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Abstract

In this paper we introduce and study line Hermitian Grassmann codes as
those subcodes of the Grassmann codes associated to the 2-Grassmannian of a
Hermitian polar space defined over a finite field. In particular, we determine the
parameters and characterize the words of minimum weight.
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1. Introduction

Let V := V (K, q) be a vector space of dimension K over a finite field Fq and
Ω a projective system of PG(V ), i.e. a set of N distinct points in PG(V ) such
that dim〈Ω〉 = dim(V ). A projective code C(Ω) induced by Ω is a [N,K]-linear
code admitting a generator matrix G whose columns are vector representatives
of the points of Ω; see [24]. There is a well-known relationship between the
maximum number of points of Ω lying in a hyperplane of PG(V ) and the
minimum Hamming distance dmin of C(Ω), namely

dmin = N − max
Π≤PG(V )
codim(Π)=1

|Π ∩ Ω| .

Interesting cases arise when Ω is the point-set of a Grassmann variety. The
associated codes C(Ω) are called Grassman codes and have been extensively
studied, see e.g. [20, 21, 22, 19, 15, 14, 18].

In [3], we started investigating some projective codes arising from subgeo-
metries of the Grassmann variety associated to orthogonal and symplectic
k-Grassmannians. We called such codes respectively orthogonal [3, 5, 6, 7] and
symplectic Grassman codes [4, 6]. In the cases of line orthogonal and symplectic
Grassmann codes, i.e. for k = 2, we determined all the parameters; see [5], [7]
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and [4]. For both these families we also proposed in [6] an efficient encoding
algorithm, based on the techniques of enumerative coding introduced in [12].

In this paper we define line Hermitian Grassmann codes as the projective
codes defined by the projective system of the points of the image under the Plücker
embeddings of line Hermitian Grassmannians and determine their parameters.
We refer the reader to Section 2.1 for the definition and properties of Hermitian
Grassmannians.

Main Theorem. A line Hermitian Grassmann code defined by a non–degenerate
Hermitian form on a vector space V (m, q2) is a [N,K, dmin]-linear code where

N =
(qm + (−1)m−1)(qm−1 − (−1)m−1)(qm−2 + (−1)m−3)(qm−3 − (−1)m−3)

(q2 − 1)2(q2 + 1)
;

K =

(
m

2

)
;

dmin =


q4m−12 − q2m−6 if m = 4, 6

q4m−12 if m ≥ 8 is even
q4m−12 − q3m−9 if m is odd.

.

As a byproduct of the proof of the Main Theorem, we obtain a characterization
of the words of minimum weight for any m and q, except for (m, q) = (5, 2), see
Corollaries 3.11 and 3.15.

In a forthcoming paper [8] we plan to describe and discuss algorithms for im-
plementing encoding, decoding and error correction for line Hermitian Grassmann
codes in the same spirit of [6].

1.1. Organization of the paper
In Section 2 we recall some preliminaries and set our notation. In particular, in

Section 2.1 some basic notions about projective codes, Hermitian Grassmannians
and their Plücker embeddings are recalled, while in Section 2.2 we recall a
formula for estimating the weight of codewords for Grassmann codes. The same
formula appears also in [5], but we now offer a much simplified and shorter
proof. Section 3 is dedicated to the proof of our main result, by determining the
minimum weight of line Hermitian Grassmann codes and, contextually, obtaining
a description of the words of minimum weight in geometric terms. In particular,
in Section 3.1 we provide bounds on the values of the weights given by the
formula of Section 2.2 and in Sections 3.2 and 3.3 we investigate in detail the
minimum weight in the cases where the hosting space has odd or even dimension.

2. Preliminaries

2.1. Hermitian Grassmannians and their embeddings
There is an extensive literature on the properties of Hermitian varieties over

finite fields; for the basic notions as well as proofs for the counting formulas we
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use, we refer to the monograph [23] as well as well as to the survey [2]; see also
[17, Chapter 2]. We warn the reader that we choose to uniformly use vector
dimension in all statements throughout this paper.

Given any m-dimensional vector space V := V (m,K) over a field K and
k ∈ {1, . . . ,m − 1}, let Gm,k be the k-Grassmannian of the projective space
PG(V ), that is the point–line geometry whose points are the k-dimensional
subspaces of V and whose lines are the sets

`W,T := {X :W ≤ X ≤ T, dimX = k}

with dimW = k − 1 and dimT = k + 1.
When we want to stress on the role of the vector space V rather than its

dimension m, we shall write Gk(V ) instead of Gm,k. In general, the points of a
projective space PG(V ) will be denoted by [u], where u ∈ V is a non-zero vector.
For any X ⊆ V , we shall also write [X] := {[x] : x ∈ 〈X〉}.

Let ek : Gm,k → PG(
∧k

V ) be the Plücker (or Grassmann) embedding of
Gm,k, which maps an arbitrary k–dimensional subspace X = 〈v1, v2, . . . , vk〉 of
V to the point ek(X) := [v1 ∧ v2 ∧ · · · ∧ vk] of PG(

∧k
V ). Note that lines of

Gm,k are mapped onto (projective) lines of PG(
∧k

V ). The dimension dim(ek)
of the embedding is defined to be the vector dimension of the subspace spanned
by its image. It is well known that dim(ek) =

(
m
k

)
.

The image ek(Gm,k) of the Plücker embedding is a projective variety of
PG(

∧k
V ), called Grassmann variety and denoted by G(m, k).

By Chow’s theorem [11], the semilinear automorphism group stabilizing the
variety G(m, k) is the projective general semilinear group PΓL(m,K) unless
k = m/2, in which case it is PΓL(m,K) o Z2. This is also the permutation
automorphism group of the induced code; see [14].

In [9] we introduced the notion of transparent embedding e of a point-line
geometry ∆, as a way to clarify the relationship between the automorphisms of
∆ and the automorphisms of its image Ω := e(∆) (and, consequently, also the
automorphisms of the codes C(Ω)). A projective embedding e : ∆ → PG(W )
where W = 〈Ω〉, is called (fully) transparent when the pre-image of every line
contained (as a point-set) in Ω is actually a line of ∆. When an embedding is
homogeneous and transparent, the collineations of PG(W ) stabilizing Ω lift to
automorphisms of ∆ and, conversely, every automorphism of ∆ corresponds to a
collineation of PG(W ) stabilizing Ω. So, under this assumption, it is possible
to easily describe the relationship between the groups which are involved. In
particular, the Grassmann embedding ek : Gm,k → G(m, k) is transparent.

Assume henceforth K = Fq2 , so V is an m-dimensional vector space defined
over a finite field of order q2. Suppose that V is equipped with a non-degenerate
Hermitian form η of Witt index n (hence m = 2n+ 1 or m = 2n).

The Hermitian k-Grassmannian Hn,k induced by η is defined for k = 1, . . . , n
as the subgeometry of Gm,k having as points the totally η–isotropic subspaces of
V of dimension k and as lines
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• for k < n, the sets of the form

`W,T := {X :W ≤ X ≤ T, dimX = k}

with T totally η–isotropic and dimW = k − 1, dimT = k + 1.

• for k = n, the sets of the form

`W := {X :W ≤ X, dimX = n,X totally η–isotropic}

with dimW = n− 1, W totally η–isotropic.

If k = 1, Hn,1 indicates a Hermitian polar space of rank n and if k = n, Hn,n is
usually called Hermitian dual polar space of rank n.

Let εn,k := ek|Hn,k
be the restriction of the Plücker embedding ek to the

Hermitian k-Grassmannian Hn,k. The map εn,k is an embedding of Hn,k called
Plücker (or Grassmann) embedding of Hn,k; its dimension is proved to be
dim(εn,k) =

(
dim(V )

k

)
if dim(V ) is even and k arbitrary by Blok and Cooper-

stein [1] and for dim(V ) arbitrary and k = 2 by Cardinali and Pasini [10].
Put Hn,k := εn,k(Hn,k) = {εn,k(X) : X point of Hn,k}. Then Hn,k is a

projective system of PG(
∧k

V ).
Note that if k = 2 and n > 2 then εn,2 maps lines of Hn,2 onto projective

lines of PG(
∧2

V ), independently from the parity of dim(V ), i.e. the embedding
is projective. Otherwise, if n = k = 2 and m = dim(V ) = 5 then the lines of H2,2

are mapped onto Hermitian curves, while if m = dim(V ) = 4 then lines of H2,2

are mapped onto Baer sublines of PG(
∧2

V ). In the latter case H2,2
∼= Q−(5, q)

is contained in a proper subgeometry of PG(
∧2

V ) defined over Fq. We observe
that for k = 2, dim(V ) = 4 or dim(V ) > 5 the embeddings εn,2 are always
transparent; see [9].

We will denote by C(Hn,k) the projective code arising from vector represent-
atives of the elements of Hn,k, as explained at the beginning of the Introduction.

The following theorem is a consequence of the transparency of the embedding
εn,2 and the description of the monomial automorphism group of projective
codes; see [14].

Theorem 2.1. The monomial automorphism group of the codes C(Hn,2) is
PΓU(m, q) for m > 5. For m = 4, we have H2,2

∼= Q−(5, q); so the monomial
automorphism group of the code is isomorphic to GO−(5, q).

Clearly, the length of C(Hn,k) is the number of points of a Hermitian k-Grass-
mannian Hn,k and the dimension of C(Hn,k) is the dimension of the embedding
εk.

From here on we shall focus on the minimum distance dmin of a line Hermitian
code, i.e. k = 2. There is a geometrical way to read the minimum distance of
C(Hn,2): since any codeword of C(Hn,2) corresponds to a bilinear alternating form
on V , it can be easily seen that the minimum distance of C(Hn,2) is precisely the
length of C(Hn,2) minus the maximum number of lines which are simultaneously
totally η-isotropic for the given Hermitian form η defining Hn,2 and totally
ϕ-isotropic for a (possibly degenerate) bilinear alternating form ϕ on V.
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2.1.1. Notation
Since the cases dim(V ) even and dim(V ) odd behave differently, it will

be sometimes useful to adopt the following notation. We will write Hodd
n,k for

a Hermitian k-Grassmannian in the case dim(V ) = 2n + 1 and Heven
n,k for a

Hermitian k-Grassmannian in the case dim(V ) = 2n. Accordingly, µoddn is the
number of points of Hodd

n,1 and µevenn is the number of points of Heven
n,1 .

For k = 2, the number of points of Hodd
n,2 is the length Nodd of C(Hoddn,2 ):

Nodd =
µoddn−1 · µoddn

q2 + 1
where µoddn :=

(q2n+1 + 1)(q2n − 1)

(q2 − 1)
. (1)

Analogously, the number of points of Heven
n,2 is the length Neven of C(Hevenn,2 ):

Neven =
µevenn−1 · µevenn

q2 + 1
where µevenn :=

(q2n−1 + 1)(q2n − 1)

(q2 − 1)
. (2)

Equations (1) and (2) together with the results from [1, 10] on the dimension
of the Grassmann embedding of a line Hermitian Grassmannian prove the first
claims of the Main Theorem about the length and the dimension of the code.

When we do not want to explicitly focus on the Witt index of η but we
prefer to stress on dim(V ) = m regardless of its parity, we write Hm,k for the
Hermitian k-Grassmannian defined by η and εm,k for its Plücker embedding; we
also put εm,k(Hm,k) = Hm,k. Clearly, if m is odd (i.e. m = 2n + 1) then the
symbols Hm,k and Hodd

n,k have the same meaning and analogously, if m is even
(i.e. m = 2n), the symbols Hm,k and Heven

n,k . Accordingly,

µm =

{
µevenm/2 if m is even
µodd(m−1)/2 if m is odd.

For simplicity of notation, we shall always write Hm for the point-set of Hm,1.

2.2. A recursive weight formula for Grassmann and polar Grassmann codes
Denote by V ∗ the dual of a vector space V. It is well known that (

∧k
V )∗ ∼=∧k

V ∗ and that the linear functionals belonging to (
∧k

V )∗ correspond exactly
to k-linear alternating forms defined on V . More in detail, given ϕ ∈

∧k
V ∗, we

have that
ϕ∗(v1, . . . , vk) := ϕ(v1 ∧ v2 ∧ · · · ∧ vk)

is a k-linear alternating form on V . Conversely, given any k-linear alternating
form ϕ∗ : V k → Fq, there is a unique element ϕ ∈ (

∧k
V )∗ such that

ϕ(v1 ∧ . . . ∧ vk) := ϕ∗(v1, . . . , vk)

for any v1, . . . , vk ∈ V . Observe that, given a point [u] = [v1 ∧ v2 ∧ · · · ∧ vk] ∈
PG(

∧k
V ), we have ϕ(u) = 0 if and only if all the k-tuples of elements of the

vector space U := 〈v1, . . . , vk〉 are killed by ϕ∗. With a slight abuse of notation,
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in the remainder of this paper, we shall use the same symbol ϕ for both the
linear functional and the related k-alternating form.

Suppose {X1, . . . , XN} is a set of k-spaces of V and consider the projective
system Ω = {[ω1], . . . , [ωN ]} of PG(

∧k
V ) with [ωi] := ek(Xi), 1 ≤ i ≤ N , where

ek is the Plücker embedding of Gk(V ). Put W := 〈Ω〉 and let

N (Ω) := {ϕ ∈
k∧
V ∗ : ϕ|Ω ≡ 0}

be the annihilator of the set Ω; clearly N (Ω) = N (W ). There exists a corres-
pondence between the elements of (

∧k
V ∗)/N (Ω) ∼=W ∗ and the codewords of

C(Ω), where C(Ω) is the linear code associated to Ω. Indeed, given any ϕ ∈W ∗,
the codeword cϕ corresponding to ϕ is

cϕ := (ϕ(ω1), . . . , ϕ(ωN )).

As Ω spans W it is immediate to see that cϕ = cψ if and only if ϕ− ψ ∈ N (Ω),
that is ϕ = ψ as elements of W ∗.

We define the weight wt (ϕ) of ϕ as the weight of the codeword cϕ

wt (ϕ) := wt (cϕ) = |{[ω] ∈ Ω: ϕ(ω) 6= 0}|. (3)

When ϕ is a non-null linear functional in
∧k

V ∗, its kernel determines a hyper-
plane [Πϕ] of PG(

∧k
V ); hence Equation (3) says that the weight of a non-zero

codeword cϕ is the number of points of the projective system Ω not lying on the
hyperplane [Πϕ].

For linear codes the minimum distance dmin is the minimum of the weights of
the non-zero codewords; so, in order to obtain dmin for C(Ω) we need to determine
the maximum number of k–spaces of V mapped by the Plücker embedding to Ω
that are also ϕ–totally isotropic, as ϕ is an arbitrary k–linear alternating form
which is not identically null on the elements of Ω.

In [5, Lemma 2.2] we proved a condition relating the weight of a codeword
ϕ of a k-(polar) Grassmann code with the weight of codewords of suitable
(k − 1)-(polar) Grassmann codes. Since that result will be useful also for the
present paper, we recall it in Lemma 2.2, providing a much shorter and easier
proof.

In order to properly state Lemma 2.2 in its more general form, so that it
can be applied to obtain the weights of codes associated to arbitrary subsets of
the Grassmann variety (and not only to polar Grassmann varieties), we need
to set some further notation; as a consequence, the remainder of this section is
unavoidably quite technical. In any case, we warn the reader that to obtain the
weights of a line Hermitian code one can just use the arguments of Remark 2.3
in order to derive Equation (9) directly.

Given any vector u ∈ V and a k-linear alternating form ϕ, define u
∧k−2

V :=

{u∧y : y ∈
∧k−2

V } ⊆
∧k−1

V . Put Vu := V/〈u〉. Clearly, for any y ∈ u
∧k−2

V
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we have ϕ(u ∧ y) = 0. We can now define the functional ϕ̄u ∈ (
∧k−1

Vu)
∗ ∼=

((
∧k−1

V )/(u
∧k−2

V ))∗ by the clause

ϕ̄u :

{ ∧k−1
Vu → K

x+ (u
∧k−2

V ) 7→ ϕ(u ∧ x)

where x ∈
∧k−1

V. The functional ϕ̄u is well defined and it can naturally be
regarded as a (k − 1)-linear alternating form on the quotient Vu of V. Also
observe that wt (ϕ̄u) = wt (ϕ̄αu) for any non-zero scalar α, so the expression
wt (ϕ̄[u]) := wt (ϕ̄u) is well defined. Let

∆ := {Xi := e−1
k ([ωi]) : [ωi] ∈ Ω}

be the set of k-spaces of V mapped by the Plücker embedding to Ω and let

∆u := {X/〈u〉 : u ∈ X,X ∈ ∆} and u∆ := 〈X ∈ ∆ : u ∈ X〉.

Since V ∆
u ≤ Vu with V ∆

u := u∆/〈u〉, we can consider the restriction

ϕu := ϕ̄u|∧k−1 V ∆
u

(4)

of the functional ϕ̄u to the space
∧k−1

V ∆
u .

Note that when writing ϕu, we are implicitly assuming that u belongs
to one of the elements in ∆. We have wt (ϕ̄u) = wt (ϕu) because all points
of ∆u are, by construction, contained in V ∆

u . Hence, Ωu := ek−1(∆u) =

{ek−1(X/〈u〉) : X/〈u〉 ∈ ∆u} is a projective system of PG(
∧k−1

V ∆
u ). The form

ϕu can be regarded as a codeword of the (k− 1)-Grassmann code C(Ωu) defined
by the image Ωu of ∆u under the Plücker embedding ek−1 of Gk−1(V

∆
u ).

Lemma 2.2. Let V be a vector space over Fq, Ω = {[ωi]}Ni=1 a projective system
of PG(

∧k
V ) and ∆ = {e−1

k ([ω]) : [ω] ∈ Ω} where ek is the Plücker embedding
of V. Suppose ϕ :

∧k
V → K. Then

wt (ϕ) =
q − 1

qk − 1

∑
[u]∈PG(V ) :
[u]∈[X],X∈∆

wt (ϕ[u]). (5)

Proof. By Equation (3), wt (ϕ) is the number of k-spaces of V mapped to Ω
and not killed by ϕ. For any point [u] of PG(V ) such that u is a vector in
Xi := e−1

k ([ωi]) with [ωi] ∈ Ω, the number of k-spaces through [u] not killed by
ϕ is wt (ϕ[u]) := wt (ϕu) (see Equations (3) and (4)). Since any projective space
[Xi] with Xi ∈ ∆ contains (qk − 1)/(q − 1) points, the formula follows.

Since each projective point corresponds to q − 1 non-zero vectors, when we
sum over the vectors contained in Xi ∈ ∆ rather than over projective points
[u] ∈ [Xi], Formula (5) reads as

wt (ϕ) =
1

qk − 1

∑
u∈Xi∈∆

wt (ϕu). (6)
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Even if Equations (5) and (6) are equivalent, in this paper we find it convenient
to use more often Equation (6) then (5).

Remark 2.3. For the purposes of the present paper we observe that wt (ϕu)
could also be defined just as the number of (k − 1)-subspaces of Vu = V/〈u〉
which are both isotropic with respect to both the polarities ⊥uη and ⊥uϕ induced
by respectively ⊥η and ⊥ϕ in Vu by the clauses

(x+ 〈u〉) ⊥uη (y + 〈u〉) ⇔ x ⊥η y;

(x+ 〈u〉) ⊥uϕ (y + 〈u〉) ⇔ x ⊥ϕ y.
Later on, in Equation (9) we will rewrite Equation (6) for the special case of line
Hermitian Grassmannians.

3. Weights for Hermitian Line Grassmann codes

In this section we shall always assume V := V (m, q2) to be an m-dimensional
vector space over the finite field Fq2 , regardless the parity of m, η to be a
non-degenerate Hermitian form on V with Hm the (non-degenerate) Hermitian
polar space associated to η and ∆ := Hm,2 to be the set of lines of Hm, i.e. the
set of totally η-isotropic lines of PG(V ). Since we clearly consider only the cases
for which ∆ is non-empty, we have m ≥ 4.

3.1. Estimates
We start by explicitly rewriting Equation (6) for the case k = 2, i.e. for line

Hermitian Grassmannian codes. According to the notation introduced above we
have ϕ ∈

∧2
V ∗ and Ω := {εm,2(`) : ` ∈ ∆}. For any ϕ ∈

∧2
V ∗ and for u ∈ V ,

put u⊥η = {y : η(x, y) = 0} and u⊥ϕ = {y : ϕ(x, y) = 0}. Observe that [u] ∈ Hm,
is equivalent to u ∈ u⊥η ; thus, u⊥η corresponds precisely to the set u∆ defined
in Section 2.2. Explicitly, Equation (4) can be written as:

ϕu :

{
u⊥η/〈u〉 → Fq2
ϕu(x+ 〈u〉) = ϕ(u ∧ x)(= ϕ(u, x)).

(7)

The function ϕu can be regarded as a linear functional on u⊥η/〈u〉. Its kernel
ker(ϕu) = (u⊥ϕ/〈u〉)∩ (u⊥η/〈u〉) either is the whole u⊥η/〈u〉 or it is a subspace
Πu inducing a hyperplane [Πu] of PG(u⊥η/〈u〉).

Note that since η(u, x) = 0 for all x ∈ u⊥η , the vector space u⊥η/〈u〉 is
naturally endowed with the Hermitian form ηu : (x+ 〈u〉, y+ 〈u〉) → η(x, y) and
dim(u⊥η/〈u〉) = dim(V )− 2. It is well known that the set of all totally singular
vectors for ηu defines (the point set of) a non-degenerate Hermitian polar space
Hm−2 embedded in PG(u⊥η/〈u〉).

We shall now apply Equation (5) to the codewords of the line Hermitian
Grassmann code C(Hm,2). To this aim, we rewrite it as

wt (ϕ) =
q − 1

q4 − 1

∑
[u]∈`∈Hm,2

wt (ϕu) =
q − 1

q4 − 1

∑
[u]∈Hm

wt (ϕu). (8)
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Similarly, when considering vectors, Equation (6) can be rewritten as

wt (ϕ) =
1

q4 − 1

∑
u∈V :[u]∈Hm

wt (ϕu). (9)

Let u be a vector such that [u] ∈ Hm. By Equation (3) in Section 2.2, wt (ϕu)
is the number of η-isotropic lines ` = [v1, v2] of PG(V ) through [u] such that
ϕ(v1, v2) 6= 0 or, equivalently, working in the setting u⊥η/〈u〉, wt (ϕu) is the
number of points contained in the hyperplane [Πu] not lying on Hm−2. The
hyperplane [Πu] can be either secant (i.e. meeting in a non-degenerate variety)
or tangent to Hm−2. Recall that all secant sections of Hm−2 are projectively
equivalent to a Hermitian polar space Hm−3 embedded in PG(m − 3, q2). So,
we have the following three possibilities:

a) [Πu] ∩Hm−2 = Hm−2 if ker(ϕu) ∼= u⊥η/〈u〉;

b) [Πu] ∩Hm−2 = Hm−3 if [Πu] is a secant hyperplane to Hm−2;

c) [Πu] ∩ Hm−2 = [u]Hm−4 if [Πu] is a hyperplane tangent to Hm−2, where
[u]Hm−4 is a cone with vertex the point [u] and basis a non-degenerate
Hermitian polar space Hm−4.

Put
µm := |Hm| = (qm + (−1)m−1)(qm−1 − (−1)m−1)

(q2 − 1)
(10)

for the number of points of Hm. By convention, we put µ0 = 0. Three possibilities
can occur for the weights of ϕu, namely

wt (ϕu) =


0 in case a)
µm−2 − µm−3 = q2m−7 + (−1)m−4qm−4 in case b)
µm−2 − q2µm−4 − 1 = q2m−7 in case c).

For any given form ϕ ∈ (
∧2

V )∗ write,

Aϕ := {u : [u] ∈ Hm,wt (ϕu) = 0, u 6= 0} A := |Aϕ|
Bϕ := {u : [u] ∈ Hm,wt (ϕu) = q2m−7 + (−1)mqm−4} B := |Bϕ|
Cϕ := {u : [u] ∈ Hm,wt (ϕu) = q2m−7} C := |Cϕ|.

(11)

Since u varies among all (totally η-singular) vectors such that [u] ∈ Hm, we
clearly have A+B + C = (q2 − 1)µm, and Equation (9) can be rewritten as

wt (ϕ) =
q2m−7(B + C) + (−1)mqm−4B

q4 − 1
=

(q2m−7 + (−1)mqm−4)(µm(q2 − 1)−A)− (−1)mqm−4C

q4 − 1
; (12)
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thus, we can express wt (ϕ) either as a function depending on A and B or as a
function depending on A and C as

wt (ϕ) =
q2m−7

q2 + 1
µm − q2m−7

q4 − 1
A+ (−1)m

qm−4

q4 − 1
B =

(q2m−7 + (−1)mqm−4)

q2 + 1
µm − (q2m−7 + (−1)mqm−4)

q4 − 1
A− (−1)m

qm−4

q4 − 1
C. (13)

Denote by Amax the maximum value A might assume as ϕ varies among all
non-trivial bilinear alternating forms defined on V . Then, by the first Equation
of (13) with B = 0 and by the second Equation of (13) with C = 0 we have the
following lower bounds for the minimum distance of C(Hm,2):

dmin ≥


q2m−7

q2+1

(
µm − 1

q2−1Amax

)
if m is even

q2m−7−qm−4

q2+1

(
µm − 1

q2−1Amax

)
if m is odd.

(14)

We shall determine the actual values of dmin and see that the bound in (14) is
not sharp unless m = 4, 6. More in detail, in the remainder of this paper we shall
determine the possible values of the parameter A appearing in Equation (14)
as a function depending on the dimension dim(Rad (ϕ)) of the radical of the
form ϕ and show that in all cases the minimum weight codewords occur for
A = Amax (but, in general, B,C 6= 0). We will also characterize the minimal
weight codewords.

Given a (possibly degenerate) alternating bilinear form ϕ on V , denote by
Rad (ϕ) the radical of ϕ, i.e. Rad (ϕ) = {x ∈ V : ϕ(x, y) = 0 ∀y ∈ V }. Define
also fϕ : PG(m− 1, q2) → PG(m− 1, q2) as the semilinear transformation given
by

fϕ([x]) := [x]⊥ϕ⊥η. (15)

It is straightforward to see that ker(fϕ) = [Rad (ϕ)].

Lemma 3.1. Let [u] ∈ Hm. Then ϕu = 0 ⇔ u⊥η ⊆ u⊥ϕ .

Proof. Take x ∈ u⊥η and suppose u⊥η ⊆ u⊥ϕ . Then ϕ(u, x) = 0, so ϕu(x+〈u〉) =
0 ∀x ∈ u⊥η . Conversely, suppose ϕu is identically null. Then ϕu(x + 〈u〉) =
ϕ(u, x) = 0 ∀x ∈ u⊥η . Hence u⊥η ⊆ u⊥ϕ .

By Lemma 3.1, Aϕ = {u : [u] ∈ Hm, u
⊥η ⊆ u⊥ϕ} = A

(1)
ϕ ∪ A

(2)
ϕ where

A(1)
ϕ := {u : [u] ∈ Hm, u

⊥η ⊂ u⊥ϕ} and A(2)
ϕ := {u : [u] ∈ Hm, u

⊥η = u⊥ϕ}.
(16)

The vectors u such that u⊥η ⊂ u⊥ϕ are precisely those vectors for which
u⊥ϕ = V , hence A

(1)
ϕ = {u : [u] ∈ [Rad (ϕ)] ∩Hm}.

Let us focus now on the set A
(2)
ϕ . Note that u⊥η = u⊥ϕ is equivalent to

αu = u⊥ϕ⊥η for some 0 6= α ∈ Fq2 , or, in terms of projective points, [u] =
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[u]⊥ϕ⊥η = fϕ([u]). Hence, A(2)
ϕ = {u : [u] ∈ Fix (fϕ) ∩ Hm} where Fix (fϕ) =

{[u] : fϕ([u]) = [u]} ≤ PG(t, q), 0 ≤ t ≤ m − 1, is contained in a subgeometry
over Fq of PG(m− 1, q2).

Lemma 3.2. Let [u] be a point of Hm. The following hold.

a) u ∈ Aϕ ⇔ fϕ([u]) = [u] or u ∈ Rad (ϕ).

b) u ∈ Bϕ ⇔ fϕ([u]) 6= [u] and fϕ([u]) is a non-singular point for η.

c) u ∈ Cϕ ⇔ fϕ([u]) 6= [u] and fϕ([u]) is a singular point for η.

Proof. By Equations (15) and (16) we have u ∈ A
(2)
ϕ if and only if [u] ∈ Hm and

[u] is a fixed point of fϕ. Also, u ∈ A
(1)
ϕ if and only if [u] ∈ [Rad (ϕ)] ∩Hm.

Suppose u 6∈ Aϕ. Then fϕ([u]) 6= [u]; hence [u, fϕ([u])] is a line. Since
[u] ∈ [u]⊥ϕ , we always have [u]⊥ϕ⊥η = fϕ([u]) ∈ [u]⊥η .

Suppose that the point fϕ([u]) is non-singular with respect to η; then [u]⊥ϕ =
fϕ([u])

⊥η meets [u]⊥η ∩ Hm in a non-degenerate polar space not containing
fϕ([u]). This is equivalent to saying u ∈ Bϕ.

In case fϕ([u]) is singular with respect to η we have that [u]⊥η ∩Hm ∩ [u]⊥ϕ

is a degenerate polar space with radical of dimension 2, i.e. with radical the line
[u, fϕ([u])]. This is equivalent to saying u ∈ Cϕ.

Lemma 3.3. Suppose ϕ is a non-singular alternating form. If A = (qm−1)(q+1)
then B = 0.

Proof. By hypothesis, m is necessarily even because ϕ is non-singular. Since
A = (qm − 1)(q + 1) and ϕ is non-singular, A = |A(2)

ϕ |, see (16), and the
semilinear transformation fϕ fixes a subgeometry Fix (fϕ) = Fix (fϕ) ∩ Hm

∼=
PG(m − 1, q) of PG(V ) of maximal dimension; so f2ϕ is the identity (as it is
a linear transformation fixing a frame), that is to say fϕ = f−1

ϕ is involutory.
Thus, for each point [p] we have [p]⊥ϕ⊥η = fϕ([p]) = f−1

ϕ ([p]) = [p]⊥η⊥ϕ , i.e. the
polarities ⊥η and ⊥ϕ commute. The transformation fϕ stabilizes Hm; indeed,
we have fϕ([x]) ∈ Hm if and only if

[x]⊥ϕ⊥η = fϕ([x]) ∈ fϕ([x])
⊥η = [x]⊥ϕ⊥η⊥η = [x]⊥ϕ ,

whence, applying ⊥ϕ once more, we obtain

fϕ([x]) ∈ Hm ⇔ x ∈ x⊥η ⇔ [x] ∈ Hm.

In particular, ∀[p] ∈ Hm, fϕ([p]) ∈ Hm. So, by Lemma 3.2, p ∈ Cϕ ∪Aϕ and, in
particular, Bϕ = ∅, i.e. B = 0.

Fix now a basis E of V . Without loss of generality, we can assume that the
matrix H representing the Hermitian form η with respect to E is the identity
matrix. Denote by S the antisymmetric matrix representing the (possibly
degenerate) alternating form ϕ with respect to E; recall that Rad (ϕ) is precisely
the kernel ker(S) of the matrix S.
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Under these assumptions, the transformation fϕ can be represented as
fϕ([x]) := [Sqxq], ∀x ∈ V. Since the fixed points of a semilinear transforma-
tion of PG(m − 1, q2) are contained in a subgeometry [Σϕ] ∼= PG(t, q) with
0 ≤ t ≤ m− 1,

Aϕ ⊆ {u : [u] ∈ ([Rad (ϕ)] ∩Hm) ∪ ([Σϕ] ∩Hm)}. (17)

Put Σ̃ϕ := Fq2 ⊗Σϕ; dim(Σϕ) = dim(Σ̃ϕ) where Σϕ, respectively Σ̃ϕ, is regarded
as a vector space over Fq, respectively over Fq2 . It is easy to see that Rad (ϕ) and
Σ̃ϕ are subspaces of V (m, q2) intersecting trivially. Since Rad (ϕ) = ker(S), we
have dim(ker(S))+dim(Σ̃ϕ) = dim(ker(S))+dim(Σϕ) ≤ m. Clearly, rank (S) =
m−dim(ker(S)), so dim(Σ̃ϕ) = dim(Σϕ) ≤ rank (S), where rank (S) is the rank
of the matrix S.

Put 2i := rank (S). Hence dim(Rad (ϕ)) = m− 2i and 0 < 2i ≤ m. Define

Ai := max{|Aϕ| : dim(Rad (ϕ)) = m− 2i}. (18)

Note that if i = 0, ϕ is identically null and this gives the 0 codeword. Clearly,
by (17),

Ai ≤ (|Σϕ|+ |([Rad (ϕ)] ∩Hm)|)(q2 − 1) =

(q2 − 1)
(

(q2i−1)
(q−1) + |([Rad (ϕ)] ∩Hm)|

)
=

(q2i − 1)(q + 1) + |([Rad (ϕ)] ∩Hm)|(q2 − 1).

(19)

We shall need the following elementary technical lemma.

Lemma 3.4. Let H be a non-singular matrix of order m and let t ≤ m. Then
for an (m−t)×(m−t) submatrix M of H, we have m−2t ≤ rank (M) ≤ (m−t).

Proof. The submatrix M is obtained from H by deleting t rows and t columns.
First delete t rows. Then the rank of the (m− t)×m matrix M ′ so obtained
is m− t. If we now delete t columns from M ′ as to obtain M , the rank of M ′

decreases by at most t. So, rank (M ′)− t ≤ rank (M) ≤ rank (M ′).

We want to explicitly determine the cardinality of [Rad (ϕ)] ∩ Hm. The
(m− 2i)-dimensional space [Rad (ϕ)] intersects Hm in a (possibly) degenerate
Hermitian variety. Write [Rad (ϕ)] ∩ Hm = [Πt]Hm−2i−t where [Πt]Hm−2i−t
is a degenerate Hermitian variety contained in [Rad (ϕ)] with radical [Πt] of
dimension t.

By Lemma 3.4, 0 ≤ t ≤ 2i. Moreover, since Πt ⊆ Rad (ϕ), 0 ≤ t ≤ m− 2i.
(Recall also that 2i ≤ m.) If t = m− 2i then Rad (ϕ) = Πm−2i and in this case
we put [Πm−2i]H0 := [Πm−2i].

The following function provides the number of points of [Πt]Hm−2i−t in
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dependence of t.

µm−2i : {0, . . . ,min{2i,m− 2i}} → N

µm−2i(t) = q2tµm−2i−t +
q2t − 1

q2 − 1
=

q2t(qm−2i−t + (−1)m−2i−t−1)(qm−2i−t−1 − (−1)m−2i−t−1) + q2t − 1

q2 − 1
,

(20)
where, by convention, µ0(0) = 0 and µm−2i−t (for t < m− 2i) is the number of
points of a non-degenerate Hermitian polar space Hm−2i−t (see Equation (10)).

Using Equation (20), we can rewrite Equation (19) as

Ai ≤ (q2i − 1)(q + 1) + (q2 − 1)µm−2i(t). (21)

Lemma 3.5. For any t ∈ {0, . . . ,min{2i,m− 2i}}, we have µm−2i(t) ≤ µmax
m−2i,

where

µmax
m−2i :=


µm−2i(m− 2i) = q2m−4i−1

q2−1 if i ≥ m/4;

µm−2i(2i) if i < m/4 and m is even;
µm−2i(2i− 1) if i < m/4 and m is odd.

Proof. Let H ′ be the matrix representing the restriction η′ := η|Rad (ϕ) of the
Hermitian form η to Rad (ϕ). Then, by Lemma 3.4, m− 4i ≤ rankH ′ ≤ m− 2i.

When i ≥ m/4, i.e. m− 2i ≤ 2i (and hence 0 ≤ t ≤ m− 2i), the maximum
number of points for [Πt]Hm−2i−t is attained for t = m− 2i, i.e. [Πm−2i]H0 =
[Rad (ϕ)] = [Πm−2i]. Indeed, if m ≤ 4i and t = m− 2i, it is always possible to
construct an antisymmetric form ϕ such that η′ is the null form. This implies
that µm−2i(t) < µm−2i(m − 2i) = q2m−4i−1

q2−1 for any t ∈ {0, . . . ,min{m − 2i}},
since [Πt]Hm−2i−t ⊆ [Rad (ϕ)]. Hence, in this case, µmax

m−2i := µm−2i(m− 2i).
Suppose now i < m/4. Then, by a direct computation

µm−2i(t)− µm−2i(t+ 1) = (−1)m−2i−t−2qm−2i+t−1. (22)

So,
µm−2i(t+ 2)− µm−2i(t) = (−1)m−tqm−2i+t−1(q − 1). (23)

Assume m even; then, by (23), if t is even, µm−2i(t+2) > µm−2i(t), i.e. µm−2i(t)
is a monotone increasing function in t even. If t is odd, then by (23), µm−2i(t+
2) < µm−2i(t), i.e. µm−2i(t) is a monotone decreasing function in t odd. By (22),
µm−2i(0) > µm−2i(1). Recall that 0 ≤ t ≤ 2i; so we have

µm−2i(2i− 1) < µm−2i(2i− 3) < · · · < µm−2i(1) <

µm−2i(0) < µm−2i(2) < µm−2i(4) < · · · < µm−2i(2i).

In particular, the maximum value of µm−2i(t) for i < m/4 and m even is assumed
for t = 2i, i.e. µmax

m−2i = µm−2i(2i).
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Assume m odd; then, by (23), if t is even, µm−2i(t + 2) < µm−2i(t), i.e.
µm−2i(t) is a monotone decreasing function in t even. If t is odd, then by (23),
µm−2i(t + 2) > µm−2i(t), i.e. µm−2i(t) is a monotone increasing function in t
odd. By (22), µm−2i(0) < µm−2i(1). Recall that 0 ≤ t ≤ 2i; so we have

µm−2i(2i) < µm−2i(2i− 2) < · · · < µm−2i(2) <

µm−2i(0) < µm−2i(1) < µm−2i(3) < · · · < µm−2i(2i− 1).

In particular, the maximum value of µm−2i(t) for i < m/4 and m odd is assumed
for t = 2i− 1, i.e. µmax

m−2i = µm−2i(2i− 1).

Define the function ξm : {1, . . . , bm/2c} → N

ξm(i) := (q2i − 1)(q + 1) + (q2 − 1)µmax
m−2i, (24)

where µmax
m−2i, introduced in Lemma 3.5, is regarded as a function in i.

Corollary 3.6. The following hold.

a) Ai ≤ ξm(i);

b)

di ≥


q2m−7

q2+1

(
µm − 1

q2−1ξm(i)
)

if m is even

q2m−7−qm−4

q2+1

(
µm − 1

q2−1ξm(i)
)

if m is odd,
(25)

where di is the minimum weight of the words corresponding to bilinear
alternating forms ϕ with dim(Rad (ϕ)) = m− 2i.

Proof. Case a) follows from Lemma 3.5 and Equation (21). Case b) follows from
Equation (13), the definition (18) of Ai and case a).

Note that the function ξm(i) (see (24)) is not monotone in i. The following
lemma provides its largest and second largest values.

Lemma 3.7. If m 6= 4, 6 the maximum value assumed by the function ξm(i)
is attained for i = 1. If m = 4, 6, then the maximum of ξm(i) is attained for
i = m/2. If m = 5 then ξ5(1) = ξ5(2).

The second largest value of ξm(i) is attained for
i = 1 if m = 6;
i = 3 if m = 7;
i = 4 if m = 8, 9;
i = 5 if m = 10;
i = 2 if m > 10.

Proof. Recall that the polar line Grassmannian Hm,2 is non-empty only for
m ≥ 4.
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• If m = 4 then the possible values that the function ξ4(i) can assume are
ξ4(1) and ξ4(2). Precisely,

ξ4(1) = q4 + q3 + q2 − q − 2 < ξ4(2) = q5 + q4 − q − 1.

• If m = 5 then ξ5(1) = q5 + q4 + q2 − q − 2 = ξ5(2).

• If m = 6 then the possible values that the function ξ6(i) can assume are
the following

ξ6(1) = q7 + q6 − q5 + q3 + q2 − q − 2;

ξ6(2) = q5 + 2q4 − q − 2;

ξ6(3) = q7 + q6 − q − 1.

Hence ξ6(3) > ξ6(1) > ξ6(2). So, for both m = 4 and m = 6, ξm(1) <
ξm(m/2) and the maximum value of ξm(i) is attained for i = m/2.

We assume henceforth m > 6. For any two functions f(x) and g(x) we shall
write f(x) = Oq(g(x)) if

1

q
g(x) < f(x) < q · g(x).

If m is even and i = 1 then

ξm(1) = (q2 − 1)(q + 1) + (q2 − 1)µmax
m−2 = (q2 − 1)(q + 1 + µm−2(2)) =

q2m−5 + qm − qm−1 + q3 + q2 − q − 2 = Oq(q
2m−5). (26)

If m is odd and i = 1 then

ξm(1) = (q2 − 1)(q + 1) + (q2 − 1)µmax
m−2 = (q2 − 1)(q + 1 + µm−2(1)) =

q2m−5 + qm−1 − qm−2 + q3 + q2 − q − 2 = Oq(q
2m−5). (27)

If i ≥ m/4 then ξm(i) := (q2i − 1)(q + 1) + (q2m−4i − 1). Since we always have
2i ≤ m (so 2i ≤ m ≤ 4i ≤ 2m, and clearly i > 1), we have

ξm(i) = (q2i − 1)(q + 1) + (q2m−4i − 1) ≤
≤ (qm − 1)(q + 1) + (qm − 1) = Oq(q

m+1). (28)

Hence, for m > 6, by Equations (26), (27), (28), we have ξm(1) > ξm(i) for
any i ≥ m/4(≥ 2).

We prove that also for any 1 < i < bm/4c we have ξm(1) > ξm(i). Note that
now m can be either even or odd. By Equations (10) and (20), we have that

µx(t) = Oq(q
2tµx−t + q2t−2) = Oq(q

2tq2x−3−2t + q2t−2);
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so µx(t) = Oq(q
2x−3) for all x ≤ m and t < x ≤ m, while µx(x) = Oq(q

2x−2).
Hence, for x = m− 2i,

Oq(q
2m−4i−3) < µmax

m−2i < Oq(q
2m−4i−2),

since µm−2i(t) > Oq(q
2m−4i−3) and µm−2i(t) < Oq(q

2m−4i−2) ∀t ≤ m− 2i. By
Equation (24), we obtain

ξm(i) = Oq(q
2i+1 + q2µmax

m−2i) ≤ Oq(q
2i+1 + q2m−4i).

However, for 2 ≤ i ≤ bm/2c − 1 (henceforth also for 1 < i < bm/4c),

q2i+1 + q2m−4i < qm + q2m−8,

so
ξm(i) < Oq(q

m + q2m−8).

This latter value is smaller than ξm(1) = Oq(q
2m−5) (see Equations (26) and (27)).

It follows that the maximum of ξm(i) is attained for i = 1 for all cases m > 6.
Assume now i > 2. Since Oq(q4m−11) < µmax

m−4 < Oq(q
2m−10) and µmax

m−2i <
Oq(q

2m−4i−2) we have µmax
m−4 − µmax

m−2i > Oq(q
4m−11 − q2m−4i−2). Hence

ξm(2)− ξm(i) = (q4 − q2i)(q + 1) + (q2 − 1)(µmax
m−4 − µmax

m−2i) ≥
≥ Oq(q

5 + q4 − q2i+1 − q2i + q2m−9 − q2m−4i).

For m/2 ≥ i ≥ 3, we have

q5+q4−q2i+1−q2i+q2m−9−q2m−4i > q5+q4−qm+1−qm+q2m−9−q2m−12 > 0,

so, for m > 10,
ξm(2)− ξm(i) > Oq(q

2m−9) > 0.

A direct computation gives the following:

ξ7(1) > ξ7(3) > ξ7(2); ξ8(1) > ξ8(4) > ξ8(2) > ξ8(3);

ξ9(1) > ξ9(4) > ξ9(2) > ξ9(3); ξ10(1) > ξ10(5) > ξ10(4) > ξ10(3).

This completes the proof.

By Corollary 3.6 and Lemma 3.7 we have:

Corollary 3.8. Let ϕ be a form with dim(Rad (ϕ)) = m− 2i. Then,

• for m > 6, we have |Aϕ| ≤ Ai ≤ ξm(1);

• for m = 4, 6 we have |Aϕ| ≤ Ai ≤ ξm(m/2).
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3.2. Minimum distance of Hm,2 with m odd
In this section we assume m to be odd. Then the Witt index of the Hermitian

form η is n = (m − 1)/2. Let ϕ be an alternating form on V. Recall from
Equation (13) that

wt (ϕ) =
(q2m−7 − qm−4)(µm(q2 − 1)−A)

q4 − 1
+

qm−4

q4 − 1
C.

Proposition 3.9. There exists a bilinear alternating form ϕ with dim(Rad (ϕ)) =
m−2 such that wt (ϕ) = q4m−12− q3m−9 and wt (ϕ′) ≥ q4m−12− q3m−9 for any
other form ϕ′ with dim(Rad (ϕ′)) = m− 2.

Proof. In order to determine the weight of the word of Hm,2 induced by the
form ϕ, we need to determine the number of lines of Hm,2 which are not totally
isotropic for ϕ.

Take ϕ with dim(Rad (ϕ)) = m− 2. Then a line ` is totally isotropic for ϕ if
and only if ` ∩ [Rad (ϕ)] 6= ∅. If S denotes the matrix representing ϕ, we have
rank (S) = 2. According to the notation of Section 3.1, rank (S) = 2 is equivalent
to i = 1 and [Rad (ϕ)] ∩ Hm = [Πt]Hm−2−t is a degenerate Hermitian variety
with radical [Πt] of dimension t. By Equation (21) and Lemma 3.5, since m > 4
is odd, the maximum number of points µmax

m−2 of [Rad (ϕ)] ∩Hm is attained for
t = 2i − 1 = 1, i.e. µmax

m−2 = µm−2(1) = q2µm−3 + 1 (last equality comes from
Equation (20)). Hence the number of points of Hm\[Rad (ϕ)] (see Equation (20))
is at least

µm−µmax
m−2 = µm−q2µm−3−1 = qm−2(qm−1+qm−3−1) = q2m−3+q2m−5−qm−2.

Assume [Rad (ϕ)] ∩Hm = [Π1]Hm−3 and consider a point [p] ∈ Hm \ [Rad (ϕ)].

• Case [p] ∈ [Π1]
⊥η . Then [p]⊥η ∩ [Rad (ϕ)] is a degenerate Hermitian

polar space [Π1]Hm−4 with radical [Π1] of dimension 1; so there are
(µm−2−q2µm−4−1) = q2m−7 lines through [p] disjoint from [Rad (ϕ)]. The
number of points [p] collinear with the point [Π1] in Hm but not contained
in Hm ∩ [Rad (ϕ)] = [Π1]Hm−3 is q2(µm−2 − µm−3) = q2(q2m−7 − qm−4).

• Case [p] 6∈ [Π1]
⊥η . Then [p]⊥η ∩ [Rad (ϕ)] = Hm−3, so, there are (µm−2−

µm−3) = (q2m−7 − qm−4) lines through [p] which are not totally isotropic.
The number of points not collinear with [Π1] in Hm and not in Hm ∩
[Rad (ϕ)] is (µm−q2µm−3−1)−q2(µm−2−µm−3) = (µm−q2µm−2−1) =
q2m−3.

So, we have that the total number of lines disjoint from [Rad (ϕ)] is

1

q2 + 1

(
q2(qm−7 − qm−4) · q2m−7 + (q2m−7 − qm−4)q2m−3

)
,

i.e.

wt (ϕ) =
1

q2 + 1

(
q4m−12 − q3m−9 + q4m−10 − q3m−7

)
= q4m−12 − q3m−9.
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In case [Rad (ϕ)] ∩Hm 6= [Π1]Hm−3, the number of totally η-isotropic lines
incident (either in a point or contained in) [Rad (ϕ)] is smaller; thus the weight
of the word induced by ϕ is larger than the value obtained above.

We claim that q4m−12 − q3m−9 is actually the minimum distance for m odd.
As before, let i = (rank (S))/2. When i = 1, then by Proposition 3.9, the

minimum weight of the codewords induced by S is d1 = q4m−12−q3m−9. Suppose
now i > 1; we need to distinguish several cases according to the value of m.

• m ≥ 11 . Then by Corollary 3.6 and Lemma 3.7 Ai ≤ ξm(i) ≤ ξm(2) ≤
ξm(1). By Case b) of Corollary 3.6,

di ≥
q2m−7 − qm−4

q4 − 1
((q2−1)µm−ξm(i)) ≥ q2m−7 − qm−4

q4 − 1
((q2−1)µm−ξm(2)).

We will show that

q2m−7 − qm−4

q4 − 1
((q2 − 1)µm − ξm(2)) > q4m−12 − q3m−9.

Actually, by straightforward computations, this becomes

qm−4(qm−3 − 1)(q2m−9 − q − 1− qm−2

q2 + 1
) > 0

which is true for all values of q; so dmin = d1 = q4m−12 − q3m−9.

• m = 9 . By Lemma 3.7 we have that the second largest value of ξm(i) is
for i = 4 and ξ9(4) = q9+ q8+ q2− q−2. This corresponds to the following
bound on the minimum weight di of codewords associated with matrices S
with 2i = rank (S) > 2 (see Case b) of Corollary 3.6):

di >
q11 − q5

q4 − 1
(q17 − 2q9 − q2 + q + 1) > q24 − q18.

So, the minimum distance is attained by codewords corresponding to
matrices S of rank 2 and, by Proposition 3.9, dmin = d1 = q4m−12− q3m−9.

• m = 7 . By Lemma 3.7 we have that the second largest value of ξm(i) is
for i = 3 and ξ7(3) = q7+ q6+ q2− q−2. This corresponds to the following
bound on the minimum weight of codewords associated with matrices S
with 2i = rank (S) > 2:

di > q16 − 2q10 − q5 + q4 + q3 > q16 − q12.

So the minimum distance is attained by codewords corresponding to
matrices S of rank 2 and, by Proposition 3.9, dmin = d1 = q4m−12− q3m−9.
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• m = 5 . By Lemma 3.7, we have ξ5(1) = ξ5(2) = q5 + q4 + q2 − q− 2. We
will prove that the minimum distance of Hm,2 is q8 − q6.
Let ϕ be a (non-null) alternating bilinear form of V (5, q2) represented by
a matrix S. The radical of ϕ can have dimension 1 or 3, hence rank (S) is
either 2 or 4, i.e. i = 1 or 2. By Proposition 3.9, there exists an alternating
bilinear form ϕ with dim(Rad (ϕ)) = 3 such that wt (ϕ) = q8 − q6 and
any other form ϕ with dim(Rad (ϕ)) = 3 has weight greater then q8 − q6.
So, we need to show that there are no alternating bilinear forms with
dim(Rad (ϕ)) = 1 inducing words of weight less than q8 − q6. Assume
henceforth that ϕ is an alternating bilinear form with dim(Rad (ϕ)) = 1
(hence i = 2). We shall determine a lower bound d2 for the weights wt (ϕ)
and prove wt (ϕ) ≥ d2 ≥ q8 − q6.

By Lemma 3.2, p ∈ Cϕ if and only if fϕ([p]) 6= [p] and fϕ([p]) ∈ H5.
If [p] = [Rad (ϕ)], then p ∈ Aϕ. So, suppose [p] 6= [Rad (ϕ)]. Since
[Rad (ϕ)] = ker(fϕ), if [p] ∈ H5 and fϕ([p]) = [x] ∈ H5, then fϕ([p +
αRad (ϕ)]) = [x] ∈ H5 for any α ∈ Fq2 . On the other hand, for any given
point [p] ∈ H5, the line [p,Rad (ϕ)] meets H5 in either (q + 1) or (q2 + 1)
points; this yields that any point in H5 belonging to the image fϕ(H5) of
fϕ restricted to H5 admits at least q − 1 preimages in H5 distinct from
itself. Since dim(Rad (ϕ)) = 1, the set Fix (fϕ) is contained in a PG(V ′)
with dimV ′ = 4. We need a preliminary lemma.

Lemma 3.10. Let fϕ : PG(V ′) → PG(V ′) be a semilinear collineation
with dimV ′ = 4. Then, either Fix (fϕ) ∼= PG(3, q) or |Fix (fϕ)| ≤ q2+q+2.

Proof. In general, Fix (fϕ) is contained in a subgeometry PG(V ′′) with
V ′′ a vector space over Fq and dimV ′′ = 4.
Assume Fix (fϕ) 6= PG(V ′′) ∼= PG(3, q). Suppose first that there is a
vector space W over Fq with dimW = 3 such that PG(W ) ⊆ Fix (fϕ). If
Fix (fϕ) = PG(W ), then we are done. Otherwise, let [p] ∈ Fix (fϕ)\PG(W )
and define W ′ := W + 〈p〉q. Since dimqW

′ = 4, we have that Fix (fϕ) is
contained in the subgeometry PG(W ′). If there is [r] ∈ Fix (fϕ) \ PG(W )
with [r] 6= [p], then the subline `q := [p, r]q spanned by [p] and [r] meets
the subplane PG(W ) in a point [s] 6= [r] which is also fixed. So `q is fixed
pointwise. Take [t] ∈ PG(W ) with [t] 6= [s]. The subline [t, s]q is also
fixed pointwise, so the subplane [p, s, t]q 6= PG(W ) is also fixed pointwise.
As fϕ fixes two (hyper)planes pointwise in PG(W ′) ∼= PG(3, q) we have
that fϕ fixes PG(W ′) pointwise — a contradiction. Thus, in this case
|Fix (fϕ)| ≤ q2 + q + 2.
Suppose now that Fix (fϕ) does not contain a subplane isomorphic to
PG(2, q) and that there is a subline ` ⊆ Fix (fϕ). If there were a subplane
πq through ` such that Fix (fϕ)∩πq contains two points not on `, then (by
the same argument we used in the case above), this subplane would have
to be fixed pointwise by fϕ. This is a contradiction; so if Fix (fϕ) contains
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a subline `, then there is at most one fixed point [x] 6∈ ` on any subplane
through ` contained in PG(V ′′). So, |Fix (fϕ)| ≤ 2q + 2.
Finally, if Fix (fϕ) does not contain sublines, then Fix (fϕ) cannot contain
either frames or more than 3 points on a plane or more than 2 points on a
line. It follows that |Fix (fϕ)| ≤ 4. This completes the proof.

In light of Lemma 3.10 we now distinguish two subcases:

a) Suppose fϕ fixes a subgeometry [Σϕ] ∼= PG(3, q) of (vector) dimension
4. Clearly, [Rad (ϕ)] 6∈ [Σϕ]. By Lemma 3.3, fϕ restricted to H4 =
[Σϕ] ∩H5, bijectively maps points of H4 into points of H4 and fixes
(q4 − 1)/(q − 1) of them. Since every point in the image of fϕ admits
at least q − 1 preimages in H5 distinct from itself we get

C ≥ (q2 − 1)(q − 1)µ4.

Plugging this in Equation (13) and using Corollary 3.6 and Lemma 3.7,
we obtain that for any q:

wt (ϕ) ≥ (q3 − q)

(q2 + 1)
µ5 −

(q3 − q)

(q4 − 1)
A+

q

(q4 − 1)
C ≥

q(q2 − 1)

(q2 + 1)
µ5 −

(q3 − q)

(q4 − 1)
ξ5(2) +

q

(q4 − 1)
(q2 − 1)(q − 1)µ4 =

=
q10 − 2q6 + q5 − q4 − q3 + 2q2

q + 1
> q8 − q6. (29)

b) Suppose now that fϕ does not fix a subgeometry isomorphic to
PG(3, q). Then, by Lemma 3.10, |Fix (fϕ)| ≤ q2+q+2. By Lemma 3.2,
p ∈ Aϕ if and only if fϕ([p]) = [p] or fϕ([p]) = 0.
By Equation (19), we have

A ≤ |Fix (fϕ)|+ (q2 − 1)|([Rad (ϕ)] ∩H5)| ≤
(q2 + q + 2)(q2 − 1) + (q2 − 1) = q4 + q3 + 2q2 − q − 3.

We now need to compute a lower bound for C. Since [Rad (ϕ)] =
ker(fϕ) and we are assuming dim(Rad (ϕ)) = 1, the image Im(fϕ)
of the semilinear function fϕ is a subspace of PG(4, q2) of (vector)
dimension 4. In particular, the image fϕ(H5) of its restriction to H5

is a (possibly degenerate) Hermitian surface contained in a projective
space PG(3, q2).
Let H′ := fϕ(H5) ∩ H5. By Lemma 3.2, p ∈ Cϕ if and only if
fϕ([p]) 6= [p] and fϕ([p]) ∈ H′. Using the descriptions of intersection
of Hermitian varieties in [16, 13] we see that |H′| ≥ q3 + 1. Thus we
get

C ≥ (q − 1)(q2 − 1)(q3 + 1).
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Plugging this in Equation (13), we obtain that for any q,

wt (ϕ) ≥ (q3 − q)

(q2 + 1)
µ5 −

(q3 − q)

(q4 − 1)
A+

q

(q4 − 1)
C ≥

q10 − q6 + q5 − 2q4 − 2q3 + 2q2 + q

q2 + 1
(30)

For q > 2, (30) gives wt (ϕ) ≥ q8 − q6. And this completes the
argument. For q = 2 a direct computer search proves that the
minimum weight of the code is once more 192 = q8 − q6.

The above proof directly implies the following characterization of the minimum
weight codewords for m odd.

Corollary 3.11. If either

• m > 5 is odd or

• m = 5 and q 6= 2,

then the minimum weight codewords of C(Hm,2) correspond to bilinear alternating
forms ϕ with dim(Rad (ϕ)) = m − 2 and such that [Rad (ϕ)] meets Hm in a
Hermitian cone of the form [Π1]Hm−3.

Remark 3.12. For q = 2 and m = 5, an exhaustive computer search shows
that the characterization of Corollary 3.11 does not hold, as there are 24948
codewords of minimum weight 192; 5940 of these are associated with bilinear
forms with radical of dimension 1 while the remaining 19008 are associated with
forms with radical of dimension 3. The forms with 3-dimensional radical are as
those described in Corollary 3.11. Incidentally, the full list of weights for this
code is 0, 192, 216, 224, 232, 256.

3.3. Minimum distance of Hm,2 with m even
In this section we assume m to be even. Then the Witt index of the Hermitian

form η is n = m/2. Let ϕ be an alternating form on V. Recall from Equation (13)
that

wt (ϕ) =
q2m−7

(q4 − 1)
((q2 − 1)µm −A) +

qm−4

q4 − 1
B.

Proposition 3.13. There exists a bilinear alternating form ϕ with dim(Rad (ϕ)) =
m − 2 such that wt (ϕ) = q4m−12 and wt (ϕ′) ≥ q4m−12 for any other form ϕ′

with dim(Rad (ϕ′)) = m− 2.

Proof. Let ϕ be a bilinear alternating form with radical of dimension m− 2. In
order to determine the weight of the word of Hm,2 induced by the form ϕ, we
need to determine the number of lines of Hm,2 which are not totally isotropic
for ϕ.

Since, by hypothesis, the radical of ϕ has dimension dim(Rad (ϕ)) = m− 2,
a line ` is totally isotropic for ϕ if and only if `∩ [Rad (ϕ)] 6= ∅. If S denotes the
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matrix representing ϕ, we have rank (S) = 2; so, according to the results obtained
in Section 3.1, we have that for words associated to the value Amax it must be
i = 1 and [Rad (ϕ)] ∩Hm = [Πt]Hm−2−t is a degenerate Hermitian variety with
radical [Πt] of dimension t. By Equation (21) and Lemma 3.5, since m is even,
the maximum number of points µmax

m−2 of [Rad (ϕ)]∩Hm is attained for t = 2i = 2
(in this case [Π2] is a line), i.e. µmax

m−2 = µm−2(2) = q4µm−4+q
2+1 (last equality

comes from Equation (20)). Hence the number of points of Hm \ [Rad (ϕ)] (see
Equations (10) and (20)) is at least

µm − µmax
m−2 = µm − q4µm−4 − q2 − 1 = q2m−3 + q2m−5.

Assume [Rad (ϕ)] ∩Hm = [Π2]Hm−4 and consider a point [p] ∈ Hm \ [Rad (ϕ)];
we study [p]⊥η ∩Hm ∩ [Rad (ϕ)].

• Case [Π2] ⊆ [p]⊥η . Note that [Rad (ϕ)] = [Π2]
⊥η because [Rad (ϕ)] ∩

Hm ⊆ [Π2]
⊥η and dim(Π

⊥η

2 ) = dim(Rad (ϕ)) = m − 2 (indeed, if [x] ∈
[Rad (ϕ)] ∩ Hm, then [x] ∈ [Π2]Hm−4; hence, [x] ∈ [Π2]

⊥η). This implies
that every point [p] such that [Π2] ⊆ [p]⊥η , i.e. [p] ∈ [Π2]

⊥η is also in
[Rad (ϕ)] while we were assuming [p] ∈ Hm \ [Rad (ϕ)]. Thus, this case can
not happen.

• Case [Π2] 6⊆ [p]⊥η . Then [p]⊥η ∩ (Hm ∩ [Rad (ϕ)]) ∼= [Π1]Hm−4. In this
case there are (µm−2 − q2µm−4 − 1) = q2m−7 lines through [p] disjoint
from [Rad (ϕ)].

Since all points of Hm not in [Rad (ϕ)] are such that [Π2] 6⊆ [p]⊥η , the total
number of lines disjoint from [Rad (ϕ)] is (q2m−3+q2m−5)q2m−7

q2+1 = q4m−12, i.e. it is
always possible to find a bilinear alternating form ϕ with dim(Rad (ϕ)) = m− 2
such that wt (ϕ) = q4m−12. Observe that for any form with dim(Rad (ϕ)) = m−2
such that [Rad (ϕ)] ∩ Hm 6= [Π2]Hm−4, the number of totally η-isotropic lines
disjoint from [Rad (ϕ)] is larger than the value obtained in the case considered
above, so wt (ϕ) > q4m−12.

We claim that q4m−12 is actually the minimum weight for m even unless
m = 4, 6. We also compute the minimum weight for m = 4, 6.

As before, let i = (rank (S))/2. When i = 1, then by Proposition 3.13, the
minimum weight of the codewords is d1 = q4m−12. Assume i > 1; we need to
distinguish several cases according to the value of m.

• m ≥ 12 . By Corollary 3.6 and Lemma 3.7 Ai ≤ ξm(i) ≤ ξm(2) ≤ ξm(1).

From Case b) of Corollary 3.6 we get

di ≥
q2m−7(µm(q2 − 1)− ξm(i))

q4 − 1
≥ q2m−7(µm(q2 − 1)− ξm(2))

q4 − 1
.

We will show that
q2m−7(µm(q2 − 1)− ξm(2))

q4 − 1
> q4m−12.
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Actually, by straightforward computations, the above condition becomes

q4m−12 + q4m−16 − q2m−6 − q2m−7 > q4m−12

which is true for all values of q.

• m = 10 . By Lemma 3.7 we have that the second largest value of ξ10(i) is
for i = 5: ξ10(5) = q11 + q10 − q − 1. By Case b) of Corollary 3.6 we have

di ≥
q13

q2 + 1

(
µ10 −

1

q2 − 1
ξ10(5)

)
= q28 + q24 − q18 − q14 > q28.

So, the minimum distance is attained by codewords corresponding to
matrices S of rank 2 and, consequently, dmin = q4m−12.

• m = 8 . By Lemma 3.7 we have that the second largest value of ξ8(i) is
for i = 4: ξ8(4) = q9 + q8 − q − 1. By Case b) of Corollary 3.6 we have

di ≥
q9

q2 + 1

(
µ8 −

1

q2 − 1
ξ8(4)

)
= q20 + q16 − q14 − q10 > q20.

So the minimum distance is attained by codewords corresponding to
matrices S of rank 2 and, consequently, dmin = q4m−12 = q20.

• m = 6, 4 . By Lemma 3.7 we have ξ4(1) < ξ4(2) and ξ6(2) < ξ6(1) < ξ6(3),
hence the maximum value of ξm(i) is for i = m/2, i.e. we have that the
matrix S has maximum rank m and so it is non-singular.
For i 6= m/2, by case b) of Corollary 3.6 we have

di ≥ d1 >
q2m−7

q2 + 1

(
µm − 1

q2 − 1
ξm(m/2)

)
= q4m−12 − q2m−6 = dm/2.

We shall show that q4m−12 − q2m−6 is the actual minimum distance.

Lemma 3.14. If m = 4, 6 then there exists a non-singular alternating
form ϕ of V (m, q2) such that |Aϕ| = Am/2 = (qm − 1)(q + 1).

Proof. For any non-singular bilinear alternating form ϕ we have |Aϕ| =
|Fix (fϕ)∩Hm|(q2−1), see (16). Choose ϕ to be a symplectic polarity which
permutes with η (i.e. [u]⊥ϕ⊥η = [u]⊥η⊥ϕ for all [u] ∈ PG(m−1, q2)). Then
fϕ(Hm) = Hm and by [23, §74], Fix (fϕ) ∼= PG(m− 1, q) is a subgeometry
over Fq fully contained in Hm. Hence,

|Aϕ| = |Fix (fϕ) ∩Hm|(q2 − 1) = |Fix (fϕ)|(q2 − 1) =

qm − 1

q − 1
(q2 − 1) = (qm − 1)(q + 1).
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By Lemma 3.3, the bilinear alternating form ϕ given by Lemma 3.14 is
such that |Bϕ| = 0. Hence, since Am/2 > Ai for all i 6= m/2 and Am/2 =
(qm − 1)(q + 1), we have wt (ϕ) = q4m−12 − q2m−6. By Equation (14), as
wt (ϕ) = q4m−12 − q2m−6, it follows that dmin = q4m−12 − q2m−6.

By the arguments presented before we have the following characterization of the
minimum weight codewords for m even.

Corollary 3.15. If m = 4 or m = 6, then the minimum weight codewords of
C(Hm,2) correspond to bilinear alternating forms ϕ which are permutable with the
given Hermitian form η. If m > 6 is even, then the minimum weight codewords
correspond to bilinear alternating forms ϕ with dim(Rad (ϕ)) = m− 2 and such
that [Rad (ϕ)] meets Hm in a Hermitian cone of the form [Π2]Hm−4.

Sections 3.2 and 3.3 complete the proof of the Main Theorem.
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