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Key points

� Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be
tracked across different experimental sessions, and therefore, there is limited experimental
evidence on the adjustments in MU properties following training or during the progression of
neuromuscular disorders.

� We propose a new processing method to track the same MUs across experimental sessions
(separated by weeks) by using high-density surface electromyography.

� The application of the proposed method in two experiments showed that individual MUs can
be identified reliably in measurements separated by weeks and that changes in properties of
the tracked MUs across experimental sessions can be identified with high sensitivity.

� These results indicate that the behaviour and properties of the same MUs can be monitored
across multiple testing sessions.

� The proposed method opens new possibilities in the understanding of adjustments in motor
unit properties due to training interventions or the progression of pathologies.

Abstract A new method is proposed for tracking individual motor units (MUs) across multiple
experimental sessions on different days. The technique is based on a novel decomposition
approach for high-density surface electromyography and was tested with two experimental studies
for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee
extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three
sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed
2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric
knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment
II) of the measured MU properties were compared for the MUs tracked across sessions, with
respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the
identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis
and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable
across sessions than those of the full set of identified MUs (intra-class correlation coefficients
ranged between 0.63—0.99 and 0.39–0.95, respectively). In Experiment II, �40% of the MUs
could be tracked before and after the training intervention and training-induced changes in
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MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified
motor units). These results show the possibility of monitoring MU properties longitudinally to
document the effect of interventions or the progression of neuromuscular disorders.
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Abbreviations ALS, amyotrophic lateral sclerosis; CCC, cross-correlation coefficient; CoVisi, coefficient of variation for
the inter-spike interval; EMG, surface electromyography; ES, ffect size; HDEMG, high-density surface electromyography;
ICC, intra-class correlation coefficient; MU, motor unit; MUAP, motor unit action potential; MUNE, motor unit number
estimation; MVC, maximum voluntary contraction; SEM, standard error of the measurement; SIL, silhouette; VL, vastus
lateralis; VM, vastus medialis; V̇O2peak, peak oxygen uptake.

Introduction

The neuromuscular system is highly adaptable.
Improvements in motor performance can be observed
after only a few training sessions (Aagaard, 2003;
Selvanayagam et al. 2011), while impairments in motor
performance due to injury, inactivity or immobilization
occur within a few days (Weibull et al. 2011). Since
short-term improvements in motor performance are
usually not accompanied by changes in muscle structure
(Aagaard, 2003), there has been wide interest in
studying the neural mechanisms underlying adaptations
to training. For instance, the effects of strength and end-
urance training on motor performance reflect supraspinal
and spinal adjustments (Adam & De Luca, 2005; Adkins
et al. 2006), which influence the neural drive to the
muscles, i.e. motor unit behaviour (Vila-Cha et al. 2010).

Investigation of the behaviour and properties of motor
units provides a unique insight into the neural code under-
lying movements (Farina et al. 2016). Yet, only a few
studies have specifically analysed motor unit adaptations
to training (Duchateau et al. 2006). This is mainly due
to methodological limitations. Classic intramuscular fine
wire or concentric needle electromyography only allows
recording from few motor units concurrently. Moreover,
it is not possible to follow the same motor units across
experimental sessions with these classic methods (Carroll
et al. 2011). Therefore, the sample detected is too small
and too variable across sessions to make inferences on
adaptations in the motor unit pool of a muscle in
longitudinal studies. The problem of a small sample,
intrinsic to selective intramuscular recordings, has been
addressed recently with novel multi-channel surface and
intramuscular EMG systems that allow for a substantial
enlargement of the number of concurrently detected
motor units (Muceli et al. 2015).

High-density surface electromyography (HDEMG)
systems may also have the potential, not yet exploited, to
track motor units across different sessions. This hypothesis
is based on the observation that HDEMG provides a spatial
sampling of the electrical activity of motor units over the

skin plane and the large number of channels allows precise
discrimination between different motor units (Farina et al.
2008). This spatial ‘signature’ of each motor unit may be
used for longitudinal tracking since it can be detected in an
almost identical manner once the electrode grid is placed
in a similar location over the skin.

The likelihood of this conclusion increases for
increasing number of channels since the probability that
two motor units detected in different sessions present
exactly the same spatial action potentials over tens of
channels is negligible. The possibility of tracking motor
units longitudinally with HDEMG during voluntary
contractions has, however, never been verified.

In this study we aimed to track individual motor units,
identified from HDEMG decomposition, across recording
sessions performed in different days. For this purpose, we
developed a new decomposition technique, as an extension
of the convolutive blind source separation approach
proposed in Negro et al. (2016), with the introduction of
the maximization of the cross-correlation of the motor
unit action potential (MUAP) profiles. The approach
was specifically designed to detect common sources over
multiple sessions. To test the new method, we compared
the motor unit action potentials and properties across
days as well as pre and post 2 weeks of endurance training.
The results revealed, for the first time, the possibility of
identifying and studying the same motor units in humans
over different days (separated by weeks), which opens new
perspectives for studies on the neuromuscular adaptations
to training and disease monitoring.

Methods

Motor unit identification and tracking

The motor unit identification and tracking method is
an extension of the convolutive blind source separation
technique recently described in Negro et al. (2016), derived
from the convolution kernel compensation method (CKC)
(Holobar & Zazula, 2007), with a different approach for
convergence to the sources (see Negro et al. (2016) for
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further information). Here we adapted the convolutive
blind source separation method to extract motor units
with multi-channel action potential shapes maximally
similar across sessions.

The convolutive mixture of HDEMG signals can be
represented as a linear and instantaneous mixture of
the spike trains of the individual motor units and their
delayed versions (see Appendix A). Therefore, using an
appropriate extension of the matrix of the measurements
(multi-channel EMG signals) and the specific properties
of the sources (non-Gaussianity/sparsity), it is possible
to separate the activity of individual motor unit spike
trains using techniques of linear instantaneous blind
source separation (Negro et al. 2016). Briefly, after
a de-correlation/whitening transformation applied to
the extended measurements, a fixed point algorithm
(Hyvarinen & Oja, 2000) is used to find a projection vector
(linear filter) that maximizes the sparsity of the extracted
source. The sparsity assumption is well satisfied by the
spiking nature of the motor neurons. After a motor neuron
spike train is correctly identified, its projection vector is
removed from the solution space and the procedure is
repeated to extract the next source. Since the measurement
matrix is extended, the procedure extracts the original
sources and their delayed versions. Therefore, the number
and the order of extracted sources are not known a
priori and depend on the number of iterations, the
extension factor, and the spatial characteristics of the EMG
signals.

In this study, a new method for the reliable extraction
of common motor units in different recording sessions
was implemented. After the full blind decomposition
was performed on the first recording session, we applied
a semi-blind separation procedure for the remaining
sessions, focusing on finding only the sources that had
MUAP profiles similar to the ones extracted from session 1.
The decomposition procedure converged to the matched
motor units first and then extracted motor units which
could not be matched across sessions. In this way, it
extracted a population of motor units divided in two
groups. The first group consisted of the motor units that
were tracked across more than one experimental session
(tracked motor units); the second group included those
units that were identified in only one experimental session
(unmatched motor units). The group of unmatched motor
units was analysed across sessions with a sample size
similar to the one used for the tracked motor units (see
Statistics and Results). The normalized cross-correlation
between the MUAP profiles was used as a measure of
similarity. For each motor unit identified in session 1, we
ran the semi-blind algorithm on the other sessions until a
motor unit with normalized cross-correlation higher than
0.8 was found. On a limited number of trials (�15%)
multiple matches with a cross correlation > 0.8 were
found. In such cases, the algorithm matched the highest

cross-correlated sources and discarded the other matches.
Thus, the algorithm maximized the probability of finding
the matched motor units across different sessions and
considerably reduced the computational load.

In the results presented in this study, we used an
extension factor of 16 for the decomposition iteration and
50 samples for computing the similarity measures between
de-whitened projection vectors (original multichannel
filters or MUAP profiles). The choice of extension factor
was similar to that in Negro et al. (2016) for surface
EMG signals sampled at 2048 Hz. The number of samples
for computing similarity measures (corresponding to
�25 ms) was chosen to estimate the cross-correlation
using the whole MUAP representation in each channel.

The mathematical details of the approach are provided
in Appendix A.

Experimental tests

Two experiments were designed to test the proposed
method and to prove its effectiveness at monitoring
changes in motor unit properties compared to the classic
approach of averaging results across the full population
of identified units in each condition (Vila-Cha et al.
2010; Martinez-Valdes et al. 2016). From now on, the
full sample of identified motor units (without matching
across sessions) will be referred to as ‘total group of
identified motor units’. The first experiment (Experiment
I) was designed to prove the reliability of the motor
unit properties when estimated over different sessions
without interventions on the subjects. This experiment
was conducted by measuring motor unit properties over
three sessions in 2 weeks. The motor units were tracked by
the proposed method and their properties were estimated
in each session. The reliability of these estimates was
statistically analysed when the motor units were tracked
with respect to the total group of identified motor units
and also to the unmatched motor units (subset of the total
group of motor units that could not be tracked across
sessions). The second experiment (Experiment II) was
designed to test the sensitivity of motor unit tracking when
measures were separated by a training intervention, which
could also influence the shapes of the action potentials.
Motor unit properties that were expected to change due to
training were compared pre and post training, with and
without tracking (total group of motor units).

The two experiments provide a strong experimental
validation of the proposed method and of its effectiveness.

Subjects

Ten healthy and physically active men (mean (SD) age:
27 (4) years, height: 180 (8) cm, mass: 78 (10) kg)
participated in the first experiment and seven healthy men
(age: 28 (2) years, height: 177 (7) cm, mass 78 (9) kg)
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took part in the second longitudinal experiment (end-
urance training). All subjects were right leg dominant
(determined by asking the subjects which leg they
would use to naturally kick a ball). Exclusion criteria
included any neuromuscular disorder as well as any
current or previous history of knee pain and age < 18
or > 35 years. Participants were asked to avoid any
strenuous activity 24 h prior to the measurements. The
ethics committee of the Universitaetsmedizin Göttingen
approved the first experiment (approval number 24/1/14),
performed in Göttingen, and the ethics committee of the
Universität Potsdam approved the training intervention
(approval number 26/2015), performed in Potsdam, both
in accordance with the Declaration of Helsinki (2004). All
participants gave written, informed consent.

Experiment I (repeated measurements)

Participants attended the laboratory on three occasions.
Consecutive sessions were 7 days apart and were conducted
at the same time of the day for each subject on each
occasion. In each experimental session, the participant
was seated in an isokinetic dynamometer (Biodex System
3, Biodex Medical Systems Inc., Shirley, NY, USA), with the
trunk reclined to 15 deg in an adjustable chair while the hip
and distal thigh were secured to the chair. The rotational
axis of the dynamometer was aligned with the right lateral
femoral epicondyle and the lower leg was secured to
the dynamometer lever arm above the lateral malleolus.
Maximal and submaximal isometric knee extensions were
exerted with the knee flexed to 90 deg. Subjects performed
two maximal voluntary contractions (MVC) of knee
extension each over a period of 5 s. These trials were
separated by 2 min of rest. The highest MVC value was
used as a reference for the definition of the submaximal
force levels. In each of the three experimental sessions,
the submaximal forces were expressed as a percentage of
the MVC measured during the same session. Five minutes
of rest were provided after the MVC measurement. Then,
following a few familiarization trials at low force levels,
subjects performed submaximal ramped-isometric knee
extension contractions to 10, 30, 50 and 70% MVC
in a randomized order. In each trial, subjects received
visual feedback of their knee extension force, which was
displayed as a template that had a triangular waveform
(e.g. increased isometric leg extension force (ramp-up)
from 0 to 50% MVC in 10 s and decrease of isometric
extension force (ramp-down) from 50% to 0% in 10 s).
The contractions at 10% and 70% MVC lasted 14 s
(ramp-up and ramp-down over 7 s, respectively) while
the contractions at 30% and 50% MVC lasted 20 s
(ramp-up and ramp-down over 10 s, respectively). In
this study, we chose to decompose variable-force contra-
ctions, contrary to a previous study where we investigated
constant force contractions (Martinez-Valdes et al. 2016).

This was done to maximize the impact of tracking units
on the reliability of the estimates of motor unit properties.
Each force level was performed twice consecutively (with
30 s of rest between repetitions); however, only the
second repetition was considered for further analysis.
Rest periods of 2, 3, 4 and 5 min were allowed after
the 10, 30, 50 and 70% MVC contractions, respectively.
One additional MVC was performed at the end of each
testing session to evaluate whether the protocol induced
fatigue.

Experiment II (endurance training)

The experimental protocol consisted of a baseline
session (i.e. HDEMG recordings, peak oxygen uptake
(V̇O2peak) determination), a 2-week intervention of
endurance training, and post-training session. For
the baseline testing, prior to training, the subjects
performed submaximal isometric knee extensions at
10 and 30% MVC (random order) on an iso-
kinetic dynamometer (CON-TREX MJ, PHYSIOMED,
Regensdorf, Switzerland), following the same procedure
presented above (see Experiment I), with the only
difference that visual feedback of knee extension force was
displayed as a template that had a trapezoidal waveform
(5 s ramps with a hold-phase duration of 20 s). Then,
24 h after the HDEMG-force measurements, the subjects
performed an incremental test to exhaustion on an electro-
nically braked cycle ergometer (Lode Excalibur Sport V2.0,
Groningen, the Netherlands) to determine V̇O2peak using a
gas analysis system (ZAN 600, Nspire Health, Oberthulba,
Germany). Following a 3-min warm-up at 30 W, the test
began with the workload increasing by 6 W every 12 s
until volitional exhaustion. The revolutions per minute
were maintained between 80 and 90, throughout the
incremental test and training sessions. The value used for
V̇O2peak corresponded to the highest value achieved over a
30 s collection period.

The training protocol commenced approximately 72 h
after the incremental test and consisted of six training
sessions over 14 days. Each training session was performed
on Mondays, Wednesdays, and Fridays. Training consisted
of 90–120 min of continuous cycling at 65% of V̇O2peak

(166.4 (20.1) W). The duration of exercise increased
from 90 min during sessions 1 and 2 to 105 min during
sessions 3 and 4, and to 120 min during sessions 5
and 6. This protocol has previously been determined
to be sufficient to produce an increase in endurance
performance and aerobic capacity (Gibala et al. 2006). An
investigator of the study (E.M.-V.) supervised all training
sessions. The post-training session (HDEMG recordings
and incremental test) was identical to the baseline-testing
procedures and was performed approximately 72 h post
training to reduce the effects of post-training fatigue in all
measurements (Gibala et al. 2006).
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This training regime has been shown to enhance muscle
fibre membrane excitability through changes in Na+–K+
-ATPase activity (Green et al. 2004). Therefore, we hypo-
thesized that the current protocol would also induce
changes in motor unit conduction velocity of the vasti
muscles, which have only been previously reported in a
longer endurance training intervention (6 weeks) with
much lower weekly training volume (Vila-Cha et al. 2010,
2012).

Data acquisition

Surface EMG signals were recorded in monopolar
derivation with a two-dimensional (2D) adhesive grid
(SPES Medica, Salerno, Italy) of 13 × 5 equally spaced
electrodes (each of 1 mm diameter, with an inter-electrode
distance of 8 mm), with one electrode absent from the
upper right corner. First, the skin of the participants
was marked according to guidelines (see Barbero et al.
(2012) for details), for appropriate electrode orientation.
Furthermore, to ensure optimal electrode placement,
EMG signals were initially recorded during a brief
voluntary contraction during which a linear non-adhesive
electrode array was moved over the skin to detect the
location of the innervation zone and tendon regions, as
previously described (Masuda et al. 1985; Farina et al.
2001). After skin preparation (shaving, abrasion and
water), the electrode cavities of the grids were filled
with conductive paste (SPES Medica, Salerno, Italy) and
the grids positioned between the proximal and distal
tendons of the vastus lateralis (VL) and vastus medialis
(VM) muscles with the electrode columns (comprising
13 electrodes) oriented along the muscle fibres. Reference
electrodes were positioned at the right ankle and patella.
The location of the electrodes was marked on the
skin of the participants using a surgical pen, allowing
similar electrode positioning across the experimental
sessions.

Force and EMG signals were sampled at 2048 Hz and
converted to digital data by a 12-bit analogue to digital
converter (EMG-USB 2, 256-channel EMG amplifier, OT
Bioelettronica, Torino, Italy, 3 dB, bandwidth 10–500 Hz).
EMG signals were amplified by a factor of 2000, 1000,
500 and 500 for the 10, 30, 50 and 70% MVC contra-
ctions, respectively. Data were stored on a computer hard
disk and offline analysed with Matlab (The Mathworks
Inc., Natick, MA, USA). Finally, before decomposition, the
64-monopolar EMG channels were re-referenced offline
to form 59 bipolar derivations, as the differences between
adjacent electrodes in the direction of the muscle fibres.

Signal analysis

The new method for motor unit identification and
maximization of the common sources across sessions

described in the first section on Motor unit identification
and tracking was applied to extract the MUAPs from
the acquired HDEMG data. The discharge times of the
identified motor units were converted in binary spike
trains in which each data sample was assigned a value
of 0 or 1, depending on whether or not the data
sample marked the onset of an action potential for a given
motor unit. Recruitment and de-recruitment thresholds
for each motor unit were defined as the torque (Nm)
at the times when the motor unit began and stopped
repetitively discharging action potentials. Discharge times
that were separated from the next by > 200 ms
were excluded from the estimation of recruitment and
de-recruitment thresholds to avoid aligning the thresholds
with noise-generated discharges (Farina et al. 2009). The
mean discharge rate was defined as the average discharge
rate during the interval of time of activation.

As a quality control, only motor units with a coefficient
of variation for the inter-spike interval (CoVisi) < 30%
(Laine et al. 2015), with a silhouette (SIL) > 0.90 (see
Negro et al. (2016) for details) were considered for
further analysis. SIL is the difference between the within-
and between-cluster sums of point-to-centroid distances,
normalized dividing by the maximum of the two values.
SIL is an accuracy index for EMG decomposition similar
to the pulse-to-noise ratio (see Holobar et al. (2014) for
details). However, since SIL is a normalized measure, it can
be directly associated to the accuracy of the decomposition
(Negro et al. 2016). Finally, discharges that were separated
from the next by < 33.3 ms or > 200 ms (30 and 5 Hz,
respectively) were excluded from the mean discharge rate
and the coefficient of variation of inter-spike interval
(CoVisi) calculations because these discharges are rare for
the vasti muscles at submaximal contraction forces and
therefore are likely to be due to decomposition errors
(Martinez-Valdes et al. 2016).

Motor unit conduction velocity was estimated from
double differential derivations of the single motor unit
surface multi-channel action potentials in the longitudinal
direction (Farina et al. 2001). The channels selected for
conduction velocity estimates were based on the criterion
of a minimal change in shape of the action potential during
propagation. The acceptance criterion for conduction
velocity estimates was based on the correlation coefficient
of the delayed action potentials (threshold set to 90%).
Since the accuracy of motor unit conduction velocity
estimates increases with the number of channels used
(Farina & Mesin, 2005), we selected the largest amount
of channels that showed a cross-correlation > 90% (3 to
8 double differential channels were used). Additionally,
values beyond the physiological range (2–6 m s−1) were
excluded (Andreassen & Arendt-Nielsen, 1987). Finally,
peak-to-peak (p2p) amplitude values were averaged across
all the channels of the electrode grid, as presented pre-
viously (Martinez-Valdes et al. 2016).
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Statistical analysis

General. Results are expressed as mean and standard
deviation (SD) unless otherwise stated. Before
comparisons, all variables were tested for normality
using the Shapiro-Wilk test. The assumption of sphericity
was checked by the Mauchley’s test and, if violated, the
Greenhouse-Geisser correction was made to the degrees
of freedom. Statistical significance was set at P < 0.05.

Experiment I. MVCs from the beginning and end of each
session were compared using a Student’s paired t test and
the MVCs performed at the beginning of each session
were compared by one-way analysis of variance (ANOVA).
Paired t tests were used to check the effect of time on the
number of tracked motor units (sessions 1—2 vs. 1–3
and 2—3 vs. 1–3). Therefore, we compared the number
of tracked motor units between sessions that were one
(sessions 1–2 and 2–3) and 2 weeks apart (sessions 1–3),
at each force level (10, 30, 50 and 70% MVC) and muscle
(VM and VL), independently.

All motor unit variables (recruitment–de-recruitment
threshold, mean discharge rate and conduction velocity)
were analysed for reliability at each force level (10, 30, 50
and 70% MVC) and muscle (VM and VL), independently.
The level of reliability of the variables extracted from
matched motor units (proposed method), from the
total group of identified motor units (independent
decompositions using averaged motor unit population
samples, including both matched and unmatched motor
units), and unmatched motor units (random sample of
motor units that could not be tracked across sessions,
with a sample size similar to the ones used for tracked
motor units) between sessions 1 and 3 was determined by
the intra-class correlation coefficient (ICC 2,1). ICC scores
between 0.8 and 1 were interpreted as ‘excellent’, 0.6–0.8
‘good’ and < 0.6 ‘poor’ (Bartko, 1966). Additionally,
a paired t test was performed to detect significant
differences between sessions. The absolute reliability was
obtained by the standard error of the measurement
(SEM = SD�(1 – ICC)). The level of reliability of
motor units that were matched across the three sessions
was determined by ICC2,1, while a one-way repeated
measures ANOVA was used to detect any significant
differences between sessions. For the sake of clarity,
results are presented only for motor units tracked between
sessions 1–3 and 1–2–3. Reliability results (ICC and SEM)
were averaged between all force levels (10, 30, 50 and
70% MVC) and presented for each variable and muscle
independently.

Finally, the motor unit tracking procedure was also
applied across the different force levels within each session.
Motor units were tracked between 10 vs. 30, 30 vs. 50 and
50 vs. 70% MVC. The ICC2,1 was used to evaluate the
reliability of conduction velocity and p2p amplitude values

of motor units that were tracked between the different
force levels on each session.

Experiment II. The estimate of single motor unit
conduction velocity was chosen as representative variable
to compare pre and post training. The values of this
variable estimated for the matched and the total group
of identified motor units, pre and post intervention, were
compared by paired t test. Additionally, the Cohen’s d was
used to estimate the effect size (ES). A Cohen’s d less than
0.2 was classified as ‘trivial’, 0.2–0.5 as ‘small’, 0.5–0.8 as
‘moderate’, and greater than 0.8 as ‘large’ (Cohen, 1988).

Results

Experiment I

Maximal voluntary knee extension force performed at the
beginning of each session did not differ between sessions
(P = 0.099). Furthermore, there was no significant change
in MVC across each experimental session (P = 0.55, 0.13
and 0.08, for sessions 1, 2 and 3, respectively). The total and
average number of accurately decomposed motor units
from both muscles (CoVisi < 30% and SIL > 0.9) is pre-
sented for each session and force level in Table 1.

Figure 1 shows an example of the motor unit
decomposition and tracking procedure for VM and VL
during ramped isometric contractions at 50% of MVC
(Fig. 1A). The MUAPs shown in Fig. 1 (which correspond
to a motor unit identified in session 1 (blue) and 3 (red))
had a similarity measure (cross-correlation coefficient)
greater than 90% (Fig. 1B), and therefore, they were
associated to the same unit. The visual inspection of
the action potential shapes confirms the correct auto-
matic identification of the same motor unit. Following
the automatic procedure, the number of tracked motor
units across two sessions varied between (mean (range))
21 (6–34) and 23 (6–40), while for three sessions it was
possible to track 11 (8–17) and 11 (1–16) motor units
for VM and VL, respectively, at each force level (from
10 to 70% MVC), in the 10 subjects (mean number of
tracked motor units per subject was 2.2 (0.1) and 1.4
(0.5) for VM, and 2.3 (0.4) and 1.3 (0.1) for VL, across
two and three sessions, respectively). Therefore, a mean
(range) of 38.3 (16.5–46.5)% and 40.1 (24.5–54.1)% of
motor units from those identified by decomposition could
be tracked across two sessions, while 21.0 (13.6–25.0)%
and 16.3 (4.1–23.4)% could be tracked across the three
sessions for VM and VL, respectively. Overall, the number
of tracked motor units remained relatively constant at
10, 30 and 50% MVC between all sessions comparisons;
however, it decreased at 70% MVC (Table 2), where
only 1 motor unit could be tracked across the three
sessions for VL. Finally, the number of tracked motor
units remained consistent in time since there were no
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Table 1. Total of accurately decomposed motor units

Vastus medialis Vastus lateralis

Force level (% MVC) Session 1 Session 2 Session 3 Session 1 Session 2 Session 3

Total MUs 10% 50 57 49 66 67 72
30% 74 83 69 67 75 73
50% 62 56 59 62 58 59
70% 31 35 42 23 26 25

Average MU p/subject 10% 5.0 (1.3) 5.7 (2.3) 5.4 (1.5) 7.2 (3.5) 7.4 (3.4) 7.2 (3.0)
30% 7.4 (2.7) 8.3 (3.1) 6.8 (2.7) 6.7 (3.1) 7.5 (3.9) 7.3 (4.1)
50% 6.0 (3.1) 5.5 (2.7) 6.3 (3.7) 6.0 (3.7) 5.7 (3.1) 6.2 (3.1)
70% 3.4 (1.7) 3.6 (2.1) 4.9 (2.9) 3.3 (2.2) 3.3 (2) 3.3 (2.3)

Total and average number of accurately decomposed motor units (MU) (mean (SD)). Results are presented for each muscle (vastus
medialis, vastus lateralis), session (1,2 and 3) and force level (10, 30, 50 and 70% of the maximum voluntary contraction (MVC)),
independently.

significant differences in the number of tracked motor
units between sessions separated by one (1–2 and 2–3) or
two weeks (1–3), in both muscles and at all force levels
(P > 0.05) (Table 2). Further details regarding the total
number of matched motor units, the cross correlation
coefficients between tracked and unmatched motor units
(average cross-correlation coefficient was calculated from
the maximum cross-correlation coefficient obtained from
all possible unmatched motor unit comparisons) and the
percentage of tracked motor units from the total across 2
and 3 sessions comparisons are shown in Table 2.

The absolute values of the variables extracted from
the motor units that were matched between the three
sessions are presented in Table 3. Overall, mean
discharge rates and conduction velocity increased with
force and presented values within physiological ranges,
while the recruitment thresholds were similar to the
de-recruitment thresholds (Table 3). A representative
example of MUAPs corresponding to three different VM
motor units (identified from session 1) that could be
tracked across the three sessions with a high similarity
measure (cross-correlation coefficients > 80%) is shown
in Fig. 2A. The discharge timings of each matched
motor unit, with their corresponding recruitment and
de-recruitment thresholds (expressed as Nm torque) for
each session are shown in Fig. 2B. Across sessions, the
estimates of recruitment and de-recruitment thresholds
for these matched motor units were stable, as expected.
These results were confirmed by the good to excellent
levels of reliability (ICCs > 0.60) found for the
recruitment–de-recruitment thresholds, mean discharge
rate and conduction velocity of all the tracked motor
units in both muscles and across all force levels (see
Tables 3 and 4). These results were consistent when
variables were compared between two (session 1 vs. 3,
Table 4) or three sessions (sessions 1,2,3, Table 5). These
reliability indexes were substantially greater than those

computed from the total group of identified motor units
and from the unmatched motor units (see Tables 4
and 5), strongly supporting (together with the shape
similarity over all channels) the matching performed
by the proposed method. None of the variables (from
matched, total and unmatched motor units) changed
significantly across sessions (P > 0.05).

Finally, for VM and VL, an average of 14 (3) motor units
could be tracked between the different force levels within
each session (10 vs. 30, 30 vs. 50 and 50 vs. 70% MVC).
This represented 24 (6)% of the motor units identified
between those force levels. As expected, the tracked motor
units showed high cross correlation coefficients (average
91.1 (1.1)%) and good to excellent levels (ICCs > 0.60)
of reliability for conduction velocity and p2p amplitude
(Table 6).

Endurance training

After the intervention, incremental cycling peak power
output significantly increased from 347.4 (63.2) W
to 370.3 (56.9) W, P = 0.0004, ES = 2.6. V̇O2peak

also increased significantly after intervention from 45.1
(6.7) ml kg−1 min−1 to 48.4 (4.6) ml kg−1 min−1,
P = 0.031, ES = 1.1. Peak torque did not differ pre and
post intervention (pre: 249.4 (71.6) Nm vs. post: 245.7
(59.6) Nm, P = 0.5008, ES = 0.3).

For VM, a total of 57 and 77 motor units could be
decomposed (CoVisi < 30% and SIL > 0.9), while for
VL a total of 59 and 52 units were decomposed at 10%
and 30% MVC, respectively. From these units, 44.1% and
41.4% could be tracked post-training for VM and, 66.7%
and 42.5% could be tracked for VL at 10% and 30%
MVC, respectively (average cross-correlation coefficient
of 87.0%). Figure 3 shows the motor unit tracking
procedure from a representative subject at 30% MVC pre
and post intervention. Even though both VM (Fig. 3A)
and VL (Fig. 3B) showed a large increase in conduction
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velocity (10.2% and 11.5% increase, respectively), the
shape of their MUAPs remained consistent between
pre- and post-testing sessions as confirmed by the large
cross correlation coefficients between MUAPs (91.0% and
90.3% for VM and VL, respectively).

Finally, conduction velocity was compared pre–post
training to check for the sensitivity of the proposed
motor unit tracking method to changes induced by
training. For VM, motor unit conduction velocity
increased significantly with training when computed for
the matched motor units at both 10% (pre: 4.19 (0.27)
vs. post: 4.37 (0.28) m s−1, P = 0.013, ES = 1.3) and
30% MVC (pre: 4.51 (0.32) vs. post: 4.71 (0.25 m s−1,
P = 0.003, ES = 1.9). These differences were smaller for
the total group of identified motor units at both 10% (pre:
4.22 (0.28) vs. post: 4.31 (0.22) m s−1, P=0.0585, ES=0.9)
and 30% MVC (pre: 4.54 (0.31) vs. post: 4.65 (0.24) m s−1,
P = 0.0514, ES = 0.9), for which significant differences

were not found. To explain the difference in the results
for the matched and total group of identified motor units,
Fig. 4 shows individual motor unit conduction velocity
results (pre and post training) of the seven participants
when using matched (Fig. 4A, left) and total group of
identified units (Fig. 4A, right) at 30% MVC (VM). The
data from all subjects presented in Fig. 4A (left) show a
clear intervention effect when tracking the same motor
units that was masked when the motor units were not
matched (Fig. 4A, right), with two subjects showing no
effect of the intervention without tracking. One of these
subjects is highlighted in red (Fig. 4A and B). The results
for the highlighted subject can be seen in Fig. 4B. The
twelve matched motor units (Fig. 4B, left) of this subject
showed a clear intervention effect with a large effect size
(P = 0.004, ES = 1.0). However, this difference could no
longer be observed when using all motor units (P = 0.595
(unpaired t test), ES = 0.1, Fig. 3B, right). Similarly, for VL,
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Figure 1. Motor unit decomposition and tracking procedure
A, high-density surface EMG signals (64 channels) were recorded from the vastus medialis (VM) and vastus lateralis
(VL) muscles during a ramped isometric knee extension (50% of the maximum voluntary contraction (MVC)). The
EMG signals were decomposed to reveal the firing activities of single motor units. A schematic representation of
the task and motor unit (MU) recording methodology is shown in the left half of the figure. B, the procedure
developed in the study was then used to identify two matched MUs between the first and the last session of
experiment I. The cross-correlation between the motor unit action potential profiles of the identified MUs was
higher than 90%. Multichannel action potentials (59 bipolar channels) of the original (blue) and matched (red)
MUs are shown to confirm their similar MU action potential shapes. Two matched MUs are being shown on the
right side of the figure (1 for VM, up and 1 for VL, down). For clarity, MU action potentials inside the dashed boxes
are zoomed in the right half of the figure. Those matched MUs had cross correlation coefficients > 0.9.
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Table 2. Number, percentage of tracked motor units and cross correlation coefficients from tracked and unmatched motor units
across sessions

Vastus medialis Vastus lateralis

Force level
(% MVC) Sessions 1-2 Sessions 2-3 Sessions 1-3

Sessions
1,2,3 Sessions 1-2 Sessions 2-3 Sessions 1-3

Sessions
1,2,3

Tracked MU 10% 23 (43%) 22 (42%) 23 (47%) 11 (21%) 22 (33%) 30 (43%) 26 (38%) 16 (23%)
(N, %) 30% 34 (45%) 31 (41%) 25 (35%) 17 (23%) 28 (39%) 40 (54%) 31 (44%) 16 (22%)

50% 19 (32%) 22 (38%) 20 (33%) 8 (14%) 25 (42%) 24 (41%) 16 (26%) 9 (15%)
70% 15 (46%) 16 (42%) 9 (17%) 9 (25%) 6 (25%) 15 (58%) 9 (38%) 1 (4%)

CCC tracked (%) 10% 88.3 (3.9) 87.4 (3.2) 83.2 (3.1) 87.9 (2.6) 84.8 (3.7) 86 (4.1) 84.4 (6) 86 (2.4)
30% 84.8 (3.8) 84.4 (4.6) 83.3 (3.3) 86.8 (3.4) 86.2 (4.6) 86.4 (3) 81 (3.7) 87.4 (3.6)
50% 84.2 (3.5) 83.9 (4.5) 83.6 (5.8) 85.1 (3.7) 85.1 (4.9) 86.9 (3.3) 81 (3.9) 85.4 (4.5)
70% 83.2 (4.2) 85.6 (2.5) 81 (3.9) 85.6 (1.4) 83.3 (4.2) 85.6 (2.5) 81 (3.9) 80

CCC unmatched 10% 58.7 (4.7) 59.3 (3.7) 59.9 (4.6) 59.3 (4.2) 53.6 (5.7) 55.1 (4.2) 55.9 (4.8) 54.9 (4.7)
(%) 30% 65.6 (6.7) 64.5 (7.3) 64.4 (6.9) 64.8 (6.7) 59.6 (6.1) 59.4 (5.2) 57.2 (5.5) 58.7 (4.3)

50% 68.5 (2.6) 68.4 (2.8) 68.2 (3.9) 68.9 (2.5) 62.3 (5.2) 66.5 (4.8) 62.8 (6.5) 63.9 (3.7)
70% 68.6 (4.4) 68.7 (4.9) 63.7 (7.9) 67.1 (4.3) 63.6 (8.4) 66.9 (8.3) 62.6 (7.4) 63.9 (7.4)

Total number (N) and percentage of tracked motor units (MUs). Cross correlation coefficients (CCC) (mean (SD)) are presented for
each session comparisons at each force level for matched and unmatched motor units (sample of units that could not be tracked
across sessions). The number of tracked MUs (%) represents the percentage of MUs that could be tracked from the total number of
accurately identified MUs between sessions. Percentages of tracked MUs from sessions 1,2,3 were obtained by averaging the total
number of decomposed MUs across the 3 sessions (Table 1). Note that (SD) for vastus lateralis at 70% MVC (Sessions 1,2,3) is not
shown, as only 1 MU could be matched across the 3 sessions.

conduction velocity increased significantly at 10% (pre:
4.14 (0.22) vs. 4.35 (0.19) m s−1, P = 0.0006, ES = 2.5)
and 30% MVC (pre: 4.37 (0.27) vs. 4.59 (0.28) m s−1,
P = 0.0004, ES = 2.7) for the matched motor units as well
as for the total group of motor units at 10% (pre: 4.17
(0.21) vs. post: 4.34 (0.19) m s−1, P = 0.0008, ES = 2.3)
and 30% MVC (pre: 4.39 (0.27) vs. post: 4.58 (0.26) m s−1,
P = 0.0018, ES = 2.0).

Discussion

This study demonstrates the possibility of tracking
individual motor units across different days, in
humans during voluntary contractions with HDEMG.
In Experiment I, without intervention, we were able to
effectively track 38.3 % and 40.1 % of the identified
motor units across two sessions and 21 (4.9)% and
16.3 (8.9)% across three sessions in the VM and VL,
respectively. Moreover, the reliability indexes obtained
from tracked motor units were larger than those calculated
from the total group of identified motor units and from
the unmatched motor units, which strongly confirms a
correct tracking. Additionally, the results showed that
tracking motor units improved the sensitivity to changes
in motor unit conduction velocity following an endurance
training intervention, since the changes of conduction
velocity of the matched motor units showed a larger
effect size compared to the total group of motor units.
Taken together, these findings are the first to demonstrate

successful tracking of individual motor units recruited
during voluntary contractions across several days.

Previous methods have focused on identifying groups
of motor units across sessions by using percutaneous
electrical stimulation of motor axons (Doherty & Brown
1994, Maathuis et al. 2008). This method involves the
application of a low-intensity transcutaneous electrical
impulse to the efferent nerve fibres, producing a
compound MUAP that can be followed longitudinally.
This method has been successfully employed for motor
unit number estimation (MUNE) during the progression
of neuromuscular disorders, such as amyotrophic lateral
sclerosis (Gooch & Harati, 1997). However, this technique
does not provide information about central (e.g. discharge
behaviour) or peripheral properties (e.g. conduction
velocity) of the recorded motor units activated during
voluntary contractions (Carroll et al. 2011). Thus, the
stimulation method is not appropriate for the study
of motor unit adjustments during training or other
interventions.

The alternative to tracking individual motor units
across recordings is to extract a representative sample of
motor units and infer population-behaviour from them
(Duchateau et al. 2006; Vila-Cha et al. 2010). However,
this approach requires a sample large enough to provide
reliable information about the properties and behaviour
of the motor unit pool (Martinez-Valdes et al. 2016).
Moreover, with this approach, a large number of subjects
are needed to reach high sensitivity. The method proposed
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Table 3. Motor unit variables in absolute values

Vastus medialis Vastus lateralis

Force (% MVC) Session 1 Session 2 Session 3 Session 1 Session 2 Session 3

Recruitment threshold (Nm) 10% 14.8 (3.9) 14.9 (5.4) 14.2 (5.6) 9.5 (5.2) 9.8 (5.4) 10.3 (5.6)
30% 32.0 (15.2) 32.6 (14.4) 32.6 (13.0) 23.6 (16.9) 23.9 (15.0) 24.1 (16.4)
50% 71.6 (33.3) 72.7 (36.3) 69.5 (29.1) 70.0 (29.5) 71.6 (34.8) 70.2 (28.2)
70% 105.0 (22.9) 104.7 (30.8) 110.3 (33.6) 77.1 81.1 78.7

De-recruitment threshold (Nm) 10% 11.2 (4.9) 12.0 (3.9) 11.4 (4.5) 9.0 (4.2) 9.0 (4.8) 10.0 (4.1)
30% 35.4 (12.4) 37.6 (12.3) 37.3 (10.4) 24.9 (15.6) 25.2 (16.3) 25.1 (14.1)
50% 75.9 (33.2) 76.4 (27.5) 75.5 (36.5) 73.9 (27.1) 79.6 (29.8) 76.9 (32.2)
70% 117.9 (32.6) 120.7 (37.3) 120.7 (39.8) 113.0 110.7 115.6

Mean discharge rate (Hz) 10% 9.4 (1.3) 9.3 (1.3) 9.2 (1.4) 9.7 (1.6) 9.7 (1.8) 9.6 (1.7)
30% 10.5 (1.0) 10.7 (1.1) 10.3 (0.7) 10.6 (1.1) 10.7 (1.2) 10.7 (1.1)
50% 12.0 (2.3) 12.0 (2.3) 11.9 (2.0) 10.8 (1.4) 11.2 (1.9) 11 (1.6)
70% 15.0 (3.1) 14.9 (2.8) 14.7 (2.1) 11.1 11.7 11.6

Conduction velocity (m s−1) 10% 4.4 (0.4) 4.4 (0.4) 4.3 (0.3) 4.2 (0.3) 4.2 (0.3) 4.3 (0.3)
30% 4.5 (0.2) 4.5 (0.2) 4.5 (0.3) 4.3 (0.2) 4.4 (0.3) 4.4 (0.2)
50% 4.8 (0.6) 4.8 (0.5) 4.7 (0.3) 4.7 (0.4) 4.7 (0.4) 4.7 (0.4)
70% 4.9 (0.5) 4.9 (0.4) 4.7 (0.4) 4.3 4.4 4.4

Motor unit (MU) variables results (mean (SD)) for MUs matched between sessions 1-2-3. Results are presented for each muscle (vastus
medialis, vastus lateralis) and force level (10, 30, 50 and 70% of the maximum voluntary contraction (MVC)), independently. Note that
(SD) for vastus lateralis variables at 70% MVC is not shown, as only 1 MU could be matched across the 3 sessions.
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Figure 2. Motor unit tracking across sessions
A, multichannel surface action potentials of 3 different vastus medialis motor units (MUs) that were tracked across
the three sessions. The cross correlation coefficients (CCCs) of the MU action potential profiles between the three
sessions can be seen above. For the sake of clarity MU action potential matching is presented between two sessions
only. MU action potentials extracted from the first session are presented in blue while matched action potentials
from the second session are presented in red. B, discharge times of each matched MU during ramped contractions
at 30% MVC during the 3 sessions, note the similarity of their recruitment and de-recruitment thresholds.
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Table 6. Number, percentage and reliability of tracked motor units across the different force levels within a session

Vastus medialis Vastus lateralis

Force levels
MVC%

Motor
Units (N, %) CCC (%)

CV
ICC

p2p amp.
ICC

Motor
Units (N, %) CCC (%)

CV
ICC

p2p amp.
ICC

10 vs. 30 13 (21%) 90.7 (0.3) 0.88 (0.81–0.93) 0.82 (0.78–0.84) 12 (17%) 93.2 (0.7) 0.94 (0.89–0.95) 0.82 (0.69–0.93)
30 vs. 50 13 (19%) 90.2 (0.8) 0.72 (0.60–0.95) 0.73 0(.59–0.84) 19 (29%) 91.4 (0.1) 0.88 (0.80–0.92) 0.93 (0.91–0.94)
50 vs. 70 15 (31%) 90.0 (0.4) 0.91 (0.88–0.94) 0.77 (0.64–0.96) 11 (26%) 91.0 (0.1) 0.92 (0.83–0.97) 0.87 (0.74–0.96)

Total number (N) and percentage (extracted from the total number of motor units identified between force levels) of tracked motor
units across the different force levels (10 vs. 30, 30 vs. 50 and 50 vs. 70% MVC) within each session. The cross correlation coefficients
(CCC) (mean (SD)) and intra-class correlation coefficients (mean (range)) for conduction velocity (CV) and peak-to-peak (p2p) amplitude
are also presented. For sake of clarity, results are averaged across all sessions.

VM, 30% MVC VL, 30% MVC

Pre= 4.05 m/s

A

B

Post= 4.51 m/s Pre= 4.02 m/s Post= 4.54 m/s

CCC=90.3%CCC=91.0%

Figure 3. Motor unit tracking and changes in
conduction velocity
A, vastus medialis (VM) and vastus lateralis (VL)
motor unit action potentials (MUAPs) that were
identified by the tracking algorithm before (pre,
red) and after (post, blue) the endurance
intervention at 30% of the maximum voluntary
contraction (MVC) force. Conduction velocity
values can be seen above the MUAPs. B,
cross-correlation of the VM and VL MUAPs
identified pre and post training. Cross-correlation
coefficients (CCCs) from tracked motor units can
be seen above the matched MUAPs. Note the
similarity in action potential shape for the tracked
motor units despite the large increases in
conduction velocity.

in the current study, conversely, showed the possibility of
detecting and monitoring the same motor units across days
(up to 2 weeks) with high reliability and sensitivity, which
opens new possibilities and opportunities for longitudinal
studies.

In comparison to previous single-channel or intra-
muscular recordings, HDEMG has the advantage that
it provides spatial information as well as time varying
aspects of the EMG signal (Blok et al. 2002). The
likelihood of different motor units having the same spatial
action potential representation decreases fast with the
number of recording channels (Farina et al. 2008). Cescon
and Gazzoni (Cescon & Gazzoni, 2010) attempted to
track motor units during voluntary contractions using
EMG recordings before and after a short-term bed rest
period. The authors analysed motor unit conduction
velocity and used a distance measure to discriminate
among the different motor units found between trials.
However, due to the small number of EMG channels
used (7 in the longitudinal direction) and the incomplete
decomposition, it was not possible to be certain that

matched MUAPs corresponded to the same motor unit, as
the authors acknowledged.

In this study, we used a large number of channels in
order to exclude the possibility that, due to the volume
conductor properties, different motor units showed
MUAPs of identical shape (Farina et al. 2008). In fact,
placing the EMG arrays accurately in the same position
for each session and using a relatively large number of
channels, it is extremely unlikely that the MUAPs for
the decomposition identified in different sessions would
show high similarity if they do not correspond to the
same motor unit. This property was strongly verified by
the reliability and sensitivity analysis which were found
both superior for the tracked motor units with respect
to the average of all identified motor units, despite the
greater sample size of all units. If the motor units were not
tracked correctly, the probability of improving reliability
and sensitivity of their estimated properties by choosing
a smaller subsample of all units would have indeed been
negligible. To prove this point further, we also conducted a
reliability analysis between random samples of unmatched

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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motor units (the sample size used was similar to the one
used for tracked motor units). As expected, the reliability
indices decreased even more than those found for the total
group of identified motor units, which strongly confirms
the accuracy of the tracking.

With our new analysis we were able to identify highly
correlated MUAPs for approximately 40–50% of the motor
units identified in two sessions and 15–25% of the motor
units identified across three sessions, when no inter-
vention was applied. The time-gap between the different
measurement sessions did not influence the number of
tracked motor units since the number remained consistent
between all two-sessions comparisons (1–2, 1–3 and 2–3),
regardless if they were conducted 1 or 2 weeks apart (See
Results and Table 2). This highlights the applicability of the
current method for training interventions, since training
studies typically last several weeks. However, the number
of matched motor units decreased when the procedure was

conducted including more than two sessions (e.g. sessions
1–2–3). Finally, we also checked the possibility of tracking
motor units across different force levels within a session.
Approximately 25% of the motor units identified at each
force level (10, 30, 50 and 70% MVC) could be identified
at a force level 20% higher (e.g. 10 vs. 30% MVC),
despite large differences in motor unit recruitment. This
shows that the current approach is robust to monitor the
properties of the same motor units at different activation
levels within a session. Consequently, it is expected that
the current approach would still be able to follow motor
units when MVC force changes �20%.

In terms of reliability, both VM and VL recruitment/
de-recruitment thresholds, mean discharge rates, and
conduction velocities showed greater consistency across
sessions for the matched motor units compared to
the total group of identified motor units. Specifically,
ICCs from matched motor units for all variables were

5.1

A

B

m
/s

m
/s

m
/s

30% VM matched 30% VM total sample

30% VM total sample (1 subject)

PRE POST

Cohen’s d: 0.1
p: 0.595

Cohen’s d: 1.0
p: 0.004

Cohen’s d: 1.9

p: 0.003

Cohen’s d: 0.9

p: 0.0514

PRE

30% VM matched (1 subject)

POST

PRE POST PRE

m
/s

POST

5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2
4.1
4.0
3.9

5.1
5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2
4.1
4.0
3.9

5.1
5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2
4.1
4.0
3.9

5.1
5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2
4.1
4.0
3.9

Figure 4. Changes in conduction velocity for tracked and total group of identified motor units
A, motor unit conduction velocity (CV) values from the vastus medialis (VM) at 30% of the maximum voluntary
contraction (MVC) from n = 7 subjects, previously (PRE) and after (POST) an endurance training intervention.
Left graph shows results obtained with tracked motor units, while right graph shows the results obtained using
the total group of identified motor units (CV values were averaged per subject and compared PRE and POST
intervention). The effect size and P values of the two procedures are shown in the lower right corner of all graphs.
The red line depicts an example of one subject that showed an increase in CV of matched motor units (left), which
is masked when using the total sample of identified motor units (right). B, matched (left) and total sample of
identified (right) motor units (mean and 95% confidence interval), from the same subject depicted in A (red line).
The 12 matched motor units from this subject show a clear intervention effect (left graph), which is not possible to
distinguish when using all decomposed motor units (CV values are extracted from all the motor units decomposed
pre and post intervention (two repetitions per session)).
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substantially greater compared to the ICCs of the total
group of identified motor units and unmatched motor
units (see Tables 4 and 5), in accordance with the results
on SEM (Tables 4 and 5). These observations can be
confirmed further by the fact that these reliability indices
were as large (or even larger) than the reliability indices
obtained from a population of motor units during a
sustained isometric contraction (Martinez-Valdes et al.
2016). It is important to note that during ramped
contractions, as analysed in this study, motor unit
firing behaviour is inherently more variable across the
population than during constant-force isometric contra-
ctions (Enoka, 1995). For example, discharge rates of
motor units (within a subject) are less correlated during
ramped contractions than during constant-force contra-
ctions (Tenan et al. 2014). Therefore, the fact that we still
found high cross-session reliability in the present study
would be extremely difficult to explain unless matched
MUAPs belonged to the same motor units. In fact, there
would be no reason for an increase in reliability of
measures of motor unit properties when selecting a sub-
set of these units unless they are correctly tracked across
sessions, as confirmed by the low reliability levels observed
for unmatched motor units.

To show a potential application of the method as well
as its sensitivity, we conducted a short-term high volume
endurance training intervention (Experiment II), using a
protocol that previously showed an increase of endurance
performance, vasti muscle oxidative capacity (Gibala et al.
2006) and Na+–K+ -ATPase activity (Green et al. 2004),
in just 2 weeks. Since changes in oxidative capacity and
Na+–K+ -ATPase activity have been suggested as one of the
main factors influencing motor unit conduction velocity
during submaximal isometric contractions following end-
urance training (Vila-Cha et al. 2012), it was hypothesized
that our protocol would result in an increase in motor
unit conduction velocity. Indeed, motor unit conduction
velocity increased for both muscles (VM and VL) after
the training intervention. However, the magnitude and
significance of the detected change differed according to
the approach used to assess the motor units. For instance,
when matched motor units were used, all the subjects
showed a systematic and clear increase in motor unit
conduction velocity at 10% and 30% MVC for VM, with
high statistical significance and a large effect size (Fig. 4A).
However, no statistical difference was observed when using
the total group of motor units (Fig. 4A and 4B), with one
subject even showing an effect in the opposite direction
(Fig. 4A, right). Even though the total group of identified
motor unit results for VM were close to reaching statistical
significance, it is worth noting that the results for the
matched motor units presented an effect size which was
almost double than that of the total motor units (matched
units ES: 1.8 and 2.4, averaged units ES: 1.2 and 1.1, at 10%
and 30% MVC, respectively). Taken together, these results

show the impact of the proposed tracking method, which
increases the sensitivity to monitor longitudinal changes
in motor unit properties. The large number of identified
and tracked motor units made available by our technique
is critical for obtaining the statistical power needed to
support conclusions about motor unit adaptations to
training, rehabilitation, or disease (Carroll et al. 2011;
Button et al. 2013; Heroux & Gandevia, 2013).

As representatively shown in the present study, the
current method can be applied to the study of motor
unit adaptations to training interventions (e.g. resistance
or endurance training), but could also be extended
to monitor different stages of rehabilitation within the
context of injury or disease. For example, the tracking
of individual motor unit properties (from low to high
threshold motor units) could be of great benefit in
characterizing discharge characteristics and muscle-fibre
membrane properties during the progression of neuro-
muscular disorders (which has not yet been possible with
any of the currently available methods). Furthermore,
our tracking procedure allows the absolute recruitment
threshold force to be measured across sessions without the
need to normalize it to %MVC force, providing accurate
information about the force capacity of each motor unit.
Regarding resistance training, many authors have used
surface EMG recordings to attribute early strength gains
to neuromuscular adaptations (Folland & Williams, 2007).
However, due to the many factors influencing surface
EMG amplitude measures (see Farina et al. (2004) for
review), the evidence is equivocal (Folland & Williams,
2007). Although there are some studies reporting changes
in motor unit behaviour following training, demonstrated
through intramuscular EMG recordings, the results are
not in agreement between studies (Rich & Cafarelli,
2000; Kamen & Knight, 2004; Pucci et al. 2006; Vila-Cha
et al. 2010), probably due to the small number of motor
units that can be identified with this technique and the
impossibility of tracking them. Conversely, the current
approach could provide clearer evidence of motor unit
changes occurring after training interventions since the
same motor units can be followed across the intervention.
A number of studies have successfully used HDEMG to
accurately extract motor unit activity in a number of
neuromuscular disorders in single experimental sessions
(Holobar et al. 2012; Dideriksen et al. 2015; Li et al.
2015). Our study suggests that these investigations can
be extended to include longitudinal characterization of
individual motor unit properties in clinical populations.

Some limitations of the proposed approach need to be
discussed. In the current study, the motor unit tracking
procedure was only applied across sessions that were
2–2.5 weeks apart, during which changes in muscle
morphology were not expected. Since changes in muscle
morphology (e.g. muscle architecture and cross-sectional
area) influence MUAP shapes, the number of motor units

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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tracked by the algorithm would presumably decrease if the
muscle structure changes considerably. However, muscle
structural changes, i.e. following resistance exercise (Narici
et al. 1996; Aagaard et al. 2001; McCarthy et al. 2002)
may not always impact the MUAP shape substantially. As
shown in Fig. 3, the present method can successfully track
motor units showing large changes in conduction velocity
( > 10%). Moreover, the algorithm can also track motor
units between force levels that differ by �20% (Table 6).
Since motor unit conduction velocity adjustments > 10%
and increases in MVC force > 20% are only expected after
approximately 6–8 weeks of resistance training (McCarthy
et al. 2002; Aagaard, 2003; Vila-Cha et al. 2010), it is very
likely that the present method can successfully track motor
units during longer training interventions than the one
shown in this study. A direct evaluation of the method for
longer interventions is, however, needed. Similarly, future
tests should analyse the possibility of tracking motor units
in pathological conditions, such as during the progression
of amyotrophic lateral sclerosis (ALS) over long periods of
time (van Dijk et al. 2010).

The lower number of motor units identified for the vasti
muscles with respect to other muscles (e.g. tibialis anterior;
Castronovo et al. 2015) has been reported previously
with a similar blind source separation decomposition
method (Watanabe et al. 2013; Martinez-Valdes et al.
2016). Differences in muscle fibre architecture across
muscles may explain the variability of the identified
motor unit sample size across muscles. For example,
the tibialis anterior and the gastrocnemius muscles have
signal characteristics (Barbero et al. 2012) that positively
influence the decomposition (less spatially correlated
recordings), with respect to muscles such as the vasti or
biceps bracchi (Piitulainen et al. 2012) that present EMG
signals with a higher spatial correlation.

Finally, although occasional, there were a small number
of trials (�15%) where motor units presented multiple
matches with a cross-correlation coefficient > 0.8. As
commented above, this could be due to the high spatial
correlation that the vasti muscles present. However, the
algorithm always selected the highest cross-correlated
source, which prevented the chance of having double
matches. The observation of this high correlation
between multiple pairs of identified MUAPs indicated
the occasional similarity of MUAPs belonging to different
motor units. Some degree of similarity is expected and
decreases consistently with the number of channels, being
negligible for a large number of channels and/or for
muscles resulting in low spatial correlation in EMG
recordings (Farina et al. 2008).

Conclusion

This study presents and validates, for the first time, a
method for processing HDEMG in humans that allows

the tracking of the same motor units longitudinally
during voluntary contractions performed in different
sessions, separated by weeks. This method provides
new opportunities to track adaptations of the same
motor units over time in vivo, as would be required in
longitudinal interventions or during the progression of
neuromuscular disorders.

Appendix A

Multichannel EMG signals can be described
mathematically as convolutive mixtures with finite
impulse response filters (motor unit action potentials).
They can be represented as a linear and an instantaneous
mixture of an extended vector of sources (motor unit
spike trains) that include the original sources and their
L–1 delayed versions, where L is the length of the filters
(Negro et al. 2016). This leads to the following extended
observation vector for channel i:

x̃i(k) = [xi(k)xi(k−1), . . . ,xi(k − R)], i = 1, . . . , m,

(A1)

After the extension of the observations, we also have:

s̃ j (k) = [sj (k), sj (k − 1), . . . ,sj (k − L − R + 1)],

j = 1, . . . , n, (A2)

and

ñi(k) = [ni(k), ni(k − 1), . . . , ni(k| − R)] ,

i = 1, . . . , m, (A3)

Where k is the discrete time, xi is the EMG signal
recorded at channel i, sj(k) the j-th source (motor unit
spike train) and ni the additive noise at channel i-th.
Therefore, the extended model becomes:

x (k) = [Hs(k) + n(k)] k = 0, . . . , DR , (A4)

with

s (k) = [s1 (k) , s2 (k) , . . . , sn (k)]T,

x (k) = [x1 (k) , x2 (k) , . . . , xm (k)]T,

n (k) = [n1 (k) , n2 (k) , . . . , nm (k)]T,

hij =

⎡
⎢⎢⎢⎣

hij [0] · · · hij [L − 1] 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 hij [0] · · · hij [L − 1]

⎤
⎥⎥⎥⎦ ,
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H̃ =

⎡
⎢⎣

h̃11 · · · h̃1n
...

. . .
...

h̃m1 · · · h̃mn

⎤
⎥⎦ ,

where Dr is the duration of the recording and hij the
action potential of the j-th motor unit recorded at the
channel i. In order to solve the inverse problem, the
number of extended measurements R should be higher
than the number of sources n multiplied by the length of
the filters L (MUAP shapes).

The instantaneous model described by Eqn (A4) can be
inverted to recover the matrix of the extended sources
using the fixed point optimization procedure and an
appropriate cost function following the spatial whitening
procedure (Negro et al. 2016). Since the inverse of
Eqn (A4) may have a relatively large space of possible
solutions, the procedure aims to find the sources wi

Tz,
where z are the whitened extended measurements and
wi the projection vector (filter) of the i-th source, that
maximize the non-Gaussianity measure employed by the
selected cost function. In this framework, the projection
vectors are equivalent to multidimensional filters that
extract sparse solutions when applied to the whitened
extended measurements. In this study, this method, that
we call here ‘full decomposition’, was applied to the first
recording session. In the following sessions, we modified
the algorithm to identify projection vectors (filters) wi that
would maximize both the non-Gaussianity of the extracted
i-th source and the similarity with the previously identified
motor units in the first session. The similarity was
estimated by cross-correlation between the de-whitened
projecting vectors (original multidimensional filters
before the whitening procedure or de-correlation) with a
threshold of 0.8. Each time the threshold was crossed, the
discharge times of the identified source were removed from
the following iterations. The approach is called Sparse
Deflation (Natora & Obermayer, 2011) and provides an
optimal extraction scheme for sparse signals (e.g. motor
unit spike trains) that avoids the convergence to the
same solution multiple times. In the tracking application,
indeed, the subtraction of the sources in the spike train
space resulted more efficient. Among all sources, we
selected those with the highest similarity measures.
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