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Abstract: Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin.
Through the release of preformed mediators stored in their granules and newly synthesized molecules,
they are able to initiate, modulate, and prolong the immune response upon activation. Their presence
in the central nervous system (CNS) has been documented for more than a century. Over the years,
MCs have been associated with various neuroinflammatory conditions of CNS, including stroke.
They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the
inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation,
and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke,
in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the
treatment of stroke and the compounds potentially active as MCs modulators.
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1. Introduction

Mast cells (MCs) are perivascular resident cells of haemopoietic origin distributed in most tissues
surrounding blood vessels, nerves, smooth muscle cells, sebaceous and sweat glands, hair follicles,
and synovial membranes [1,2]. MCs are more abundant in the anatomical regions in contact with
the external environment, including skin, conjunctiva, nasal mucosa, bronchial airway connective
tissue, lung intra-alveolar space, mouth, and subserosal and submucosal layers of the gastrointestinal
tract [2–4]. Because of their peculiar anatomical location, MCs serve as first immune sentinel cells to
respond against invading pathogens and environmental antigens and allergens [1,5,6].

MCs can be found also in the central nervous system (CNS), where their presence has been
documented for more than a century [7]. MCs are present in different mammalian brain regions,
including meninges, choroid plexus, olfactory bulb, mesencephalon, parenchima of the thalamic and
hypothalamic region, hippocampus, and entorhinal cortex [6,8–10], where they reside on the abluminal
side of the blood vessels [8,9]. Here, MCs are able to communicate with blood vessel cells, neurons,
glia, and microglia [8,9]. MCs reach the brain during development, migrating along blood vessels [11].
However, mature MCs are also able to move from the periphery to the brain and their number and
distribution can change in response to a variety of physiological and pathological stimuli [8,12,13].

For years, MCs have been mostly studied for their pathogenic role in allergic and anaphylactic
responses. However, in the last decades, these cells have gained recognition for their involvement in a
number of other physiological and pathological processes [14]. In the CNS, MCs contribute to normal
behavioral development and functioning, modulating cognition and emotionality [8,15–17]. On the
other hand, MCs have been associated to various neuroinflammatory conditions of CNS, including
multiple sclerosis, traumatic brain injury, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis, neuropathic pain, migraine, depression, autism spectrum disorder, fibromyalgia syndrome,
and finally stroke [6,8,9,18–24].
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Moreover, a link between MC-mediated allergic reactions and cardiovascular (CV) disorders has
been recently proposed [25]. An important evidence for the existence of an overlap between allergic
and CV disorders comes from the so-called Kounis syndrome, an acute coronary pathology caused by
mastocytic activation triggered by allergic reactions [26,27]. Interestingly, brain vascular pathologies,
including stroke and cerebral aneurysm (CA), have been described in Hyper-IgE syndrome and DOCK8
deficiency, two genetic disorders characterized by elevated IgE serum levels, recurrent infections, and
allergic reactions [28–30]. These findings suggest a possible correlation between IgE levels and stroke.

A growing body of evidence indicates a contribution of MCs in pathogenesis of stroke, suggesting
that targeting cerebral MCs may provide a feasible neuroprotective strategy against this medical
condition. In the present review, we discussed the role of brain MCs in cellular and animal models
of stroke, including neonatal hypoxic-ischemic brain injury (NHIBI), ischemic stroke, intracerebral
hemorrhage (ICH), and subarachnoid hemorrhage (SAH). Furthermore, we summarized compounds
potentially active as MCs modulators in the treatment of stroke.

2. MCs Activation

MCs are characterized by the presence in their cytoplasm of hundreds of metachromatic granules
containing preformed biologically active mediators. The best studied mechanism of mastocytic
activation is that induced by interaction of antigen with its specific IgE antibody linked to FcεRI
(high-affinity surface receptors for the Fc region of IgE). However, MCs can be activated by many other
physical and chemical stimuli, including trauma, UV light, cold, heat, hypoxia, allergens, cytokines and
other inflammatory mediators, complement factors, pathogens and their products, venom components,
and endogenous and exogenous peptides [1,3,5,31,32].

MCs activation occurs in three phases [6,8,33]. The first and rapid response occurs within seconds
after mastocytic activation and consists in the degranulation of MCs, i.e. the release of preformed
mediators stored in MCs granules. The main granules contents include histamine, heparin, serotonin,
proteases, proteoglycans, cathepsin G, and cytokines such as tumor necrosis factor α (TNF-α). The
second phase consists in the rapid synthesis of lipid mediators, including leukotrienes (such as LTB4,
LTC4), prostaglandins (PGD2, PGE2), thromboxanes, platelet-activating factor (PAF). Finally, the first
two steps are followed by a third phase, the slow release of newly synthetized cytokines occurring
within several hours after mastocytic activation. The type of mastocytic activation and the pattern of
released molecules depend on the type and strength of the stimuli [34].

Interestingly, many of these mediators can induce inflammation, blood–brain barrier (BBB)
damage, vasodilatation, and plasma extravasation, and have been associated with stroke [6,8,35,36].

3. Transcriptional and Epigenetic Regulation of MCs Response

Transcription factors play an important role in MCs development and activation. In particular,
transcription factors are critical in modulating the expression of cell-surface receptors and extracellular
mediators involved in mastocytic activation [37,38]. For example, nuclear factor of activated T-cells
(NFAT), activator protein 1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and its signaling component IκB kinase 2 (IKK2), early growth response 1 and 2 (EGR-1, EGR2),
and zinc finger E-box–binding homeobox 2 (ZEB2) have been studied for their role in orchestrating
the transcriptional response for de novo synthesis of mediators upon mastocytic activation [39–45].
Moreover, IKK2 has been suggested to participate in the MCs degranulation process [46].

The interest for the epigenetic regulation of the mastocytic processes has emerged in the past
years [37,38]. Although the epigenetic mechanisms operating in MCs are still largely unknown, recently
two epigenetic regulators, tet methylcytosine dioxygenase 2 (TET2) and DNA methyltransferase 3a
(DNMT3a), have been shown to regulate MCs functions in rodent models [47,48]. Interestingly, TET2
and DNMT3a mutations are also frequent in patients affected by mastocytosis [49], suggesting a role of
these factors in human pathologies.
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Finally, a peculiar epigenetic mechanism in MCs is mediated by the mastocytic protease tryptase.
Although MCs tryptase is mainly stored in cytoplasmatic granules, this enzyme has been found
also in the nucleus where it catalyzes the clipping of histones H2 and H3, regulating mastocytic
differentiation [50,51].

4. MCs and Stroke

Stroke, the sudden death of brain cells due to lack of oxygen when the blood flow to the brain is
lost by blockage or rupture of a vessel, can occur in both immature and adult brain.

The incidence of perinatal stroke is between 1/2300 and 1/5000 live births, although these values
are probably underestimated because the limited data available and complexity of the diagnosis [52,53].

Adult stroke is the second leading cause of death and the third cause of disability worldwide [54–56].
Moreover, stroke is also a main cause of dementia and depression [57,58]. Overall, about 85% of
strokes are ischemic, 10% are due to intracerebral hemorrhage, and 5% are caused by subarachnoid
hemorrhage [59–61].

The role of MCs in the pathogenesis of different subtypes of stroke is discussed in the following
paragraphs and in Figure 1, Figure 2, and Table 1.

4.1. Ischemia in the Immature Brain

Neonatal hypoxic-ischemic brain injury (NHIBI) is a major cause of acute mortality and chronic
neurologic morbidity in infants and children [52,62–64]. The pathogenesis of NHIBI is highly
complex and involves neuroinflammation, BBB damage, acidosis, growth factor deficiency, and energy
failure [65–67].

Various clues suggest involvement of MCs in the NHIBI pathogenesis [68,69]. MCs-associated
genes were upregulated in mice pups subjected to NHIBI [70]. In rat models of NHIBI neuronal
injury was linked to a rapid increase of activated MCs and release of TNF-α and histamine in the
immature brain [71–73], suggesting that mastocytic activation precedes post-injury response of glial,
endothelial cells and neurons. In a NHIBI mouse model, the mastocytic growth and differentiation
factor interleukin 9 (IL-9) also contributed to brain damage by amplifying activation of MCs [74].
Moreover, the deleterious role of these cells is supported by the effect of MCs stabilizers in inhibiting
mastocytic activation and reducing brain damage in rat or mice pups subjected to NHIBI [71,72,74].

4.2. Ischemia in the Mature Brain

4.2.1. Ischemic Stroke

Ischemic stroke, or brain ischemia, is a global cause of death and disability [59,60]. In ischemic
stroke, blood supply to part of the brain is decreased, causing damage to the cerebral tissue surrounding
the occluded blood vessel [75]. The ischemic insult triggers a series of pathological processes
including excitotoxicity, oxidative damage, apoptosis and inflammation, which eventually leads to cell
death [76–78]. One of the main pathophysiological features of ischemic stroke is the BBB disruption, an
event occurring in almost two-thirds of patients in the first hours from the ischemia onset that causes
vasogenic edema, hemorrhagic transformation, and increased mortality [79,80].

Different preclinical studies point out a role of MCs in the pathogenesis of ischemic stroke [81,82].
In a cellular model of ischemic stroke, exposure to oxygen and glucose deprivation (OGD) induced
mastocytic activation in a fashion dependent on the anoxic insult duration [83–85]. MCs exacerbated
neuronal damage in neuron–MC cocultures exposed to OGD [83]. Likewise, the conditioned medium
derived from OGD-activated MCs induced neurotoxicity in primary neurons [83]. Interestingly,
pharmacological prevention of OGD-induced MCs activation reduced neurotoxicity [83]. The gene
expressing the chemokine CCL7, a MCs-derived product reported to be involved in the recruitment
of inflammatory cells into the ischemic sites [86], has been found upregulated in the brain of mice
subjected to middle cerebral artery occlusion (MCAO) [87]. In a rat model of transient cerebral ischemia,
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it has been observed a significant increase in the thalamic MCs number and histamine levels after
24 h from the ischemic insult [88]. Experiments on rats that underwent MCAO surgery showed
that MCs are early players in the formation of ischemic brain edema [89]. Treatment with the MCs
activator compound 48/80 dramatically increased cerebral edema [89]. On the contrary, MC-deficient
rats or rats treated with the MCs stabilizer cromoglycate displayed diminished brain swelling, BBB
leakage, and neutrophils infiltration [89]. Similarly, BBB breakdown, brain edema, and neutrophils
infiltration were attenuated in MC-deficient mice subjected to MCAO or in MCAO wild type mice
treated with cromoglycate [90]. Proteomic analysis suggested a role of endoglin, endothelin-1, and
metalloproteinase 9 (MMP-9) in the BBB damage promoted by MCs [90]. A proof of the involvement
of proteolytic gelatinase enzymes secreted by MCs in BBB damage came from studies on rats subjected
to MCAO [91]. After the ischemic insult, activated MCs showed secretion of gelatinase-positive
granules that correlated with the brain swelling. Treatment with the compound 48/80 increased
gelatinase activity in the ischemic tissue [91], while rats treated with MCs stabilizers or MC-deficient
rats presented a reduced global gelatinase-active area [91].

Interestingly, the meningeal MCs, rather that parenchimal MCs, appear to be involved in
detrimental effect of stroke [92]. In support of this hypothesis, the engraftment of bone marrow-derived
cultured MCs into the meninges of MC-deficient mice subjected to MCAO was sufficient to worsen
stroke damage [93]. In an immunohistochemical study on brain tissues of patients deceased after
ischemic stroke, the authors reported a lack of MCs in the penumbra regions surrounding the necrotic
area [94]. These findings further supported the fact that parenchymal MCs may not play a crucial role
in stroke.

Treatment options for ischemic stroke are currently very limited, and the only approved
pharmacological therapy is the recombinant tissue plasminogen activator (rtPA) [95,96]. Unfortunately,
administration of rtPA after 4.5 h from the ischemic event is contraindicated for the risk of hemorrhagic
conversion, limiting the use of this drug [97]. Strbian and coworkers studies in ischemic stroke models
pointed out a role of MCs in the hemorrhagic conversion promoted by rtPA administration [98]. The
treatment of cultured rat MCs with rtPA promoted massive degranulation [98]. In a MCAO rat model,
administration of rtPA induced intracerebral hemorrhage formation [98]. Mastocytic stabilization by
sodium cromoglycate protected from deleterious effect of rtPA, reducing hemorrhagic conversion,
brain swelling, neutrophil infiltration and mortality rate [98]. Similar protective effects were observed
in MC-deficient rats [98].

4.2.2. Intracerebral Hemorrhage (ICH)

Spontaneous ICH is a severe neurological disorder associated with high rates of mortality and
disability [99–102]. ICH results from the rupture of cerebral blood vessels that causes a rapidly
expanding hematoma occurring within brain parenchima. Brain injury after ICH can be divided in two
phases. The primary brain injury caused by increased intracranial pressure is followed by a secondary
brain injury mediated by the physiological responses to hematoma, such as inflammation [103,104].

Several findings support a role of MCs in ICH [82,105]. In a rat model of intracerebral hemorrhage
with autologous blood injection into the basal ganglia, the induction of mastocytic degranulation
by treatment with compound 48/80 exacerbated brain damage [106]. Conversely, rats treated with
MCs stabilizers or MC-deficient rats showed reduced mortality, brain swelling, hematoma growth
and improved neurologic outcome [106]. In another ICH model, mice stereotactically injected
into the basal ganglia with collagenase exhibited MCs activation [107,108]. Pharmacological MCs
inhibition significantly decreased mortality rate and improved neurologic outcomes by mitigating
neuroinflammation and BBB disruption [107,108]. Finally, in a collagenase injection rat model of ICH,
pharmacological MCs inhibition counteracted the deleterious effects induced by rtPA administration,
such as hematoma growth, hemispheric expansion, mortality, and neurologic dysfunction [109].
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Figure 1. Schematic diagram showing the role of MCs in ischemic stroke and ICH. In the ischemic stroke,
after cerebral blood vessel obstruction MCs sense alarm signals from injured parenchymal cells and
become activated. In the ICH, the mastocytic activation is mediated by the leakage of blood products
from the damaged vessel. Upon activation, MCs release a variety of vasoactive and proinflammatory
molecules, including histamine, heparine, cytokines (TNF-α, ILs, chemokines), proteases (tryptase,
chymase, MMPs, cathepsine G). The preformed and newly synthetized mediators induce vasodilatation,
recruitment of peripheral immune cells toward the infarcted area, and BBB disruption, promoting
a sustained neuroinflammation. In ischemic stroke, the pathological scenario supported by MCs
activation has been involved in the hemorrhagic conversion mediated by rtPA treatment. In the ICH,
the recruitment of inflammatory cells maintain and potentiate the initial BBB leakage, leading to an
aggravation of hemorrhage and vasogenic edema. The mechanisms of MCs-mediated pathogenesis
of stroke in the adult brain are valid also in the immature brain. BBB: blood–brain barrier; ICH:
intracerebral hemorrhage; IL: interleukin; MCs: mast cells; MMP: metalloproteinase; rtPA: recombinant
tissue plasminogen activator; TNF: tumor necrosis factor.

4.2.3. Subarachnoid Hemorrhage (SAH)

SAH is a severe subtype of stroke characterized by an overall mortality and morbidity of more
than 50% [110,111]. SAH is caused in 85% of cases by the rupture of an intracranial aneurysm [111].
Over the past years, a large number of studies reported a role of the inflammatory processes in the
pathogenesis of CA [112–114].

MCs have been suggested to contribute to vascular diseases including atherosclerosis and
aneurysm by triggering inflammation through the release of cytokines and proteinases such as chymase
and MMPs [115–118]. An increased number of infiltrated MCs has been identified in the aneurysm wall
in a CA rats model [119]. Similarly, MCs have been found in the aneurysm tissues of CA patients that
underwent microsurgical clipping [120–122]. Interestingly, MCs expression was markedly increased in
ruptured aneurysms [120]. In rats, MCs modulators reduced the size and the thinning of induced CA
through inhibition of chronic inflammation [119]. Furthermore, in cocultures of primary rat MCs and
smooth muscles cells obtained from intracranial arteries, mastocytic activation induced expression of
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MMP-2, MMP-9 and inducible nitric oxide synthase (iNOS) in smooth muscles cells [119], revealing a
role for MCs in promoting inflammation in CA walls.

Delayed cerebral vasospasm, the prolonged and intense vasoconstriction of arteries in the
subarachnoid space after CA rupture, has been recognized as an important cause of poor outcome in
SAH [123]. MCs have been reported to be associated with vasospasm because of their increased number
found in the artery walls adjacent to aneurysm of patients who died after SAH [124]. Adenosine
and inosine have been proposed as responsible for the vasoconstrictive effect mediated by MCs
activation [125]. The MCs-induced vasoconstrictive effect was significantly decreased by treatment
with a combination of histamine and thromboxane inhibitors [125].
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Figure 2. Schematic diagram showing the role of MCs in SAH. MCs have been suggested to play a role
in the development of CA and its progression to rupture. Activated MCs infiltrated in the aneurysm
site may promote inflammation through the release of mediators including cytokines and proteases
(chymase and MMPs). Moreover, MCs can induce expression of MMPs and iNOS in vascular smooth
muscle cells, reducing the thinning of CA walls. MCs can also contribute to delayed cerebral vasospasm
through the release adenosine-mediated of histamine and thromboxanes. CA: cerebral aneurysm; iNOS:
nitric oxide synthase, MCs: mast cells; MMP: metalloproteinase; SAH: subarachnoid hemorrhage.
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Table 1. Role of mast cells in the pathogenesis of stroke.

Type of Stroke Experimental Model Findings References

NHIBI Carotid ligation mouse model MCs associated genes upregulated [70]

Carotid ligation rat model Rapid increase of activated MCs in the brain [71,72]

MCs pharmacological inhibition reduced MCs migration, brain damage and
glial activation

Transient focal ischemia rat model Rapid increase of activated MCs and histamine in the brain [73]

Ibotenate mouse model IL-9 exacerbated brain damage by activating MCs [74]

MCs pharmacological inhibition reduced brain damage

Ischemic Stroke OGD mouse MCs OGD promoted MCs activation [83–85]

OGD mouse MCs and neurons OGD-activated MCs induced neurotoxicity [83]

MCs pharmacological inhibition reduced MCs-induced neurotoxicity

MCAO mouse model MCs associated gene upregulated [87]

MC-deficient mice showed decreased BBB leakage, brain edema and
neutrophils infiltration

[90]

MCs pharmacological inhibition decreased BBB leakage, brain edema and
neutrophils infiltration
Meningeal MCs worsen infiltration of granulocytes and macrophages, brain swelling,
and infarct size

[93]

Four-vessel occlusion rat model Modulation of MCs number and histamine levels [88]

MCAO rat model MCs pharmacological activation increased edema formation [89]

MCs pharmacological inhibition decreased brain swelling, BBB leakage and
neutrophils infiltration
MC-deficient rats showed decreased brain swelling, BBB leakage, and neutrophils
infiltration

MCAO rat model Increased MCs gelatinase activity [91]

MCs pharmacological activation increased gelatinase activity

MCs pharmacological inhibition decreased gelatinase activity

MC-deficient rats displayed decreased gelatinase activity
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Table 1. Cont.

Type of Stroke Experimental Model Findings References

MCAO rat model treated with rtPA MCs pharmacological inhibition reduced rtPA-induced hemorrhagic conversion,
brain swelling, and neutrophil infiltration.

[98]

MC-deficient rats displayed decreased rtPA-induced hemorrhagic conversion, brain
swelling, and neutrophil infiltration.

Patients Lack of MCs in penumbra brain region [94]

ICH Blood infusion rat model MCs pharmacological activation increased brain damage. [106]
MCs pharmacological inhibition decreased brain damage, improved
neurologic outcome
MC-deficient rats displayed decreased brain damage, improved neurologic outcome

Collagenase infusion mouse model MCs activation [107,108]
MCs pharmacological inhibition decreased brain damage, improved
neurologic outcome

Collagenase infusion rat model treated with
rtPA

MCs pharmacological inhibition reduced rtPA-induced hematoma growth,
hemispheric expansion, mortality, and neurologic deficits.

[109]

SAH CA rat model MCs in aneurysm wall [119]

MCs pharmacological inhibition reduced inflammation and CA size and thinning

Co-culture rat MCs and smooth muscle cells Histamine and thromboxane inhibitors decreased MCs-mediated vasoconstriction [119]

Patients MCs in aneurysm wall [120–122]

MCs in the muscular layer of cerebral arteries [123]

BBB: blood brain barrier; CA: cerebral aneurysm; ICH: intracerebral hemorrhage; MCAO: middle cerebral artery occlusion; MCs: mast cells; NHIBI: neonatal hypoxic-ischemic brain injury;
OGD: oxygen and glucose deprivation; rtPA: recombinant tissue plasminogen activator; SAH: subarachnoid hemorrhage.
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5. MCs Modulation: A Promising Strategy in Stroke Treatment

Over the years, various strategies targeting intracellular and extracellular MCs mediators have
been developed, mainly to treat allergic disorders [37]. Some of these MCs modulators have been
demonstrated as effective therapeutic agents against stroke in preclinical studies [24]. The MCs
modulators active in stroke models are discussed below and in Table 2.

PEA (palmitoylethanolamide) is an endogenous lipid amide distributed in different mammalian
tissues, especially the brain [126]. Several reports indicate that PEA can reduce MCs activation in a
variety of cellular and in vivo experimental models [127–133]. Thanks to its anti-inflammatory and
analgesic properties, PEA has been investigated for the treatment of several pathologies, including
stroke [134]. The molecule is active in protecting against ischemic damage in cellular and animal
models of brain ischemia [135,136] and NHIBI [136]. In particular, in rats subjected to MCAO, PEA
decreased the release of MCs derived chymase and tryptase [137].

Luteolin is a flavonoid that exhibit anti-inflammatory, antioxidant, neuroprotective and
anti-carcinogenic activities [138,139]. Luteolin and its congeners have been reported to have a
potential for the treatment of several pathologies, including brain ischemia [140–143] and NHIBI [144].
Moreover, in line with studies showing that luteolin is able to reduce mastocytic activation [145–147],
the molecule prevented OGD-induced MCs degranulation and reduced neurotoxicity promoted by
OGD-activated MCs [83].

Notably, recent findings indicate the combination of PEA and luteolin synergistically reduces
MCs-mediated neurotoxicity and neurons susceptibility to hypoxic stress in a cellular model of brain
ischemia [83]. Moreover, the association between PEA and luteolin is effective in decreasing the
ischemia-induced MCs infiltration and expression of chymase and tryptase in a rat model of ischemic
stroke [148].

Sodium cromoglycate (also referred as cromolyn) is an FDA-approved MCs stabilizer used to
prevent symptoms associated with asthma [149]. Several studies point out a neuroprotective role of
this MCs modulator in preclinical stroke models. Cromoglycate is effective in limiting brain damage
in NHIBI, preventing MCs migration, and lowering glial activation and brain atrophy [71,72,74].
Pharmacological MCs inhibition by cromoglycate reduced ischemic brain swelling, perivascular
gelatinase activity, BBB leakage, and neutrophil accumulation in rats and mice subjected to ischemic
stroke [89–91]. Moreover, cromoglycate treatment inhibited hematoma growth and decreased
neurological deficits and mortality in rat model of hemorrhagic stroke [106]. Finally, cromoglycate
administration was able to reverse adverse effects of rtPA treatment in both ischemic stroke and
ICH rat models [98,109], suggesting a potential use of this MCs stabilizer in combination with
thrombolytic agents.

Intravenous immunoglobulin (IVIG) is an FDA-approved drug used to treat various inflammatory
and autoimmune diseases. IVIG contains mainly IgG and is obtained from the blood of healthy
donors [150]. In models of brain ischemia or ICH, IVIG treatment was shown to attenuate BBB
damage, brain edema, infarct area as well as production of proinflammatory cytokines [108,151–
154]. Interestingly, it has been reported that IVIG could activate the mastocytic inhibitory receptor
FcγRIIB [155]. In the ICH collagenase mouse model, IVIG activated FcγRIIB/SHIP1 pathway, inhibiting
calcium mobilization and stabilizing MCs [108].

Hydrogen (H2) gas inhalation is recognized as a therapeutic and preventive antioxidant
intervention able to reduce the levels of strong oxidants such as hydroxyl radicals and peroxynitrite [156].
H2 gas inhalation therapy was neuroprotective in preclinical cellular and in vivo models of brain
ischemia and ICH [107,157,158], as well as in clinical studies of brain ischemia [159–161]. The
neuroprotective effects promoted by H2 can be mediated also by a modulatory action on MCs, since
the gas inhalation can reduce mastocytic activation through the inhibition of the FcεR-mediated signal
transduction [109,162].

Carnosine (β-alanyl-l-histidine) is an endogenous dipeptide widely expressed in body tissues,
including CNS [163]. Thanks to its antioxidant, pH-buffering, and metal ion-chelating properties,
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combined with good tolerability and safety profile, carnosine is commonly used as dietary
supplement [163]. Carnosine and its derivatives have been reported to have a potential for the
treatment of several pathologies, including brain ischemia [164–169]. Carnosine is also able to reduce
MCs release of histamine [170]. Notably, carnosine attenuates mastocytic degranulation and histamine
release induced by OGD [85], suggesting that the MCs stabilizer capability of the molecule can be
involved in the beneficial effects observed in preclinical models of brain ischemia.

Emedastine difumarate and tranilast are two anti-allergic drugs endowed with inhibitory
properties on MCs degranulation [171–173]. Treatment of an experimentally induced intracranial
aneurysm rat model with emedastine or tranilast promoted a decrease in aneurysm size and an increase
in thickness [119].

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can differentiate into several
cell types in the adult tissues. For their anti-inflammatory effects, MSCs have been investigated for
the treatment of inflammatory pathologies [174]. Intravenous injection of MSCs reduced aneurysm
rupture rate and MCs infiltration in a intracranial aneurysm mouse model [175]. The modulatory effect
of MSCs on MCs appeared to be mediated by the cyclooxygenase-2 (COX-2)-dependent production of
prostaglandin E2 (PGE2) [175].

Masitinib mesylate is a multitargeted tyrosine kinase inhibitor studied for its potential
antineoplastic activity [176]. Masitinib was also shown to reduce ischemic brain area and neurological
deficits in a rat model of brain ischemia [177]. One of the mechanisms which could explain the
neuroprotective effect of the molecule is its modulatory activity on MCs by inhibiting Lyn kinase [178].

Scopoletin (6-methoxy-7-hydeoxycoumarin) is a coumarin compound isolated from several
plants [179]. The molecule, used in traditional Chinese medicine, have been investigated for its
antioxidant and anti-inflammatory properties [179,180]. Recently, it has been reported that scopoletin
is effective in mediating neuroprotection in a rat model of brain ischemia [181]. Moreover, scopoletin
was shown to reduce the production of inflammatory cytokines in a human MC line [182]. Although a
direct correlation between scopoletin and MCs modulation in stroke models is yet to be determined,
it is plausible that reduction of MCs activation could play a role in the scopoletin protection against
ischemic injury.

Resveratrol (trans-3, 5, 4′-trihydroxystilbene) is a natural polyphenol widely studied for its
anti-aging, anti-inflammatory, antioxidant, and anticarcinogenic properties [183]. Resveratrol and
its glucoside derivative polydatin showed beneficial effects in various cellular and animal models
of stroke, either alone or in combination with other molecules [184–193]. When administered as an
adjuvant with rtPA treatment, resveratrol showed to extend the clinical therapeutic window of rtPA,
by improving the outcome of patients receiving late stroke treatment [194]. Resveratrol and polydatin
can also modulate MCs functions by targeting IgE-dependent mastocytic activation [195–201]. In
light of a possible correlation between IgE levels and stroke, these findings strongly suggest that
MCs stabilization could play a role in the protection promoted by resveratrol and polydatin against
ischemic damage.

Ketotifen is a second-generation antihistamine and MCs stabilizer used for the management
of allergic disorders including asthma, allergic rhinitis/conjunctivitis, atopic dermatitis, and chronic
urticaria [202–206]. Interestingly, ketotifen has been demonstrated to decrease the multiorgan damage
and improve survival rate in rats subjected to intestinal ischemic reperfusion injury by inhibiting
MCs activation [207]. Although the effect of ketotifen in stroke models has not been investigated
yet, the molecule deserves future attention as potential approach to reduce neuroinflammation by
targeting MCs.
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Table 2. Therapeutic modulation of MCs in stroke models.

Drugs Experimental Model Findings References

PEA MCAO rat model PEA reduced MCs derived chymase and tryptase [137]

Luteolin OGD mouse MCs and neurons Luteolin reduced OGD-activated MCs degranulation and induced neurotoxicity [83]

PEA/Luteolin OGD mouse MCs and neurons PEA/Luteolin reduced OGD-activated MCs degranulation and MCs-induced neurotoxicity [83]

MCAO rat model PEA/Luteolin reduced ischemia-induced MCs infiltration and expression of chymase and tryptase [148]

Cromoglycate Carotid ligation rat model Cromoglycate reduced MCs migration, glial activation and brain atrophy [71,72]

Ibotenate mouse model Cromoglycate reduced MCs migration, glial activation and brain atrophy [74]

MCAO rat model Cromoglycate reduced brain swelling, perivascular gelatinase activity, BBB leakage and neutrophil accumulation [53,98]

MCAO mouse model Cromoglycate decreased BBB leakage, brain edema and neutrophils infiltration [90]

MCAO rat model treated with rtPA Cromoglycate reduced rtPA-induced hemorrhagic conversion, brain swelling and neutrophil infiltration. [98]

Blood infusion rat model Cromoglycate inhibited hematoma growth, decreased neurological deficits and mortality [106]

Collagenase infusion rat model treated with rtPA Cromoglycate reduced rtPA-induced hematoma growth, hemispheric expansion, mortality and neurologic deficits. [109]

IVIG Collagenase infusion mouse model IVIG attenuated BBB damage, brain edema, infarct area and pro-inflammatory cytokines levels [108]

H2 Collagenase infusion mouse model H2 decreased MCs accumulation and degranulation, BBB damage and improved neurobehavioral function [107]

Carnosine OGD rat MCs Carnosine reduced degranulation and histamine release in OGD-activated MCs [85]

Emedastine CA rat model Emedastine decreased MCs activation, inflammation and CA size and thinning. [119]

Tranilast CA rat model Tranilast decreased MCs activation, inflammation and CA size and thinning. [119]

MSCs CA mouse model Intravenous injection of MSCs reduced aneurysm rupture rate and CA MCs infiltration [175]

Studies showing MCs modulation by masitinib, scopoletin, resveratrol, polydatin and ketotifen in stroke models were not available at the moment of the manuscript submission. BBB:
blood brain barrier; CA: cerebral aneurysm; ICH: intracerebral hemorrhage; MCAO: middle cerebral artery occlusion; MCs: mast cells; MSCs: mesenchymal stem cells; NHIBI: neonatal
hypoxic-ischemic brain injury; OGD: oxygen and glucose deprivation; rtPA: recombinant tissue plasminogen activator; SAH: subarachnoid hemorrhage.
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6. Conclusions

The studies summarized in this review indicate a detrimental role of MCs in various types of
stroke. Through the release of their mediators, MCs can promote BBB damage, vasogenic edema, and
hemorrhage formation, can recruit other immune cells amplifying inflammatory response, and can
contribute to CA formation and vasospasm.

In light of the very early role of MCs in stroke and their complex modulatory effect on other cell
populations, pharmacological agents targeting MCs stabilization in the brain may offer an effective
neuroprotective strategy for stroke, alone or in combination with current available therapies. Available
randomized controlled clinical studies indicated that the treatments with some of the agents endowed
with mastocyte modulatory activity, namely H2 and resveratrol, were safe and effective in stroke
patients [148,159–161,194]. PEA/luteolin, investigated through an observational study in a cohort of
250 stroke patients, also showed a good tolerability and improved the outcome, when compared to
literature data on patients having similar pathologic conditions but never receiving PEA/luteolin [148].

However, several challenges need to be addressed in order to modulate MCs activation in stroke.
Immune responses after stroke, involving also MCs activation, are extremely complex, with many
processes potentially having both beneficial and detrimental roles. Moreover, our understanding
of the transcriptional and epigenetic dynamics driving MCs activation is still limited [37]. A better
knowledge of the post-stroke mastocytic modulation, supported by mechanistic studies, will help to
identify specific therapeutic targets and better approaches for stroke treatment.

For example, many intracellular and extracellular mediators of MCs activation, cell-surface
receptors involved in mastocytic modulation, and molecules released by activated MCs can be targeted
by different molecules with potential beneficial effects in therapeutic intervention against stroke
(for novel approaches in clinical targeting of MCs functions see [37,208]). Potential therapeutic
targets in MCs include cytokines (such as TNFα, IL-1, IL-5, IL-9, IL-13, IL-17A, IL-33, GM-CSF
(granulocyte-macrophage colony-stimulating factor)), IgE, histamine, MCs-surface receptors (such as
IL-4Rα, cysteinyl leukotriene receptor 1 (CYS LTR1), β-2 adrenergic receptor (ADRB2)), arachidonate
5–lipoxygenase (ALOX5, involved in leukotriene synthesis), COX-2 (involved in prostaglandin
synthesis), calcineurin (a phosphatase activating the transcription factor NFAT, involved in the
expression of proinflammatory cytokines), the glucocorticoid receptor (inhibiting proinflammatory
cytokine synthesis), and the inhibitory receptor Siglec 8 [37,208].

Finally, available data on MCs in stroke patients are limited [94,120–122,124]. Rodent and human
MCs can vary in phenotype, responsiveness to activation signals, and the spectrum of preformed
and newly synthetized mediators [6]. Therefore, findings on rodent MCs should be supported by
studies on patients. Particular focus is required for the investigation of the role of meningeal MCs in
stroke [92]. Identifying the location of the MCs population more involved in stroke pathology may
foster the research of effective therapeutics. The development of a molecular imaging probe detecting
MCs could help to address this issue.
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