected return) to ∞ (infinite expected return). Note that including explicitly
a risk free position in the portfolio would lead to a covariance matrix that is not invertible, while, with
our approach, the risk free position is automatically brought into the portfolio when λ < 1, because a
fraction 1− λ of the portfolio is cash.1

1 Including the risk free position in the classical portfolio theory is possible, provided that a work around is made to
circumvent problems encountered in matrix inversion (see Merton (1972)). Insights on portfolios with and without can be
traced back to Tobin (1958).
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As shown in North (1963) and Turin (1960), Equations (28) and (33) are very well known in
the context of narrowband discrete-time Single Input Multiple Output (SIMO) transmission systems
affected by correlated additive noise, e.g. interference. In that context, the transmission channel is
characterized by applying an impulse to the input and by collecting the N channel outputs into vector
µx. In addition, channel’s output is affected by zero-mean additive noise with covariance matrix Ψx,x.
Vector ω is the matched filter (MF), that is the vector of weights that, applied to the multiple outputs,
that is to the goods held in the portfolio, produces through Equation (9) the least noisy version of the
input impulse in the mean-square error sense, while µ2

r /σ2
r is the Signal-to-Noise Ratio (SNR) after the

matched filter. The application of the matched filter in portfolio optimization is not new, as illustrated
by Pillai (2009), where however it is shown only how the said communication theory technique can
be exploited in investing contexts, without any extension to trading. To put more light on the link
between communication theory and the subject treated in this paper, we point out that, in the context
of communication theory, the random vector x introduced in Equation (15) can be regarded as the
vector signal at the output of a SIMO channel excited by an input impulse of unit amplitude:

x = µx + n, (34)

where µx is a vector that, in the communication context, is the impulse response of the SIMO channel,
and n is a random noise vector having zero mean values and covariance matrix Ψxx (also the covariance
matrix of the noise vector is assumed here to be known). As pointed out by an anonymous referee,
the suggestion of regarding the variability in financial returns as the effect of noise (the Brownian
motion of gas) dates back to Bachelier’s thesis Bachelier (1900). At the receiver side, the received vector
is passed through the matched filter (Equation (30)), getting

r = λxTv, (35)

where, in the context of communication, the scaling factor λ is set to

λ = (µT
x v)−1, (36)

so that
E{r} = 1, (37)

meaning that r recovers the unit amplitude of the input impulse keeping minimum the mean squared
error E{(r − E{r})2}, hence achieving the maximum of Equation (33). Besides this, the matched
filter has another interesting property that is well known in the context of communication and
information theory. Let a be a random scalar parameter that, in the context of communication,
is the information-carrying amplitude, e.g., a ∈ {0, 1}. When an impulse of amplitude a is applied at
channel input, the channel output is

s = aµx + n . (38)

With Gaussian noise, the matched filter output

r = λsTv (39)

is a sufficient statistic for the hidden a. This means that r can be seen as a synthetic representation of s
that fully preserves the possibility of making inference, for instance, maximum likelihood detection,
about the hidden a based on r alone. In a more technical language, this concept is expressed by saying
that the information processing inequality

I(a, s) ≥ I(a, T(s)), (40)
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where I(x, y) is Shannon information between x and y, is met with equality when the transformation
T(x) is the right hand side of Equation (38). The interested reader is referred to Chapter 2 of
Cover and Thomas (2006) for the basics about Shannon information, for the concept of sufficient
statistic and for the meaning of the information processing inequality.

An example illustrates similarities and differences between the leveraged portfolio and classical
Markowitz’s portfolios. Consider three goods with

µx = 10−2 × (1, 22, 23)T , (41)

Ψxx = 10−4 ×

 1 0 0
0 2 0
0 0 26

 . (42)

For the leveraged portfolio, the optimal money allocation vector is proportional to

ω = 102 × (1, 2, 2−3)T ,

and the slope of the efficient frontier is
µr

σr
=
√

10.

Figure 1 reports µ versus σ for the individual goods and the efficient frontiers for the leveraged
portfolio and for the Markowitz’s portfolios with and without the possibility of holding cash.

Figure 1. Comparison between leveraged portfolio with the classical Markowitz’s portfolio with the
statistical hypotheses of Equations (41) and (42).

What happens is that the efficient frontier of the Markowitz’s portfolio without cash is equal to
the efficient frontier of the leveraged portfolio until

λ ≤ 1, (43)

because the fraction (1− λ) of cash of the leveraged portfolio is invested in the non-leveraged portfolio
on the low risk stocks, thus leaving the performance of Markowitz’s portfolio only slightly worse than
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the performance of the leveraged portfolio. In the limit, including the possibility of holding cash in
Markowitz’s portfolio would close the gap between leveraged and non-leveraged portfolios until the
inequality in Equation (43) is satisfied. Differences between the two portfolios become bigger and
bigger as λ→ ∞ because, while the leveraged portfolio continues taking profit from diversification by
maintaining the optimal mix between goods thanks to the big leverage, the absence of leverage forces
the Markowitz’s portfolios to renounce to diversification, leading in the limit to a portfolio composed
by only one good, the one that offers the greater expected return, even if, as it happens in the example,
this portfolio could be easily outperformed also by a portfolio made by only one good with better µ/σ,
simply by leveraging it.

4. Cost of Transactions

Another relevant feature not considered in Markowitz’s original paper is the cost deriving from
a transaction on the market. Transaction costs may influence portfolio’s optimization, and, for this
reason, transaction costs have been widely considered in the subsequent literature (Lobo et al. (2007),
Mansini et al. (2003), Mansini and Speranza (1999, 2005)). Type and structure of transaction costs
depend on the financial operator (e.g., broker or bank) and on the type of stocks that the trader uses
for her/his operation (e.g., Exchange Trade Commodities, Exchange Traded Funds, or Contract for
Difference). Let us consider a general case where the relative cost is of the type

λδn(λ), δn(λ) ≥ 0, n = 1, 2, · · · , N, (44)

where, here again, without losing generality, we assume that the leverage factor is common to all the
goods and consider a transaction cost that can depend on the specific good and on the leverage factor.
The relative return of the nth position is

rn = λ(snxn − δn(λ)). (45)

By following the steps of Equations (19)–(21), we consider only the case in Equation (20), with the
more demanding condition

E{rn} = λ(E{xn} − δn(λ)) ≥ 0. (46)

The above inequality means that a position that does not meet the above inequality cannot be in
the portfolio, because it is outperformed by cash. A brief comment about the dependence of δn on λ is
in order. Consider the investment in bonds with one-year life emitted by a very trusted central bank.
If the time step is one year and the return of the bond is higher than the cost of transaction, then one
could borrow money to buy bonds. Actually, this is allowed in our model, because borrowing money
simply means increasing λ. However, in a case like the one of this example, borrowing money is a cost
that increases the cost of transaction, so that, in the end, the cost of transaction becomes higher than
the return of the bond. When this happens it is the dependence of δn on λ that, through Equation (46),
rules out this position from the leveraged portfolio. Actually, a realistic cost model for such a case is

λδn(λ) =

{
β1λ λ ≤ 1

β1λ + β2(λ− 1) λ > 1
(47)

where β1 takes into account costs such as bank commissions that apply when investor’s money is
employed, that is for λ ≤ 1, while β2 takes into account the cost of borrowing money, which applies to
a fraction (λ− 1) of the investment. If, for λ > 1,

λ(β1 + β2)− β2 > λE{xn},

then the condition in Equation (46) is violated and the position on good n with leverage λ cannot be
included in the portfolio.
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The constrained optimization is again Equation (22) with the usual constraints, but now

E{r} = λ(µx − δ(λ))Tv, (48)

E{(r− E{r})2} = λ2vTΨx,xv. (49)

The optimal portfolio and the efficient frontier are found by the same means as in the previous
section, simply putting (µx − δ(λ)) in place of µx. The only difference is that, when the cost of
transactions depends on λ, the optimal portfolio will depend on λ and the efficient frontier will no
longer be a straight line.

As an example, we consider again the example of Section 3 where the statistical properties are
described by Equations (41) and (42) with the addition of the following transaction costs

λδ(λ) =

{
5× 10−3λ λ ≤ 1

5× 10−3λ + 10−2(λ− 1) λ > 1
(50)

equal for the three goods. Figure 2 displays a new comparison between Markowitz’s portfolios and
leveraged portfolio with the inclusion of transaction costs (Equation (50)). The first region corresponds
to λ ≤ 1, where the efficient frontier of the leveraged portfolio is a straight line since we are in
the first case of Equation (50), where δ(λ) is actually a constant since there is no dependance of λ.
The breakpoint between the straight line and the second region is at λ = 1, where the transaction cost
changes and is no longer independent of λ as in the second case of Equation (50). The separation
between the second and the third region is at λ = 2, where δ(λ) = E{xn} = 10−2 and good 1 is ruled
out by Equation (46). Finally, as λ→ ∞, the efficient frontier approaches a straight line, because δ(λ)

approaches the constant 1.5× 10−2. These features are not easily noticed in Figure 2. Thus, in Figure 3,
the efficient frontier of the leveraged portfolio is illustrated from a different perspective, where the
division in three different regions highlighted by green dots is more visible.

Figure 2. Comparison between leveraged portfolio with the classical Markowitz’s portfolios with the
statistical hypotheses of Equations (41), (42) and (50).
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Figure 3. Comparison between leveraged portfolio with the classical Markowitz’s portfolios with the
statistical hypotheses of Equations (41), (42) and (50).

5. Conclusions

In this work, we propose a method that takes inspiration from matched filter, a known concept
in communication theory, and that extends Markowitz’s Modern Portfolio Theory to account for
short-sales, leverage and transaction costs. The illustrated method differs from the other known
techniques in its simplicity and for the universality that allows the trader to simultaneously consider
all the extensions to the original theory or just a part of them.

Author Contributions: Conceptualization, investigation and writing original draft: G.A. and A.S.; formal analysis:
G.A., M.D., R.L. and A.S.; software: G.A.; resources: R.L. and A.S.; supervision, validation reviewing and editing:
M.D., R.L. and A.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

Adler, Timothy, and Mark Kritzman. 2007. Mean–variance versus full-scale optimisation: In and out of sample.
Journal of Asset Management 7: 302–11. [CrossRef]

Bachelier, Louis. 1900. Théorie de la spéculation. Annales Scientifiques de l’École Normale Supérieure 3e Série 17:
21–86. [CrossRef]

Bailey, David H., and Marcos Lopez de Prado. 2012. The sharpe ratio efficient frontier. Journal of Risk 15: 3–44.
[CrossRef]

Cover, Thomas M., and Joy A. Thomas. 2006. Elements of Information Theory (Wiley Series in Telecommunications and
Signal Processing). New York: Wiley-Interscience.

Cremers, Jan-Hein, Mark Kritzman, and Sebastien Page. 2004. Optimal hedge fund allocations: Do higher
moments matter? Revere Street Working Paper 272-13. [CrossRef]

DeMiguel, Victor, Lorenzo Garlappi, Francisco J. Nogales, and Raman Uppal. 2009. A generalized approach to
portfolio optimization: Improving performance by co nstraining portfolio norms. Management Science 55:
798–812. [CrossRef]

DeMiguel, Victor, Lorenzo Garlappi, and Raman Uppal. 2007. Optimal versus naive diversification: How
inefficient is the 1/n portfolio strategy? The Review of Financial Studies 22: 1915–53. [CrossRef]

http://dx.doi.org/10.1057/palgrave.jam.2250042
http://dx.doi.org/10.24033/asens.476
http://dx.doi.org/10.21314/JOR.2012.255
http://dx.doi.org/10.2139/ssrn.587384
http://dx.doi.org/10.1287/mnsc.1080.0986
http://dx.doi.org/10.1093/rfs/hhm075


J. Risk Financial Manag. 2019, 12, 4 11 of 11

Elton, Edwin J., and Martin J. Gruber. 1997. Modern portfolio theory, 1950 to date. Journal of Banking & Finance 21:
1743–59.

Jacobs, Bruce I., and Kenneth N. Levy. 2013a. Leverage aversion, efficient frontiers, and the efficient region.
The Journal of Portfolio Management 39: 54–64. [CrossRef]

Jacobs, Bruce I., and Kenneth N. Levy. 2013b. A comparison of the mean-variance-leverage optimization model
and the markowitz general mean-variance portfolio selection model. The Journal of Portfolio Management 40:
Fall 2013.

Kritzman, Mark, Sébastien Page, and David Turkington. 2010. In defense of optimization: The fallacy of 1/n.
Financial Analysts Journal 66: 31–39. [CrossRef]

Lobo, Miguel Sousa, Maryam Fazel, and Stephen Boyd. 2007. Portfolio optimization with linear and fixed
transaction costs. Annals of Operations Research 152: 341–65. [CrossRef]

Low, Rand Kwong Yew. 2017. Vine copulas: Modeling systemic risk and enhancing higher-moment portfolio
optimization. Accounting & Finance 58: 423–63.

Low, Rand Kwong Yew, Jamie Alcock, Timothy Brailsford, and Robert W. Faff. 2013. Canonical vine copulas in
the context of modern portfolio management: Are they worth it? Journal of Banking & Finance 37: 3085–99.

Low, Rand Kwong Yew, Robert W. Faff, and Kjersti Aas. 2016. Enhancing mean-variance portfolio selection by
modeling distributional asymmetries. Journal of Economics and Business 85: 49–72. [CrossRef]

Mansini, Renata, Włodzimierz Ogryczak, and M. Grazia Speranza. 2003. On lp solvable models for portfolio
selection. Informatica 14: 37–62.

Mansini, Renata, and Maria Grazia Speranza. 1999. Heuristic algorithms for the portfolio selection problem with
minimum transaction lots. European Journal of Operational Research 114: 219–33. [CrossRef]

Mansini, Renata, and M. Grazia Speranza. 2005. An exact approach for portfolio selection with transaction costs
and rounds. IIE Transactions 37: 919–29. [CrossRef]

Markowitz, Harry. 1952. Portfolio selection. The Journal of Finance 7: 77–91. [CrossRef]
Merton, Robert C. 1972. An analytic derivation of the efficient portfolio frontier. The Journal of Financial and

Quantitative Analysis 7: 1851–72. [CrossRef]
North, D. Oo. 1963. An analysis of the factors which determine signal/noise discrimination in pulsed-carrier

systems. Proceedings of the IEEE 51: 1016–27. [CrossRef]
Pillai, Unnikrishna Sreedharan. 2009. Matched Filter Approach to Portfolio Optimization. US Patent 7,502,756,

March 10.
Pogue, Gerald A. 1970. An extension of the markowitz portfolio selection model to include variable transactions’

costs, short sales, leverage policies and taxes. Journal of Finance 25: 1005–27. [CrossRef]
Sharpe, William F. 1966. Mutual fund performance. The Journal of Business 39: 119–38. [CrossRef]
Tobin, James. 1958. Liquidity preference as behavior towards risk. The Review of Economic Studies 25: 65–86.

[CrossRef]
Turin, George. 1960. An introduction to matched filters. IRE Transactions on Information Theory 6: 311–29.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3905/jpm.2013.39.3.054
http://dx.doi.org/10.2469/faj.v66.n2.6
http://dx.doi.org/10.1007/s10479-006-0145-1
http://dx.doi.org/10.1016/j.jeconbus.2016.01.003
http://dx.doi.org/10.1016/S0377-2217(98)00252-5
http://dx.doi.org/10.1080/07408170591007821
http://dx.doi.org/10.1111/j.1540-6261.1952.tb01525.x
http://dx.doi.org/10.2307/2329621
http://dx.doi.org/10.1109/PROC.1963.2383
http://dx.doi.org/10.1111/j.1540-6261.1970.tb00865.x
http://dx.doi.org/10.1086/294846
http://dx.doi.org/10.2307/2296205
http://dx.doi.org/10.1109/TIT.1960.1057571
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Trader Portfolio
	Portfolio Optimization
	Cost of Transactions
	Conclusions
	References

