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Abstract. The rapidly increasing diffusion of Full Microbiology Labo-
ratory Automation plants is reshaping the way microbiologists perform
diagnostic tasks. A huge stream of digital visual data is expected to
be produced daily in the coming years in the emerging field of Digital
Microbiology Imaging. In this context, we want to assess the suitability
and effectiveness of a Deep Learning approach to solve the diagnostically
relevant but visually challenging task of directly identifying pathogens
on bacterial growing plates. In particular, starting from hyperspectral
acquisitions in the VNIR range and spatial-spectral processing of cul-
tured plates, we approach the identification problem as the classification
of computed spectral signatures of the bacterial colonies. In a highly
relevant clinical context (urinary tract infections) and on a database of
HSI images, we designed and trained a Convolutional Neural Network
for pathogen identification, assessing its performance and comparing it
against conventional classification solutions.
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1 Introduction

The present work is situated at the intersection of three significant innovation
trends and looks to exploit the different opportunities they offer and propose a
solution for direct pathogen identification on bacteria culturing plates. At first,
the concrete possibility of (deeply) learning salient visual features determined, in
recent years, the success of Deep Learning (DL) architectures. For visual recog-
nition tasks, DL models are normally implemented with Convolutional Neural
Network (CNN) [1] for low-to-high level visual feature learning. This is cur-
rently influencing, if not significantly impacting, several application domains.
In the biomedical field a transition from handcrafted to learned feature-based
approaches can bring significant benefits, especially when high data through-
put and visual content variability are involved [2]. However, data dimensionality
(biomedical data are often 3D or higher dimensional) introduces further chal-
lenges for DL solutions only partially addressed so far.

? Corresponding author email: alberto.signoroni@unibs.it



The second trend we consider, is the increasing attention on small-scale appli-
cations of hyperspectral imaging (HSI) in several domains, such as industrial
quality controls (especially food, pharma and chemical [3, 4]), cultural heritage
preservation [5] and a number of biomedical applications [6]. What currently
contributes to the proliferation and diversification of small-scale HSI applica-
tions, in addition to the classical Remote Sensing (RS) ones, is the increasing
technological variety and ever lower cost of acquisition equipment [7, 8] and, as
for DL, the continued increase in computational power and storage/transmission
capabilities of computing hardware and networks. In many situations, where vi-
sual analysis is limited by spatial-spectral resolution trade-offs, the alternative
or concurrent use of HSI acquisition systems can play a determinant role for im-
proved data interpretation. However, the restricted number of non-RS available
datasets still hinder the popularity of HSI data acquisition and analysis research
for non-RS applications.
The third evolution we consider defines the application context of our work.
This is related to a recent digitization trend significantly impacting the field of
Clinical Microbiology (CM), the escalating diffusion of Full Laboratory Automa-
tion (FLA). An FLA system is capable of handling all phases of bacterial colony
culturing, from the processing of various human collected specimens through
seeding and streaking on culturing plates (Petri dishes), to automatic incuba-
tion and further processing for subsequent analysis [9, 10]. All relevant phases
of bacteria colony growing can be captured by digital cameras, visualized on
diagnostic workstations, stored/communicated and processed. This determined
the advent of Digital Microbiology [11,12] and a fundamentally new way of work
for microbiologists.
In Digital Microbiology Imaging (DMI), image-based decision making can be
automated for certain tasks or support the work of the microbiologist for others.
One of the most impacting capabilities (not yet provided by commercial prod-
ucts) would be reliable and fast identification of bacterial species by direct image
analysis and machine learning solutions. Early identification of bacteria species is
needed to determine the correct therapy for the patient with potentially signifi-
cant impact on life expectation. In addition, early identification is one of the most
powerful ways to contrast the worldwide threat related to antibiotic resistance.
This is especially true if one considers very general and massive diagnostic inves-
tigation procedures such as screening for urinary tract infection (UTI) pathogen
identification [13]. UTI are widespread and serious health problems that interest
many millions of people every year around the world, accounting for a signifi-
cant part of CM labs’ workload [14]. Unfortunately, presumptive identification
by visual inspection of UTI pathogens on the most diffused culturing media
(e.g. blood agar) can be a very complex and ambiguous task, even for highly
skilled microbiologists (examples of different pathogens exhibiting high visual
similarity are showcased in Fig. 1). This is the reason why, despite their higher
cost, chromogenic media [15] have gained widespread market diffusion, thanks
to their ability to mark different colonies with different colors (through the use
of pathogen-specific enzyme substrates). However, these media have several lim-



Fig. 1: Examples of different UTI bacteria colonies grown on blood agar media.

itations in terms of the number of pathogens that can be differentiated [16]. HSI
technology could provide support where three-chromatic imaging does not give
enough spectral information for reliable discrimination. Therefore UTI identifi-
cation is a good case study for HSI-based bacteria identification because UTI
represents a diagnostic context involving, for a single laboratory, hundreds of
analyses per day, so a technology investment can be rapidly amortized.

There are still very few examples of DL-based approaches for RS appli-
cations [17–20] and, to our knowledge, still none for other fields, including
biomedicine. Moreover, though both conventional machine learning [21–23] and
DL solutions [24] have already been implemented for DMI analysis tasks, and hy-
perspectral classification has already been explored in CM [25–29], the present
work is the first attempt to combine HSI, CM-FLA and CNN for direct bacterial
identification purposes. In this work, we want to exploit the enhanced spectral
information coming from HSI acquisitions to prove the feasibility of reliable bac-
teria species discrimination based on a DL approach. We raise the complexity of
the problem compared to our preliminary study [27] by increasing the cardinality
of pathogens, building a larger HSI UTI dataset (made available online) and by
exploiting an improved acquisition setup. Unlike typical Remote Sensing tech-
niques, that seek to increase the spatial consistency of the spectral classification
at a pixel level [30], our pathogen recognition takes place on each single bacte-
rial colony growing on the agar substrate. To this end, we propose a new (with
respect to [27]) spatial-spectral distance measure to extract Colony Spectral Sig-
natures (CSS). We designed and trained a 1D-CNN acting on CSS for pathogen
identification and compared it against other conventional machine learning ap-
proaches, well selected and designed for the same purpose [29]. In particular,
classification accuracy, computational efficiency and scalability comparisons are
proposed along with examples and further considerations.

2 Proposed Method

A general scheme of the proposed HSI processing and classification workflow for
rapid UTI bacteria discrimination is given in Fig. 2. In describing the various
stages of our system, we give more emphasis on the novel CNN-based solution for
CSS discrimination. Details about other parts, HSI database and conventional
handcrafted feature-based classification solutions can be found in [29].



Fig. 2: Processing and classification pipeline.

Hyperspectral Acquisition System The HSI target is a 90mm diameter Petri plate.
The main parts of the acquisition system are: 1) HSI camera – a linear VNIR
camera (Specim Spectral Camera V10E) with spectral range between 400 and
1000nm, tele-centric fore lenses (Specim OLE23, focal length 23mm); spatial
resolution has been doubled with respect to [27] (640x600 pixels) maintaining
scanning time under 15 seconds (compatible with FLA needs). 2) Illumination
system – the light of two 150W halogen lamps is conducted by two 13mm-
diameter optical fibers, spread by cylindrical lenses and finally reflected to the
inner side of a semi-cylindrical dome. This configuration avoids total reflection
effects on translucent colonies. 3) Conveyor system – a conveyor sliding system,
mounting a shuttle which accommodates both the plate and a calibration bar
(coated with BaSO4 optopolymer), allows push-broom plate acquisition and a
per-sample radiometric calibration.

Colony Spectral Signature (CSS) Extraction Flat-field calibration was applied to
the hypercube to derive a normalized (with respect to a white calibration bar)
relative reflectance measure Ri,λ

Ri,λ =
Si,λ −Di,λ

Wi,λ −Di,λ
(1)

where Si,λ is the acquired reflectance, Wi,λ and Di,λ are the white calibration
and the dark current spatial(i)-spectral(λ) profiles. A signal preserving Savitzky-
Golay [31] denoising (window size of 7) is then applied. Since illumination power
from the halogen sources decreases at the spectrum extrema, corresponding
bands were cut off, preserving the ones with highest SNR in the range from
430nm to 780nm (for a total of 125 spectral bands). Then, a threshold-based
foreground extraction is performed on the spectral band at wavelength 520nm.
This produces a reliable isolation of the grown colonies because, at this specific
wavelength, the contrast between relative reflectances of pathogens and blood
agar is greater than in other bands. At this point, spatial distance transform is
calculated for each colony using a spectral cosine distance map, computed as:

1− u · v
||u||2||v||2

, (2)

between each pixel signature v and the agar footprint u, obtained by averaging
the spectral signatures of background pixels. We use the resultant map as an



Fig. 3: Average spectral signatures of UTI bacteria, their standard deviations and
CNN structure selected.

elevation map for a reliable watershed segmentation of bacterial colonies. For
each detected colony we then extract a representative spectral signature (a 125-
dimension vector) where we set colony pixel weighting factors proportional to
the previously computed cosine distance map:

CSScolony =
∑
p∈P

wp ·Rp ∈ R125 (3)

with P the set of colony pixels, wp the weighting factor for the pixel p and Rp

the relative reflectance spectrum of the pixel p. Representative CSSs for each
pathogen (the list is given in Sec.3) are shown in Fig. 3 (left), along with their
standard deviation (shadowed).

Classification Methods CNN architectures [1] have been related to models of the
visual cortex [32] and are characterized by locally overlapped connections (recep-
tive fields) and shared weights implemented within a stacked hierarchy (from low
to high level visual tasks) of convolutional feature extraction layers alternated
with pooling layers (usually exploiting a max pooling rule). This is followed by
one or more fully connected classification layers. Non-linear activation function
layers are typically employed following convolutional ones, and the whole net-
work produces a differentiable score function allowing the network parameters to
be learned (weights and biases of the convolutional and fully connected layers).
Unlike spatial-spectral 3D-CNN configurations [33], which are more suscepti-
ble to overfitting and therefore needing dedicated regularization strategies, we
exploit a 1D-CNN configuration similar to that considered in [33,34] for RS hy-
percubes. However, instead of considering single pixel spectra, we take advantage
of the proposed spatial-spectral processing so that the CNN sees the extracted
CSS as inputs while producing the colony-based class scores as output. Our
network topology, see Fig. 3 (right), contains 2 convolutional layers, 1 pooling
layer, 1 fully-connected layer and a final probability-based (softmax) classifier
layer, for a total of 1,905,496 network parameters to learn. The first convolu-
tional layer evaluates 32 feature maps from the 125-dimensional CSS input, for



each map a 5-tap filter is trained to produce same size output. The structure
of the second convolution layer is similar and is composed of 64 feature maps
(again 5-tap filters). Parametric Rectified Linear Units (PReLU) were used as
activation functions [35]. After the two convolutional layers, a max pooling layer
halves the size of feature maps given as input of a fully connected layer composed
of 500 units, eventually followed by 9 output units. The selection of the above
CNN structure was based on the evaluation of many possibilities by changing the
number of convolutional and fully connected layers, learning rate and learning
decay value (see Sec.3). We implement the whole structure in Python 2.7 and
TensorFlow 1.0 [36].
For comparison purposes we selected two conventional classification approaches
among those which have been shown to be effective in handling reflectance spec-
tral data in this and other HSI analysis contexts: SVM and Random Forests.
Support Vector Machine (SVM) [37] is a popular non-parametric technique for
binary classification. It is a suitable tool in cases of data not regularly distributed
or data with an unknown distribution. We implement SVM according to multi-
class one-against-all structure, with Radial Basis Function kernels configured
through iterated model selection for each pathogen binary classifier.
Random Forests (RF) [38] is an ensemble learning method that operates by
constructing a multitude of decision trees. They predict (through a bagging ap-
proach) deep insights into the structure of data. Each tree is built on different
samples with randomness in the growing phase to ensure dissimilarity. Class
with most votes (among all the trees in the forest) determines the prediction.
The use of randomness and averaging improves the predictive accuracy and con-
trasts overfitting. We also tested both SVM and RF combined with information
preserving dimensionality reduction obtained by Principal Component Analysis
(PCA) [39], used to reduce spectral redundancy with 99.9% of retained variance.

3 Results and Discussion

We built and analyzed a database of 16642 colonies streaked and grown on
Petri dishes (5% sheep blood agar plates, BBL, BD Diagnostics, Sparks, MD)
from 106 HSI volumes acquired after 18 hours of incubation in O2. Target
pathogens in our analysis, all belonging to the American Type Culture Collec-
tion (ATCC), and covering over 85% of UTI species of interest, are: E.coli (5539
colonies), E.faecalis (1958), S.aureus (2355), P.mirabilis (2315), P.vulgaris (654),
K.pneumoniae (542), Ps.aeruginosa (1529) and Str.agalactiae (1750). Represen-
tative colony examples (from RGB images) and corresponding average spectral
signatures are shown in Fig. 1 and Fig. 3 respectively. The whole dataset has been
licensed for research use and can be accessed on http://www.microbia.org.

Classification accuracy Bacterial species classifiers based on CNN, as well as
SVM and RF (with or w/o PCA) have been implemented and compared on the
experimental dataset. In Table 1, classification performance in terms of average
accuracy are reported.



Accuracy

CNN*
0.997
± 0.001

SVM*
0.995
± 0.001

RF
0.938
± 0.002

PCA+SVM
0.984
± 0.002

PCA+RF*
0.971
± 0.002

Table 1: Classification
accuracy (avg and std).
With asterisk configura-
tions considered in Fig. 4.

Fig. 4: Computational and memory footprint perfor-
mance: training times–solid line, testing times –dashed
line, and memory footprint–dotted line of the classifiers,
versus the number of training samples

The selected CNN model, after 50,000 training iterations, reached an accu-
racy of 99.7% becoming our best option. A learning rate of 0.01 and learning
decay of 0.005 were selected after many different tests, resulting in the follow-
ing observations: a) by growing the number of convolutional and/or FC layers
we obtained minor improvements with more than double the training/testing
time; b) comparable classification results can be obtained with learning rates
between 0.005 and 0.01, while using 0.05 leads to a lack of convergence for all
tested configurations except a suboptimal one with single Conv and FC layers;
c) with dropout of 0.75 and momentum of 0.9 (commonly adopted values) we
preserve both the network structure and highest accuracy levels with training
and test timings fully acceptable to guarantee FLA compatible near real-time
classification (see below).

Accuracy assessments are based on a 70/30 random split in training and
validation sets for each class in the database and repeated five times following a
Shuffle & Split cross-validation approach. For the CNN solution it is particularly
significant to assess how the method behaves as the dimension of the training
set decreases. We therefore considered different percentages of the training set
and, in Fig. 5(a) we track accuracy performance as a function of the number
of learning iterations. Several curves are used to show increased accuracy when
increasing the training set dimension (we are able to reach accuracy already
greater than 99% by using only 15% of the training set).

Though slightly inferior with respect to CNN, SVM also reached comparable
performance, showing an accuracy peak of 99.5% without PCA, while we ob-
tained > 1% accuracy drop by adopting dimensionality reduction. It is therefore
possible to create hyper-surfaces (thanks to RBF kernels) to accurately separate
the analyzed classes.

RF was used differently to normal. When making predictions on the test
dataset, we tried to exploit every tree in the forest in order to leverage the
full forest and benefit from averaging the prediction. A decision is taken only if



(a) (b)

Fig. 5: (a) CNN dataset evaluation and (b) Confusion matrix with 99.7% accuracy.

70% of the forest agrees. This may decrease the overall accuracy but it increases
classification precision, and reduces wrong predictions for test samples that bring
new factors that were not in the training set (as not yet considered species or
other undesirable alterations). Using this configuration, RF obtains its own best
performance using PCA (97.1%, i.e. +3.3pp with respect to the baseline).

Computational and scalability assessment Fast CSS classification is needed espe-
cially in the context of FLA. Classifiers present strong discrepancies in terms of
computational efficiency and scalability features according to the dataset dimen-
sion. This section analyses training time (Fig. 4 solid line), testing time (Fig. 4
dashed line) and classifier memory footprint (Fig. 4 dotted lined) versus the
number of training samples. We used a standard PC for all classifiers (Intel Core
i5-3470 CPU 4x3.2GHz, 16 GB RAM) except CNN (Intel Core i7-5930K CPU
12x3.5 GHz, 32 GB RAM, GeForce GTX TITAN X). SVM and CNN are the
slowest proposed solutions by almost two order of magnitude as long as RF on
training times. SVM has a bigger slope compared to CNN that maintains similar
values throughout the dataset size (meaning a better scalability). RF generates
many decision trees (1000 in configurations applied to our dataset) and in order
to reduce the training time it is possible to prune some branches (or to limit
the branching depth) in a possible trade-off with the accuracy. The cardinality
of the dataset has little influence on the classification (testing) time. RF is the
slowest (while CNN is the fastest) because any sample must flow along every
decision tree. Classifier memory footprint rises for SVM and RF and it remains
constant for CNN. In absolute, RF requires much more space than CNN and
SVM. Though not the best in terms of accuracy, RF demonstrates a high level
of precision (low false positives) and facilitates extrapolation of additional infor-
mation. On the other hand, SVM shows great accuracy. CNN proved to be the
best solution in terms of accuracy, memory footprint and testing time, as well
as scalability with respect to the dataset dimension, while training time can be
limited by using GPU and specific hardware.



Considerations and future directions Figure 5(b) shows the confusion matrix for
the best CNN configuration. We observe only a few mutual misclassifications
between Ent. faecalis and Str. agalact., Esch. coli and Kleb. pneum., couples of
pathogens that produce colonies which are hardly distinguishable visually. They
are also roughly spectrally similar (though in average separated by a bias term,
see Fig.5). Noticeably, very few misclassifications exist between Proteus vulg.
and the not swarming Proteus mirab. (also almost impossible to discriminate
visually) while, in a previous work [27], these classes were not distinctly sepa-
rated, so they were considered as joined. Discrimination capability between two
species of the same bacterial genus, as for Proteus, is of high application value
and this is evidence of the improved CSS extraction introduced in this work.

According to accuracy of classification, complexity of the structure, memory
footprint, training and testing times, the CNN-based method is seen as the best
analyzed bacterial identification pipeline. However, near perfect species differen-
tiation reveal the need and opportunities to further increase the number of con-
sidered pathogens as well as the size and variability of the dataset (e.g. including
plates coming from clinical specimens). Even if, on same experimental setting,
conventional classification methods reached high classification performance as
well, we can expect that DL-based approaches will be more appropriate in pres-
ence of scalability needs and variability factors that will be considered in order
to bring this HSI technology closer to clinical application.

4 Conclusion

We verified the possibility of applying a deep learning approach to UTI bacteria
identification by using HSI technology operating in the VNIR spectrum. Our
CNN-based solution obtained highest classification accuracies on a large labora-
tory dataset, notwithstanding the significant number of analyzed pathogens and
the fact that pathogen spectral signature differentiation is challenging and made
even harder by spectral mixing with the growing media. There are also notable
differences in term of scalability (both training, testing and memory used) driv-
ing our CNN implementation selection above alternate methods. Improvements
over previous works have also been obtained thanks to a better data acquisition
setup and a more reliable CSS assessment. This study suggests that further in-
vestigations are desirable by making our deep learning pipeline functional in a
real clinical lab environment. Future activities should take into account an even
higher number of UTI-relevant pathogens and clinical laboratory validations.
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