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Abstract In developing countries, the recovery of valuable
materials from Waste Electrical and Electronic Equipment
(WEEE) is carried out via uncontrolled practices, posing po-
tentially severe risks both to human health and the environ-
ment. The assessment of the risk, which depends on both the
kind and hazardous properties of the substances contained in
WEEE, is currently limited as the exposure scenario for the
single informal practice cannot be fully characterized for this
purpose. In this context, this work proposes and evaluates a
strategy to identify the relative potential harm of different
kinds of WEEE by their content in metals, selected as the
target substances of concern. This was based on the individual
metal content, primarily located in the printed circuit boards
(PCBs) of the different devices. The metal composition of the
individual PCBs was identified and the dominant unregulated
metal recovery practices were reviewed to identify the most
suitable parameter to express the toxicity of these metals.
Based on a mass-normalized cumulative toxicity, via the in-
halation route, individual components were assessed from

compositional variation found in the literature. The results is
a semiquantitative ranking of individual components, reveal-
ing significant differences in potential harm posed by different
electronic appliances and an opportunity to provide prioritiza-
tion strategies in future management.

Keywords Electronic waste . Hazard .Metals . Sanitary
environmental risk . Toxicity

Introduction

The rapid innovation in digital technology in the last century
has resulted in a dramatic increase in the production of Waste
Electrical and Electronic Equipment (WEEE) (Ongondo et al.
2011; Kiddee et al. 2013). Its generation was estimated to be
41.8 million tonnes in 2014 and it is expected to increase to
65.4 million tonnes by 2017 (Breivik et al. 2014). WEEE
includes several categories of end-of-life electrical appliances,
so that it is a highly heterogeneous waste flow (Cucchiella
et al. 2015; Golev et al. 2016). However, the main material
constituent is the metallic fraction, accounting for approxi-
mately 65% of the total weight of electric and electronic
equipment and including base and precious metals (Jaiswal
et al. 2015). Due to the presence of valuable metals, WEEE
is now regarded as urban stock, available for the mining of
both precious metals and rare earth elements (REEs). The
latter have received a great deal of recent attention as their
supply is sensitive to many factors: REEs are provided pre-
dominantly fromChina and export has been limited, posing an
issue of supply for conventional industrial applications (Dutta
et al. 2016). The possible recovery of these strategic materials
along with other valuable metals from WEEE is an important
driver for the implementation of WEEE recycling practices
(Binnemans et al. 2013; Tunsu et al. 2015).
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In developed countries, the recovery of materials from
waste flows is also a legal obligation (Li et al. 2013; Favot
et al. 2016; Morris and Metternicht 2016; Zhou et al. 2017)
with the procedures for the operation of recycling processes
formally identified and regulated, in order to reduce environ-
mental impact. Conversely, in developing countries, informal
recycling methods are very diverse (Ardi and Leisten 2016;
Salhofer et al. 2016): mechanical processes, open burning, and
chemical leaching are applied under uncontrolled conditions,
with the aim of liberating the components of interest from the
discharged electronic appliances. However toxic substances
are also released into the environment and, due to the absence
of emission control systems, they can pose severe risks to both
human and environmental health (Tsydenova and Bengtsson
2011; Long et al. 2013; Cao et al. 2016).

WEEE can contain a range of hazardous substances, which
include potentially toxic elements (e.g., mercury, cadmium,
lead) and flame retardants (e.g., pentabromophenol,
polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol
A (TBBPA)) (Tsydenova and Bengtsson 2011).

Once released into the environment, hazardous substances
can negatively affect human health through different exposure
routes (Leung et al. 2008; Sepúlveda et al. 2010; Tang et al.
2010;Wei and Liu 2012; Song and Li 2015; Zeng et al. 2016),
particularly the workforce or the population living in the
neighborhood of informal recovery sites (Chan and Wong
2013; Sepúlveda et al. 2010). Workers suffer negative health
effects by exposure through skin contact and inhalation, while
the wider community is exposed to the contaminants through
smoke, dust, drinking water, and food contamination
(Robinson 2009).

Risk assessment is the evaluation of the potential adverse
health effects on humans exposed to environmental hazards. It
is carried out through the following steps (Zhang et al. 2010):
(i) the identification of the potential hazards associated to the
presence of selected contaminants into the environment; (ii)
assessment of the exposure conditions (i.e., intensity, frequen-
cy, and duration of the exposure); (iii) assessment of the con-
taminant toxicity; and (iv) characterization of the risk, as the
probability that the identified contamination phenomena can
produce the loss of human life. Under the framework of risk
assessment in informal WEEE recycling, the detailed process
applied play a key role (Grant et al. 2013), influencing the
mobility of hazardous substances and the extent of the envi-
ronmental contamination. Shredding practices produce main-
ly dust that can contain both flame retardants (Morf et al.
2005) and heavy metals (Song et al. 2015). Open burning
generates smokes with a variety of organic pollutants and
heavy metals (Awasthi et al. 2016), whose presence is tightly
related to the operating thermal conditions: reductive atmo-
sphere promotes the evaporation of heavy metals like cadmi-
um and zinc at lower temperatures (Dong et al. 2015; Yu et al.
2016). Moreover, the uncontrolled combustion of plastics

containing brominated flame retardants has been largely re-
ported to promote the formation of polybrominated dibenzo-
p-dioxins/dibenzofurans (Tue et al. 2016).

Regardless of the specific informal treatment process (i.e.,
shredding, open burning), it is reasonable to assume that the
relative risk for the exposed community, either workers or
population, will be strongly related to the type of device being
processed, and the variation in composition in terms of haz-
ardous substance content. It indeed determines the presence
and amount of hazardous substances available for potential
release to the environment.

Toxic metals have been recognized as substances of partic-
ular concern (Tsydenova and Bengtsson 2011) and they are
concentrated in specific WEEE components, such as printed
circuits boards (PCBs), which are present in a wide variety of
electric and electronic appliances (Oguchi et al. 2011). The
hazard from different types of WEEE is mainly related to
the total mass of metals contained in the PCB of each appli-
ance as well as to the intrinsic toxicity of the metal itself.

Although the issue of the risks posed by the informal
recycling of WEEE has been debated in the literature (Zhang
et al. 2010; Tsydenova and Bengtsson 2011), the potential
harm to human health from discharged electric and electronic
devices has yet to be quantified. This work proposes and eval-
uates a methodology to categorize different WEEE by their
relative potential for harm, assessed by reference to the metal
content of their PCBs. In order to identify the most suitable
parameter to express the metal toxicity, data on the possible
routes for the release of these metals into the environment are
discussed with reference to the more commonly reported in-
formal recycling practice.

Methodology

The approach was to investigate and evaluate a strategy to test
the significance of the metal content to define the harmful
potentiality of different types of WEEE during informal
recycling practices.

This was based on the metal composition of different end-
of-life appliances, derived from previously published assess-
ments. As highlighted above, data focus on the metal content
of printed circuit boards (PCBs) where the majority of metals
are present and are widely used in electric and electronic ap-
pliances (Oguchi et al. 2011). Also, the extensive composi-
tional analysis of the metal content of PCBs ensures that there
is an opportunity to consider a wide range of potentially harm-
ful elements and the comparative assessment of WEEE con-
stituents are more representative of likely exposure/risk during
informal recycling.

It is worth pointing out that substances of concern other
than metals (i.e., flame retardants) could not be considered
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due to the lack of data on their content in different electric and
electronic appliances.

The composition of PCBs in terms of metal content

The material composition of PCBs is a complex and much
debated subject with high economic potential on the one side
and the presence of hazardous components on the other. PCBs
differ in size, function, and material composition and they
should be perceived as a method for construction of an elec-
tronic circuit, rather than a distinctive electronic component.

Even though the literature presents numerous studies of the
material composition of PCBs, their relevance and compara-
bility is limited. The reasons for this are:

– insufficient information on the type of PCB that is ana-
lyzed as well as the year of production of the electronic
device it belongs to: PCBs from personal computers vary
in size and material composition, such as motherboard,
RAM, or power supply PCBs;

– many of the PCBmetals are in the milligram per kilogram
range and the results of the chemical analyses are highly
dependent on the method applied to assess their
concentration;

– material composition data often represents composite re-
sults of repeated experiments with statistical significance
or methods missing.

Consequently, the data used in our study were selected on
the basis of both the background information on the PCBs
analyzed and the extent of electronic categories investigated,
as given in Table 1.

Informal recycling methods for PCBs and exposure routes

Both direct and indirect exposure pathways to the substances
released from informal WEEE recycling have been studied
(Frazzoli et al. 2010; Heacock et al. 2015). They are often
related to specific informal recycling practices (Huo et al.
2007; Asante et al. 2012), which are recognized to be differ-
ently applied in diverse world regions. Large organized infor-
mal communities are present in China and India, while in
Africa those activities are carried out by individuals
(Schluep et al. 2009).

In China, the most dominant areas for informal treatment
activities are Guiyu, in Guandong Province, and Taizhou, in
Zhejiang, where the processing of PCBs focuses on the recov-
ery of metals, especially gold, while the nonmetallic materials
are landfilled (Brigden et al. 2005; Guanghan et al. 2016). The
components with the highest gold content, namely silicon
chips and contacts, are thus removed from PCBs and treated
by leaching with acids, such as nitric and hydrochloric acids
(Wang et al. 2013), for gold recovery (Wen et al. 2006;

Schluep et al. 2009). The rest of the circuit boards often goes
to an acid recovery of the remaining metals (Schluep et al.
2009), but open burning has been reported as another method
to treat the rest of the PCBs (Wang et al. 2013). The Chinese
informal sector appears thus to rely on a number of different
recycling methods: physical dismantling, heat-assisted remov-
ing of components from PCBs, chipping plastics, and melting
as well as open burning for either recovery or disposal pur-
poses are highlighted in particular (Chi et al. 2011).

A similar variety of informal recycling practices has been
observed in India, whereWEEE recycling takes place through
traders, dismantlers, and recyclers. In Bangalore, identified as
the country’s information technology hub (Liu et al. 2016), the
preprocessing of broken equipment includes dismantling and
sorting of the waste stream into several groups: CRT, plastics,
PCBs, wires and cables, and metals (Keller 2006). PCBs are
dismantled into boards without electronic components, con-
nectors, and copper. To de-solder PCBs and to recover gold,
different techniques are applied. Solders are melted by using
heat from an open-frame kerosene burner (Brigden et al.
2005) or coal-fire grills. Silicon chips are removed from cir-
cuit boards by putting them in a heated pool of molten lead-tin
solder, and later, processed for gold extraction by using acid
baths (Keller 2006; Rochat et al. 2007; Schluep et al. 2009).
The rest of the boards are burned at large-scale burning facil-
ities or leached in acid to partially recover remaining metals
(Schluep et al. 2009). The residual, non-valuable fractions
from those steps normally end up in open dump sites.

Different information is available for activities in Africa,
where the most prominent country for informal e-waste pro-
cessing is Ghana. The absence of legislation clearly banning
the import of both WEEE and UEEE (Used Electric and
Electronic Equipment) (Li et al. 2013), makes indeed Ghana
as an eligible destination country for the illegal import of
WEEE that, in turn, feeds the informal recycling sector.

In Ghana the most common practices are the manual dis-
mantling to salvage copper and other metal-rich parts for re-
sale (Huang et al. 2014). Dismantled components, cables, and
wires are burned to extract copper (Amoyaw-Osei 2011;
Huang et al. 2014). The unusable fractions from dismantling,
such as plastics, are accumulated and regularly burned to re-
duce volume or dumped without further treatment (Amoyaw-
Osei 2011). Chemical leaching processes for precious metal
recovery from PCBs have not been observed in African coun-
tries (Schluep et al. 2009). In the case of Ghana, PCBs are
ground into fine powder and exported to Asian countries,
mainly China and India (Grant and Oteng-Ababio 2012).

The evidence of the adverse impacts on the environment
and human health from these crude methods have been largely
discussed in the literature. Several studies (Brigden et al.
2005; Leung et al. 2008; Sepúlveda et al. 2010; Tang et al.
2010; Amoyaw-Osei 2011; Wei and Liu 2012) have identified
the high concentration of both metals (such as lead, nickel,
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copper, cadmium), and organic pollutants in dust, sediment,
and wastewater from recycling workshops or in soil and water
from open pools close to recycling facilities in different re-
gions worldwide.

Although not a comprehensive study, the practices reported
to be applied in these areas could be considered as represen-
tative of the informal recycling activities, which include man-
ual dismantling, size reduction, open burning, and acid
leaching (Sepúlveda et al. 2010). Each of these uncontrolled
processes affects the environmental quality through different
routes (Tsydenova and Bengtsson 2011) and, in turn, human
health. However, persistently poor ventilation of dusty work-
ing areas, poor hygiene, the absence of or improper use of
both personal protective equipment (such as respirators), and
emission control systems increase the likelihood of significant
exposures mainly through inhalation, and aggravate the risk
from lung related diseases (Rim et al. 2013).

Approach to the assessment of the potential for harm
to human health from PCBs

Risk analysis is a useful tool to quantify the probability that
the application of particular informal practice can lead to the
loss of human life, providing technical data to describe the
hazard that the practice itself may entail. However, the relative
characterization of the risk from different informal practices
seems to be limited by the lack of data on the contaminants
emitted, so that it is not possible to identify the most hazardous
activity. As these practices are carried out under uncontrolled
operating conditions, it is indeed hard to define the chemical
form and the physical state of the released contaminant, as
discussed for different heavy metals in the study of Dinis
and Fíuza (2011).

It is worth noting that the variability inWEEE composition
can also influence the extent of the risk, as the release of
hazardous substances into the environment depends on their
presence and availability in different devices. In turn, the
potential harm to human health from hazardous substances
is related to their toxicological characteristics.

Due to the severe uncertainties in figuring out the exposure
scenario for relative risk assessment, this work aims at pro-
posing and evaluating a methodology to classify different
types of WEEE by their relative potential hazard, which is
estimated taking into account both the concentration and the
toxicological properties of hazardous substances, namely
metals, in their PCBs.

Published data on the categorization of different types of
WEEE have previously been based on both the concentration
and the total amount of toxic metals in their PCBs. Oguchi
et al. (2013) points out that mobile phones and other small
digital items such as portable audio players and digital cam-
eras have high to moderate concentrations as well as moderate
total mass of toxic metals, like chromium, barium, and lead in

comparison to bigger appliances. For this reason, they were
recognized as high priority items, when managing toxic
metals inWEEE. On the other hand, the total amounts of toxic
metals contained in other midsized items such as audio/video
devices and ICT equipment, including printers, were not neg-
ligible, but their concentration was not particularly high
(Oguchi et al. 2013). However, this assessment focused only
on the quantity of a few selected metals.

For the present work, standardized database from environ-
mental risk assessment was used (US-EPA 2016).

The impact of environmental exposure determines the risk
assessment of potentially toxic elements. Based on the study
of informal recycling methods, the toxicity inhalation path
was considered as the most relevant and the corresponding
toxicity value, namely the inhalation reference concentration
(RfC), was selected for each metal (Table 2). The RfC is an
estimate of a concentration under continuous exposure for
individuals that does not present any risk of deleterious effects
during a lifetime. Selected RfC values referred to the elemen-
tal metal or, if not available, to a metal compound that is likely
to be produced during informal recycling practices, such as
open burning.

For the identified PCBs, the contribution to the potential for
harm indicator of the i-th metal (PHIi) was calculated as the
ratio between its concentration in the PCB and the correspon-
dent RfC. The total indicator of the potential for harm (PHI),
based on the presence of the “n” contaminants, was then
assessed through the following expression:

PHI ¼ ∑
n

i¼1
PHIi

A schematic of the construction of the indicator is shown in
Figure 1.

The comparative analysis of the PHI of PCB was also re-
ferred to a normalized PHI (DPHI), which was calculated as
the ratio between the PHI of the single PCB and the minor
PHI.

Table 2 Reference
concentrations selected
as toxicity values (US-
EPA)

Metal RfC [μg/m3]

Aluminum (Al) 5

Barium (Ba) 0.5

Beryllium (Be) 0.02

Cadmium (Cd) 0.01

Chromium (Cr) 0.1

Cobalt (Co) 0.006

Lead (Pb) 0.2

Nickel (Ni) 0.014

Strontium (Sr) 0.2

Environ Sci Pollut Res (2018) 25:683–692 687



Results and discussion

The methodology provides a simple potential for harm indicator
(PHI), expressed as an inverse reference concentration referred
to the mass of the PCB rather than the metal. This indicator
highlights the significance of specific WEEE components rela-
tive to each other. The higher the value of PHI, the more signif-
icant hazard a particular WEEE component may be for human
health. The weight of individual appliances does not play any
role in the definition of the PHI, as the results are normalized per
mass unit of the device to allow a suitable comparison between
different sizes of WEEE. The relevance of this work is in its use
to supply a means of classification of components, which may
provide a role in prioritization of decision making in manage-
ment of waste streams, as highlighted in Table 3.

According to these results, the significance of the PCBs
from particular WEEE types is:

printer > mobile phone > TV > power tools > PC >
camera > portable CD/MD player > cassette recorder >
game console > DVD player > gas discharge lamps >
calculator > monitor > portable audio.

Therefore, when considering the sustainable management
ofWEEE, printers should be considered at the highest level of
priority. The PHI for printers was found to be approximately
2000 times higher than that of the portable audio, which is the
lowest. According to the order of magnitude of the DPHI, the
other PCB types can be clustered in the following classes:

– class 1, includingmobile phone, TV, power tools, and PC,
with PHI values from 445 to 109 times that for portable
audio;

– class 2, consisting of camera, portable CD/MD player,
cassette recorder, game console, and DVD player, whose
PHI values were in the range 50–92 times higher than that
of portable audio;

– class 3, composed of gas discharge lamps, calculator,
monitor, and portable audio, with DPHI lower than 10.

With the exception of the game console and gas discharge
lamps, belonging to the categories n. 7 (toys, leisure, and sport
equipment) and n. 5 (lighting equipment) of the European
WEEE Directive respectively; the considered devices are
listed in either the category n. 3 (IT and telecommunications
equipment) or the category n. 4 (consumer equipment) of the
same Directive.

Fig. 1 Flow chart of the
developed methodology

Table 3 Relative potential harm of selected WEEE

PCB type DPHI DPHIno Al

Printer 1.977 347

Mobile phone 445 78

TV (CRT, PDP, LCD) 278 48

Power tools 121 20

PC 109 19

Camera 92 16

Portable CD/MD player 69 11

Cassette recorder 56 9

Game console 55 9

DVD player 50 8

Gas discharge lamps 6 1

Calculator 5 –

Monitor 2 –

Portable audio 1 –
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As pointed out by (Tansel 2017), the quantities of discarded
electronic consumer products have increased exponentially,
due to advancing technology, manufacturing processes, rapid
market penetration, and planned obsolescence. However, for a
large portion of this waste, recycling is not properly document-
ed, suggesting it is likely to be handled under uncontrolled
conditions, with consequences for risks to both human and
environmental health. Further efforts should be made to pro-
vide a barrier to exposure and the categorization of WEEE by
their PHI indicates the order of priority that should be followed
in defining the strategies for the traceability of different kinds
of WEEE. This may allow the adoption of basic, easy-to-apply
practices during the informal recycling of the appliances.

The methodology also highlights that the individual con-
tent of metals is not sufficient for prioritization of WEEE
management.

This work highlights printers as the most significant com-
ponent of WEEE, with high content in aluminum, nickel, and
cobalt. The less harmful category (portable audio) has typical-
ly lower concentrations of aluminum and nickel as well as
cobalt being absent.

Although such outcomes seem to suggest a linear relation-
ship between the concentration of these metals and the PHI
value, the results obtained for the other devices do not support
this conclusion, as the potential danger from a specific device
is related directly to the toxicity potential of its constituents. In
the studied PCBs, metals like cobalt are present at low con-
centrations, but the corresponding reference concentration is
also very low, indicating a high toxic potential. Conversely,
aluminum is one of the main constituents of PCBs, but its
toxicity expressed as reference concentration is three order
of magnitude greater than that of cobalt.

The analysis of the ranking results, shown in Table 3, iden-
tifies that the aluminum concentration (13,300 mg/kg) of mo-
bile phone PCB cannot be related to the corresponding PHI
value, as observed for printers.

Although the concentrations of aluminum are very high,
ranging between 4214 and 125,500 mg/kg, the presence of
this substance do not affect considerably the potential for harm
of the considered PCBs: in fact, due to the low toxicity of this
metal, the priority ranking based on the PHI values do not
change if not considering the presence of aluminum, as shown
in Table 3 (DPHIno Al). Different consideration raise for nick-
el, whose presence drives the definition of the PHI values for
the PCB of the WEEE types clustered in class 1. Although
most of these devices contain cobalt, which is even more toxic
than nickel, the latter is present in concentrations approxi-
mately 100,000-fold higher than the corresponding RfC.
Similarly, for the devices grouped in class 2, lead is the metal
characterized by a concentration ranging between 12,000 and
21,300 mg/kg, which is up to 100,000-fold higher than its
RfC. The contribution of other metals, like barium, cadmium,
and chromium, to the overall PHI determines the order of

priority of the single WEEE type PCBs within each cluster,
namely class 1, class 2, and class 3. This analysis suggests
that, when the metal concentration is, at least, 50,000-fold
higher than the RfC, its presence drives the definition of the
potential harm of the corresponding PCB.

It is worth identifying that all appliances contain large
amounts of copper and iron and most of them also contain
other metals like zinc that do not contribute to the assessment
due to the lack of comparable toxicity data. It is therefore
important that data should be generated to refine the model
and subsequent classification of WEEE components.

In the wider context of environmental risk assessment, the
absence of inhalation route data on a number of elements
limits the evaluation of the risk to individuals exposed to ei-
ther dust or gaseous emissions from informalWEEE recycling
practices. Although the concentration in air of some metals,
including copper and iron, has been reported in working
places where either dismantling or other uncontrolled
recycling practices are performed (Julander et al. 2014; Zeng
et al. 2015), it is still not possible to verify the effects of those
concentrations to human health after a chronic exposure.
Similarly, the identification of correlation between health ef-
fects and metal concentrations (Perkins et al. 2014) do not
provide suitable information to address the definition of risk-
based procedures.

This methodology represents a possible approach to ad-
dress this gap and needs to be widened with reference to both
components ofWEEE and individual substance toxicity. Field
studies focused on the monitoring of substances released dur-
ing informal WEEE treatment would further promote the ver-
ification of exposure conditions for either recyclers or popu-
lation living in the surroundings of working sites.

The prioritization of control measures in the sustainable
management of WEEE needs to take into account the device
as well as the PCB. Further refinement can be made by iden-
tifying metal speciation and toxicity of specific compounds
likely to be encountered during the processing of the waste.
In addition, other toxic substances should also be considered
as their adverse effects on both environment and human health
have been extensively reported (Herat and Agamuthu 2012).
To this end, further efforts should be directed towards the
quantification of nonmetallic substance of concern in electric
and electronic appliances.

Conclusions

This work proposes a methodology to assess the relative po-
tential for harm to human health from the informal recycling of
different types of WEEE. The informal processing of WEEE,
which is largely performed in developing countries, poses a
severe risk for both the human health and the environment,
related to the possible release of toxic substances during the
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uncontrolled treatment of waste components. Rudimentary
shredding and open burning are among the most commonly
reported procedures applied to recover valuable materials, and
they raise great concern due to the potential for inhalation of
contaminated air by either workers or people living in the
surrounding of the informal working sites.

This methodology was able to provide the potential harm
indicator (PHI), which takes into account both the amount and
the toxicological properties of the metals of concern, primarily
present in the printed circuit boards. The total quantity as well
as the toxicological properties of these metals is the main
factor contributing to the overall potential for harm of
discharged electronic devices. The potential harm from differ-
ent types of WEEE can be driven by the presence of the more
toxic metals that are of a significant mass. However, when the
content of these metals is lowered, the potential harm is driven
by the relative content of the toxic elements.

Printers were identified as the most hazardous type of
WEEE, followed by several kinds of both IT and consumer
appliance, which should be regarded as high-priority devices
when considering their informal treatment.

This methodology represents a useful tool for WEEE man-
agement, indicating an order of priority for the definition of
both strategies and easy-to-apply practices aimed at reducing
the extent of adverse effects during the informal processing of
the appliances.

However, there is an urgent need for further studies,
looking at a more comprehensive characterization of the haz-
ardous substances in different types of WEEE components.
Data identification and collection should be undertaken along
with field studies to validate the results from the assessment.
An understanding of the specific informal recycling method-
ology is also of interest as it will then identify most appropri-
ate exposure models.
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