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Abstract

A mutating finite automaton (MFA) is a nondeterministic finite automaton (NFA) which changes its morphology over discrete time
by a sequence of mutations, one mutation at each time instant. A mutation involves the insertion and/or removal of a set of states
and/or transitions. This results in a sequence of NFAs, one mutated NFA for each mutation. Some application domains, including
model-based diagnosis and monitoring of active systems in artificial intelligence and model-based testing in software engineering,
require online determinization of MFAs. Determinizing an MFA online means generating a deterministic finite automaton (DFA)
as soon as a mutation occurs, which is equivalent to the mutated NFA. Since the classical Subset Construction determinization
algorithm may be inadequate for MFAs, a conservative algorithm is proposed, called Subset Restructuring, that generates the new
DFA by restructuring the previous DFA based on the mutation occurred, instead of building it from scratch. Experimental results
indicate the effectiveness of the approach, especially so when large MFAs change in time by small mutations.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.
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1. Introduction

Determinization of nondeterministic finite automata (NFAs) is traditionally performed by the Subset Construction
algorithm1,2. Some application domains, such as diagnosis of active systems in artificial intelligence3,4,5,6,7 and model-
based testing in software engineering8,9, require determinizing an NFA which changes its topology over discrete time
t0, t1, . . . , tk. Such a mutating finite automaton (MFA) is represented by a pair (N0,M), where N0 is the initial NFA
(at time t0) andM = [µ1, . . . , µk] is a sequence of mutations of the NFA, where each mutation µi, occurring at time ti,
i ∈ [1 .. k], is a set of update actions (insertion and/or removal of states and/or transitions). This results in a sequence
of mutated NFAs, namely [N1, . . . ,Nk], where ∀i ∈ [1 .. k], Ni is obtained by updating Ni−1 by µi. Determinizing
an MFA online means generating the sequence of deterministic finite automata (DFAs) as soon as mutations occur,
where each DFA is equivalent to the corresponding mutated NFA. After some pioneering approaches10,11,12, the
problem of online determinization of MFAs has been partially solved under the restricted assumptions of incremental
mutations on the one hand13,14, and for decremental mutations15 (with no experimental results) on the other. Although
a conspicuous set of works for incremental processing of finite automata exists in the literature, including16,17,18,19,20,21,

∗ Giovanni Caniato. Tel.: +39-030-371-5491 ; fax: +39-030-380-014.
E-mail address: g.caniato@studenti.unibs.it

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2018, 3-5 September 2018, Belgrade, Serbia

Online Determinization of Large Mutating Automata
Giovanni Caniato∗, Gianfranco Lamperti

Department of Information Engineering, University of Brescia, 25123 Brescia, Italy

Abstract

A mutating finite automaton (MFA) is a nondeterministic finite automaton (NFA) which changes its morphology over discrete time
by a sequence of mutations, one mutation at each time instant. A mutation involves the insertion and/or removal of a set of states
and/or transitions. This results in a sequence of NFAs, one mutated NFA for each mutation. Some application domains, including
model-based diagnosis and monitoring of active systems in artificial intelligence and model-based testing in software engineering,
require online determinization of MFAs. Determinizing an MFA online means generating a deterministic finite automaton (DFA)
as soon as a mutation occurs, which is equivalent to the mutated NFA. Since the classical Subset Construction determinization
algorithm may be inadequate for MFAs, a conservative algorithm is proposed, called Subset Restructuring, that generates the new
DFA by restructuring the previous DFA based on the mutation occurred, instead of building it from scratch. Experimental results
indicate the effectiveness of the approach, especially so when large MFAs change in time by small mutations.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: finite automata, determinization, mutating automata, model-based reasoning, discrete-event systems, intelligent monitoring

1. Introduction

Determinization of nondeterministic finite automata (NFAs) is traditionally performed by the Subset Construction
algorithm1,2. Some application domains, such as diagnosis of active systems in artificial intelligence3,4,5,6,7 and model-
based testing in software engineering8,9, require determinizing an NFA which changes its topology over discrete time
t0, t1, . . . , tk. Such a mutating finite automaton (MFA) is represented by a pair (N0,M), where N0 is the initial NFA
(at time t0) andM = [µ1, . . . , µk] is a sequence of mutations of the NFA, where each mutation µi, occurring at time ti,
i ∈ [1 .. k], is a set of update actions (insertion and/or removal of states and/or transitions). This results in a sequence
of mutated NFAs, namely [N1, . . . ,Nk], where ∀i ∈ [1 .. k], Ni is obtained by updating Ni−1 by µi. Determinizing
an MFA online means generating the sequence of deterministic finite automata (DFAs) as soon as mutations occur,
where each DFA is equivalent to the corresponding mutated NFA. After some pioneering approaches10,11,12, the
problem of online determinization of MFAs has been partially solved under the restricted assumptions of incremental
mutations on the one hand13,14, and for decremental mutations15 (with no experimental results) on the other. Although
a conspicuous set of works for incremental processing of finite automata exists in the literature, including16,17,18,19,20,21,

∗ Giovanni Caniato. Tel.: +39-030-371-5491 ; fax: +39-030-380-014.
E-mail address: g.caniato@studenti.unibs.it

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2018, 3-5 September 2018, Belgrade, Serbia

Online Determinization of Large Mutating Automata
Giovanni Caniato∗, Gianfranco Lamperti

Department of Information Engineering, University of Brescia, 25123 Brescia, Italy

Abstract

A mutating finite automaton (MFA) is a nondeterministic finite automaton (NFA) which changes its morphology over discrete time
by a sequence of mutations, one mutation at each time instant. A mutation involves the insertion and/or removal of a set of states
and/or transitions. This results in a sequence of NFAs, one mutated NFA for each mutation. Some application domains, including
model-based diagnosis and monitoring of active systems in artificial intelligence and model-based testing in software engineering,
require online determinization of MFAs. Determinizing an MFA online means generating a deterministic finite automaton (DFA)
as soon as a mutation occurs, which is equivalent to the mutated NFA. Since the classical Subset Construction determinization
algorithm may be inadequate for MFAs, a conservative algorithm is proposed, called Subset Restructuring, that generates the new
DFA by restructuring the previous DFA based on the mutation occurred, instead of building it from scratch. Experimental results
indicate the effectiveness of the approach, especially so when large MFAs change in time by small mutations.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Keywords: finite automata, determinization, mutating automata, model-based reasoning, discrete-event systems, intelligent monitoring

1. Introduction

Determinization of nondeterministic finite automata (NFAs) is traditionally performed by the Subset Construction
algorithm1,2. Some application domains, such as diagnosis of active systems in artificial intelligence3,4,5,6,7 and model-
based testing in software engineering8,9, require determinizing an NFA which changes its topology over discrete time
t0, t1, . . . , tk. Such a mutating finite automaton (MFA) is represented by a pair (N0,M), where N0 is the initial NFA
(at time t0) andM = [µ1, . . . , µk] is a sequence of mutations of the NFA, where each mutation µi, occurring at time ti,
i ∈ [1 .. k], is a set of update actions (insertion and/or removal of states and/or transitions). This results in a sequence
of mutated NFAs, namely [N1, . . . ,Nk], where ∀i ∈ [1 .. k], Ni is obtained by updating Ni−1 by µi. Determinizing
an MFA online means generating the sequence of deterministic finite automata (DFAs) as soon as mutations occur,
where each DFA is equivalent to the corresponding mutated NFA. After some pioneering approaches10,11,12, the
problem of online determinization of MFAs has been partially solved under the restricted assumptions of incremental
mutations on the one hand13,14, and for decremental mutations15 (with no experimental results) on the other. Although
a conspicuous set of works for incremental processing of finite automata exists in the literature, including16,17,18,19,20,21,

∗ Giovanni Caniato. Tel.: +39-030-371-5491 ; fax: +39-030-380-014.
E-mail address: g.caniato@studenti.unibs.it

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.07.209&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/


60	 Giovanni Caniato  et al. / Procedia Computer Science 126 (2018) 59–68

Fig. 1. An NFA (left), an equivalent DFA (right), and the intermediate steps of Subset Construction (in between).

nonetheless these works are not designed for (hence, do not solve) the problem of MFA determinization. Since the
performance of MFA determinization via Subset Construction may deteriorate when NFAs are large and mutations
are small, this paper introduces Subset Restructuring, an algorithm for determinization of MFAs, where mutations
involve both incremental and decremental update actions. The main contributions of this work are: (1) integration
of the algorithms proposed in14,15 into a single new algorithm, namely Subset Restructuring, (2) implementation of
Subset Restructuring, and (3) experimentation aimed at showing the correctness and effectiveness of the algorithm.

2. Finite automata

A finite automaton (FA) can be either deterministic (DFA) or nondeterministic (NFA). A DFA is a 5-tuple (D,Σ, Td,
d0, Fd), where D is the set of states, Σ is a finite set of symbols called the alphabet, Td is the transition function,
Td : DΣ �→ D, where DΣ ⊆ D × Σ, d0 is the initial state, and Fd ⊆ D is the set of final states. Determinism comes
from Td mapping a state-symbol pair into a single state. An NFA is a 5-tuple (N,Σ, Tn, n0, Fn), where the fields
have the same meaning as in the DFA except that the transition function is nondeterministic, Tn : Nε

Σ
�→ 2N , where

Nε
Σ
⊆ N × (Σ ∪ {ε}), with ε being the empty symbol, ε � Σ. Each FA is associated with a regular language, which is

the set of strings on Σ generated by a path from the initial state to a final state. Two FAs are equivalent when they are
associated with the same regular language. Within an FA, a transition mapping a pair (s, �) is said to be marked by the
symbol � and is called an �-transition.

Example 1. Displayed on the left side of Fig. 1 is the diagram of an NFA, where n0 is the initial state, Σ = {a, b},
and Fd = {n4}. The transition function is represented by arcs n

�−→ n′ denoting single transitions, where n′ is one of the
states mapped from (n, �) ∈ (N × (Σ ∪ {ε})). Nondeterminism of the NFA is 3-fold: two ε-transitions and the state n0
being exited by two a-transitions. The regular language of the NFA includes string ab, which is generated by either

path n0
a−→ n1

b−→ n4 or n0
a−→ n1

ε−→ n0
ε−→ n3

b−→ n4, as ε is immaterial. The fact that the same string can be generated
by several paths comes from the nondeterminism of the NFA. By contrast, in a DFA, each string in the language is
generated by just one path. Shown on the right side of Fig. 1 is a DFA equivalent to the NFA, with d0 being the initial
state, and d1 and d3 the final states.

Definition 1. Let N be a set of states in an NFA and � a symbol in the alphabet. The ε-closure of N is the union of
N and the set of states that are reached by a path of transitions exiting a state in N, where all such transitions are
marked by ε. The �-closure of N is the ε-closure of the set of states reached by the �-transitions leaving states in N.

Example 2. In the NFA in Fig. 1, we have ε-closure({n0, n1}) = {n0, n1, n3} and a-closure({n0, n2}) = {n0, n1, n2, n3, n4}.

For each NFA there exists an equivalent DFA that can be generated by Subset Construction. Outlined in Algo-
rithm 1 is a pseudo-code specification of Subset Construction, whereN is the input NFA andD is the output DFA. By
construction, each state in the DFA is identified by a subset of the states of the NFA (hence the name of the algorithm).
The subset of states of the NFA identifying a state d of the DFA is denoted ‖d‖. The initial state d0 of the DFA is the
ε-closure of the initial state n0 of the NFA. The DFA is generated with the support of a stack S. Each element in S is
a state of the DFA to be processed (its transition function is to be generated). At the beginning, S contains the initial
state d0 only. Then, Subset Construction pops and processes one state d from S at a time, by generating the transitions
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Algorithm 1 Subset Construction
1: procedure Subset Construction(N ,D)
2: N = (N,Σ, Tn, n0, Fn): an NFA
3: D = (D,Σ, Td, d0, Fd): the DFA equivalent to N

4: Generate the initial state d0 where ‖d0‖ = ε-closure(n0)
5: S ← [d0]
6: repeat
7: Pop a state d from B
8: for all � ∈ Σ such that n

�−→ n′ ∈ Tn, n ∈ ‖d‖ do
9: N := �-closure(‖d‖)

10: if there is no state d′ in D such that ‖d′‖ = N then
11: Create a new state d′ where ‖d′‖ = N
12: Push d′ onto S
13: else
14: Let d′ be the state inD such that ‖d′‖ = N
15: end if
16: Create a new transition d

�−→ d′

17: end for
18: until S is empty
19: end procedure

exiting d, until S becomes empty. Each transition is generated by considering each label � ∈ Σ marking a transition

exiting a state n ∈ ‖d‖. For each label �, a transition d
�−→ d′ is created, where ‖d′‖ = �-closure(‖d‖). Furthermore, if

d′ does not exist, then it is created (and possibly qualified as final, if it contains at least one state that is final in the
NFA), and pushed onto stack S.

Determinization is convenient because processing a DFA is generally more efficient than processing an NFA. For
instance, in lexical analysis, the recognition of a string based on a DFA is performed without backtracking22. The
DFA generated by Subset Construction by determinization of an NFA N is said to be SC-equivalent to N .

Example 3. Consider the NFA displayed on the left-hand side of Fig. 1. Traced next to the NFA are the intermediate
representations of the equivalent DFA generated by Subset Construction, where current states in stackS are shadowed.

3. Mutating determinization problems

Before presenting Subset Restructuring, we give the notions of a mutation and a mutating determinization problem.

Definition 2. Let N = (N,Σ, T, n0, F) be an NFA. A mutation µ of N is a triple (∆N,∆T,∆F), where ∆N is the set
of mutated states, ∆T the set of mutated transitions, and ∆F the set of mutated final states. Each mutated element is
prefixed by either sign “+” or “−”, meaning that it is either added to or removed from N , respectively. The mutated
NFA resulting from the application of µ to N is denoted µ(N).

The following constraints are assumed: (a) µ(N) has the same initial state n0 as N ; (b) {−n,+n} � ∆N (a state
cannot be both removed and inserted); (c) if −n ∈ ∆N, n ∈ F, then −n ∈ ∆F; (d) bothN and µ(N) include at least one
final state; (e) in both N and µ(N) each state is reachable from n0 and can reach at least one final state.

Definition 3. Given a DFA D SC-equivalent to an NFA N and a mutation µ of N , the mutating determinization
problem based on N ,D, and µ consists in generating the DFAD′ SC-equivalent to the mutated NFA µ(N).

Example 4. Displayed on the left side of Fig. 2 is a mutated NFA µ(N), whereN is represented by plain and dashed
lines, while µ corresponds to dashed lines (removals) and bold lines (insertions). Based on Def. 2, we have ∆N =
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Fig. 2. (Left) a mutated NFA µ(N), where N is represented by plain and dashed lines, while µ is represented by dashed lines (removals) and bold
lines (insertions). (Center) the DFAD SC-equivalent to N . (Right) the DFAD′ SC-equivalent to µ(N).

{−2,−4,+6}, ∆F = ∅, ∆T = {−(0
ε−→ 2),−(2

a−→ 5),−(1
b−→ 4),−(4

a−→ 5),+(0
ε−→ 6),+(6

b−→ 5),+(1
ε−→ 0)}. Centered in

Fig. 2 is the DFA D SC-equivalent to N . Based on Def. 3, the problem is generating the DFA D′ SC-equivalent to
µ(N), displayed on the right side of Fig. 2, based on N ,D, and µ.

4. Subset Restructuring

In order to solve a mutating determinization problem (Def. 3), rather than applying Subset Construction to the
NFA µ(N) out of its context, thereby disregarding D, D′ is determined via Subset Restructuring, a conservative
algorithm that updates (in fact, restructures)D based onN and µ, rather than creating it from scratch. This algorithm
distinguishes between the identifier of a DFA state, namely d, and its extension, denoted ‖d‖, the latter being the set
of NFA states included in d. The extension of a DFA state may change during processing, while its identifier cannot.
Subset Restructuring makes use of a sequence B of buds (see Def. 4), which somewhat surrogates the stack S of states
in Subset Construction (see Algorithm 1).

Definition 4. Let µ be a mutation of N , d a state of the automaton D being processed by Subset Restructuring, �
either a symbol of the alphabet or ε, and N the �-closure of ‖d‖ in µ(N). The triple (d, �,N) is an �-bud forD.

A bud (d, �,N) is indicative of the need for updating the transition function of the state d, just as a state in the stack
S of Subset Construction needs to be defined in its transition function. Specifically, when � � ε, the pair (d, �) maps to
a state with extension N. Subset Restructuring is required to keep each state d inD still reachable from the initial state
d0. To this end, d is qualified by its distance, written δ(d), this being the minimum number of transitions connecting
d0 with d. In particular, δ(d0) = 0. Based on the distance, the set of states inD is partitioned into a finite set of strata,
namely D0,D1, . . . ,Dk, with each stratum Di including the set of states d such that δ(d) = i. In particular, D0 = {d0}.
The buds (d, �,N) in the bud sequence B are partially ordered based on δ(d). Consequently, Subset Restructuring
restructures D top-down, stratum by stratum. The stratum under processing, called the front stratum, is denoted Dδ̂,
where δ̂ is the front distance. While being processed, D is partitioned into three regions: (1) the prefix of D (already
processed), including strata Di such that i < δ̂, (2) the front stratum Dδ̂ (under processing), and (3) the suffix ofD (not
yet processed), including strata Dj such that j > δ̂. States in the prefix are complete (in both extension and transition
function) and cannot be changed by subsequent processing. By contrast, states in the suffix can subsequently change
(in either extension or transition function). States in the front stratum are fixed, in both number and extension, while
their transition function may change. Since states inD are marked by their distance, updatingDmay require distance
relocation. Subset Restructuring performs distance relocation lazily, precisely up to the stratum Dδ̂+1. Only when the
bud sequence becomes empty is distance relocation completed on the suffix of D. To this end, a relocation sequence
R is used, where states with possible changed distance are inserted.

We now present the pseudocode of Subset Restructuring which, for space reasons, is split into two parts, namely
Algorithm 2 (lines 1–29) and Algorithm 3 (lines 30–54). For the sake of simplicity and without loss of generality, the
processing of mutated final states is omitted. First, in line 5, the NFA N is updated based on the mutation µ. Then,
in lines 6–11, the main data structures of the algorithm are initialized, namely the bud sequence B, the front distance
δ̂, and the relocation sequence R. N̄ includes the states of N which are exited by transitions in ∆T . Intuitively, the
states in D whose extension intersect N̄ are the first states on which the algorithm starts processing D. To this end,
B is assigned the aggregation of the sets of buds Bd0 , Bε, and B�. The set Bd0 is either empty or composed of just
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Algorithm 2 Subset Restructuring (Part 1)
1: procedure Subset Restructuring(N ,D, µ)
2: N : an NFA
3: D = (D,Σ, Td, d0, Fd): the DFA SC-equivalent to N
4: µ = (∆N,∆T,∆F): a mutation of N

5: Update N by µ, thereby obtaining µ(N), with N′ being the set of states

6: N̄← { n | n ∈ (N′ \ ∆N), n
�−→ n′ ∈ ∆T }

7: Bd0 ← {(d0, ε,N) | n0
ε−→ n′ ∈ ∆T,N = ε-closure(n0),N � ‖d0‖}

8: Bε ← {(d, �,N) | d �−→ d′ ∈ Td, n ∈ ‖d′‖ ∩ N̄, n
ε−→ n′ ∈ ∆T,N = �-closure(‖d‖)}

9: B� ← {(d, �,N) | � � ε, d ∈ D, n ∈ ‖d‖ ∩ N̄, n
�−→ n′ ∈ ∆T,N = �-closure(‖d‖)}

10: B ← Bd0 ∪ Bε ∪ B�
11: R← [ ], δ̂← 0
12: while B is not empty do
13: Let d̄ be the state relevant to the first bud of B
14: if δ(d̄) > δ̂ then
15: Propagate(R) 〈 Propagation is up to stratum Dδ(d̄)+1 〉
16: end if
17: Remove the first bud (d, �,N) from B
18: δ̂← δ(d)
19: if � = ε then 〈 Rule R0 〉
20: Update(d,N) 〈 d is necessarily the initial state d0 〉
21: else if no �-transition exits d then
22: if d′ ∈ D, ‖d′‖ = N then 〈 Rule R1 〉

23: Insert transition d
�−→ d′ intoD

24: Relocate(d′, δ(d) + 1)
25: else 〈 Rule R2 〉
26: Create a new state d′ in D, where ‖d′‖ = N, along with its buds

27: Insert transition d
�−→ d′ intoD

28: δ(d′)← δ(d) + 1
29: end if 〈 Part 2 of Subset Restructuring is continued in Algorithm 3 〉

one ε-bud pertaining to the initial state d0. Instead, Bε includes buds (d, �,N) such that there is an �-transition in D
exiting d and entering d′, where the extension of d′ contains a state of N̄ that is exited by an ε-transition of µ. Finally,
B� includes the �-buds relevant to the states d of D whose extension intersects N̄ and are exited by an �-transition of
µ. What buds in Bε and B� have in common is that the transition function of the corresponding state d is possibly
changed owing to the mutation. In other words, the initial buds assigned to B in line 10 denote the root states in D
in which Subset Restructuring starts its processing. Then, one bud at a time is removed from B and processed in the
main loop (lines 12–49). In lines 13–16, before actually processing the bud, a check is performed on the distance
of the involved state d̄. Specifically, if d̄ belongs to the suffix of D, then the processing of the front stratum Dδ̂ is
complete; hence, distance propagation is carried out by the auxiliary procedure Propagate. After removing the first
bud (d, �,N) from B and setting the front distance δ̂ (lines 17 and 18), the bud is processed based on the symbol � and
the current transitions exiting d. Seven processing rules come into play, namely R0, . . . ,R6.

In rule R0 (lines 19 and 20), when � = ε, ‖d‖ is replaced by N. Based on line 7, d is necessarily the initial state
d0. In rule R1 (lines 22–24), when d is not exited by any �-transition and there is a state d′ such that ‖d′‖ = N, a

transition d
�−→ d′ is created, with the distance of d′ being possibly updated by the auxiliary procedure Relocate. In

rule R2 (lines 26–28), when d is not exited by any �-transition and there is no state d′ such that ‖d′‖ = N, both a new

state d′, with ‖d′‖ = N, and a new transition d
�−→ d′ are created. To generate the transition function of d′ subsequently,
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Algorithm 3 Subset Restructuring (Part 2)
30: else 〈 At least one �-transition exits d 〉

31: for all t ∈ Td, t = d
�−→ d′, ‖d′‖ � N do

32: if d′ � d0, no other trans. enters d′ then 〈 Rule R3 〉
33: Update(d′,N)
34: else if d′ = d0 or t′ ∈ Td, t′ � t, t′ = dp

x−→ d′, δ(dp) ≤ δ̂ then
35: if d′′ ∈ D, ‖d′′‖ = N then 〈 Rule R4 〉
36: Redirect t toward d′′

37: Relocate(d′′, δ(d) + 1)
38: else 〈 Rule R5 〉
39: Create a new state d′′ in D, where ‖d′′‖ = N, along with its buds
40: Redirect t toward d′′

41: δ(d′′)← δ(d) + 1
42: end if
43: else 〈 Rule R6 〉
44: Remove the transitions entering d′ other than t and replace them with buds
45: Update(d′,N)
46: end if
47: end for
48: end if
49: end while
50: if d ∈ D, ‖d‖ = ∅ then
51: Remove d and all its entering/exiting transitions
52: end if
53: Propagate(R) 〈 Distance propagation is applied to states in the suffix ofD 〉
54: end procedure

the buds for d′ are inserted into B based on the transition function of the NFA states in ‖d′‖. Specifically, the set of

buds generated for d′ in line 26 is {(d′, �′,N′) | n ∈ ‖d′‖, n �′−→ n′ ∈ N′,N′ = �′-closure(‖d′‖)}.
Rules R3, . . . ,R6 (involved in Part 2, Algorithm 3), occur when there is at least one �-transition exiting d. Note

that, owing to possible merging of states by Update, several �-transitions may exit the same state in D. Still, this
nondeterminism in D will disappear before ending the processing of buds. Hence, each of these rules can be applied
several times for the same bud, as specified by the loop in lines 31–47. In rule R3 (lines 32 and 33), when d′ is not
the initial state and no other transition enters d′, the extension of d′ is updated by the auxiliary procedure Update. In
rule R4 (lines 35–37), when d′ is the initial state or there is another transition entering d′ from a state dp such that
δ(dp) ≤ δ̂ and there is d′′ such that ‖d′′‖ = N, the transition exiting d is redirected toward d′′, whose distance needs
relocation. Rule R5 (lines 39–41) is applied based on the same conditions of R4, except that there is no state d′′ such
that ‖d′′‖ = N. If so, a new state d′′ is created (along with relevant buds), with ‖d′′‖ = N, and t is redirected toward
d′′. Rule R6 (lines 44 and 45) occurs when the condition in line 34 is not fulfilled. If so, then all other transitions
entering d′ are removed and replaced by buds, while the extension of d′ is updated based on N. When the condition in
line 34 holds, the reachability of d′ from the initial state does not depend on t, which thereby can be redirected toward
another state (rules R4 and R5). By contrast, when this condition does not hold, redirecting t away from d′ may result
in the disconnection of d′. This is why in R6 all other transitions entering d′ are removed (replaced by buds), while

preserving d
�−→ d′. In line 51, when B becomes empty, if D includes an empty state d, then d and all the transitions

entering/exiting d are removed from D. Note that retaining the empty state until B = ∅ is essential in order to avoid
the disconnection ofD. Eventually, distance relocation is propagated on the suffix ofD (line 53).

The processing state of Subset Restructuring is called a configuration, namely a pair (D̄, B̄), where D̄ is the current
instance of the automaton D, and B̄ the current instance of the bud sequence B. During processing, the algorithm
performs a trajectory, namely a finite sequence [α0, α1, . . . , αq] of configurations, where α0 = (D0,B0) is the initial
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α0

R0
(d0, ε, {0, 6})

(d0, a, {0, 1, 3, 6})
(d1, b, {5})

α2

R1
(d0, b, {5})

(d1, a, {0, 1, 3, 5, 6})
(d1, b, {5})

α4

R3
(d1, b, {5})

(d4, a, {0, 1, 3, 5, 6})
(d4, b, {5})

α6

R1
(d4, a, {0, 1, 3, 5, 6})

(d4, b, {5})

α8
B8 is empty

(state d5 to be removed)

α1

R3
(d0, a, {0, 1, 3, 6})

(d0, b, {5})
(d1, b, {5})

α3

R5
(d1, a, {0, 1, 3, 5, 6})

(d1, b, {5})

α5

R5
(d2, a, ∅)

(d4, a, {0, 1, 3, 5, 6})
(d4, b, {5})

α7
R1

(d4, b, {5})

Resulting DFA
(after removal of d5)

Fig. 3. Trajectory of Subset Restructuring in Example 5. For each configuration αi = (Di,Bi), i ∈ [0 .. 8], the bud processed is highlighted and the
processing rule is written on the top. The DFA resulting after the removal of the empty state is outlined on the bottom-right side (cf. Fig. 2).

configuration, with D0 being the DFA SC-equivalent to N and B0 is the initial instance of B (line 10, Algorithm 2),
while αq = (Dq,Bq) is the final configuration, withDq being the DFA SC-equivalent to µ(N) and Bq being empty.

Example 5. Consider the mutation determinization problem defined in Example 4. The trajectory of Subset Restruc-
turing in determinizing µ(N) is traced in Fig. 3. For each configuration αi = (Di,Bi), i ∈ [0 .. 8], the bud processed
is highlighted and the corresponding processing rule is written on top of it. To highlight the strata, the states of Di

belonging to the same stratum are aligned horizontally. For instance, considering the instanceD0 of the configuration
α0, we have three strata: D0 = {d0}, D1 = {d1}, and D2 = {d2, d3}. According to the initialization of B in lines 6–10 of
Algorithm 2, we have N′ \ ∆N = {0, 1, 3, 5} and N̄ = {0, 1}. Also, Bd0 = {(d0, ε, {0, 6})}, Bε = {(d0, a, {0, 1, 3, 6})}, and
B� = {(d1, b, {5})}. Hence, based on line 10, B is initialized with these three singletons, which corresponds to instance
B0 of configuration α0 in Fig. 3. Not coincidentally, the final automaton (bottom-right of Fig. 3) equals the DFA D′
which is SC-equivalent to µ(N) (displayed on the right side of Fig. 2).

5. Correctness and experimentation

Subset Restructuring is sound and complete, in other words, it generates the same DFA as that generated by Subset
Construction from scratch. Both Subset Construction and Subset Restructuring have been implemented in C++ and
compared in the determinizatinon of a large set of MFAs23. Specifically, hundreds of thousands of problem instances
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Fig. 4. Experimental results.

generated randomly have confirmed the correctness of Subset Restructuring empirically. They have also indicated
that, when the NFA is large and the mutations are small, Subset Restructuring outperforms Subset Construction in a
vast majority of cases, but not always. The reason for this can be grasped based on the notions of impact and gain.

Definition 5. Let D be the DFA SC-equivalent to an NFA N , µ a mutation of N , and D′ the DFA SC-equivalent to
µ(N). Let n be the number of states in D, let n′ the number of states in D′, and let nr the number of states either
created, deleted, or otherwise processed by Subset Restructuring in generatingD′ (based onD and µ). The impact of
restructuringD is the ratio of nr to n′, namely � = nr/n′.

Intuitively, the smaller the impact, the better the performance of Subset Restructuring over Subset Construction
will be. Given a mutating determinization problem, what is the possible range of the impact? In the best case, only
one state is processed by Subset Restructuring; hence, � = 1/n′. In the worst case, D′ is composed on the initial
state only; hence, � = n′, as n − 1 states are removed from D and the initial state is processed. In summary, we have
1/n′ ≤ � ≤ n′. With reference to Def. 5, we define the gain, namely γ, as follows:

γ =

{
(n′ − nr)/n′ if n′ ≥ nr
(n′ − nr)/nr otherwise =

{
1 − � if � ≤ 1
(1/�) − 1 otherwise. (1)

Based on eqn. (1), we have: −1 < γ < 1. When positive, γ indicates the fraction of states unprocessed by Subset
Restructuring against Subset Construction. When negative, |γ| indicates the fraction of states unprocessed by Subset
Construction against Subset Restructuring. When γ = 0, the two algorithms process the same number of states.
Hence, in theory, only when � < 1 is Subset Restructuring expected to be more convenient than Subset Construction.
But, is this expectation confirmed by the experimentation? To perform experiments, a specific auxiliary algorithm
has been designed, which generates pseudo-random instances of the mutating determinization problem based on a set
of parameters, namely: n, the number of states of N ; σ, the number of labels in Σ; δn, the number of states either
inserted into or removed from N ; δt, the number of transitions mutated; β, the branching factor, which is the average
number of transitions exiting each state in N ; and E, the percentage of ε-transitions in N .

Experimentation was performed on large MFAs with relatively small mutations. All parameters were kept constant,
with the exception of n, specifically: σ = 15, δt = 10, β = 2, E = 0.01, and δn = 0. Notice that δn = 0 indicates
that no state is inserted or removed deliberately; still, all the states which become unreachable owing to the removal
of transitions will be inserted into the mutation implicitly. Parameter n was varied from 100 to 20000 in steps of 100,
hence n = 100, 200, . . . , 20000. For each single value of n, about 250 instances of the problem were generated and
solved by both Subset Construction and Subset Restructuring (hence, about 50000 instances in total). Resulting figures
indicate that, considering the processing time, Subset Restructuring outperforms Subset Construction in the 84% of the
experiments, as indicated by the plot shown on the left side of Fig. 4, while the results relevant to the remaining 16%
of the experiments, where Subset Restructuring is outperformed by Subset Construction, are displayed by the plot on
the center of the figure. In both plots, the x-axis indicates the number of states in the NFAN , the y-axis on the left side
indicates the processing time (in seconds), and the y-axis on the right side indicates the impact � of restructuring the
DFA D. The processing time of Subset Restructuring (SR) and Subset Construction (SC) is represented by the blue
line and the red line, respectively, where each time value is the average of about 250 different experiments generated
randomly based on the same values of the parameters, in particular, the same number of NFA states. Finally, the gray
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line indicates the value of the impact of the restructuring (y-axis on the right side). Not unexpectedly, the impact has a
direct influence on the performance of Subset Restructuring, as the tests where Subset Restructuring performs poorly
against Subset Construction are those with high impact. This means that, despite the mutation being small, a large
number of states may be created and/or deleted inD.

In order to have more control on the impact in the experiments, a special class of stratified NFAs was designed. In
a stratified NFA, the set of states is partitioned into a sequence [N0,N1, . . . ,Nδmax ] of strata, where each stratum Ni,
i ∈ [0 .. δmax], includes the NFA states at distance i (from the initial state). With the exception of N0, which includes
just the initial state, each stratum contains about the same number of states. Each state in Ni is entered by one or more
transitions exiting states in Ni−1 only. Each transition exiting a state in Ni enters a state which is either in Ni or in Ni+1.
A mutation µ in the NFA involves the removal of one state and its transitions, which possibly requires the insertion
of new transitions in order to keep the child states still connected with the initial state. Hence, transitions exiting a
state in Ni may not enter a state in Nj if j < i. Based on these rules, several instances of the mutating determinization
problem were generated with δmax = 50. Shown on the right side of Fig. 4 is the relation among the stratum in which
the mutation µ occurs, the processing time of Subset Construction and Subset Restructuring (y-axis on the left side),
and the impact � (y-axis on the right side). Each time value is the average of about 100 experiments relevant to the
same stratum, with a total number of 5152 experiments. As expected, the more distant the stratum from the initial
state, the smaller the impact and, as a consequence, the smaller the processing time of Subset Restructuring. By
contrast and unsurprisingly, the processing time of Subset Construction remains practically constant.

6. Application domain: model-based diagnosis of active systems

Historically, the need for a conservative algorithm like Subset Restructuring originated in a specific field of artificial
intelligence called model-based diagnosis of active systems3. Once an active system A (a sort of discrete-event
system) is modeled as a network of communicating automata, we can diagnoseA based on a temporal observation24,
which is a directed acyclic graph whose nodes are marked by observable labels and arcs denote temporal precedences
between these labels. Based on a temporal observation O of A, the diagnosis engine reconstructs the behavior of A
which is consistent with O. This behavior is a DFA whose nodes are pairs (S ,�), where S is state of A and � is an
index of O, while arcs are marked by transitions of the communicating automata embodied in A (its components).
An index of O is the state of a DFA, called the index space of O and denoted D(O), derived from O through an NFA
called the nondeterministic index space of O and denoted N(O). The important point is that D(O) is SC-equivalent
to N(O). If O is given once and for all, then D(O) can be generated from N(O) by Subset Construction without any
problem. If, instead, O changes over time (for example by additional nodes and arcs), the diagnosis engine is required
to update both N(O) and D(O) dynamically. If N(O) is large, then generating the new D(O) by Subset Construction
is in general less than optimal, as it requires the complete construction of the DFA. This is why it is more convenient
to update D(O) (rather than building it from scratch) based on the mutation occurred in N(O) as a consequence of
the mutated temporal observation O. In so doing, Subset Restructuring may perform better than Subset Construction.
Experimental results in monitoring-based diagnosis of active systems have confirmed the viability of this approach.

7. Conclusion

In real life, the convenience in restructuring a house instead of rebuilding it from scratch largely depends on the
extent of the restructuring task. Provided that the result will be the same (correctness), the smaller the extent of
the restructuring, the more convenient the restructuring against the complete rebuilding of the house will be. This
simple idea has been adopted in this paper for coping with mutating determinization problems. As the experimental
results suggest, the convenience in restructuring a DFA (based on a mutation of the equivalent NFA) rather than
building the new DFA from scratch largely depends on the impact of the restructuring: the smaller the impact, the
more convenient Subset Restructuring against Subset Construction will be in the determinization of the mutated NFA.
Somewhat surprisingly, the experiments also indicate that even a small mutation of the NFA may result in a large
impact of the restructuring. This counterintuitive fact can be grasped by considering that each state of the DFA is
identified by a subset of the states of the equivalent NFA. Hence, if we insert/remove a few states into/from the NFA,
then, in the worst case, all of the states of the DFA may be extended/shrunk by some of these NFA states. In other
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words, even a small mutation may result in a large impact. Thus, whether to adopt Subset Restructuring rather than
Subset Construction remains an empirical question. In practice, given an application domain with specific mutating
determinization problems to be solved, the choice between the two algorithms may be determined based on real test
cases aimed at pinpointing the trend of the impact of the restructuring in the specific domain.

References

1. Rabin, M., Scott, D.. Finite automata and their decision problems. IBM Journal of Research and Development 1959;3(2):114–125.
doi:10.1147/rd.32.0114.

2. Hopcroft, J., Motwani, R., Ullman, J.. Introduction to Automata Theory, Languages, and Computation. Reading, MA: Addison-Wesley;
third ed.; 2006.

3. Lamperti, G., Zanella, M.. Diagnosis of Active Systems: Principles and Techniques; vol. 741 of Springer International Series in Engineering
and Computer Science. Dordrecht, Netherlands: Springer; 2003. doi:10.1007/978-94-017-0257-7.

4. Lamperti, G., Zanella, M.. Monitoring of active systems with stratified uncertain observations. IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans 2011;41(2):356–369. doi:10.1109/TSMCA.2010.2069096.

5. Lamperti, G., Scandale, M.. From diagnosis of active systems to incremental determinization of finite acyclic automata. AI Communications
2013;26(4):373–393. doi:10.3233/AIC-130574.

6. Lamperti, G., Zhao, X.. Diagnosis of active systems by semantic patterns. IEEE Transactions on Systems, Man, and Cybernetics: Systems
2014;44(8):1028–1043. doi:10.1109/TSMC.2013.2296277.

7. Lamperti, G., Quarenghi, G.. Intelligent monitoring of complex discrete-event systems. In: Czarnowski, I., Caballero, A., Howlett, R.,
Jain, L., editors. Intelligent Decision Technologies 2016; vol. 56 of Smart Innovation, Systems and Technologies. Springer International
Publishing Switzerland; 2016, p. 215–229. doi:10.1007/978-3-319-39630-9 18.
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