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Key Points Summary 37 

 The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be 38 

routinely recorded in humans. 39 

 We have reengineered motor unit collection and decomposition approaches, originally 40 

developed in humans, to measure the neural drive to muscle and estimate muscle force 41 

generation in the decerebrate cat model. 42 

 Experimental, computational, and predictive approaches are used to demonstrate the validity 43 

of this approach across a wide range of modes to activate the motor pool. 44 

 The utility of this approach is shown through the ability to track individual motor units across 45 

trials, allowing for better predictions of muscle force than the electromyography signal, and 46 

providing insights in to the stereotypical discharge characteristics in response to synaptic 47 

activation of the motor pool. 48 

 This approach now allows for a direct link between the intracellular data of single 49 

motoneurons, the discharge properties of motoneuron populations, and muscle force 50 

generation in the same preparation.  51 
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Abstract 52 

The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibers represents 53 

the functional quantum of the motor system. Recent advances in the recording and decomposition of the 54 

electromyographic signal allows for the identification of several tens of concurrently active motor units. 55 

These detailed population data provide the potential to achieve deep insights into the synaptic 56 

organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is 57 

derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new 58 

electrode and decomposition methods to recording of motor unit populations in these same preparations. 59 

To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to 60 

those developed for humans, to record and decompose the activity of tens of concurrently active motor 61 

units in a hindlimb muscle in the decerebrate cat. Our results showed that the decomposition method in 62 

this animal preparation was highly accurate, with conventional two-source validation providing rates of 63 

agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor 64 

unit action potential provides the ability to accurately track the same motor unit across multiple 65 

contractions. Additionally, correlational analyses demonstrate that the composite spike train provides 66 

better estimates of whole muscle force than conventional estimates obtained from the electromyographic 67 

signal. Lastly, stark differences are observed between the modes of activation, in particular tendon 68 

vibration produced quantal interspike intervals at integer multiples of the vibration period.  69 
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Abbreviation list 70 

BSS, blind source separation; CST, composite spike train; EMG, electromyography; MUAP, motor unit 71 

action potential; ISI, interspike interval; RoA, rate of agreement; STA, spike triggered average   72 
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Introduction 73 

The functional quantum of the motor system is the motor unit, which consists of a single spinal alpha 74 

motoneuron and the muscle fibers it innervates (Heckman & Enoka, 2012). The neuromuscular junction 75 

has a large safety factor in synaptic transmission (Wood & Slater, 2001) resulting in a one-to-one relation 76 

between the discharge of a motoneuron and the activation of its muscle fibers. Because each motoneuron 77 

innervates a relatively large number of muscle fibers, their discharge patterns provide a highly amplified 78 

version of the discharge pattern of their parent motoneuron.  Because of this, the spinal motoneuron is the 79 

only CNS cell whose firing pattern can be routinely recorded in humans, providing a wealth of 80 

information about the structure of motor output.   81 

 Motor unit recordings have historically been obtained through needle or fine wire techniques (Adrian 82 

& Bronk, 1929). Subsequently, semi-automated threshold and template matching algorithms have been 83 

developed to decompose these intramuscular electromyographic (EMG) signals into the discharge times 84 

of individual motor units (De Luca et al., 1982; Stashuk, 1999; McGill et al., 2004; Parsaei et al., 2010). 85 

However, this invasive approach can only provide selective EMG recordings from a relatively small 86 

number of motor units per contraction (Duchateau & Enoka, 2011). Recent development of surface and 87 

intramuscular array electrodes and automated decomposition algorithms now allows for the quantification 88 

of the discharge of several tens of concurrently active motor units in humans (Holobar et al., 2010; 89 

Nawab et al., 2010; Farina & Holobar, 2016; Negro et al., 2016).  90 

 The population behavior of motor units has the potential to reveal much about the synaptic control 91 

and intrinsic properties of motoneurons (Collins et al., 2002; Farina & Negro, 2015; Muceli et al., 2015). 92 

The interpretation of the behavior of motor unit populations is aided by a wealth of data that has been 93 

obtained from intracellular recordings of synaptic inputs and motoneuron properties in a variety of 94 

reduced animal preparations (Heckman & Enoka, 2012; Johnson et al., 2017). Ultimately, the relationship 95 

between the intracellular data of single motoneurons, the discharge of motoneuron populations, and 96 

muscle force generation can be revealed by comparing these data sets in the same preparation. 97 

 To this end, our goal was to adapt an EMG array recording technique, originally developed in 98 

humans, to record motor unit populations and muscle force generation in the cat to demonstrate the 99 

validity and utility of this approach. This approach allowed for the accurate decomposition of several tens 100 

of concurrently active motor units during contractions of the soleus muscle. Using two-source validation, 101 

we found the accuracy of the motor unit decomposition to be comparable to, or better than, those obtained 102 

in human muscles. Further, reconstruction of the motor unit action potential (MUAP) allows us to further 103 

validate the technique and track the same motor unit across multiple contractions. The utility of these 104 

approaches is demonstrated by showing that a filtered version of the composite motor unit spike train 105 

(CST) was a better predictor of muscle force as compared to the filtered, rectified EMG, particularly for 106 
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the higher frequencies of muscle force generation. Lastly, we have demonstrated a quantal discharge 107 

pattern in response to homonymous tendon vibration and the preferred discharge of individual motor units 108 

across vibration frequencies.  109 
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Methods 110 

Ethical approval 111 

Data presented here are from 15 adult cats of either sex. All animals were obtained from a designated 112 

breeding establishment for scientific research.  Animals were housed at Northwestern University’s Center 113 

for Comparative Medicine, an AAALAC accredited animal research program. All procedures were 114 

approved by the Institutional Animal Care and Use Committee at Northwestern University and conform 115 

to the ethics policy of the Journal of Physiology (Grundy, 2015). 116 

 117 

Terminal surgery 118 

Anesthesia was induced with 4% isoflurane and a 1:3 mixture of N2O and O2. The depth of anesthesia 119 

was monitored through continuous monitoring of blood pressure, heart and respiratory rate, and absence 120 

of withdrawal reflexes throughout surgery. A tracheostomy was performed and a permanent tracheal tube 121 

was placed though which isoflurane (0.5 – 2.5%) and gasses were delivered for the duration of the 122 

surgical procedures. The animal was then transferred to a stereotaxic frame and immobilized by a head 123 

clamp, spinal clamp on the L2 dorsal vertebral process, and bilateral hip pins at the iliac crest. The left 124 

hindlimb was immobilized through pins at the knee and clamps at the ankle, and the right hindlimb was 125 

secured using a clamp at the lower leg. The left soleus was dissected, isolated, and its distal tendon was 126 

attached to a load cell via a calcaneus bone chip in series with a linear variable differential transformer 127 

and customized voice coil. A distal, cutaneous branch of the right superficial peroneal nerve was 128 

surgically dissected and a cuff electrode was secured around the nerve. On select experiments, a L4-S1 129 

laminectomy was provided for intrathecal drug administration via subdural catheter. The dorsal and 130 

ventral roots were left intact. In all experiments, following a craniotomy, a precollicular decerebration 131 

was performed. At this point the animals are considered to have a complete lack of sentience and 132 

anesthesia was discontinued (Silverman et al., 2005). A thermistor was placed in the esophagus and core 133 

temperature was maintained at 35-37oC using heat lamps and hot pads throughout the experiment. At the 134 

end of the experiment animals were euthanized using a 2 mM/kg solution of KCl in addition to a bilateral 135 

thoracotomy. 136 

 137 

Data collection 138 

Referenced monopolar EMG recordings were collected using a custom 64-channel array electrode placed 139 

on the surface of the exposed soleus muscle. The array consisted of 64 individual rigid silver pins, 7.5 140 

mm in length and 0.7 mm in diameter, configured in a 5 x 13 matrix with an interelectrode distance of 141 

2.54 mm. A ground electrode was place on the back and a reference electrode was placed on the upper 142 

thigh. Array data were filtered (100 – 900 Hz), amplified (0.5 – 2k) and sampled at 5120 Hz by a 12-bit 143 
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A/D converter simultaneously with soleus force data (EMG-USB 2, 256-channel EMG amplifier, OT 144 

Bioelettronica, Torino, Italy).  145 

 Additionally, up to three pairs of perpendicularly cut, barbed, 75 µm stainless-steel fine wires (A-M 146 

Systems, Carlsborg, WA) were inserted into the soleus via a 23-gauge needle. Fine wire signals were each 147 

filtered (0.01 – 3.0kHz) and amplified (1 – 10k) using separate floating differential amplifiers (DAM50, 148 

World Precision Instruments, Sarasota, FL) and collected at 20 kHz simultaneously with the force data 149 

(1401, Cambridge Electronic Devices, Cambridge, ENG).  150 

 EMG and force from the left soleus muscle were recorded during four modes of activation. First, 151 

spontaneous, repetitive discharge of motor units is often observed in the decerebrate cat. This is defined 152 

here as any motor output remaining more than 5 seconds following the cessation of a specific input. 153 

Second, tendon vibration was delivered at high frequencies (~130 Hz) and small amplitude (~80 μm) 154 

through the voice coil. This provides potent and selective activation of Ia afferents (Brown et al., 1967) 155 

and activates the homonymous motoneuron pool through monosynaptic pathways. Third, excitation of the 156 

soleus can be reliably evoked through the crossed extension reflex elicited via electrical stimulation of 157 

contralateral nerves. Here 1-ms stimulus pulses were delivered to the contralateral superficial peroneal 158 

nerve through the cuff electrode using a Grass S88 stimulator and isolation unit. Stimulation was 159 

delivered at either a constant frequency or a linearly increasing and decreasing frequency stimulation 160 

pattern in the range of 10 to 50 Hz. Fourth, a 2-5 mm ramp and hold stretch at 0.5-2 mm/s of the soleus 161 

muscle activates muscle receptors resulting in homonymous excitation through mono- and polysynaptic 162 

pathways (Jankowska et al., 1981). Lastly, to increase the activity of soleus motoneurons, during select 163 

experiments, 25 – 100 uL of 100 mM Methoxamine, a norepinephrine α1 agonist, was applied to the 164 

spinal cord through the intrathecal catheter. Methoxamine has been shown previously to increase the 165 

excitability of spinal motoneurons through increased magnitude of persistent inward currents (Lee & 166 

Heckman, 1999). 167 

 168 

Motor unit decomposition 169 

Offline, each array recording was visually inspected and up to 64 acceptable monopolar channels were 170 

isolated for further processing. EMG data collected from the array were decomposed into their 171 

corresponding motor unit action potentials using a custom implementation of the blind source separation 172 

approach for multi-channel EMG signals previously used in human studies (Holobar et al., 2010; Negro 173 

et al., 2016). Briefly, the procedure of identifying the sources (i.e. motoneuron spike trains) and the 174 

mixture matrix that are generating a recorded multichannel signal is called blind source separation (BSS). 175 

In the case of EMG signals, the mixture is convolutive, with various weights and delays in sources. For 176 

this reason, convolutive BSS methods are applied. In particular, the recorded multichannel signals are 177 
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first extended to transform the convolutive problem into an instantaneous one. This procedure aims to 178 

compensate for the delays in the original signals. After this pre-processing step, the instantaneous model 179 

can be sphered (spatial-temporal whitened) and inverted using optimization methods that maximize 180 

appropriate statistical measures of the sources in order to estimate the original mixing weights. In the case 181 

of the relatively low frequency of motoneuron discharge, the sources generate a naturally sparse 182 

distribution of discharges. For this reason, optimization methods that maximize measures of sparsity and 183 

non-gaussianity are applied to decompose the multi-channel EMG signals (Farina & Holobar, 2016). In 184 

practice, the algorithms find solutions to the inverse problem that are far from Gaussianity and have high 185 

kurtosis. In this study, this procedure was applied following the steps previously presented (Holobar et 186 

al., 2010; Negro et al., 2016) with a selection of parameters (extension factor of the measures equal to 10, 187 

number of removed principal components equal to 25%) suitable for the higher selectivity of the cat EMG 188 

signals compared with the human recordings. Only sources with a silhouette (or pulse to noise ratio) 189 

measure higher than 0.9 (30 dB) were used for subsequent data analysis (Holobar et al., 2014; Negro et 190 

al., 2016).  191 

 Fine wire recordings were decomposed into corresponding motor units using the open source 192 

EMGLab software (McGill et al., 2005). Offline, recordings were high-pass filtered (typically 1 kHz), a 193 

template matching algorithm was employed to automatically create templates, classify individual motor 194 

unit action potentials, and provide the residual signal using a sliding window of 5 to 10 seconds. This 195 

resulting decomposition was manually inspected and corrected as necessary. Following decomposition of 196 

the segment, the window was moved ~4s ahead and the process was repeated until full decomposition 197 

was achieved. Discharge times for each unit were exported at 1000 Hz for further processing. 198 

 199 

Data analysis 200 

Various approaches have been used to quantify the accuracy of a decomposed motor unit spike train 201 

(Farina et al., 2014). The most stringent method remains to record and decompose the discharge of a 202 

single motor unit using two separate approaches simultaneously (Mambrito & De Luca, 1984) and 203 

compare the results. We assessed the correspondence between motor unit discharge times obtained from 204 

the fine wire and multi-channel EMG signals using the rate of agreement (RoA), defined by the following 205 

equation: 206 

RoA = 
DC

DC+ DA+DW

*100 207 

Here, DC equals the number of discharges common to both the array and the wire within 0.5 ms of one 208 

another. DA equals the number of discharges identified just by the array recording. DW equals the number 209 
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of discharges identified just by the wire recording. This approach treats each discharge equally, regardless 210 

of the source, and provides a normalized value, where 100 is a perfect correspondence between sources. 211 

 The combined signals of the 64 channels of the array provide a unique spatiotemporal view of the 212 

motor unit action potential (MUAP) waveform of a given motor unit. The MUAP was revealed through 213 

spike triggered averaging (STA) the motor unit action potential trains with greater than 50 discharges into 214 

each of the 64 channels across a 35 ms window centered on the decomposed spike time. These data were 215 

interpolated across the known interelectrode distance to calculate the multidimensional spatiotemporal 216 

MUAP waveform. The MUAP waveforms can provide a unique voltage signature for each of the 217 

decomposed motor units throughout time, which can readily be observed through visual estimation. The 218 

uniqueness of the MUAP can be quantified by calculating the 2D crosscorrelation of a given MUAP 219 

waveform with all other waveforms in a given trial (Cescon & Gazzoni, 2010; Gligorijevic et al., 2015; 220 

Martinez-Valdes et al., 2016). Moreover, this waveform correlation approach allows us to track motor 221 

unit discharge patterns across trials by quantifying waveform similarity. In general, the probability of 222 

different motor units showing the same spatial MUAP representation decreases considerably with the 223 

number of recording channels (Farina et al., 2008). Here, MUAP waveforms, extracted from up to 64 224 

monopolar signals, were considered the same if they demonstrated a normalized correlation value greater 225 

than 0.85. 226 

 In addition to correlations within and across trials, the MUAP waveform contains information about 227 

both the biophysical characteristics of the motor unit and its distance from the recording source. The 228 

peak-to-peak amplitude of the MUAP across the entire array can be extracted and may provide indirect 229 

information about the size of the motor unit (McPherson et al., 2016). Additionally, these measures allow 230 

us to assess muscle fiber conduction velocity. Motor unit conduction velocity was estimated using a 231 

previously validated method (Farina et al., 2001). For the calculation, only the largest set of channels 232 

(four or five) that showed stability in the shapes of the MUAP were selected (correlation > 0.9 between 233 

channels) in each trial. Obtaining similar waveform measurements across multiple trials supports the 234 

notion that the same motor unit is indeed being detected (Martinez-Valdes et al., 2016). 235 

 Estimation of force generation was accomplished using both the EMG signal and the decomposed 236 

motor unit spike times. For each recording, one subset of five reliable EMG channels from the 64-channel 237 

array were randomly selected for the analysis. For each of these channels, an optimization routine was 238 

used to maximize the correlation between the force and EMG signals. For each trial, the force signal was 239 

baseline corrected, low-pass filtered using a 2-pole, zero phase lag, 10 Hz Butterworth filter, and 240 

normalized by dividing by the maximum of the signal. Each EMG channel was full-wave rectified and 241 

filtered using a 3rd order Butterworth filter; the cutoff of the filter was optimized to from 0.1 to 5 Hz in 242 

0.05 Hz steps while the scaling of the EMG was optimized from 0.1 to 100 in 0.05 steps. Following each 243 
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permutation, the linear correlation between the force and EMG was calculated. The maximum correlation 244 

across all permutations was determined. 245 

 A similar approach to force estimation was conducted using the decomposed motor unit spike times. 246 

Here the spike times were converted into a continuous binary signal and the cumulative spike train (CST) 247 

was constructed by summing these individual binary spike trains across motor units. This provided an 248 

estimate of the neural drive to muscle. Force was estimated by convolving the CST with the impulse 249 

response of a critically dampened, second-order system f(t), which has been used extensively to model the 250 

motor unit twitch force (Fuglevand et al., 1993): 251 

f(t)= 
P ∙ t

T
 ⋅ 𝑒1-(

t
T

)
 252 

Using this equation, a brute force optimization procedure was used to optimally scale both P, the peak 253 

twitch force, from 0.01 to 0.11 in 0.001 steps, and T, the rate of force development, from 30 to 300 ms in 254 

0.1 ms steps. A similar approach of maximizing the correlation between the force and spike trains was 255 

conducted. 256 

 The spike train data allowed us to assess how many motor units are necessary to accurately recreate 257 

force output. This was accomplished by iteratively increasing the number of motor units used in the 258 

composite spike train, from 1 to the total decomposed units in each trial. The force and spike train 259 

correlation was re-optimized for each increase in spike train number. 260 

 To quantify the ability of the EMG and CST to estimate the higher frequency component of muscle 261 

force, these signals were re-optimized in a similar manner, except, just prior to optimization, the torque, 262 

EMG, and CST signals were high pass filtered at 0.75 Hz  using a 2nd order, zero-lag, Butterworth filter. 263 

Then these filtered signals are optimized using a similar routine as above.   264 

 A one-way repeated-measures analysis of variance (ANOVA) was used to assess changes in the 265 

uniqueness of motor unit action potential waveforms, corrupted by various amounts of noise and 266 

differences in force estimation across the EMG and CST signals. When significant, a post-hoc Tukey 267 

Honestly Significant Difference was used to assess the significance of pairwise comparisons.  268 
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Results 269 

Rate of agreement with fine wire signals 270 

A representative multi-channel EMG recording is shown in Figure 1. Validation of the decomposition of 271 

motor units can be accomplished through comparing the spike times found using the array decomposition 272 

to those derived from traditional fine wire approaches. Figure 2 shows an example trial during 273 

spontaneous discharge, where three of the 12 spike trains decomposed from the multi-channel EMG array 274 

matched spike trains recorded by the fine wires, and the rate of agreement (RoA) varied from 97.8 to 275 

100%. In 49 trials from 11 experiments, we were able to find 201 motor unit spike trains common to both 276 

the array and fine wire approaches. Across these 201 units, an average RoA of 93.3 ± 8.2% was observed. 277 

The form of input had a significant impact on the rate of agreement. Spontaneous discharge demonstrated 278 

the highest RoA at 98.0±2.6%, followed by crossed extension (95.8 ± 5.3%) and tendon vibration (92.7 ± 279 

7.7%). Stretch demonstrated the least reliable 2-source validation with a RoA of 86.0 ± 11.4%.  280 

 Outside of the form of input, other factors may influence the detection of a MUAP. For example, it 281 

may be more difficult for the decomposition algorithm to detect units of smaller amplitude. To assess this, 282 

the peak-to-peak amplitude was calculated for the MUAP extracted from each spike train and correlated 283 

with the RoA value. Such correlation was practically nonexistent, with an r2 value less than 0.001. 284 

Therefore, the average amplitude of the MUAPs is not a factor that can influence the convergence of the 285 

algorithm on reliable solutions. However, with the exception of one spike train, motor units with a MUAP 286 

amplitude >0.85 mA demonstrate RoA values greater than 90%. Additionally, it might be the case that the 287 

number of units detected may influence the accuracy of the decomposition. It is conceivable that the 288 

greater number of motor units detected for a given trial, the more likely it may be for mistakes to occur. 289 

Though the relationship was relatively weak (r2 = 0.049), we found the opposite result; a significant 290 

(p<0.001) positive correlation is observed between the number of units collected on a given trial and the 291 

RoA values. Lastly, the number of discharges detected for a given motor unit spike train was strongly 292 

correlated with RoA. With the exception of three spike trains, all of the spike trains that detected 50 or 293 

more spikes had RoA values greater than 90%. This relationship is best described by a 2-term power 294 

function with an r2 value of 0.96. Therefore, when the algorithm can converge well in multiple local 295 

maxima, it will likely extract many reliable units. Similarly, good solutions should have more spikes 296 

compared to solutions with lower number of discharges.  297 

 298 

Reconstruction of the MUAP waveform 299 

Through STA approaches, we are able to create 64 unique views of the MUAP of each motor unit and 300 

reconstruct the spatiotemporal dynamics of the MUAP waveform. Figure 3 shows two motor unit action 301 

potential waveforms. The unique representation of each waveform can be visually appreciated and 302 
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calculated by 2D cross correlation across all of the resulting MUAP waveforms within a given trial. The 303 

correlation matrix in Figure 3B demonstrates that any given MUAP waveform rarely correlates with other 304 

MUAP waveforms. A measure of uniqueness of a given unit can be provided by calculating the average 305 

correlation of this unit with all other units collected and subtracting this from the correlation of this unit 306 

with itself (1 in the absence of noise, see below). The MUAP waveform shapes derived from the STA are 307 

consistent with the physiology underlying the motor unit action potential. However, it is possible for 308 

seemingly valid MUAP waveforms to be constructed from trigger events not necessarily corresponding to 309 

motor unit discharges (Farina et al., 2014). To control for this possibility, Figure 3 demonstrates that the 310 

uniqueness in MUAP waveforms is disrupted by adding variability to the discharge times. To test the 311 

effects of variability in spike detection, an increasing amount of random Gaussian noise was added to the 312 

discharge times, ranging from 1% to 20% of the standard deviation of the interspike interval (ISI). Thus, 313 

we are comparing a given trial with itself, each of which is corrupted by small amounts of different noise. 314 

In the 13 units decomposed in this example, as little as 5% corruption significantly diminished the 315 

uniqueness of any given unit from the other concurrently active units. This test is different from that 316 

proposed by Hu et al. (2013), which analyzed the amplitude of the individual MUAP waveforms 317 

extracted by STA, rather than the similarity across two dimensional MUAP waveforms, when introducing 318 

a similar variability in the discharge times. 319 

 Further validation is provided by matching the individual MUAP waveforms across separate trials. 320 

This relies on the assumption that it is extremely unlikely that triggers not associated with true motor unit 321 

discharges would produce highly correlated MUAP waveforms on two separate trials. Figure 4 322 

demonstrates the stability of the MUAP waveform across trials, for three motor units recorded across 7, 4 323 

and 10 trials. Although there are small variations in peak-to-peak amplitude and conduction velocity 324 

across trials, the value of the 2D cross-correlation remained high (>85%).  325 

 Though we are able to track units, we are not able to track all of the units across all of the 326 

contractions. This could be due to physiological rotation of motor units across trials and/or limitations in 327 

our ability to collect and process the signal. For example, slight changes in the position of the electrode 328 

make cumulative changes the derived MUAP waveform over time. If this were the case, one would 329 

expect to see adjacent trials match to a higher extent than trials performed several minutes later. To assess 330 

this possibility, the number of matches between the first trial to the subsequent nine demonstrated no 331 

apparent role of trial order in the number of motor units matched, nor did order matter when the tenth trial 332 

is compared with the previous nine. Further, it is possible that larger amplitude waveforms are relatively 333 

easier to detect, and therefore smaller waveforms may be less frequently matched across trials. If this 334 

were the case, one would expect larger units to be detected as common more frequently than smaller 335 
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waveforms. This was not observed in the current data, as no correlation between the size of the MUAP 336 

and the number of trials was detected.  337 

 338 

Estimation of muscle force  339 

Estimation of muscle force through the muscle’s electrical activity was performed on a pool of 188 trials 340 

from seven experiments; 22 trials contained spontaneous discharge, 24 trials contained responses to 341 

tendon vibration, and 140 trials contained responses to crossed extension. For each of the trials, five 342 

acceptable EMG channels were chosen at random, rectified, and optimally scaled and filtered to fit the 343 

force record by maximizing the correlation between the force and the processed EMG signals (Figure 5a). 344 

On average, channels chosen at random could fit the force with the mean correlation across the five 345 

channels of 92.6±0.6. Across the five EMG fits, average correlation values ranged between 92.2±0.8 to 346 

92.9±0.8 with no significant difference across channels (p=0.657).  347 

 A similar approach was applied to the CST by convolving the CST with a motor unit twitch force 348 

model whose amplitude and time to peak were optimized (Figure 5b). The CST provided a strong 349 

estimate of the overall force output, with the average fit being 96.3±0.03. The optimal fit provided by the 350 

CST produced greater correlations than each of the 5 random rectified interference EMG recordings 351 

(p<0.0001; Figure 5c). Although the average correlation with force was high for both analyses, the type of 352 

input had a significant effect on the estimation of muscle force. For the spontaneous discharge, the EMG 353 

based estimate of force (83.4±3.8) was substantially poorer (p<0.0001) than for the other conditions 354 

(crossed extension, 93.6±0.4, tendon vibration, 95.2±6.8). Conversely, the use of motor unit spike times 355 

was robust across conditions, with only a small decrease for the spontaneous discharge (94.7±1.1) as 356 

compared to the crossed extension (96.3±0.3) and tendon vibration (97.4±0.5; p=0.046). Across all 357 

conditions, the optimized rate of force development was found to be 138±65 ms, noticeably higher than 358 

the 80-100 ms rate of force development gathered from single soleus twitches (Burke, 1967; Lewis, 1972; 359 

Bagust, 1974; Burke et al., 1974), which may reflect differences in tendon compliance and muscle fiber 360 

contractions dynamics during sustained contractions versus single twitches. 361 

 The CST was able to better resolve higher frequency force fluctuations. To quantify this, we filtered 362 

the signals at 0.75 Hz and reassessed the optimization routine (Figure 5e-f). Across all conditions, the 363 

estimates of muscle force were worse. However, the CST continued to produce superior correlations with 364 

force (83.5±1.3) as compared to the EMG estimates (66.6±1.3; p<0.0001; Figure 5g).  365 

 Lastly, we were able to determine how many motor units are needed to accurately reproduce force 366 

generation by iteratively adding motor units in to the CST one-by-one and re-optimizing the force output. 367 

Figure 5d demonstrates that with only one motor unit spike train, optimal force estimation is rather poor, 368 

resulting in a correlation of only 77.7±25.0. With an increasing number of spike trains added to the CST, 369 
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the estimates improve. With nine or more motor units, the CST is a better prediction of force than the 370 

average EMG. In our sample of 188 trials, 179 trials contained the discharge pattern of at least nine motor 371 

units. For the trials with the greatest number of motor units (28), a correlation of 99.2±0.2 was observed, 372 

indicating almost perfect prediction of force from motor neuron behavior. Lower correlations were 373 

observed when the analysis was performed on the high-pass filtered data. With only one motor unit, the 374 

correlations with force were 57.4±1.8, however only three motor units were needed to produce superior 375 

correlations of high-pass filtered force as compared to the surface EMG (71.7±1.5 versus 66.6±0.7). 376 

When looking at the trials with only the greatest number of motor units, a correlation of 94.4±0.2 was 377 

observed with the high-pass filtered force. 378 

 379 

Motor unit activation in response to tendon vibration 380 

The particularly good fit of force estimation observed in response to tendon vibration was, at first, 381 

unexpected given the clear patterned motor unit discharge patterns observed in response tendon vibration. 382 

Figure 6 demonstrates motor unit discharge patterns evoked through response to tendon vibration. When 383 

the instantaneous discharge rate is plotted against time and superimposed, a clear banding of motor 384 

discharge rates is observed at integer multiples of the vibration period. These vibration-induced sub-385 

harmonics in discharge patterns are clearly noted when the composite ISI histogram is constructed across 386 

the discharge for all units in a trial (Figure 6a). In contrast, the composite ISI histogram is relatively 387 

smooth for the tonic discharge input (Figure 2b), showing only two broad clusters of spike times. Such 388 

punctuated histograms were observed in every tendon vibration trial across every experiment. Figure 6a 389 

demonstrates the composite ISI histogram in response to ~130 Hz tendon vibration from six different 390 

experiments; each trial demonstrates this punctuated pattern. This quantal discharge pattern is consistently 391 

observed across a range of vibration frequencies (see inset with the waveforms in Figure 6b), with the 392 

magnitude of the quantal discharge proportional to the period of the vibration wave.  393 

 Though each motoneuron demonstrates this punctuated discharge, substantial variation is observed in 394 

the mean discharge of individual motoneurons. The lower panel in Figure 6b demonstrates this variation 395 

in motor unit responses to vibration. Though the population of motor unit discharge shows a relatively 396 

wide range of discharge, individual motor units are quite narrow in their range of discharge. Furthermore, 397 

when vibration is applied at various frequencies and motor units are tracked across these trials, each 398 

motor unit tends to maintain its “preferred” range of discharge frequency.  399 
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Discussion 400 

In this study, we report the activity of tens of concurrently active motor units in the unanaesthetised, 401 

unparalyzed, decerebrate cat. This animal model has been used for 30+ years to investigate spinal 402 

physiology and neuromodulation of spinal neurons. Our EMG array approaches now provide similar 403 

information regarding the discharge of motoneuron populations in both animal and human models and 404 

will improve the fidelity of between-species comparisons.  405 

 406 

Array methods in animal preparations as the link between system and cellular behaviors 407 

Recording the activity of muscle has played a critical role in understanding the activation of spinal 408 

motoneurons. Adrian and Bronk (1929) were first to recorded the discharge of single muscle fibers, and 409 

did so in both in humans and in animals. This approach was refined with improved amplifiers, electrodes, 410 

and decomposition tools, but the underlying principle has remained a mainstay for nearly a century 411 

(Duchateau & Enoka, 2011; Farina et al., 2016). The development of intracellular recording ushered in an 412 

era of intense investigation of the synaptic inputs and intrinsic electrical properties of motoneurons 413 

(reviewed in Stuart & Brownstone, 2011) resulting in a remarkably detailed understanding of the 414 

organization of synaptic input and intrinsic electrical properties of spinal motoneurons (reviewed in 415 

Powers & Binder, 2001; Heckman & Enoka, 2012).  This knowledge base has allowed construction of 416 

highly realistic computer simulations of motoneurons (Powers et al., 2012; Elbasiouny, 2014), which 417 

greatly aid in interpretation of motor unit firing patterns in humans (Johnson et al., 2017).   418 

 Despite this progress, there exist two clear limitations. Motor unit recordings have been restricted to 419 

one or perhaps just few neurons at a time, limiting the insights about how motoneurons function as a 420 

population (Duchateau & Enoka, 2011). This limitation has largely been overcome by the array methods 421 

developed in humans (Holobar et al., 2010; Nawab et al., 2010; Farina & Holobar, 2016; Negro et al., 422 

2016). The second limitation is that, although the array recording methods were originally developed for 423 

human subjects, the understanding of the cellular mechanisms that generate the resulting population firing 424 

patterns depend on data obtained in intracellular recordings in motoneurons. These recordings can only be 425 

done in animal preparations, with most of these studies having been done in the cat preparation. Thus, our 426 

adaptation of the array methods for this preparation is uniquely valuable in that it allows array data, which 427 

captures the single neuron to population transition, to be recorded in the same preparation as intracellular 428 

data, which identifies cellular mechanisms. It is true that intracellular recordings in the decerebrate 429 

preparation usually require paralysis for recording stability, so simultaneous intracellular and muscle 430 

array recordings have not yet been attempted. Nonetheless, our results on tendon vibration illustrate the 431 

potential value of obtaining intracellular and array data in the same preparation.  432 

 433 
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 The synaptic currents generated by tendon vibration in the medial gastrocnemius (MG) motoneurons 434 

have been extensively investigated and reveal strong amplification by persistent inward currents (PICs; 435 

Lee & Heckman, 1996; Hyngstrom et al., 2008). The present array studies revealed two features of 436 

vibration induced inputs that have yet to be studied with intracellular methods. The banding in interspike 437 

interval due to the vibration frequency was not assessed in the intracellular studies, in which the current 438 

data was heavily filtered to focus on the contribution of PICs. It is not clear how these high frequency 439 

vibrations interact with the amplification induced by the PIC, which has a slow time constant (effectively 440 

about 50 ms; see Powers et al., 2012; Powers & Heckman, 2017). The PIC may thus tend to damp 441 

vibration-induced oscillations so that without its effects, the banding seen in the present study might have 442 

been much stronger. The preferred firing range exhibited by each motor unit for these banded patterns 443 

may arise from differences in the recruitment threshold currents and spike afterhyperpolarizations (AHPs) 444 

that exist in every motor pool (Powers & Binder, 2001; Heckman & Enoka, 2012). Nonetheless the range 445 

of these differences is small in the cat soleus, which is almost 100% slow twitch (Burke, 1981). Finally, 446 

these vibration-induced discharge of motor units in soleus are low – ranging from about 5 to 10 Hz in the 447 

present. Although these intracellular studies in MG did not usually assess firing rates, much higher rates 448 

were observed in some cells (20 Hz and above; Lee & Heckman, 1996). As human motor units often fire 449 

at relatively low rates, intracellular studies of soleus motoneurons in the cat can be expected to reveal how 450 

low firing rates emerge and these banding patterns are created by the interactions of PICs, AHPs, and 451 

thresholds. The combination of intracellular recording and array recording in the cat thus has great 452 

potential for grounding system behavior in cellular mechanisms (see also the final section of this 453 

Discussion). 454 

 455 

Validation of motor unit recordings in the cat 456 

Validation of motor unit discharge is necessary, though difficult, as there is no universally accepted gold 457 

standard (Farina et al., 2014). A multitude of experimental, computational, and predictive approaches 458 

were used to evaluate the accuracy of the discharge times of individual motor units and to demonstrate the 459 

validity of this approach under a wide range of conditions. 460 

 The most stringent means to validate motor unit decomposition remains to record the same motor unit 461 

from two separate sources and to compare the discharge times (Mambrito & De Luca, 1984). Two-source 462 

validation assumes that coincident findings from two different methods of recording and processing are 463 

highly unlikely to occur. We observe RoA values that are equivalent to (Hu et al., 2014) or slightly better 464 

(Yavuz et al., 2015; Negro et al., 2016) than those reported in human investigations. The array placement 465 

directly onto the muscle allows for a higher spatial and temporal frequency resolution and likely 466 

contributed to the relatively good performance of our EMG decomposition. 467 
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 Of particular note motor unit discharge was accurately decomposed during tendon vibration with a 468 

RoA value of 92.7%. This reflexive input provides high frequency (Brown et al., 1967), common input to 469 

the motoneuron pool (Mendell & Henneman, 1968) via primary muscle spindle afferents, and would be 470 

assumed to produce high levels of synchronization among motor unit discharge patterns resulting in high 471 

levels of waveform superimpositions. Consistent with the accuracy of recordings in human subjects with 472 

tremorgenic disorders (Holobar et al., 2012), the high density array approach may overcome this issue as 473 

it is based on a statistical measure of sparsity, as any given motor unit discharges extremely infrequently 474 

(~10 Hz) as compared to the sampling rate, which is typically a few orders of magnitude greater (5120 Hz 475 

in this case). Intuitively, unless fully synchronized at each discharge time, the summation of two motor 476 

unit spike trains is always less sparse than the individual trains (Negro et al., 2016) and the separation is 477 

possible even in case of high synchronization levels. 478 

 Though the convolutive blind source separation decomposition algorithm does not rely on traditional 479 

template matching of MUAP waveforms, reconstruction of a non-zero MUAP waveform is a necessary 480 

outcome of an accurate decomposition. If the MUAP waveforms are too similar in appearance, it is 481 

unreasonable to expect that any signal processing based decomposition approach will be able to generate 482 

valid spike times. This preparation seems ideal for this approach because the lack of non-contractile tissue 483 

under the electrodes provides less tissue filtering, preserving the higher spatiotemporal frequency content 484 

of the MUAP waveforms.  485 

 Further supporting our validation, the uniqueness of the MUAP waveform demonstrates sharp 486 

sensitivity to small amounts of noise in the spike times. Although there are a large number of non-487 

biological solutions that can result in valid individual waveforms that are sensitive to noise (Farina et al., 488 

2014), it is highly unlikely that a set of waveforms would systematically become less different from each 489 

other when noise is added to the triggers used to extract them, unless they are generated by physiological 490 

discharges.  491 

 The reconstructed MUAP waveform also provides an opportunity to track the same motor unit across 492 

time. Waveform measurements including peak-to-peak amplitude and conduction velocity of the MUAP 493 

demonstrated some variability, but were largely stable across time. Such variability in the MUAP 494 

waveform, may have a biological origin (Farina & Falla, 2008). However, interelectrode distance, number 495 

of spikes used in the STA window, and general level of synchronization may also influence these 496 

measures. Using this tracking approach, we saw a decrease in the number of motor units matched over 497 

time. This may reflect a loss of smaller MUAP waveforms during higher levels of contractions and/or 498 

slight shifts in electrode position across contractions altering the shape of the MUAP. However, it is 499 

possible that changes in the presence of specific motor units in different contractions could also reflect 500 

changes in the distribution of synaptic drive and/or motor unit rotation (Bawa et al., 2006).  501 
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 Lastly, we were able to faithfully reconstruct the force output. It was expected that the summation of 502 

the spike times would accurately reproduce force generation and this was indeed the case. As discussed 503 

below, the use of motor unit spike times is superior to traditional EMG approaches. 504 

 505 

Estimation of muscle force through electrical activity 506 

Estimating the force generated by the muscle is important for both a comprehensive understanding of the 507 

control of human movement and the various stresses these places on the musculoskeletal system. 508 

Modeling of muscle activation using endpoint forces is limited with regards to co-contraction, whereas 509 

the interference EMG is limited by waveform cancelation (Keenan et al., 2005; Keenan et al., 2006; 510 

Farina et al., 2008) and crosstalk (De Luca & Merletti, 1988; Farina et al., 2002)   511 

 Here, we demonstrate that the rectified and filtered EMG signal provides a good estimate of the 512 

whole muscle force.  Although it is possible that more advanced manipulations to the interference EMG 513 

signal might improve the accuracy of force estimates (Lloyd & Besier, 2003; Staudenmann et al., 2006), 514 

our results clearly show that the CST provides superior estimates to filtered EMG. Previous investigations 515 

have utilized single motor unit discharge patterns to estimate the force generated by a muscle (Theeuwen 516 

et al., 1996). Undoubtedly, the ability to control multiple parameters afforded by the discharge time of 517 

individual neurons (rate and magnitude of force generation) help the CST produce superior estimates of 518 

muscle force as compared to interference EMG. However, our current data demonstrate that individual 519 

motor unit behavior, though free from waveform cancelation and crosstalk, provided poor estimates of 520 

whole muscle force. In addition to non-linear aspects of motoneuron discharges including an initial 521 

acceleration, saturation, and hysteresis (Heckman & Enoka, 2012), the discharge patterns of individual 522 

motor units are strongly affected by synaptic noise. With the addition of a suitable number of motor unit 523 

spike trains to the CST, this noise is diminished. This allows the common components across motoneuron 524 

discharges, which the muscle force generation responds to, to be more readily observed (Farina et al., 525 

2014; Farina & Negro, 2015). 526 

 Our results however show that the improvement in force estimation from the CST versus EMG is 527 

small.  There is however one important aspect of force generation where the CST is markedly superior, 528 

which is in capturing higher frequency force content. Waveform cancellation of the EMG signal limits the 529 

magnitude of variations that can be observed in the rectified and smoothed signal. The CST is immune to 530 

these effects, as waveform cancelation is not an issue once the signal is accurately decomposed. Such 531 

discrepancies may partially explain the substantial difference in the ability of the EMG and CST to 532 

estimate muscle force during the tonic discharge of motor units (correlation coefficients of 0.834 versus 533 

0.947). Our force estimates do not yet factor in ranges of motor unit forces and we have not fully 534 

considered the non-linear properties of the muscle, including the small degree of non-arithmetic 535 
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summation of motor unit forces (Perreault et al., 2003) and the significant catch-like properties (Rack & 536 

Westbury, 1969; Binder-Macleod & Clamann, 1989; Frigon et al., 2011).  Addition of these factors may 537 

further improve CST-based estimations of high frequency force fluctuations.    538 

 539 

A return to parallel animal and human investigations 540 

The discharge of individual spinal motoneurons provides a detailed window into the human motor system 541 

(reviewed in Duchateau & Enoka, 2011; Johnson et al., 2017). The approach developed here allows for 542 

parallel experiments in an animal preparations and in humans. The discharge times from populations of 543 

motor units can be measured and analyzed in the same manner in both species, with the cellular 544 

mechanisms identified in the animal preparations, just as discussed above for understanding the firing 545 

patterns induced by vibration. This new parallel approach has the potential to transform our understanding 546 

of the cellular basis of motor output in both humans and animals. A recent review from the Heckman 547 

laboratory envisions this approach in detail (Johnson et al., 2017).  Ongoing, the insights from this 548 

parallel approach can be further enhanced by additional techniques for both animals and humans. In 549 

animals, the development of extracellular array recordings of populations of spinal interneurons (AuYong 550 

et al., 2011) can further deepen the insights for cellular mechanisms. For human studies, statistical 551 

approaches for human firing data to estimate the durations of AHPs (Suresh et al., 2014) and the spike 552 

triggered averaging methods to estimate twitch characteristics (Kutch et al., 2010; Negro & Orizio, 2017) 553 

will also be highly advantageous. Overall, it will be important to apply these approaches in multiple 554 

muscles in the future, with the eventual goal of understanding the relationships between synaptic 555 

organization, motoneuron properties, and the diversity of the musculoskeletal system in both normal and 556 

pathological states.  557 

 558 

Here we have quantified the neural drive to muscle in the in vivo cat. We have provided experimental 559 

validation using concurrent recordings from two sources, computational validation by reconstructing and 560 

corrupting the MUAP waveform within and between trials, and predictive validation by demonstrating 561 

that the CST can accurately estimate muscle force generation. This provides strong support for the 562 

validity of the underlying decomposition algorithm used in this manuscript (Holobar et al., 2010). 563 

Further, these findings suggest that, while individual motor unit discharge patterns provide a poor 564 

representation of whole muscle force, an increasing number of motor units can provide superior estimates 565 

of muscle force than more traditional EMG approaches. Lastly, we have outline the preferred discharge of 566 

individual motor units in response to tendon vibration, providing a new tool to quantify reflex activation 567 

of the motor system. Understanding the discharge of partial populations of motor units will provide a 568 
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means to collect the same highly detailed signals in humans – bridging the divide between intracellular 569 

mechanisms and human motor function. 570 

571 
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Legends 832 

 833 

Figure 1. Example EMG recording. Example of an electromyographic recording from the soleus 834 

muscle of a cat during spontaneous motor output. The signal is shown as a differential between rows 835 

resulting in a 5x12 matrix. The enlarged inset of the differentiated signal demonstrates the propagation of 836 

a single MUAP. The estimated conduction velocity of the inset motor unit is 3.3 m/s. 837 

 838 
Figure 2. Two-source validation of the motor unit discharge times. (a) Raster plot of discharge times 839 
extracted from the fine wire recordings (color) and  the array recordings (black) during the spontaneous 840 
discharge of soleus motor units. The numbers to the left indicate the average discharge rate and the 841 
coeficient of variation for each spike train. All three of the motor units detected with the fine wire 842 
recording were observed in the array recording with rate of aggreement (RoA) values ranging between 843 
97.8 to 100%. (b) Interspike interval histograms for each motor unit are summed to compile a composite 844 
interspike interval (ISI) histogram across all units. The fine wire units are overlaid in their respective 845 
colors, with the remainder of ISIs shown in black. This composite ISI histogram demonstrates two peaks, 846 
as two of the 12 motor units are discharging at a faster discharge in the absence of any reflex input.  (c) 847 
Histograms of RoA values for each of the 201 common units detected separated for each of the four 848 
modes of activation. 849 
 850 
Figure 3. Construction of unique motor unit action potential waveforms within a trial and their 851 
sensitivity to added noise in the spike times. Motor unit action potential waveforms are constructed 852 
though spike triggered averaging the discharge times into each of the 64 channels and interpolating across 853 
the 5x13 electrode array. (a) Example of two instantaneous MUAP waveforms from the 12 soleus motor 854 
unit spike trains decomposed during a 30 s bout of tendon vibration. (b) The correlation matrices across 855 
all 12 MUAP waveforms demonstrates perfect waveform correlations with themselves (diagonal) with 856 
only 6 of the 78 incorrect pairwise MUAP waveform correlations demonstrate even moderate (r>0.5) 857 
correlations with other MUAP waveforms. (c) The average MUAP waveform for each of the 12 motor 858 
units demonstrates a relatively high measure of uniqueness. The derived MUAPs are sensitive just a few 859 
milliseconds of noise added to the spike times used for the STA windows. The correlation matrices shown 860 
here for 5 and 10% noise (Percent SD of ISI), reveal fewer trials with even moderate (r>0.5) correlations 861 
with even the same unit with different amounts of noise. With as few as 5% noise added to the spike 862 
times, the MUAP uniqueness value it significantly decreased from the no noise condition. 863 
 864 
Figure 4. Stability of the MUAP waveform across trials. The MUAP waveforms are constructed for 865 
each active motor unit within a contraction. Units are considered the same if the 2D crosscorrelation 866 
between a MUAP in one trial and a MUAP in a different trial is >0.85. Across these 10 trials, 75% of the 867 
motor units were matched in at least 2 trials, while 3 motor units were matched across all 10 trials. Three 868 
MUAP waveforms are shown here, matched across 7, 4, and 10 trials respectively. 869 
 870 
Figure 5. Estimation of muscle force through its electrical activity. (a) EMG (blue trace) and (b) CST 871 
(red trace) are optimized to provide the best correlation with the soleus muscle force (black trace) evoked 872 
through the crossed extension reflex. The CST produces a superior fit to the overall force profile and 873 
more accurately represents the transient decrease in force generation observed at the end of the response. 874 
(c) Across 188 trials and various modes of activation, the CST produced a better fit than five randomly 875 
chosen EMG signals. (d) The iterative addition of motor units to the CST demonstrates the discharge 876 
from a single motor unit can only produce a relatively poor correlation with force. However, with nine or 877 
motor units, the CST can produce better estimates of muscle force than the EMG estimates (grey line). 878 
Optimized EMG and CST estimates of (e) muscle force and (f) 0.75 Hz high pass muscle force of soleus 879 
evoked though crossed extension reflex. (g) Across all trials, the CST produced a better fit to the 0.75 Hz. 880 
high pass muscle than five randomly chosen EMG signals. (h) The iterative addition of motor units reveal 881 
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three or more motor units is needed to better represent the high pass muscle force than the EMG signal. In 882 
panels d and h the individual symbols represent the average correlations and refer to the primary y-axis, 883 
while the solid line represents the number of trials containing the number of units equal to or greater than 884 
those represented on the secondary y-axis. 885 
 886 
Figure 6. Motor unit discharge in response to homonymous tendon vibration. (a) The interspike 887 
interval (ISI) histograms from ~15 motor unit spike trains in response to ~30 seconds of 130 Hz tendon 888 
vibration is shown for six different experiments. In each case, the motor unit discharge pattern 889 
consistently demonstrates a quantal discharge pattern at integer multiples of the vibration period resulting 890 
in a multimodal ISI histogram. (b) Motor unit discharge patterns from three vibration frequencies from 891 
one experiment demonstrate multimodal ISIs at the integer multiples of each of the three vibration 892 
periods. The position of tendon is shown at the inset. When motor units were tracked across trials, each 893 
motor unit demonstrates a relatively narrow preferred discharge frequency across each of the three 894 
frequencies.  895 
 896 
 897 



34 
 

898 



35 
 

899 

900 



36 
 

901 



37 
 

902 



38 
 

 903 


