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Abstract: Nonlinear estimation of the gravity model with Poisson-type regression methods has
become popular for modelling international trade flows, because it permits a better accounting
for zero flows and extreme values in the distribution tail. Nevertheless, as trade flows are not
independent from each other due to spatial and network autocorrelation, these methods may lead to
biased parameter estimates. To overcome this problem, eigenvector spatial filtering (ESF) variants
of the Poisson/negative binomial specifications have been proposed in the literature on gravity
modelling of trade. However, no specific treatment has been developed for cases in which many
zero flows are present. This paper contributes to the literature in two ways. First, by employing a
stepwise selection criterion for spatial filters that is based on robust (sandwich) p-values and does
not require likelihood-based indicators. In this respect, we develop an ad hoc backward stepwise
function in R. Second, using this function, we select a reduced set of spatial filters that properly
accounts for importer-side and exporter-side specific spatial effects, as well as network effects, both
at the count and the logit processes of zero-inflated methods. Applying this estimation strategy to a
cross-section of bilateral trade flows between a set of 64 countries for the year 2000, we find that our
specification outperforms the benchmark models in terms of model fitting, both considering the AIC
and in predicting zero (and small) flows.

Keywords: bilateral trade; unconstrained gravity model; eigenvector spatial filtering; zero flows;
backward stepwise; zero-inflation

JEL Classification: C14; C21; F10

1. Introduction

A traditional gravity model describing trade in its simple form asserts that the volume of trade
between a country pair is proportional to the product of their gross domestic products and inversely
related to a measure of distance separating them, where distance is broadly defined as a function
of several variables that can be viewed as trade resistance factors. The log-linear specification of
the gravity model along with ordinary least squares (OLS) estimation has been widely used in the
empirical literature (for a wide review, see Head and Mayer 2014), mostly because of its good empirical
performance and, in later years, for the strong theoretical foundations provided in papers such as
Anderson (1979) and Anderson and Wincoop (2003). A “structural break” in applied trade modelling
is represented by the work of Santos Silva and Tenreyro (2006), who show that log-linearization
of the gravity model leads to inconsistent estimates in the presence of heteroscedasticity in trade
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levels (and because of Jensen’s inequality). They propose a Poisson-type specification of the gravity
model along with a Poisson pseudo-maximum likelihood (PPML) estimator, somehow similarly to the
Poisson approach proposed much earlier by Flowerdew and Aitkin (1982). Santos Silva and Tenreyro
(2006, 2011) also provide simulation evidence that the PPML estimator is well-behaved even when
the conditional variance is far from being proportional to the conditional mean. Several studies in
trade have since then applied the PPML estimator (see Linders et al. 2008; Martin and Pham 2015;
Burger et al. 2009; Martínez-Zarzoso 2013).

A further aspect stressed in recent contributions is the one of null trade flows and the necessity
to specifically take them into account in regression modelling. Helpman et al. (2008) prove that
disregarding countries that do not trade with each other generates biased estimates. Zero-inflated
specifications of Poisson models (ZIP) (Lambert 1992; Greene 1994; Long 1997) permit to explicitly
model the presence of a large number of zero flows, because it considers the existence of two groups
within the population: one having strictly zero counts, and another having a non-zero probability
of having a trade flow greater than zero. In this framework, a relevant question is whether the
determinants of zero flows are the same as the ones of trade counts. Indeed, Burger et al. (2009) stress
that some variables (such as common language, institutional and geographical distance) may be more
important in determining the profitability of bilateral trade (decision to trade) rather than the potential
volume of bilateral trade. Nordås (2008), on the other hand, employed the same variables in both
model parts, in an empirical application focusing on trade liberalization. However, so far, which
variables determine the decision to trade is not so clear, and models may suffer from omitted variables
bias in either one of model parts, or both.

A second issue taken up in this paper is trade flows interdependence (Griffith 2007; LeSage and
Pace 2008), which is reflected in network autocorrelation among flows or, looking at the marginal sums
of trade matrices, spatial autocorrelation (SAC) among countries (Behrens et al. 2012; Sellner et al. 2013).
Behrens et al. (2012), in particular, provide a theoretical discussion and empirical testing showing that
multilateral trade resistance (MTR) terms can be accounted for as SAC in spatial model specifications.
In this paper, we aim to analyze the dynamics of the decision to trade (extensive margin) and the
volume of trade (intensive margin), and, in particular, what the contribution of SAC is in both of these
processes. We focus on an eigenvector spatial filtering (ESF) approach (Griffith 2003), within a ZIP
framework, using two sets of origin, destination and network spatial filters (Griffith 2007; Fischer
and Griffith 2008), one accounting for SAC in the logit part, and the other accounting for SAC in the
count part. In this regard, we devise an ad hoc function that applies a backward stepwise algorithm
aiming to properly identify the significant spatial filters. Our proposed algorithm has the advantage
that, at each step, it drops the eigenvector with the largest p-value, regardless of whether it is in the
count or in the logit part. We compare the results of this estimation with two methodologically nested
benchmarks, namely a ZIP without ESF in the logit part (ZIP ESFc) and a Poisson with ESF (Poisson
ESF). We conduct a comparison in terms of both estimated coefficients and goodness of fit (Akaike
information Criteria, AIC and prediction of zero and small flows). We find that our specification
outperforms the comparison models, in terms of both AIC and prediction of small trade flows. We
stress that our proposed method can be of practical help in applied trade modelling, in particular
when trade flows with a high share of zeros are to be used.

This paper is structured as follows. Section 2 presents a review of the gravity of trade, from
the traditional models to recent developments. In Section 3, we define our proposed model and the
stepwise algorithm we adopted. Section 4 presents the empirical application, together with results.
Section 5 concludes the paper.

2. The Gravity Model of Trade: Recent Developments

The scientific community recently experienced a renewed interest in both the theoretical and
empirical aspects of the gravity model of trade. In particular, the aforementioned theoretical
developments on multilateral resistance terms generated the need for consistent estimation approaches
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that would fit such advancements. The vastly increased computational power available for econometric
analysis played an additional role, allowing more complex and data-intensive (i.e., nonlinear and
panel) estimation efforts.

Several studies, starting with, for example, the popular paper by Santos Silva and Tenreyro
(2006), have pushed the envelope in the field, and a number of researchers are actively pursuing
further methodological advances pertaining to, in particular, the estimation of the gravity model of
trade. Egger and Tarlea (2015) propose a multi-way clustering approach to consistently estimate the
regression coefficients’ standard errors pertaining to preferential trade agreements. Egger and Staub
(2016) compare the suitability of various estimation approaches under an international economics
general equilibrium perspective. Baltagi and Egger (2016) develop a quantile regression structural
estimation solution for the gravity model.

Within the aforementioned econometric developments, a niche of its own is emerging pertaining
to the incorporation of spatial dependence and heterogeneity or network autocorrelation (i.e., the
correlation of flow data based on their network’s topological characteristics) in gravity models (Patuelli
and Arbia 2016), trade being a frequent application. While the relevance of spatial autocorrelation
originally was suggested for trade models in Anderson and Wincoop (2004), and much earlier within
spatial interaction modelling (Curry 1972; Curry et al. 1975; Sheppard et al. 1976), this issue attracted
significant attention only in recent years. Studies by Behrens et al. (2012), Fischer and Griffith (2008),
and LeSage and Pace (2008) provide, from different perspectives (economic theory, spatial econometrics,
spatial statistics), the necessary stepping stones for analyzing SAC aspects in flow data. We can roughly
divide the available literature into three main streams:

• Linear spatial econometric models (LeSage and Pace 2008; Behrens et al. 2012; Fischer and Griffith
2008; Baltagi et al. 2007; Koch and LeSage 2015): these models apply and adapt traditional (linear)
spatial econometric techniques to the count data case.

• Spatial generalized linear models (GLMs) (Sellner et al. 2013; Lambert et al. 2010): these models
extend the previous approaches by allowing for estimation based on Poisson-type models,
therefore accommodating the concerns expressed in Santos Silva and Tenreyro (2006).

• Semi-parametric (ESF) models (Fischer and Griffith 2008; Scherngell and Lata 2013; Krisztin and
Fischer 2015; Chun 2008; Patuelli et al. 2016): these models mix a parametric and a non-parametric
approach, by employing ESF within Poisson-type models.

This paper is concerned with this latest class of models. ESF (Griffith 2003) (described in more
detail in Section 3.2) is a spatial statistics technique based on the decomposition of spatial weights
matrices. The available studies employing this technique demonstrate how spatial filters can be used
successfully at the intercept level as “interceptors” of (i.e., proxies for) unobserved spatial heterogeneity
(Patuelli et al. 2012). With particular regard to our modelling exercise, ESF can be used to approximate
the fixed effects that, in a cross-sectional model of bilateral trade, would be estimated by sets of country
dummies. This paper aims to further investigate the use of ESF, by allowing for separate spatial filter
sets in zero-inflated models.

3. A Methodological Approach

3.1. Zero-Inflated Gravity Models of Trade

In recent years, there is an increasing recognition that the level of trade between countries
frequently is zero. Small countries may not have trade relations with all possible trading partners,
or statistical offices may not report trade flows below a certain threshold. Moreover, the issue of
zero flows is more pronounced when analyzing sector-disaggregated trade flows. Zero-inflated
gravity models provide one way to model an excess of zero flows. Martin and Pham (2015) and
Burger et al. (2009) propose the zero-inflated extension of the Poisson gravity model for situations
where the data-generating process (DGP) results in too many zeros. The model may be viewed as a
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“two-part” extension, in which the distribution of the outcome variable is approximated by mixing
two component distributions. The zero-inflation part of the model consists of a qualitative-dependent
model to determine the probability of whether a particular origin-destination trade flow is zero or
positive. The second part contains the standard Poisson (or negative binomial) gravity model to
estimate the relationship between trade flows and explanatory variables for each trade flow that
has a non-zero probability (Leung and Yu 1996). Among others, Xiong and Beghin (2012) and
Philippidis et al. (2013) apply zero-inflated count models for the analysis of international trade.

Estimating the parameters of Poisson-type gravity models (with or without zero-inflation)
by standard non-spatial methods only is justified statistically if we believed that trade flows are
independent observations. However, such an assumption generally is not valid because flows
fundamentally are spatial in nature. Several recent papers propose modelling the spatial heterogeneity
in the residuals by means of different econometric techniques. Among those works, many focus on the
issue of MTR, which can be considered as a main source of spatial heterogeneity (Behrens et al. 2012;
Baier and Bergstrand 2009). One way to relax this independence assumption is by incorporating
spatial dependence in the Poisson gravity model by means of spatial autoregressive techniques
(Sellner et al. 2013; Lambert et al. 2010). Another is ESF (Griffith 2003). It is considered here because it
allows for greater flexibility in modelling, and can be applied seamlessly to any estimation framework.
In their recent work, Patuelli et al. (2016) apply spatial filters within a negative binomial (NB)
specification as a way to filter out spatial heterogeneity due to MTRs. However, residual heterogeneity
could be present both for the logit and the count process, whereas the previously mentioned works
only account for SAC in the count process. Krisztin and Fischer (2015) have very recently applied
network-autocorrelation SFs to a trade model, by including, among others, zero-inflated specifications.
In particular, their approach implies using a network autocorrelation spatial filter in the count part
of the model. This work follows a similar approach used by Krisztin and Fischer (2015), but we
introduce an ad hoc backward stepwise procedure to properly select the filters. Moreover, we perform
diagnostics in order to: (i) compare our model with other benchmarks; and (ii) evaluate the fitting of
our specification in predicting zero (and small) trade flows.

3.2. Spatial Filters

ESF originally was developed for area-based data by Griffith (2003), and later extended to flow
data (Fischer and Griffith 2008; Chun 2008; Chun and Griffith 2011; Griffith 2009). One traditional
advantage, when including eigenvectors as additional origin- and destination-specific regressors, is
that the model can be estimated within standard regression frameworks, such as OLS or Poisson
regression, which are common in the literature about spatial interaction. The parameters of the
standard regressor variables are unrelated to the remaining residual term, and standard estimation
yields consistent parameter estimates as a result. We refer to this estimation method as SF estimation
of origin-destination models.

The workhorse for the SF decomposition is a transformation procedure-based upon eigenvector
extraction from the matrix

(I − 11T/n) W (I − 11T/n) (1)

where W is a generic n × n spatial weights matrix with zeros on the main diagonal. I is an n × n
identity matrix, and 1 is an n × 1 vector containing 1s. The spatial weights matrix W defines the
relationships of proximity between the n georeferenced units (e.g., points, regions, and countries).
The transformed matrix appears in the numerator of the Moran I coefficient (MC).

The eigenvectors of Equation (1) represent distinct map pattern descriptions of SAC underlying
georeferenced variables (Griffith 2003). Moreover, the first extracted eigenvector, say e1, is the one
showing the highest positive MC (Cliff and Ord (1972, 1981)) that can be achieved by any spatial
recombination induced by W. The subsequently extracted eigenvectors maximize MC while being
orthogonal to and uncorrelated with the previously extracted eigenvectors. Finally, the last extracted
eigenvector maximizes negative MC.
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Having extracted the eigenvectors of Equation (1), a spatial filter is constructed as a linear
combination of a judiciously selected subset of these n eigenvectors. In detail, for our empirical
application, when it comes to origin/destination ESF, we select a first subset of eigenvectors (which
we call the “candidate eigenvectors”) by means of the following threshold: MC(ei)/MC(e1) > 0.25.
This threshold corresponds to a percentage of variance of at least 5 per cent being explained by the
dependent variable’s spatial lag (WY on Y), according to (Griffith 2003). With regard to network ESF,
the algorithm proposed by Chun et al. (2016) has been employed.1 Subsequently, a stepwise regression
model may be employed to further reduce the first subset (whose eigenvectors have not yet been
related to given data) to just the subset of eigenvectors that are statistically significant as regressors in
the model to be evaluated. The linear combination of the resulting group of eigenvectors is what we
call our “spatial filter”.

Because trade data do not represent points in space, but flows between points, the eigenvectors
are linked to the flow data by means of Kronecker products: the product EK ⊗ 1, where EK is the n × k
matrix of candidate eigenvectors, may be linked to the origin-specific information (for example, GDP
per exporting countries), while the product 1 ⊗ EK may be linked to destination-specific information
(again, for example, the gross domestic product of importing countries) (Fischer and Griffith 2008).
As a result, two sets of origin- and destination-specific variables are used (Patuelli et al. 2016),
which aim to capture the SAC patterns commonly accounted for by the indicator variables of a
doubly-constrained gravity model (Griffith 2009), therefore avoiding omitted variable bias see also
Griffith and Chun (2016).

The new challenge here is that we want to account for SAC in both the logit and in the count
parts of zero-inflated models, so we use two sets of filters at the logit level, and two sets of filters at
the count level. This choice allows us to account for potentially different omitted variables related
to the intensive and extensive margins of trade. Moreover, the selection of different eigenvectors in
the two parts (i.e., exclusion restrictions) may help obtain identification as well, consistently with
Papadopoulos and Silva (2012).

3.3. A Backward Stepwise Algorithm

A stepwise procedure is an algorithm used to choose variables in a regression model, first
proposed by Efroymson (1960). It usually takes the form of a sequence of F- or t-tests, but other criteria
are possible, such as (adjusted) R-squared, AIC, Bayesian information criterion (BIC), or simply based
on p-values.

Forward selection involves starting with no variables in a model, testing the addition of each
variable, adding the variable (if any) that improves the model the most, and repeating this process
until no more (significant) improvement is possible. Backward elimination involves starting with
all candidate variables, sequentially testing the deletion of each of them, deleting the variable (if
any) whose deletion improves the model fit the most, and repeating this process until no further
improvements are possible. Backward elimination procedures are implemented in many routines.
Chun and Griffith (2013) list R code for stepwise selection in GLMs based on SAC minimization.
In the mpath package (Wang et al. 2015), the be.zeroinfl function performs a backward elimination
(and forward selection) based on maximum likelihood criteria, and can be applied to zero-inflated
models. Further variable selection algorithms for zero-inflated count data are presented in the medical
literature, all proposing LASSO-based approaches (Chen et al. 2016; Zeng et al. 2014; Buu et al. 2011)
with different types of penalizations. None has been proposed in economics or other fields of research,
to the authors’ best knowledge.

1 The equation formulated by Chun et al. (2016), based on residual SAC, predicts the ideal size of the set of candidate
eigenvectors, and demonstrates that such size is positively correlated to the amount of spatial autocorrelation to account for.
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Here, we are interested in using a stepwise algorithm to define the proper set of eigenvectors to
include in a regression model in order to account for SAC. Our algorithm is based on the be.zeroinfl

function, but has at least two advantages vis-à-vis it. First, at each step of our algorithm, we compute
robust standard errors as in PPML models, and we select the variable to be removed based on the
related p-values. Second, our algorithm is constructed in order to be able to drop the variables with the
largest p-values, regardless of whether they belong to the count or the logit part. We also structured
the function so that a minimum model (minmodel) can be defined. In other words, we let the algorithm
drop only the eigenvectors, because we consider included standard explanatory variables to have
substantive meaning.

In particular, our algorithm can be depicted by the following description and pseudo-code
reported in Box 1.

Box 1. Description of the algorithm.

Usage
Backward.Stepwise.Zeroinfl(object, data, dist = ("poisson", "negbin", "geometric"), alpha =

0.05, trace = TRUE, subset.zero, subset.count, minmod.zero, minmod.count)
Arguments
object: an object from function zeroinfl
data: a data.frame object containing the variables to be used in the regression model
dist: one of the distributions used in the zeroinfl function. This could be “poisson”, “negbin” or

“geometric”
alpha: the significance level for variable elimination
trace: if true, it generates printed detailed calculation results
subset.zero: a list of the variable names to be subset in the logit part of the model
subset.count: a list of the variable names to be subset in the count part of the model
minmod.zero: a list of the variable names not to be subset in the logit part of the model
minmod.count: a list of the variable names not to be subset in the count part of the model
Pseudo code
If object is not of zeroinfl class

Stop. Message: “Object must be zeroinfl”;
If the list c(subset.count, minmod.count) is not identical to the list of variables in the count part of the

zeroinfl object
Stop. Message: “The count part variables in object must be equal to the variables in minmod.count plus

the variables in subset.count”;
If the list c(subset.zero, minmod.zero) is not identical to the list of variables in the logit part of the

zeroinfl object
Stop. Message: “The logit part variables in object must be equal to the variables in minmod.zero plus the

variables in subset.zero”.
Fit the zeroinfl model defined in object (the “initial” model) using the distribution defined in dist;
Generate robust “sandwich” standard errors of the initial model, with PPML adjustment;
Print the initial model results with BIC, AIC and log-likelihood;
Cycle

Print the number of the step (the initial model corresponds to step 1);
Choose the smallest p-value for the variables in subset.count (count.max) and the smallest p-value for

the variables in subset.zero (zero.max);
If count.max is larger than zero.max and larger than alpha

The variable related to count.max is dropped from the model;
The dropped variable’s name is removed from subset.count;
A new object value is generated by replacing the new subset.count;
“Drop variable in count component: variable name” is printed;

Else, if zero.max is larger than alpha
The variable related to zero.max is dropped from the model;
The dropped variable’s name is removed from subset.zero;
A new object value is generated by replacing the new subset.zero;
“Drop variable in zero component: variable name” is printed;

Refit the zeroinfl model using the updated object value;
Generate robust “sandwich” standard errors of the updated zeroinfl model, with PPML adjustment;
Print the updated zeroinfl model results with BIC, AIC and log-likelihood;
Restart the cycle, until both count.max and count.max are equal or smaller than alpha;

End cycle
Print the final model results with robust (PPML) standard errors, BIC, AIC and log-likelihood.
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4. An Empirical Application

The data for trade analyzed in this paper are from the World Trade Database, compiled on the basis
of COMTRADE data by Feenstra et al. (2005). GDP and per capita GDP data are from the World Bank’s
WDI database. Distance, language, colonial history, landlocked countries, and land area data are from
the CEPII institute. Whether pairs of countries take part in a common regional integration agreement
(FTA) was determined on the basis of OECD data about major regional integration agreements.2

An indicator variable measures whether a pair of countries has (membership in) at least one common
FTA. Data about island status have been kindly provided by Hildegunn Kyvik-Nordas (from Jansen
and Nordås 2004). Internal flows are excluded from our analyses because they typically deserve special
treatment in trade models (see, e.g., LeSage and Fischer 2016). Their treatment within our modelling
framework is left for future research.

4.1. The Model Specification

For estimation, we follow a standard specification of the gravity equation of bilateral trade, and we
employ some variables commonly used in the literature. We use the following standard specification
of the gravity equation, which we estimated by means of a ZIP of the form:

Pr[γk|zk, xk] =

{
θk(xk) + [1− θk(xk)] exp(−µk)i f γk = 0

[1− θk(xk)]
exp(−µk)µk

γk ! i f γk > 0
(2a)

θk(xk) =
exp(xkγ)

1 + exp(xkγ)
(2b)

where xk is a vector of covariates defining the probabilities γk and θk of trade flows (in thousands of
dollars), where γk and θk are included in [0, 1]. The vector of covariates consists of pop, that represents
each country’s population (in logs), gdpcap, that represents per capita GDP (in logs), island, an indicator
variable that equals 1 if a country is an island, area, that is the land area of a country (in logs), and landl,
that equals 1 for landlocked countries. The other variables are country-pair indicators, identifying
whether a pair of countries share a currency (comcur), the same language (comlang), a common border
(contig), a common colonial history (hist), that represents if the country pair shares any history of
colonization (including one colonizing the other), or engage in free trade agreements (fta), and dist is
a measure of the geographical distance between them (in logs). Summary statistics are provided in
Table 1.

Table 1. Summary statistics for the variables used in the analysis.

Stats Tr_mil log(dist) comlang contig hist fta log(area) log(gdpcap) log(pop) island landl

Min 0 4.088 0.000 0.000 0.000 0.000 6.507 5.969 13.32 0.000 0.000
1st Q 8 8.013 0.000 0.000 0.000 0.000 11.419 7.570 15.90 0.000 0.000
Med. 84 8.830 0.000 0.000 0.000 0.000 12.675 8.734 16.89 0.000 0.000
Mean 1351 8.566 0.091 0.036 0.032 0.138 12.773 8.664 16.91 0.047 0.094
3rd Q 524 9.237 0.000 0.000 0.000 0.000 14.043 10.024 17.91 0.000 0.000
Max 232,700 9.892 1.000 1.000 1.000 1.000 16.612 10.523 20.96 1.000 1.000

4.2. Estimation Results

We estimate Equation (2) and select spatial filters as a ZIP, using a cross-section of 64 countries
(4032 country pairs) for the year 2000 (ZIP ESF, 2). We estimate the same model using two benchmarks
that methodologically can be considered as special cases of our proposed model: a ZIP using spatial

2 An ever-updated list of trade agreements can be accessed from the World Bank website at https://wits.worldbank.org/
gptad.html.

https://wits.worldbank.org/gptad.html
https://wits.worldbank.org/gptad.html
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filters only in the count part (ZIP ESFc), and a Poisson with spatial filters (Poison ESF).3 Two additional
(simpler) benchmark models are proposed in Appendix B, that is, a standard ZIP and a Poisson with
origin and destination fixed effects. Our code and the proposed algorithm are available on the first
author’s personal website.

Looking at the Poisson part (second step) of the ZIP ESF in Table 2, distance has a negative
significant effect, the country-pair indicator variables present positive and significant coefficients,
as expected: GDP positively affects trade flows, at both the exporter and importer country side.
Geographical size of the importer also has a positive effect, though much smaller than for GDP.
Bilateral proximity indicators, such as contiguity, common history and FTAs, all influence positively
the amount of trade. Island status has a negative effect at the exporter side, but no significant effect is
found for importers. Distance has the expected negative sign. The negative sign on per capita GDP is
of more difficult interpretation, but constant over the benchmark models. It could imply a tendency
of richer countries to produce internally most goods because of differentiation. When comparing the
findings of Model (1) with the ones of the benchmarks, coefficients are very stable.

Table 2. Estimated coefficients for: (1) ZIP ESF; (2) ZIP ESFc; (3) Poisson ESF.

(1) (2) (3)

ZIP ESF ZIP ESFc Poisson ESF

First Step (logit)
Distance 0.57 (0.16) *** 0.34 (0.08) *** –

Common language −0.73 (0.30) ** 0.29 (0.22) –
Contiguity 0.54 (0.52) 0.13 (0.53) –

Common history −0.09 (0.76) −1.43 (0.80) * –
FTA −2.51 (0.50) *** −1.44 (0.35) *** –

Area imp 0.32 (0.08) *** 0.05 (0.05) –
Area exp 0.09 (0.06) 0.29 (0.05) *** –

GDP per cap. imp −1.35 (0.11) *** −0.73 (0.05) *** –
GDP per cap. exp −0.89 (0.09) *** −0.83 (0.07) *** –
Population imp −1.02 (0.12) *** −0.43 (0.08) *** –
Population exp −1.01 (0.10) *** −1.15 (0.08) *** –

Island imp −0.48 (0.64) −1.12 (0.41) *** –
Island exp 0.44 (0.54) −1.71 (0.47) *** –

Landlocked imp 3.74 (0.48) *** −0.12 (0.18) –
Landlocked exp −0.15 (0.31) −1.08 (0.23) *** –

Constant 38.69 (3.27) *** 30.48 (2.32) *** –
Eigenvectors (exp) 10 – –
Eigenvectors (imp) 16 – –

Eigenvectors (network) 28 – –

Second Step (Poisson)
Distance −0.58 (0.04) *** −0.58 (0.04) *** −0.58 (0.04) ***

Common language 0.09 (0.08) 0.09 (0.08) 0.09 (0.08)
Contiguity 0.56 (0.10) *** 0.56 (0.10) *** 0.56 (0.10) ***

Common history 0.19 (0.09) ** 0.19 (0.09) ** 0.19 (0.09) **

3 Additional benchmark models based on simple origin and destination fixed effects (as in Patuelli et al. 2016) were tested,
but in a zero-inflated setting appear to cause multicollinearity issues. Indeed, the current econometric literature is very
sparse with regard to the use of fixed effects in ZIP models, with only Gilles and Kim (2017) and still-unpublished work
(Kitazawa 2014; Majo and van Soest 2011) providing first-ever solutions. Additionally, the bilateral nature of trade data and
its consequent fixed effects configuration makes such an endeavour further complicated. Consequently, the fixed effects
were dropped and we chose to focus, in our comparison, on the role of spatial filters in the zero-inflation part of the models.
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Table 2. Cont.

(1) (2) (3)

ZIP ESF ZIP ESFc Poisson ESF

FTA 0.45 (0.08) *** 0.45 (0.08) *** 0.45 (0.08) ***
Area imp −0.19 (0.02) *** −0.19 (0.02) *** −0.19 (0.02) ***
Area exp −0.003 (0.02) −0.003 (0.02) −0.003 (0.02)

GDP per cap. imp 0.77 (0.03) *** 0.77 (0.03) *** 0.77 (0.03) ***
GDP per cap. exp 0.77 (0.02) *** 0.77 (0.02) *** 0.77 (0.02)
Population imp 0.91 (0.03) *** 0.91 (0.03) *** 0.91 (0.03) ***
Population exp 0.73 (0.03) *** 0.73 (0.03) *** 0.73 (0.03) ***

Island imp −0.03 (0.07) −0.03 (0.07) −0.0 3 (0.07)
Island exp −0.49 (0.08) *** −0.49 (0.08) *** −0.49 (0.08) ***

Landlocked imp 0.002 (0.10) 0.002 (0.10) 0.002 (0.10)
Landlocked exp 0.14 (0.10) 0.14 (0.10) 0.14 (0.10)

Constant −28.48 (0.71) *** −28.48 (0.71) *** −28.48 (0.71) ***
Eigenvectors (exp) 6 6 6
Eigenvectors (imp) 7 7 7

Eigenvectors (network) 24 24 24

AIC 1,477,400 1,477,988 1,478,688
Log-likelihood −738,577 −738,925 −739,290

McFadden’s pseudo-R2 0.935 0.935 0.935
Observations 4032 4032 4032
Residual dof 3910 3963 3978

***, **, * denote statistical significance at the 1, 5, 10 per cent level. Standard errors in parenthesis.

When considering the Logit part (first step) it should be remembered that it is the probability of
excess zeros being modelled, so the estimated coefficients, in order to be concordant with the ones
in the count model part, should have opposite signs (Lambert 1992; Preisser et al. 2012). Therefore,
the probability of a country pair to be involved in trade negatively depends on distance and on the
importer being landlocked, while it depends positively on FTAs and common language, as well as
on the importer country’s areas, wealth (per capita GDP) and economic size (GDP). The latter favor
trade also on the exporter’s side. Moreover, the coefficients resulting from the alternative zero-inflated
specification [Model (2), which does not include spatial filters in the logit part] often differ from the
ones for Model (1), suggesting that the inclusion of the spatial filters has a relevant role. These results
highlight the need to better analyze the determinants of trade decisions.

Based on the AIC and the log-likelihood values, our model specification outperforms the
benchmarks. In terms of AIC, the ZIP ESF has the lowest value (1,477,400), meaning it performs
better than the benchmarks (1,477,988 for the ZIP ESFc, and 1,478,688 for the Poisson ESF). The same
holds for the log-likelihood −738,577 compared to −738,925 and −739,290, respectively. Only the
Poisson model with fixed effects, in Table A1, slightly surpasses the ZIP ESF in likelihood, because of
the obvious mechanics of the fixed effects.

We can now analyze the robustness of our model in terms of fitting small trade flows. We compare
the observed frequencies of small flows with their estimated counterparts (fitted values rounded
to integers) obtained for all the models. Because one advantage of our model specification is that
it should better predict small flows, we expect it to outperform the two benchmark models in this
regard, especially if small flows are spatially autocorrelated. Results reported in Table 3 confirm this
expectation. The ZIP ESF predicts 485 out of 484 zero flows, whereas the Poisson ESF predicts only
470 zero flows. The ZIP ESFc, using only count-level spatial filters, predicts 483 zero flows, despite it
is more efficient in predicting other small flows, compared to the ZIP ESF. The comparison becomes
more evident in Table A2, where the limits of the standard ZIP and fixed-effects Poisson models are
shown in terms of predicting small and zero flows, respectively.
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Table 3. Counts of observed versus predicted values.

Trade Flow
(in US$ Millions, Rounded) 0 1 2 3 4 5 6 7 8 9

Observed 484 136 112 76 64 39 42 49 35 29
ZIP ESF 485 8 12 15 18 19 20 20 20 20
ZIP ESFc 483 10 15 18 20 21 21 21 21 21

Poisson ESF 470 17 24 27 29 29 29 29 28 27

The spatial part of the model, with the ZIP ESF we select in the logit part, comprises 10
exporter-side, 16 importer-side and 28 network eigenvectors. In the count part, the number of
significant eigenvectors is 6 for the exporter countries, 7 for the importer countries and 24 for
country pairs.

A Moran test can be conducted on each of the four country-specific spatial filters, which are
obtained as the linear combinations of the selected eigenvectors multiplied by their respective estimated
coefficients. The one including the largest number of significant eigenvectors (16) appears to be the
one with the lowest MC (0.050). The sets of eigenvectors with the highest MC values are the count
part ones (MC = 0.205, with 7 eigenvectors, and MC = 0.261, with 6 eigenvectors, for importer- and
exporter-side, respectively). The relationship between the number of eigenvectors selected and the
strength of the proxied SAC appears to require further investigation, in order to better interpret the
modelled patterns and educate expectations about the number of degrees of freedom to be used for
the computation of spatial filters.

A further dimension to be investigated is the differentiated use of the eigenvectors in the
construction of the spatial filters, at the importer/exporter and logit/count levels, which can
provide hints regarding the extent of omitted explanatory variables and their overlap across contexts.
A comparison of importer and exporter spatial filters (Table 4) implies that more common eigenvectors
are present in the logit part of the model. This finding suggests that (omitted) trade determinants
are more differentiated, in terms of emissiveness and attractiveness, on the intensive margin. When
looking at differences between the logit and count parts of the model, almost the same number of
common eigenvectors can be found for the exporter and importer sides, showing that a moderate
amount of omitted information is relevant for both extensive and intensive margins. More generally,
no eigenvectors are in common to all four spatial filters, while out of the top three eigenvectors (e1–e3),
only e1 (the one implying the spatial pattern with the highest level of SAC) appears in more than
one spatial filter. These final findings lead us to believe that unexplained trade patterns are mostly
idiosyncratic or tied to specific areas, rather than linked to larger geographical agglomerations (which
would favor the selection of the aforementioned top eigenvectors).

Table 4. Common and unique country-specific eigenvectors.

Comparison Eigenvectors Comparison Eigenvectors

Ex
po

rt
er

vs
.I

m
po

rt
er

Exporter/importer,
logit (common) e12, e17, e20, −e10, e24 Exporter/importer,

count (common) e1, e7

Exporter, logit (unique) e1, e3, e5, e9, e10, e15 Exporter, count
(unique) e4, e5, e10, e19

Importer, logit (unique) e2, e4, e7, e13, e14, e19,
e20, e22, e25–e29

Importer, count
(unique) e8, e14, e20, e23, e25

Lo
gi

tv
s.

C
ou

nt

Logit/count, exporter
(common) e1, e5, e10 Logit/count,

importer (common) e7, e14, e20, e25

Logit, exporter (unique) e3, e9, e12, e15, e17,
e20, e24

Logit, importer
(unique)

e2, e4, e12, e13, e17,
e19, e22, e24, e27–e29

Count, exporter (unique) e4, e7, e19 Count, importer
(unique) e1, e8, e23



Econometrics 2018, 6, 9 11 of 15

5. Conclusions

Eigenvector spatial filtering (ESF) variants of nonlinear gravity models of trade (such as Poisson
or NB specifications) have been proposed in the literature, because trade flows are not independent
and contain spatial (SAC) and network autocorrelation. Using a zero-inflated Poisson (ZIP) approach,
this paper contributes to the existing literature in two ways. First, we present a zero-inflated stepwise
selection procedure for constructing spatial filters based on robust p-values. Second, we identify spatial
filters that properly account for importer- and exporter-side specific unexplained spatial patterns, in
both the logit and count parts. Results applied to a cross-section of bilateral trade flows between a set
of worldwide countries showed that our specification outperforms the benchmark models (ZIP ESFc
and Poisson ESF) in terms of model fitting, both considering AIC and log-likelihood values, and in
predicting zero (and small) flows. Our proposed model specification provides applied trade researchers,
or more generally anyone dealing with flow data and spatial interaction, a further modelling tool,
which can be specifically useful for cases in which a large share of null flows are present in the data.

Future research should compare this model with further zero-inflated specifications that account
for SAC differently, and evaluate the contribution of the logit and the count parts of the model in terms
of explained variance based on different DGPs. Attention should be devoted to a specific treatment
of internal flows as well. Moreover, a similar analysis, taking care of appropriate changes, should be
applied to a panel data setting to evaluate, for example, possible trade-offs between the spatial filters
and individual (dyadic) fixed effects.
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Appendix A. List of the Countries Used in the Empirical Application

Algeria; Angola; Argentina; Australia; Austria; Belgium; Brazil; Bulgaria; Canada; Chile; China;
Colombia; Czech Republic; Denmark; Dominic. Republic; Ecuador; Finland; France; Germany; Greece;
Hungary; India; Indonesia; Iran; Ireland; Israel; Italy; Japan; Kazakhstan; Kuwait; Libya; Malaysia;
Mexico; Morocco; Netherlands; New Zealand; Nigeria; Norway; Oman; Pakistan; Peru; Philippines;
Poland; Portugal; Qatar; Romania; Russia; Saudi Arabia; Singapore; Slovakia; Slovenia; South Africa;
South Korea; Spain; Sweden; Switzerland; Thailand; Tunisia; Turkey; Unit. Ar. Emir. Kingdom; United
States; Venezuela; Vietnam.

Appendix B. Further Results

Table A1. Estimated coefficients for: (1) ZIP ESF; (2) ZIP; (3) Poisson FE.

(1) (2) (3)

ZIP ESF ZIP Poisson FE

First Step (logit)
Distance 0.57 (0.16) *** 0.36 (0.08) *** –

Common language −0.73 (0.30) ** 0.28 (0.22) –
Contiguity 0.54 (0.52) 0.16 (0.53) –

Common history −0.09 (0.76) −1.42 (0.80) * –
FTA −2.51 (0.50) *** −1.43 (0.35) *** –

Area importer 0.32 (0.08) *** 0.05 (0.05) –
Area exporter 0.09 (0.06) 0.28 (0.05) *** –

GDP per cap. imp −1.35 (0.11) *** −0.74 (0.05) *** –
GDP per cap. exp −0.89 (0.09) −0.84 (0.07) *** –
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Table A1. Cont.

(1) (2) (3)

ZIP ESF ZIP Poisson FE

Population imp −1.02 (0.12) *** −0.45 (0.08) *** –
Population exp −1.01 (0.10) *** −1.16 (0.08) *** –

Island imp −0.48 (0.64) −1.16 (0.41) *** –
Island exp 0.44 (0.54) −1.73 (0.47) *** –

Landlocked imp 3.74 (0.48) *** −0.14 (0.18) –
Landlocked exp −0.15 (0.31) −1.06 (0.22) *** –

Constant 38.69 (3.27) *** 31.10 (2.30) *** –
Eigenvectors (exp) 10 – –
Eigenvectors (imp) 16 – –

Eigenvectors (network) 28 – –

Second Step (Poisson)
Distance −0.58 (0.04) *** −0.39 (0.04) *** −0.62 (0.03) ***

Common language 0.09 (0.08) 0.40 (0.11) *** 0.10 (0.07)
Contiguity 0.56 (0.10) *** 0.66 (0.15) *** 0.58 (0.07) ***

Common history 0.19 (0.09) ** 0.13 (0.10) 0.06 (0.08)
FTA 0.45 (0.08) *** 0.72 (0.08) *** 0.44 (0.06) ***

Area imp −0.19 (0.02) *** −0.07 (0.02) *** −0.26 (0.14) *
Area exp −0.003 (0.02) −0.05 (0.02) ** 0.37 (0.16) **

GDP per cap. imp 0.77 (0.03) *** 0.80 (0.03) *** 0.77 (0.14) **
GDP per cap. exp 0.77 (0.02) *** 0.67 (0.03) *** 0.92 (0.23)
Population imp 0.91 (0.03) *** 0.84 (0.02) *** 1.44 (0.14) ***
Population exp 0.73 (0.03) *** 0.76 (0.03) *** 0.29 (0.26)

Island imp −0.03 (0.07) −0.13 (0.08) * −0.47 (0.43)
Island exp −0.49 (0.08) *** −0.23 (0.08) *** 0.30 (0.63)

Landlocked imp 0.002 (0.10) −0.05 (0.10) 0.50 (0.76)
Landlocked exp 0.14 (0.10) −0.19 (0.12) 0.09 (1.27)

Constant −28.48 (0.71) *** −29.52 (0.91) *** −35.32 (3.71) ***
Eigenvectors (exp) 6 – –
Eigenvectors (imp) 7 – –

Eigenvectors (network) 24 – –
Fixed Effects (exp) No No Yes
Fixed Effects (imp) No No Yes

AIC 1,477,400 2,545,233 1,467,313
Log-likelihood −738,577 −1,272,584 −733,525

McFadden’s pseudo-R2 0.935 0.888 0.935
Observations 4032 4032 4032
Residual dof 3910 4000 3872

***, **, * denote statistical significance at the 1, 5, 10 per cent level. Standard errors in parenthesis.

Table A2. Counts of observed versus predicted values.

Trade Flow
(in US$ Millions, Rounded) 0 1 2 3 4 5 6 7 8 9

Observed 484 136 112 76 64 39 42 49 35 29
ZIP ESF 485 8 12 15 18 19 20 20 20 20

ZIP 484 0 1 1 2 3 4 5 6 7
Poisson FE 68 11 17 20 22 23 24 24 24 24
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